VirtualBox

source: vbox/trunk/src/VBox/HostDrivers/Support/SUPDrvGip.cpp@ 54355

Last change on this file since 54355 was 54355, checked in by vboxsync, 10 years ago

docs.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 150.2 KB
Line 
1/* $Id: SUPDrvGip.cpp 54355 2015-02-22 14:36:45Z vboxsync $ */
2/** @file
3 * VBoxDrv - The VirtualBox Support Driver - Common code for GIP.
4 */
5
6/*
7 * Copyright (C) 2006-2015 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.215389.xyz. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 */
26
27/*******************************************************************************
28* Header Files *
29*******************************************************************************/
30#define LOG_GROUP LOG_GROUP_SUP_DRV
31#define SUPDRV_AGNOSTIC
32#include "SUPDrvInternal.h"
33#ifndef PAGE_SHIFT
34# include <iprt/param.h>
35#endif
36#include <iprt/asm.h>
37#include <iprt/asm-amd64-x86.h>
38#include <iprt/asm-math.h>
39#include <iprt/cpuset.h>
40#include <iprt/handletable.h>
41#include <iprt/mem.h>
42#include <iprt/mp.h>
43#include <iprt/power.h>
44#include <iprt/process.h>
45#include <iprt/semaphore.h>
46#include <iprt/spinlock.h>
47#include <iprt/thread.h>
48#include <iprt/uuid.h>
49#include <iprt/net.h>
50#include <iprt/crc.h>
51#include <iprt/string.h>
52#include <iprt/timer.h>
53#if defined(RT_OS_DARWIN) || defined(RT_OS_SOLARIS) || defined(RT_OS_FREEBSD)
54# include <iprt/rand.h>
55# include <iprt/path.h>
56#endif
57#include <iprt/uint128.h>
58#include <iprt/x86.h>
59
60#include <VBox/param.h>
61#include <VBox/log.h>
62#include <VBox/err.h>
63
64#if defined(RT_OS_SOLARIS) || defined(RT_OS_DARWIN)
65# include "dtrace/SUPDrv.h"
66#else
67/* ... */
68#endif
69
70
71/*******************************************************************************
72* Defined Constants And Macros *
73*******************************************************************************/
74/** The frequency by which we recalculate the u32UpdateHz and
75 * u32UpdateIntervalNS GIP members. The value must be a power of 2.
76 *
77 * Warning: Bumping this too high might overflow u32UpdateIntervalNS.
78 */
79#define GIP_UPDATEHZ_RECALC_FREQ 0x800
80
81/** A reserved TSC value used for synchronization as well as measurement of
82 * TSC deltas. */
83#define GIP_TSC_DELTA_RSVD UINT64_MAX
84/** The number of TSC delta measurement loops in total (includes primer and
85 * read-time loops). */
86#define GIP_TSC_DELTA_LOOPS 96
87/** The number of cache primer loops. */
88#define GIP_TSC_DELTA_PRIMER_LOOPS 4
89/** The number of loops until we keep computing the minumum read time. */
90#define GIP_TSC_DELTA_READ_TIME_LOOPS 24
91
92/** @name Master / worker synchronization values.
93 * @{ */
94/** Stop measurement of TSC delta. */
95#define GIP_TSC_DELTA_SYNC_STOP UINT32_C(0)
96/** Start measurement of TSC delta. */
97#define GIP_TSC_DELTA_SYNC_START UINT32_C(1)
98/** Worker thread is ready for reading the TSC. */
99#define GIP_TSC_DELTA_SYNC_WORKER_READY UINT32_C(2)
100/** Worker thread is done updating TSC delta info. */
101#define GIP_TSC_DELTA_SYNC_WORKER_DONE UINT32_C(3)
102/** When IPRT is isn't concurrent safe: Master is ready and will wait for worker
103 * with a timeout. */
104#define GIP_TSC_DELTA_SYNC_PRESTART_MASTER UINT32_C(4)
105/** @} */
106
107/** When IPRT is isn't concurrent safe: Worker is ready after waiting for
108 * master with a timeout. */
109#define GIP_TSC_DELTA_SYNC_PRESTART_WORKER 5
110/** The TSC-refinement interval in seconds. */
111#define GIP_TSC_REFINE_PREIOD_IN_SECS 5
112/** The TSC-delta threshold for the SUPGIPUSETSCDELTA_PRACTICALLY_ZERO rating */
113#define GIP_TSC_DELTA_THRESHOLD_PRACTICALLY_ZERO 32
114/** The TSC-delta threshold for the SUPGIPUSETSCDELTA_ROUGHLY_ZERO rating */
115#define GIP_TSC_DELTA_THRESHOLD_ROUGHLY_ZERO 448
116/** The TSC delta value for the initial GIP master - 0 in regular builds.
117 * To test the delta code this can be set to a non-zero value. */
118#if 0
119# define GIP_TSC_DELTA_INITIAL_MASTER_VALUE INT64_C(170139095182512) /* 0x00009abd9854acb0 */
120#else
121# define GIP_TSC_DELTA_INITIAL_MASTER_VALUE INT64_C(0)
122#endif
123
124AssertCompile(GIP_TSC_DELTA_PRIMER_LOOPS < GIP_TSC_DELTA_READ_TIME_LOOPS);
125AssertCompile(GIP_TSC_DELTA_PRIMER_LOOPS + GIP_TSC_DELTA_READ_TIME_LOOPS < GIP_TSC_DELTA_LOOPS);
126
127/** @def VBOX_SVN_REV
128 * The makefile should define this if it can. */
129#ifndef VBOX_SVN_REV
130# define VBOX_SVN_REV 0
131#endif
132
133#if 0 /* Don't start the GIP timers. Useful when debugging the IPRT timer code. */
134# define DO_NOT_START_GIP
135#endif
136
137
138/*******************************************************************************
139* Internal Functions *
140*******************************************************************************/
141static DECLCALLBACK(void) supdrvGipSyncAndInvariantTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick);
142static DECLCALLBACK(void) supdrvGipAsyncTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick);
143static void supdrvGipInitCpu(PSUPGLOBALINFOPAGE pGip, PSUPGIPCPU pCpu, uint64_t u64NanoTS, uint64_t uCpuHz);
144#ifdef SUPDRV_USE_TSC_DELTA_THREAD
145static int supdrvTscDeltaThreadInit(PSUPDRVDEVEXT pDevExt);
146static void supdrvTscDeltaTerm(PSUPDRVDEVEXT pDevExt);
147static int supdrvTscDeltaThreadWaitForOnlineCpus(PSUPDRVDEVEXT pDevExt);
148#endif
149
150
151/*******************************************************************************
152* Global Variables *
153*******************************************************************************/
154DECLEXPORT(PSUPGLOBALINFOPAGE) g_pSUPGlobalInfoPage = NULL;
155
156
157
158/*
159 *
160 * Misc Common GIP Code
161 * Misc Common GIP Code
162 * Misc Common GIP Code
163 *
164 *
165 */
166
167
168/**
169 * Finds the GIP CPU index corresponding to @a idCpu.
170 *
171 * @returns GIP CPU array index, UINT32_MAX if not found.
172 * @param pGip The GIP.
173 * @param idCpu The CPU ID.
174 */
175static uint32_t supdrvGipFindCpuIndexForCpuId(PSUPGLOBALINFOPAGE pGip, RTCPUID idCpu)
176{
177 uint32_t i;
178 for (i = 0; i < pGip->cCpus; i++)
179 if (pGip->aCPUs[i].idCpu == idCpu)
180 return i;
181 return UINT32_MAX;
182}
183
184
185/**
186 * Applies the TSC delta to the supplied raw TSC value.
187 *
188 * @returns VBox status code. (Ignored by all users, just FYI.)
189 * @param pGip Pointer to the GIP.
190 * @param puTsc Pointer to a valid TSC value before the TSC delta has been applied.
191 * @param idApic The APIC ID of the CPU @c puTsc corresponds to.
192 * @param fDeltaApplied Where to store whether the TSC delta was succesfully
193 * applied or not (optional, can be NULL).
194 *
195 * @remarks Maybe called with interrupts disabled in ring-0!
196 *
197 * @note Don't you dare change the delta calculation. If you really do, make
198 * sure you update all places where it's used (IPRT, SUPLibAll.cpp,
199 * SUPDrv.c, supdrvGipMpEvent, and more).
200 */
201DECLINLINE(int) supdrvTscDeltaApply(PSUPGLOBALINFOPAGE pGip, uint64_t *puTsc, uint16_t idApic, bool *pfDeltaApplied)
202{
203 int rc;
204
205 /*
206 * Validate input.
207 */
208 AssertPtr(puTsc);
209 AssertPtr(pGip);
210 Assert(pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED);
211
212 /*
213 * Carefully convert the idApic into a GIPCPU entry.
214 */
215 if (RT_LIKELY(idApic < RT_ELEMENTS(pGip->aiCpuFromApicId)))
216 {
217 uint16_t iCpu = pGip->aiCpuFromApicId[idApic];
218 if (RT_LIKELY(iCpu < pGip->cCpus))
219 {
220 PSUPGIPCPU pGipCpu = &pGip->aCPUs[iCpu];
221
222 /*
223 * Apply the delta if valid.
224 */
225 if (RT_LIKELY(pGipCpu->i64TSCDelta != INT64_MAX))
226 {
227 *puTsc -= pGipCpu->i64TSCDelta;
228 if (pfDeltaApplied)
229 *pfDeltaApplied = true;
230 return VINF_SUCCESS;
231 }
232
233 rc = VINF_SUCCESS;
234 }
235 else
236 {
237 AssertMsgFailed(("iCpu=%u cCpus=%u\n", iCpu, pGip->cCpus));
238 rc = VERR_INVALID_CPU_INDEX;
239 }
240 }
241 else
242 {
243 AssertMsgFailed(("idApic=%u\n", idApic));
244 rc = VERR_INVALID_CPU_ID;
245 }
246 if (pfDeltaApplied)
247 *pfDeltaApplied = false;
248 return rc;
249}
250
251
252/*
253 *
254 * GIP Mapping and Unmapping Related Code.
255 * GIP Mapping and Unmapping Related Code.
256 * GIP Mapping and Unmapping Related Code.
257 *
258 *
259 */
260
261
262/**
263 * (Re-)initializes the per-cpu structure prior to starting or resuming the GIP
264 * updating.
265 *
266 * @param pGip Pointer to the GIP.
267 * @param pGipCpu The per CPU structure for this CPU.
268 * @param u64NanoTS The current time.
269 */
270static void supdrvGipReInitCpu(PSUPGLOBALINFOPAGE pGip, PSUPGIPCPU pGipCpu, uint64_t u64NanoTS)
271{
272 /*
273 * Here we don't really care about applying the TSC delta. The re-initialization of this
274 * value is not relevant especially while (re)starting the GIP as the first few ones will
275 * be ignored anyway, see supdrvGipDoUpdateCpu().
276 */
277 pGipCpu->u64TSC = ASMReadTSC() - pGipCpu->u32UpdateIntervalTSC;
278 pGipCpu->u64NanoTS = u64NanoTS;
279}
280
281
282/**
283 * Set the current TSC and NanoTS value for the CPU.
284 *
285 * @param idCpu The CPU ID. Unused - we have to use the APIC ID.
286 * @param pvUser1 Pointer to the ring-0 GIP mapping.
287 * @param pvUser2 Pointer to the variable holding the current time.
288 */
289static DECLCALLBACK(void) supdrvGipReInitCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
290{
291 PSUPGLOBALINFOPAGE pGip = (PSUPGLOBALINFOPAGE)pvUser1;
292 unsigned iCpu = pGip->aiCpuFromApicId[ASMGetApicId()];
293
294 if (RT_LIKELY(iCpu < pGip->cCpus && pGip->aCPUs[iCpu].idCpu == idCpu))
295 supdrvGipReInitCpu(pGip, &pGip->aCPUs[iCpu], *(uint64_t *)pvUser2);
296
297 NOREF(pvUser2);
298 NOREF(idCpu);
299}
300
301
302/**
303 * State structure for supdrvGipDetectGetGipCpuCallback.
304 */
305typedef struct SUPDRVGIPDETECTGETCPU
306{
307 /** Bitmap of APIC IDs that has been seen (initialized to zero).
308 * Used to detect duplicate APIC IDs (paranoia). */
309 uint8_t volatile bmApicId[256 / 8];
310 /** Mask of supported GIP CPU getter methods (SUPGIPGETCPU_XXX) (all bits set
311 * initially). The callback clears the methods not detected. */
312 uint32_t volatile fSupported;
313 /** The first callback detecting any kind of range issues (initialized to
314 * NIL_RTCPUID). */
315 RTCPUID volatile idCpuProblem;
316} SUPDRVGIPDETECTGETCPU;
317/** Pointer to state structure for supdrvGipDetectGetGipCpuCallback. */
318typedef SUPDRVGIPDETECTGETCPU *PSUPDRVGIPDETECTGETCPU;
319
320
321/**
322 * Checks for alternative ways of getting the CPU ID.
323 *
324 * This also checks the APIC ID, CPU ID and CPU set index values against the
325 * GIP tables.
326 *
327 * @param idCpu The CPU ID. Unused - we have to use the APIC ID.
328 * @param pvUser1 Pointer to the state structure.
329 * @param pvUser2 Pointer to the GIP.
330 */
331static DECLCALLBACK(void) supdrvGipDetectGetGipCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
332{
333 PSUPDRVGIPDETECTGETCPU pState = (PSUPDRVGIPDETECTGETCPU)pvUser1;
334 PSUPGLOBALINFOPAGE pGip = (PSUPGLOBALINFOPAGE)pvUser2;
335 uint32_t fSupported = 0;
336 uint16_t idApic;
337 int iCpuSet;
338
339 AssertMsg(idCpu == RTMpCpuId(), ("idCpu=%#x RTMpCpuId()=%#x\n", idCpu, RTMpCpuId())); /* paranoia^3 */
340
341 /*
342 * Check that the CPU ID and CPU set index are interchangable.
343 */
344 iCpuSet = RTMpCpuIdToSetIndex(idCpu);
345 if ((RTCPUID)iCpuSet == idCpu)
346 {
347 AssertCompile(RT_IS_POWER_OF_TWO(RTCPUSET_MAX_CPUS));
348 if ( iCpuSet >= 0
349 && iCpuSet < RTCPUSET_MAX_CPUS
350 && RT_IS_POWER_OF_TWO(RTCPUSET_MAX_CPUS))
351 {
352 /*
353 * Check whether the IDTR.LIMIT contains a CPU number.
354 */
355#ifdef RT_ARCH_X86
356 uint16_t const cbIdt = sizeof(X86DESC64SYSTEM) * 256;
357#else
358 uint16_t const cbIdt = sizeof(X86DESCGATE) * 256;
359#endif
360 RTIDTR Idtr;
361 ASMGetIDTR(&Idtr);
362 if (Idtr.cbIdt >= cbIdt)
363 {
364 uint32_t uTmp = Idtr.cbIdt - cbIdt;
365 uTmp &= RTCPUSET_MAX_CPUS - 1;
366 if (uTmp == idCpu)
367 {
368 RTIDTR Idtr2;
369 ASMGetIDTR(&Idtr2);
370 if (Idtr2.cbIdt == Idtr.cbIdt)
371 fSupported |= SUPGIPGETCPU_IDTR_LIMIT_MASK_MAX_SET_CPUS;
372 }
373 }
374
375 /*
376 * Check whether RDTSCP is an option.
377 */
378 if (ASMHasCpuId())
379 {
380 if ( ASMIsValidExtRange(ASMCpuId_EAX(UINT32_C(0x80000000)))
381 && (ASMCpuId_EDX(UINT32_C(0x80000001)) & X86_CPUID_EXT_FEATURE_EDX_RDTSCP) )
382 {
383 uint32_t uAux;
384 ASMReadTscWithAux(&uAux);
385 if ((uAux & (RTCPUSET_MAX_CPUS - 1)) == idCpu)
386 {
387 ASMNopPause();
388 ASMReadTscWithAux(&uAux);
389 if ((uAux & (RTCPUSET_MAX_CPUS - 1)) == idCpu)
390 fSupported |= SUPGIPGETCPU_RDTSCP_MASK_MAX_SET_CPUS;
391 }
392 }
393 }
394 }
395 }
396
397 /*
398 * Check that the APIC ID is unique.
399 */
400 idApic = ASMGetApicId();
401 if (RT_LIKELY( idApic < RT_ELEMENTS(pGip->aiCpuFromApicId)
402 && !ASMAtomicBitTestAndSet(pState->bmApicId, idApic)))
403 fSupported |= SUPGIPGETCPU_APIC_ID;
404 else
405 {
406 AssertCompile(sizeof(pState->bmApicId) * 8 == RT_ELEMENTS(pGip->aiCpuFromApicId));
407 ASMAtomicCmpXchgU32(&pState->idCpuProblem, idCpu, NIL_RTCPUID);
408 LogRel(("supdrvGipDetectGetGipCpuCallback: idCpu=%#x iCpuSet=%d idApic=%#x - duplicate APIC ID.\n",
409 idCpu, iCpuSet, idApic));
410 }
411
412 /*
413 * Check that the iCpuSet is within the expected range.
414 */
415 if (RT_UNLIKELY( iCpuSet < 0
416 || (unsigned)iCpuSet >= RTCPUSET_MAX_CPUS
417 || (unsigned)iCpuSet >= RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx)))
418 {
419 ASMAtomicCmpXchgU32(&pState->idCpuProblem, idCpu, NIL_RTCPUID);
420 LogRel(("supdrvGipDetectGetGipCpuCallback: idCpu=%#x iCpuSet=%d idApic=%#x - CPU set index is out of range.\n",
421 idCpu, iCpuSet, idApic));
422 }
423 else
424 {
425 RTCPUID idCpu2 = RTMpCpuIdFromSetIndex(iCpuSet);
426 if (RT_UNLIKELY(idCpu2 != idCpu))
427 {
428 ASMAtomicCmpXchgU32(&pState->idCpuProblem, idCpu, NIL_RTCPUID);
429 LogRel(("supdrvGipDetectGetGipCpuCallback: idCpu=%#x iCpuSet=%d idApic=%#x - CPU id/index roundtrip problem: %#x\n",
430 idCpu, iCpuSet, idApic, idCpu2));
431 }
432 }
433
434 /*
435 * Update the supported feature mask before we return.
436 */
437 ASMAtomicAndU32(&pState->fSupported, fSupported);
438
439 NOREF(pvUser2);
440}
441
442
443/**
444 * Increase the timer freqency on hosts where this is possible (NT).
445 *
446 * The idea is that more interrupts is better for us... Also, it's better than
447 * we increase the timer frequence, because we might end up getting inaccurate
448 * callbacks if someone else does it.
449 *
450 * @param pDevExt Sets u32SystemTimerGranularityGrant if increased.
451 */
452static void supdrvGipRequestHigherTimerFrequencyFromSystem(PSUPDRVDEVEXT pDevExt)
453{
454 if (pDevExt->u32SystemTimerGranularityGrant == 0)
455 {
456 uint32_t u32SystemResolution;
457 if ( RT_SUCCESS_NP(RTTimerRequestSystemGranularity( 976563 /* 1024 HZ */, &u32SystemResolution))
458 || RT_SUCCESS_NP(RTTimerRequestSystemGranularity( 1000000 /* 1000 HZ */, &u32SystemResolution))
459 || RT_SUCCESS_NP(RTTimerRequestSystemGranularity( 1953125 /* 512 HZ */, &u32SystemResolution))
460 || RT_SUCCESS_NP(RTTimerRequestSystemGranularity( 2000000 /* 500 HZ */, &u32SystemResolution))
461 )
462 {
463 Assert(RTTimerGetSystemGranularity() <= u32SystemResolution);
464 pDevExt->u32SystemTimerGranularityGrant = u32SystemResolution;
465 }
466 }
467}
468
469
470/**
471 * Undoes supdrvGipRequestHigherTimerFrequencyFromSystem.
472 *
473 * @param pDevExt Clears u32SystemTimerGranularityGrant.
474 */
475static void supdrvGipReleaseHigherTimerFrequencyFromSystem(PSUPDRVDEVEXT pDevExt)
476{
477 if (pDevExt->u32SystemTimerGranularityGrant)
478 {
479 int rc2 = RTTimerReleaseSystemGranularity(pDevExt->u32SystemTimerGranularityGrant);
480 AssertRC(rc2);
481 pDevExt->u32SystemTimerGranularityGrant = 0;
482 }
483}
484
485
486/**
487 * Maps the GIP into userspace and/or get the physical address of the GIP.
488 *
489 * @returns IPRT status code.
490 * @param pSession Session to which the GIP mapping should belong.
491 * @param ppGipR3 Where to store the address of the ring-3 mapping. (optional)
492 * @param pHCPhysGip Where to store the physical address. (optional)
493 *
494 * @remark There is no reference counting on the mapping, so one call to this function
495 * count globally as one reference. One call to SUPR0GipUnmap() is will unmap GIP
496 * and remove the session as a GIP user.
497 */
498SUPR0DECL(int) SUPR0GipMap(PSUPDRVSESSION pSession, PRTR3PTR ppGipR3, PRTHCPHYS pHCPhysGip)
499{
500 int rc;
501 PSUPDRVDEVEXT pDevExt = pSession->pDevExt;
502 RTR3PTR pGipR3 = NIL_RTR3PTR;
503 RTHCPHYS HCPhys = NIL_RTHCPHYS;
504 LogFlow(("SUPR0GipMap: pSession=%p ppGipR3=%p pHCPhysGip=%p\n", pSession, ppGipR3, pHCPhysGip));
505
506 /*
507 * Validate
508 */
509 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
510 AssertPtrNullReturn(ppGipR3, VERR_INVALID_POINTER);
511 AssertPtrNullReturn(pHCPhysGip, VERR_INVALID_POINTER);
512
513#ifdef SUPDRV_USE_MUTEX_FOR_GIP
514 RTSemMutexRequest(pDevExt->mtxGip, RT_INDEFINITE_WAIT);
515#else
516 RTSemFastMutexRequest(pDevExt->mtxGip);
517#endif
518 if (pDevExt->pGip)
519 {
520 /*
521 * Map it?
522 */
523 rc = VINF_SUCCESS;
524 if (ppGipR3)
525 {
526 if (pSession->GipMapObjR3 == NIL_RTR0MEMOBJ)
527 rc = RTR0MemObjMapUser(&pSession->GipMapObjR3, pDevExt->GipMemObj, (RTR3PTR)-1, 0,
528 RTMEM_PROT_READ, RTR0ProcHandleSelf());
529 if (RT_SUCCESS(rc))
530 pGipR3 = RTR0MemObjAddressR3(pSession->GipMapObjR3);
531 }
532
533 /*
534 * Get physical address.
535 */
536 if (pHCPhysGip && RT_SUCCESS(rc))
537 HCPhys = pDevExt->HCPhysGip;
538
539 /*
540 * Reference globally.
541 */
542 if (!pSession->fGipReferenced && RT_SUCCESS(rc))
543 {
544 pSession->fGipReferenced = 1;
545 pDevExt->cGipUsers++;
546 if (pDevExt->cGipUsers == 1)
547 {
548 PSUPGLOBALINFOPAGE pGipR0 = pDevExt->pGip;
549 uint64_t u64NanoTS;
550
551 /*
552 * GIP starts/resumes updating again. On windows we bump the
553 * host timer frequency to make sure we don't get stuck in guest
554 * mode and to get better timer (and possibly clock) accuracy.
555 */
556 LogFlow(("SUPR0GipMap: Resumes GIP updating\n"));
557
558 supdrvGipRequestHigherTimerFrequencyFromSystem(pDevExt);
559
560 /*
561 * document me
562 */
563 if (pGipR0->aCPUs[0].u32TransactionId != 2 /* not the first time */)
564 {
565 unsigned i;
566 for (i = 0; i < pGipR0->cCpus; i++)
567 ASMAtomicUoWriteU32(&pGipR0->aCPUs[i].u32TransactionId,
568 (pGipR0->aCPUs[i].u32TransactionId + GIP_UPDATEHZ_RECALC_FREQ * 2)
569 & ~(GIP_UPDATEHZ_RECALC_FREQ * 2 - 1));
570 ASMAtomicWriteU64(&pGipR0->u64NanoTSLastUpdateHz, 0);
571 }
572
573 /*
574 * document me
575 */
576 u64NanoTS = RTTimeSystemNanoTS() - pGipR0->u32UpdateIntervalNS;
577 if ( pGipR0->u32Mode == SUPGIPMODE_INVARIANT_TSC
578 || pGipR0->u32Mode == SUPGIPMODE_SYNC_TSC
579 || RTMpGetOnlineCount() == 1)
580 supdrvGipReInitCpu(pGipR0, &pGipR0->aCPUs[0], u64NanoTS);
581 else
582 RTMpOnAll(supdrvGipReInitCpuCallback, pGipR0, &u64NanoTS);
583
584 /*
585 * Detect alternative ways to figure the CPU ID in ring-3 and
586 * raw-mode context. Check the sanity of the APIC IDs, CPU IDs,
587 * and CPU set indexes while we're at it.
588 */
589 if (RT_SUCCESS(rc))
590 {
591 SUPDRVGIPDETECTGETCPU DetectState;
592 RT_BZERO((void *)&DetectState.bmApicId, sizeof(DetectState.bmApicId));
593 DetectState.fSupported = UINT32_MAX;
594 DetectState.idCpuProblem = NIL_RTCPUID;
595 rc = RTMpOnAll(supdrvGipDetectGetGipCpuCallback, &DetectState, pGipR0);
596 if (DetectState.idCpuProblem == NIL_RTCPUID)
597 {
598 if ( DetectState.fSupported != UINT32_MAX
599 && DetectState.fSupported != 0)
600 {
601 if (pGipR0->fGetGipCpu != DetectState.fSupported)
602 {
603 pGipR0->fGetGipCpu = DetectState.fSupported;
604 LogRel(("SUPR0GipMap: fGetGipCpu=%#x\n", DetectState.fSupported));
605 }
606 }
607 else
608 {
609 LogRel(("SUPR0GipMap: No supported ways of getting the APIC ID or CPU number in ring-3! (%#x)\n",
610 DetectState.fSupported));
611 rc = VERR_UNSUPPORTED_CPU;
612 }
613 }
614 else
615 {
616 LogRel(("SUPR0GipMap: APIC ID, CPU ID or CPU set index problem detected on CPU #%u (%#x)!\n",
617 DetectState.idCpuProblem, DetectState.idCpuProblem));
618 rc = VERR_INVALID_CPU_ID;
619 }
620 }
621
622 /*
623 * Start the GIP timer if all is well..
624 */
625 if (RT_SUCCESS(rc))
626 {
627#ifndef DO_NOT_START_GIP
628 rc = RTTimerStart(pDevExt->pGipTimer, 0 /* fire ASAP */); AssertRC(rc);
629#endif
630 rc = VINF_SUCCESS;
631 }
632
633 /*
634 * Bail out on error.
635 */
636 if (RT_FAILURE(rc))
637 {
638 LogRel(("SUPR0GipMap: failed rc=%Rrc\n", rc));
639 pDevExt->cGipUsers = 0;
640 pSession->fGipReferenced = 0;
641 if (pSession->GipMapObjR3 != NIL_RTR0MEMOBJ)
642 {
643 int rc2 = RTR0MemObjFree(pSession->GipMapObjR3, false); AssertRC(rc2);
644 if (RT_SUCCESS(rc2))
645 pSession->GipMapObjR3 = NIL_RTR0MEMOBJ;
646 }
647 HCPhys = NIL_RTHCPHYS;
648 pGipR3 = NIL_RTR3PTR;
649 }
650 }
651 }
652 }
653 else
654 {
655 rc = VERR_GENERAL_FAILURE;
656 Log(("SUPR0GipMap: GIP is not available!\n"));
657 }
658#ifdef SUPDRV_USE_MUTEX_FOR_GIP
659 RTSemMutexRelease(pDevExt->mtxGip);
660#else
661 RTSemFastMutexRelease(pDevExt->mtxGip);
662#endif
663
664 /*
665 * Write returns.
666 */
667 if (pHCPhysGip)
668 *pHCPhysGip = HCPhys;
669 if (ppGipR3)
670 *ppGipR3 = pGipR3;
671
672#ifdef DEBUG_DARWIN_GIP
673 OSDBGPRINT(("SUPR0GipMap: returns %d *pHCPhysGip=%lx pGipR3=%p\n", rc, (unsigned long)HCPhys, (void *)pGipR3));
674#else
675 LogFlow(( "SUPR0GipMap: returns %d *pHCPhysGip=%lx pGipR3=%p\n", rc, (unsigned long)HCPhys, (void *)pGipR3));
676#endif
677 return rc;
678}
679
680
681/**
682 * Unmaps any user mapping of the GIP and terminates all GIP access
683 * from this session.
684 *
685 * @returns IPRT status code.
686 * @param pSession Session to which the GIP mapping should belong.
687 */
688SUPR0DECL(int) SUPR0GipUnmap(PSUPDRVSESSION pSession)
689{
690 int rc = VINF_SUCCESS;
691 PSUPDRVDEVEXT pDevExt = pSession->pDevExt;
692#ifdef DEBUG_DARWIN_GIP
693 OSDBGPRINT(("SUPR0GipUnmap: pSession=%p pGip=%p GipMapObjR3=%p\n",
694 pSession,
695 pSession->GipMapObjR3 != NIL_RTR0MEMOBJ ? RTR0MemObjAddress(pSession->GipMapObjR3) : NULL,
696 pSession->GipMapObjR3));
697#else
698 LogFlow(("SUPR0GipUnmap: pSession=%p\n", pSession));
699#endif
700 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
701
702#ifdef SUPDRV_USE_MUTEX_FOR_GIP
703 RTSemMutexRequest(pDevExt->mtxGip, RT_INDEFINITE_WAIT);
704#else
705 RTSemFastMutexRequest(pDevExt->mtxGip);
706#endif
707
708 /*
709 * Unmap anything?
710 */
711 if (pSession->GipMapObjR3 != NIL_RTR0MEMOBJ)
712 {
713 rc = RTR0MemObjFree(pSession->GipMapObjR3, false);
714 AssertRC(rc);
715 if (RT_SUCCESS(rc))
716 pSession->GipMapObjR3 = NIL_RTR0MEMOBJ;
717 }
718
719 /*
720 * Dereference global GIP.
721 */
722 if (pSession->fGipReferenced && !rc)
723 {
724 pSession->fGipReferenced = 0;
725 if ( pDevExt->cGipUsers > 0
726 && !--pDevExt->cGipUsers)
727 {
728 LogFlow(("SUPR0GipUnmap: Suspends GIP updating\n"));
729#ifndef DO_NOT_START_GIP
730 rc = RTTimerStop(pDevExt->pGipTimer); AssertRC(rc); rc = VINF_SUCCESS;
731#endif
732 supdrvGipReleaseHigherTimerFrequencyFromSystem(pDevExt);
733 }
734 }
735
736#ifdef SUPDRV_USE_MUTEX_FOR_GIP
737 RTSemMutexRelease(pDevExt->mtxGip);
738#else
739 RTSemFastMutexRelease(pDevExt->mtxGip);
740#endif
741
742 return rc;
743}
744
745
746/**
747 * Gets the GIP pointer.
748 *
749 * @returns Pointer to the GIP or NULL.
750 */
751SUPDECL(PSUPGLOBALINFOPAGE) SUPGetGIP(void)
752{
753 return g_pSUPGlobalInfoPage;
754}
755
756
757
758
759
760/*
761 *
762 *
763 * GIP Initialization, Termination and CPU Offline / Online Related Code.
764 * GIP Initialization, Termination and CPU Offline / Online Related Code.
765 * GIP Initialization, Termination and CPU Offline / Online Related Code.
766 *
767 *
768 */
769
770/**
771 * Used by supdrvInitRefineInvariantTscFreqTimer and supdrvGipInitMeasureTscFreq
772 * to update the TSC frequency related GIP variables.
773 *
774 * @param pGip The GIP.
775 * @param nsElapsed The number of nano seconds elapsed.
776 * @param cElapsedTscTicks The corresponding number of TSC ticks.
777 */
778static void supdrvGipInitSetCpuFreq(PSUPGLOBALINFOPAGE pGip, uint64_t nsElapsed, uint64_t cElapsedTscTicks)
779{
780 /*
781 * Calculate the frequency.
782 */
783 uint64_t uCpuHz;
784 if ( cElapsedTscTicks < UINT64_MAX / RT_NS_1SEC
785 && nsElapsed < UINT32_MAX)
786 uCpuHz = ASMMultU64ByU32DivByU32(cElapsedTscTicks, RT_NS_1SEC, (uint32_t)nsElapsed);
787 else
788 {
789 RTUINT128U CpuHz, Tmp, Divisor;
790 CpuHz.s.Lo = CpuHz.s.Hi = 0;
791 RTUInt128MulU64ByU64(&Tmp, cElapsedTscTicks, RT_NS_1SEC_64);
792 RTUInt128Div(&CpuHz, &Tmp, RTUInt128AssignU64(&Divisor, nsElapsed));
793 uCpuHz = CpuHz.s.Lo;
794 }
795
796 /*
797 * Update the GIP.
798 */
799 ASMAtomicWriteU64(&pGip->u64CpuHz, uCpuHz);
800 if (pGip->u32Mode != SUPGIPMODE_ASYNC_TSC)
801 ASMAtomicWriteU64(&pGip->aCPUs[0].u64CpuHz, uCpuHz);
802}
803
804
805/**
806 * Timer callback function for TSC frequency refinement in invariant GIP mode.
807 *
808 * This is started during driver init and fires once
809 * GIP_TSC_REFINE_PREIOD_IN_SECS seconds later.
810 *
811 * @param pTimer The timer.
812 * @param pvUser Opaque pointer to the device instance data.
813 * @param iTick The timer tick.
814 */
815static DECLCALLBACK(void) supdrvInitRefineInvariantTscFreqTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick)
816{
817 PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser;
818 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
819 RTCPUID idCpu;
820 uint64_t cNsElapsed;
821 uint64_t cTscTicksElapsed;
822 uint64_t nsNow;
823 uint64_t uTsc;
824 RTCCUINTREG uFlags;
825
826 /* Paranoia. */
827 AssertReturnVoid(pGip);
828 AssertReturnVoid(pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC);
829
830 /*
831 * Try get close to the next clock tick as usual.
832 *
833 * PORTME: If timers are called from the clock interrupt handler, or
834 * an interrupt handler with higher priority than the clock
835 * interrupt, or spinning for ages in timer handlers is frowned
836 * upon, this look must be disabled!
837 *
838 * Darwin, FreeBSD, Linux, Solaris, Windows 8.1+:
839 * High RTTimeSystemNanoTS resolution should prevent any noticable
840 * spinning her.
841 *
842 * Windows 8.0 and earlier:
843 * We're running in a DPC here, so we may trigger the DPC watchdog?
844 *
845 * OS/2:
846 * Timer callbacks are done in the clock interrupt, so skip it.
847 */
848#if !defined(RT_OS_OS2)
849 nsNow = RTTimeSystemNanoTS();
850 while (RTTimeSystemNanoTS() == nsNow)
851 ASMNopPause();
852#endif
853
854 uFlags = ASMIntDisableFlags();
855 uTsc = ASMReadTSC();
856 nsNow = RTTimeSystemNanoTS();
857 idCpu = RTMpCpuId();
858 ASMSetFlags(uFlags);
859
860 cNsElapsed = nsNow - pDevExt->nsStartInvarTscRefine;
861 cTscTicksElapsed = uTsc - pDevExt->uTscStartInvarTscRefine;
862
863 /*
864 * If the above measurement was taken on a different CPU than the one we
865 * started the rprocess on, cTscTicksElapsed will need to be adjusted with
866 * the TSC deltas of both the CPUs.
867 *
868 * We ASSUME that the delta calculation process takes less time than the
869 * TSC frequency refinement timer. If it doesn't, we'll complain and
870 * drop the frequency refinement.
871 *
872 * Note! We cannot entirely trust enmUseTscDelta here because it's
873 * downgraded after each delta calculation.
874 */
875 if ( idCpu != pDevExt->idCpuInvarTscRefine
876 && pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED)
877 {
878 uint32_t iStartCpuSet = RTMpCpuIdToSetIndex(pDevExt->idCpuInvarTscRefine);
879 uint32_t iStopCpuSet = RTMpCpuIdToSetIndex(idCpu);
880 uint16_t iStartGipCpu = iStartCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx)
881 ? pGip->aiCpuFromCpuSetIdx[iStartCpuSet] : UINT16_MAX;
882 uint16_t iStopGipCpu = iStopCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx)
883 ? pGip->aiCpuFromCpuSetIdx[iStopCpuSet] : UINT16_MAX;
884 int64_t iStartTscDelta = iStartGipCpu < pGip->cCpus ? pGip->aCPUs[iStartGipCpu].i64TSCDelta : INT64_MAX;
885 int64_t iStopTscDelta = iStopGipCpu < pGip->cCpus ? pGip->aCPUs[iStopGipCpu].i64TSCDelta : INT64_MAX;
886 if (RT_LIKELY(iStartTscDelta != INT64_MAX && iStopGipCpu != INT64_MAX))
887 {
888 if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_PRACTICALLY_ZERO)
889 {
890 /* cTscTicksElapsed = (uTsc - iStopTscDelta) - (pDevExt->uTscStartInvarTscRefine - iStartTscDelta); */
891 cTscTicksElapsed += iStartTscDelta - iStopTscDelta;
892 }
893 }
894 /*
895 * Allow 5 times the refinement period to elapse before we give up on the TSC delta
896 * calculations.
897 */
898 else if (cNsElapsed <= GIP_TSC_REFINE_PREIOD_IN_SECS * 5 * RT_NS_1SEC_64)
899 {
900 int rc = RTTimerStart(pTimer, RT_NS_1SEC);
901 AssertRC(rc);
902 return;
903 }
904 else
905 {
906 SUPR0Printf("vboxdrv: Failed to refine invariant TSC frequency because deltas are unavailable after %u (%u) seconds\n",
907 (uint32_t)(cNsElapsed / RT_NS_1SEC), GIP_TSC_REFINE_PREIOD_IN_SECS);
908 SUPR0Printf("vboxdrv: start: %u, %u, %#llx stop: %u, %u, %#llx\n",
909 iStartCpuSet, iStartGipCpu, iStartTscDelta, iStopCpuSet, iStopGipCpu, iStopTscDelta);
910 return;
911 }
912 }
913
914 /*
915 * Calculate and update the CPU frequency variables in GIP.
916 *
917 * If there is a GIP user already and we've already refined the frequency
918 * a couple of times, don't update it as we want a stable frequency value
919 * for all VMs.
920 */
921 if ( pDevExt->cGipUsers == 0
922 || cNsElapsed < RT_NS_1SEC * 2)
923 {
924 supdrvGipInitSetCpuFreq(pGip, cNsElapsed, cTscTicksElapsed);
925
926 /*
927 * Reschedule the timer if we haven't yet reached the defined refinement period.
928 */
929 if (cNsElapsed < GIP_TSC_REFINE_PREIOD_IN_SECS * RT_NS_1SEC_64)
930 {
931 int rc = RTTimerStart(pTimer, RT_NS_1SEC);
932 AssertRC(rc);
933 }
934 }
935}
936
937
938/**
939 * Start the TSC-frequency refinment timer for the invariant TSC GIP mode.
940 *
941 * We cannot use this in the synchronous and asynchronous tsc GIP modes because
942 * the CPU may change the TSC frequence between now and when the timer fires
943 * (supdrvInitAsyncRefineTscTimer).
944 *
945 * @param pDevExt Pointer to the device instance data.
946 * @param pGip Pointer to the GIP.
947 */
948static void supdrvGipInitStartTimerForRefiningInvariantTscFreq(PSUPDRVDEVEXT pDevExt, PSUPGLOBALINFOPAGE pGip)
949{
950 uint64_t u64NanoTS;
951 RTCCUINTREG uFlags;
952 int rc;
953
954 /*
955 * Record the TSC and NanoTS as the starting anchor point for refinement
956 * of the TSC. We try get as close to a clock tick as possible on systems
957 * which does not provide high resolution time.
958 */
959 u64NanoTS = RTTimeSystemNanoTS();
960 while (RTTimeSystemNanoTS() == u64NanoTS)
961 ASMNopPause();
962
963 uFlags = ASMIntDisableFlags();
964 pDevExt->uTscStartInvarTscRefine = ASMReadTSC();
965 pDevExt->nsStartInvarTscRefine = RTTimeSystemNanoTS();
966 pDevExt->idCpuInvarTscRefine = RTMpCpuId();
967 ASMSetFlags(uFlags);
968
969 /*
970 * Create a timer that runs on the same CPU so we won't have a depencency
971 * on the TSC-delta and can run in parallel to it. On systems that does not
972 * implement CPU specific timers we'll apply deltas in the timer callback,
973 * just like we do for CPUs going offline.
974 *
975 * The longer the refinement interval the better the accuracy, at least in
976 * theory. If it's too long though, ring-3 may already be starting its
977 * first VMs before we're done. On most systems we will be loading the
978 * support driver during boot and VMs won't be started for a while yet,
979 * it is really only a problem during development (especiall with
980 * on-demand driver starting on windows).
981 *
982 * To avoid wasting time doing a long supdrvGipInitMeasureTscFreq call
983 * to calculate the frequencey during driver loading, the timer is set
984 * to fire after 200 ms the first time. It will then reschedule itself
985 * to fire every second until GIP_TSC_REFINE_PREIOD_IN_SECS has been
986 * reached or it notices that there is a user land client with GIP
987 * mapped (we want a stable frequency for all VMs).
988 */
989 rc = RTTimerCreateEx(&pDevExt->pInvarTscRefineTimer, 0 /* one-shot */,
990 RTTIMER_FLAGS_CPU(RTMpCpuIdToSetIndex(pDevExt->idCpuInvarTscRefine)),
991 supdrvInitRefineInvariantTscFreqTimer, pDevExt);
992 if (RT_SUCCESS(rc))
993 {
994 rc = RTTimerStart(pDevExt->pInvarTscRefineTimer, 2*RT_NS_100MS);
995 if (RT_SUCCESS(rc))
996 return;
997 RTTimerDestroy(pDevExt->pInvarTscRefineTimer);
998 }
999
1000 if (rc == VERR_CPU_OFFLINE || rc == VERR_NOT_SUPPORTED)
1001 {
1002 rc = RTTimerCreateEx(&pDevExt->pInvarTscRefineTimer, 0 /* one-shot */, RTTIMER_FLAGS_CPU_ANY,
1003 supdrvInitRefineInvariantTscFreqTimer, pDevExt);
1004 if (RT_SUCCESS(rc))
1005 {
1006 rc = RTTimerStart(pDevExt->pInvarTscRefineTimer, 2*RT_NS_100MS);
1007 if (RT_SUCCESS(rc))
1008 return;
1009 RTTimerDestroy(pDevExt->pInvarTscRefineTimer);
1010 }
1011 }
1012
1013 pDevExt->pInvarTscRefineTimer = NULL;
1014 OSDBGPRINT(("vboxdrv: Failed to create or start TSC frequency refinement timer: rc=%Rrc\n", rc));
1015}
1016
1017
1018/**
1019 * @callback_method_impl{PFNRTMPWORKER,
1020 * RTMpOnSpecific callback for reading TSC and time on the CPU we started
1021 * the measurements on.}
1022 */
1023DECLCALLBACK(void) supdrvGipInitReadTscAndNanoTsOnCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
1024{
1025 RTCCUINTREG uFlags = ASMIntDisableFlags();
1026 uint64_t *puTscStop = (uint64_t *)pvUser1;
1027 uint64_t *pnsStop = (uint64_t *)pvUser2;
1028
1029 *puTscStop = ASMReadTSC();
1030 *pnsStop = RTTimeSystemNanoTS();
1031
1032 ASMSetFlags(uFlags);
1033}
1034
1035
1036/**
1037 * Measures the TSC frequency of the system.
1038 *
1039 * The TSC frequency can vary on systems which are not reported as invariant.
1040 * On such systems the object of this function is to find out what the nominal,
1041 * maximum TSC frequency under 'normal' CPU operation.
1042 *
1043 * @returns VBox status code.
1044 * @param pDevExt Pointer to the device instance.
1045 * @param pGip Pointer to the GIP.
1046 * @param fRough Set if we're doing the rough calculation that the
1047 * TSC measuring code needs, where accuracy isn't all
1048 * that important (too high is better than to low).
1049 * When clear we try for best accuracy that we can
1050 * achieve in reasonably short time.
1051 */
1052static int supdrvGipInitMeasureTscFreq(PSUPDRVDEVEXT pDevExt, PSUPGLOBALINFOPAGE pGip, bool fRough)
1053{
1054 uint32_t nsTimerIncr = RTTimerGetSystemGranularity();
1055 int cTriesLeft = fRough ? 4 : 2;
1056 while (cTriesLeft-- > 0)
1057 {
1058 RTCCUINTREG uFlags;
1059 uint64_t nsStart;
1060 uint64_t nsStop;
1061 uint64_t uTscStart;
1062 uint64_t uTscStop;
1063 RTCPUID idCpuStart;
1064 RTCPUID idCpuStop;
1065
1066 /*
1067 * Synchronize with the host OS clock tick on systems without high
1068 * resolution time API (older Windows version for example).
1069 */
1070 nsStart = RTTimeSystemNanoTS();
1071 while (RTTimeSystemNanoTS() == nsStart)
1072 ASMNopPause();
1073
1074 /*
1075 * Read the TSC and current time, noting which CPU we're on.
1076 */
1077 uFlags = ASMIntDisableFlags();
1078 uTscStart = ASMReadTSC();
1079 nsStart = RTTimeSystemNanoTS();
1080 idCpuStart = RTMpCpuId();
1081 ASMSetFlags(uFlags);
1082
1083 /*
1084 * Delay for a while.
1085 */
1086 if (pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC)
1087 {
1088 /*
1089 * Sleep-wait since the TSC frequency is constant, it eases host load.
1090 * Shorter interval produces more variance in the frequency (esp. Windows).
1091 */
1092 uint64_t msElapsed = 0;
1093 uint64_t msDelay = ( ((fRough ? 16 : 200) * RT_NS_1MS + nsTimerIncr - 1) / nsTimerIncr * nsTimerIncr - RT_NS_100US )
1094 / RT_NS_1MS;
1095 do
1096 {
1097 RTThreadSleep((RTMSINTERVAL)(msDelay - msElapsed));
1098 nsStop = RTTimeSystemNanoTS();
1099 msElapsed = (nsStop - nsStart) / RT_NS_1MS;
1100 } while (msElapsed < msDelay);
1101
1102 while (RTTimeSystemNanoTS() == nsStop)
1103 ASMNopPause();
1104 }
1105 else
1106 {
1107 /*
1108 * Busy-wait keeping the frequency up.
1109 */
1110 do
1111 {
1112 ASMNopPause();
1113 nsStop = RTTimeSystemNanoTS();
1114 } while (nsStop - nsStart < RT_NS_100MS);
1115 }
1116
1117 /*
1118 * Read the TSC and time again.
1119 */
1120 uFlags = ASMIntDisableFlags();
1121 uTscStop = ASMReadTSC();
1122 nsStop = RTTimeSystemNanoTS();
1123 idCpuStop = RTMpCpuId();
1124 ASMSetFlags(uFlags);
1125
1126 /*
1127 * If the CPU changes things get a bit complicated and what we
1128 * can get away with depends on the GIP mode / TSC reliablity.
1129 */
1130 if (idCpuStop != idCpuStart)
1131 {
1132 bool fDoXCall = false;
1133
1134 /*
1135 * Synchronous TSC mode: we're probably fine as it's unlikely
1136 * that we were rescheduled because of TSC throttling or power
1137 * management reasons, so just go ahead.
1138 */
1139 if (pGip->u32Mode == SUPGIPMODE_SYNC_TSC)
1140 {
1141 /* Probably ok, maybe we should retry once?. */
1142 Assert(pGip->enmUseTscDelta == SUPGIPUSETSCDELTA_NOT_APPLICABLE);
1143 }
1144 /*
1145 * If we're just doing the rough measurement, do the cross call and
1146 * get on with things (we don't have deltas!).
1147 */
1148 else if (fRough)
1149 fDoXCall = true;
1150 /*
1151 * Invariant TSC mode: It doesn't matter if we have delta available
1152 * for both CPUs. That is not something we can assume at this point.
1153 *
1154 * Note! We cannot necessarily trust enmUseTscDelta here because it's
1155 * downgraded after each delta calculation and the delta
1156 * calculations may not be complete yet.
1157 */
1158 else if (pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC)
1159 {
1160/** @todo This section of code is never reached atm, consider dropping it later on... */
1161 if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED)
1162 {
1163 uint32_t iStartCpuSet = RTMpCpuIdToSetIndex(idCpuStart);
1164 uint32_t iStopCpuSet = RTMpCpuIdToSetIndex(idCpuStop);
1165 uint16_t iStartGipCpu = iStartCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx)
1166 ? pGip->aiCpuFromCpuSetIdx[iStartCpuSet] : UINT16_MAX;
1167 uint16_t iStopGipCpu = iStopCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx)
1168 ? pGip->aiCpuFromCpuSetIdx[iStopCpuSet] : UINT16_MAX;
1169 int64_t iStartTscDelta = iStartGipCpu < pGip->cCpus ? pGip->aCPUs[iStartGipCpu].i64TSCDelta : INT64_MAX;
1170 int64_t iStopTscDelta = iStopGipCpu < pGip->cCpus ? pGip->aCPUs[iStopGipCpu].i64TSCDelta : INT64_MAX;
1171 if (RT_LIKELY(iStartTscDelta != INT64_MAX && iStopGipCpu != INT64_MAX))
1172 {
1173 if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_PRACTICALLY_ZERO)
1174 {
1175 uTscStart -= iStartTscDelta;
1176 uTscStop -= iStopTscDelta;
1177 }
1178 }
1179 /*
1180 * Invalid CPU indexes are not caused by online/offline races, so
1181 * we have to trigger driver load failure if that happens as GIP
1182 * and IPRT assumptions are busted on this system.
1183 */
1184 else if (iStopGipCpu >= pGip->cCpus || iStartGipCpu >= pGip->cCpus)
1185 {
1186 SUPR0Printf("vboxdrv: Unexpected CPU index in supdrvGipInitMeasureTscFreq.\n");
1187 SUPR0Printf("vboxdrv: start: %u, %u, %#llx stop: %u, %u, %#llx\n",
1188 iStartCpuSet, iStartGipCpu, iStartTscDelta, iStopCpuSet, iStopGipCpu, iStopTscDelta);
1189 return VERR_INVALID_CPU_INDEX;
1190 }
1191 /*
1192 * No valid deltas. We retry, if we're on our last retry
1193 * we do the cross call instead just to get a result. The
1194 * frequency will be refined in a few seconds anyways.
1195 */
1196 else if (cTriesLeft > 0)
1197 continue;
1198 else
1199 fDoXCall = true;
1200 }
1201 }
1202 /*
1203 * Asynchronous TSC mode: This is bad as the reason we usually
1204 * use this mode is to deal with variable TSC frequencies and
1205 * deltas. So, we need to get the TSC from the same CPU as
1206 * started it, we also need to keep that CPU busy. So, retry
1207 * and fall back to the cross call on the last attempt.
1208 */
1209 else
1210 {
1211 Assert(pGip->u32Mode == SUPGIPMODE_ASYNC_TSC);
1212 if (cTriesLeft > 0)
1213 continue;
1214 fDoXCall = true;
1215 }
1216
1217 if (fDoXCall)
1218 {
1219 /*
1220 * Try read the TSC and timestamp on the start CPU.
1221 */
1222 int rc = RTMpOnSpecific(idCpuStart, supdrvGipInitReadTscAndNanoTsOnCpu, &uTscStop, &nsStop);
1223 if (RT_FAILURE(rc) && (!fRough || cTriesLeft > 0))
1224 continue;
1225 }
1226 }
1227
1228 /*
1229 * Calculate the TSC frequency and update it (shared with the refinement timer).
1230 */
1231 supdrvGipInitSetCpuFreq(pGip, nsStop - nsStart, uTscStop - uTscStart);
1232 return VINF_SUCCESS;
1233 }
1234
1235 Assert(!fRough);
1236 return VERR_SUPDRV_TSC_FREQ_MEASUREMENT_FAILED;
1237}
1238
1239
1240/**
1241 * Finds our (@a idCpu) entry, or allocates a new one if not found.
1242 *
1243 * @returns Index of the CPU in the cache set.
1244 * @param pGip The GIP.
1245 * @param idCpu The CPU ID.
1246 */
1247static uint32_t supdrvGipFindOrAllocCpuIndexForCpuId(PSUPGLOBALINFOPAGE pGip, RTCPUID idCpu)
1248{
1249 uint32_t i, cTries;
1250
1251 /*
1252 * ASSUMES that CPU IDs are constant.
1253 */
1254 for (i = 0; i < pGip->cCpus; i++)
1255 if (pGip->aCPUs[i].idCpu == idCpu)
1256 return i;
1257
1258 cTries = 0;
1259 do
1260 {
1261 for (i = 0; i < pGip->cCpus; i++)
1262 {
1263 bool fRc;
1264 ASMAtomicCmpXchgSize(&pGip->aCPUs[i].idCpu, idCpu, NIL_RTCPUID, fRc);
1265 if (fRc)
1266 return i;
1267 }
1268 } while (cTries++ < 32);
1269 AssertReleaseFailed();
1270 return i - 1;
1271}
1272
1273
1274/**
1275 * The calling CPU should be accounted as online, update GIP accordingly.
1276 *
1277 * This is used by supdrvGipCreate() as well as supdrvGipMpEvent().
1278 *
1279 * @param pDevExt The device extension.
1280 * @param idCpu The CPU ID.
1281 */
1282static void supdrvGipMpEventOnlineOrInitOnCpu(PSUPDRVDEVEXT pDevExt, RTCPUID idCpu)
1283{
1284 int iCpuSet = 0;
1285 uint16_t idApic = UINT16_MAX;
1286 uint32_t i = 0;
1287 uint64_t u64NanoTS = 0;
1288 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
1289
1290 AssertPtrReturnVoid(pGip);
1291 AssertRelease(idCpu == RTMpCpuId());
1292 Assert(pGip->cPossibleCpus == RTMpGetCount());
1293
1294 /*
1295 * Do this behind a spinlock with interrupts disabled as this can fire
1296 * on all CPUs simultaneously, see @bugref{6110}.
1297 */
1298 RTSpinlockAcquire(pDevExt->hGipSpinlock);
1299
1300 /*
1301 * Update the globals.
1302 */
1303 ASMAtomicWriteU16(&pGip->cPresentCpus, RTMpGetPresentCount());
1304 ASMAtomicWriteU16(&pGip->cOnlineCpus, RTMpGetOnlineCount());
1305 iCpuSet = RTMpCpuIdToSetIndex(idCpu);
1306 if (iCpuSet >= 0)
1307 {
1308 Assert(RTCpuSetIsMemberByIndex(&pGip->PossibleCpuSet, iCpuSet));
1309 RTCpuSetAddByIndex(&pGip->OnlineCpuSet, iCpuSet);
1310 RTCpuSetAddByIndex(&pGip->PresentCpuSet, iCpuSet);
1311 }
1312
1313 /*
1314 * Update the entry.
1315 */
1316 u64NanoTS = RTTimeSystemNanoTS() - pGip->u32UpdateIntervalNS;
1317 i = supdrvGipFindOrAllocCpuIndexForCpuId(pGip, idCpu);
1318
1319 supdrvGipInitCpu(pGip, &pGip->aCPUs[i], u64NanoTS, pGip->u64CpuHz);
1320
1321 idApic = ASMGetApicId();
1322 ASMAtomicWriteU16(&pGip->aCPUs[i].idApic, idApic);
1323 ASMAtomicWriteS16(&pGip->aCPUs[i].iCpuSet, (int16_t)iCpuSet);
1324 ASMAtomicWriteSize(&pGip->aCPUs[i].idCpu, idCpu);
1325
1326 /*
1327 * Update the APIC ID and CPU set index mappings.
1328 */
1329 ASMAtomicWriteU16(&pGip->aiCpuFromApicId[idApic], i);
1330 ASMAtomicWriteU16(&pGip->aiCpuFromCpuSetIdx[iCpuSet], i);
1331
1332 /* Update the Mp online/offline counter. */
1333 ASMAtomicIncU32(&pDevExt->cMpOnOffEvents);
1334
1335 /* Add this CPU to the set of CPUs for which we need to calculate their TSC-deltas. */
1336 if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED)
1337 {
1338 RTCpuSetAddByIndex(&pDevExt->TscDeltaCpuSet, iCpuSet);
1339#ifdef SUPDRV_USE_TSC_DELTA_THREAD
1340 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
1341 if ( pDevExt->enmTscDeltaThreadState == kTscDeltaThreadState_Listening
1342 || pDevExt->enmTscDeltaThreadState == kTscDeltaThreadState_Measuring)
1343 {
1344 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_WaitAndMeasure;
1345 }
1346 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
1347#endif
1348 }
1349
1350 /* commit it */
1351 ASMAtomicWriteSize(&pGip->aCPUs[i].enmState, SUPGIPCPUSTATE_ONLINE);
1352
1353 RTSpinlockRelease(pDevExt->hGipSpinlock);
1354}
1355
1356
1357/**
1358 * The CPU should be accounted as offline, update the GIP accordingly.
1359 *
1360 * This is used by supdrvGipMpEvent.
1361 *
1362 * @param pDevExt The device extension.
1363 * @param idCpu The CPU ID.
1364 */
1365static void supdrvGipMpEventOffline(PSUPDRVDEVEXT pDevExt, RTCPUID idCpu)
1366{
1367 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
1368 int iCpuSet;
1369 unsigned i;
1370
1371 AssertPtrReturnVoid(pGip);
1372 RTSpinlockAcquire(pDevExt->hGipSpinlock);
1373
1374 iCpuSet = RTMpCpuIdToSetIndex(idCpu);
1375 AssertReturnVoid(iCpuSet >= 0);
1376
1377 i = pGip->aiCpuFromCpuSetIdx[iCpuSet];
1378 AssertReturnVoid(i < pGip->cCpus);
1379 AssertReturnVoid(pGip->aCPUs[i].idCpu == idCpu);
1380
1381 Assert(RTCpuSetIsMemberByIndex(&pGip->PossibleCpuSet, iCpuSet));
1382 RTCpuSetDelByIndex(&pGip->OnlineCpuSet, iCpuSet);
1383
1384 /* Update the Mp online/offline counter. */
1385 ASMAtomicIncU32(&pDevExt->cMpOnOffEvents);
1386
1387 /* If we are the initiator going offline while measuring the TSC delta, unspin other waiting CPUs! */
1388 if (ASMAtomicReadU32(&pDevExt->idTscDeltaInitiator) == idCpu)
1389 {
1390 ASMAtomicWriteU32(&pDevExt->pTscDeltaSync->u, GIP_TSC_DELTA_SYNC_START);
1391 ASMAtomicWriteU64(&pGip->aCPUs[i].u64TSCSample, ~GIP_TSC_DELTA_RSVD);
1392 }
1393
1394 if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED)
1395 {
1396 /* Reset the TSC delta, we will recalculate it lazily. */
1397 ASMAtomicWriteS64(&pGip->aCPUs[i].i64TSCDelta, INT64_MAX);
1398 /* Remove this CPU from the set of CPUs that we have obtained the TSC deltas. */
1399 RTCpuSetDelByIndex(&pDevExt->TscDeltaObtainedCpuSet, iCpuSet);
1400 }
1401
1402 /* commit it */
1403 ASMAtomicWriteSize(&pGip->aCPUs[i].enmState, SUPGIPCPUSTATE_OFFLINE);
1404
1405 RTSpinlockRelease(pDevExt->hGipSpinlock);
1406}
1407
1408
1409/**
1410 * Multiprocessor event notification callback.
1411 *
1412 * This is used to make sure that the GIP master gets passed on to
1413 * another CPU. It also updates the associated CPU data.
1414 *
1415 * @param enmEvent The event.
1416 * @param idCpu The cpu it applies to.
1417 * @param pvUser Pointer to the device extension.
1418 *
1419 * @remarks This function -must- fire on the newly online'd CPU for the
1420 * RTMPEVENT_ONLINE case and can fire on any CPU for the
1421 * RTMPEVENT_OFFLINE case.
1422 */
1423static DECLCALLBACK(void) supdrvGipMpEvent(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvUser)
1424{
1425 PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser;
1426 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
1427
1428 AssertRelease(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1429
1430 /*
1431 * Update the GIP CPU data.
1432 */
1433 if (pGip)
1434 {
1435 switch (enmEvent)
1436 {
1437 case RTMPEVENT_ONLINE:
1438 AssertRelease(idCpu == RTMpCpuId());
1439 supdrvGipMpEventOnlineOrInitOnCpu(pDevExt, idCpu);
1440 break;
1441 case RTMPEVENT_OFFLINE:
1442 supdrvGipMpEventOffline(pDevExt, idCpu);
1443 break;
1444 }
1445 }
1446
1447 /*
1448 * Make sure there is a master GIP.
1449 */
1450 if (enmEvent == RTMPEVENT_OFFLINE)
1451 {
1452 RTCPUID idGipMaster = ASMAtomicReadU32(&pDevExt->idGipMaster);
1453 if (idGipMaster == idCpu)
1454 {
1455 /*
1456 * The GIP master is going offline, find a new one.
1457 */
1458 bool fIgnored;
1459 unsigned i;
1460 RTCPUID idNewGipMaster = NIL_RTCPUID;
1461 RTCPUSET OnlineCpus;
1462 RTMpGetOnlineSet(&OnlineCpus);
1463
1464 for (i = 0; i < RTCPUSET_MAX_CPUS; i++)
1465 if (RTCpuSetIsMemberByIndex(&OnlineCpus, i))
1466 {
1467 RTCPUID idCurCpu = RTMpCpuIdFromSetIndex(i);
1468 if (idCurCpu != idGipMaster)
1469 {
1470 idNewGipMaster = idCurCpu;
1471 break;
1472 }
1473 }
1474
1475 Log(("supdrvGipMpEvent: Gip master %#lx -> %#lx\n", (long)idGipMaster, (long)idNewGipMaster));
1476 ASMAtomicCmpXchgSize(&pDevExt->idGipMaster, idNewGipMaster, idGipMaster, fIgnored);
1477 NOREF(fIgnored);
1478 }
1479 }
1480}
1481
1482
1483/**
1484 * On CPU initialization callback for RTMpOnAll.
1485 *
1486 * @param idCpu The CPU ID.
1487 * @param pvUser1 The device extension.
1488 * @param pvUser2 The GIP.
1489 */
1490static DECLCALLBACK(void) supdrvGipInitOnCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
1491{
1492 /* This is good enough, even though it will update some of the globals a
1493 bit to much. */
1494 supdrvGipMpEventOnlineOrInitOnCpu((PSUPDRVDEVEXT)pvUser1, idCpu);
1495}
1496
1497
1498/**
1499 * Callback used by supdrvDetermineAsyncTSC to read the TSC on a CPU.
1500 *
1501 * @param idCpu Ignored.
1502 * @param pvUser1 Where to put the TSC.
1503 * @param pvUser2 Ignored.
1504 */
1505static DECLCALLBACK(void) supdrvGipInitDetermineAsyncTscWorker(RTCPUID idCpu, void *pvUser1, void *pvUser2)
1506{
1507 ASMAtomicWriteU64((uint64_t volatile *)pvUser1, ASMReadTSC());
1508}
1509
1510
1511/**
1512 * Determine if Async GIP mode is required because of TSC drift.
1513 *
1514 * When using the default/normal timer code it is essential that the time stamp counter
1515 * (TSC) runs never backwards, that is, a read operation to the counter should return
1516 * a bigger value than any previous read operation. This is guaranteed by the latest
1517 * AMD CPUs and by newer Intel CPUs which never enter the C2 state (P4). In any other
1518 * case we have to choose the asynchronous timer mode.
1519 *
1520 * @param poffMin Pointer to the determined difference between different
1521 * cores (optional, can be NULL).
1522 * @return false if the time stamp counters appear to be synchronized, true otherwise.
1523 */
1524static bool supdrvGipInitDetermineAsyncTsc(uint64_t *poffMin)
1525{
1526 /*
1527 * Just iterate all the cpus 8 times and make sure that the TSC is
1528 * ever increasing. We don't bother taking TSC rollover into account.
1529 */
1530 int iEndCpu = RTMpGetArraySize();
1531 int iCpu;
1532 int cLoops = 8;
1533 bool fAsync = false;
1534 int rc = VINF_SUCCESS;
1535 uint64_t offMax = 0;
1536 uint64_t offMin = ~(uint64_t)0;
1537 uint64_t PrevTsc = ASMReadTSC();
1538
1539 while (cLoops-- > 0)
1540 {
1541 for (iCpu = 0; iCpu < iEndCpu; iCpu++)
1542 {
1543 uint64_t CurTsc;
1544 rc = RTMpOnSpecific(RTMpCpuIdFromSetIndex(iCpu), supdrvGipInitDetermineAsyncTscWorker, &CurTsc, NULL);
1545 if (RT_SUCCESS(rc))
1546 {
1547 if (CurTsc <= PrevTsc)
1548 {
1549 fAsync = true;
1550 offMin = offMax = PrevTsc - CurTsc;
1551 Log(("supdrvGipInitDetermineAsyncTsc: iCpu=%d cLoops=%d CurTsc=%llx PrevTsc=%llx\n",
1552 iCpu, cLoops, CurTsc, PrevTsc));
1553 break;
1554 }
1555
1556 /* Gather statistics (except the first time). */
1557 if (iCpu != 0 || cLoops != 7)
1558 {
1559 uint64_t off = CurTsc - PrevTsc;
1560 if (off < offMin)
1561 offMin = off;
1562 if (off > offMax)
1563 offMax = off;
1564 Log2(("%d/%d: off=%llx\n", cLoops, iCpu, off));
1565 }
1566
1567 /* Next */
1568 PrevTsc = CurTsc;
1569 }
1570 else if (rc == VERR_NOT_SUPPORTED)
1571 break;
1572 else
1573 AssertMsg(rc == VERR_CPU_NOT_FOUND || rc == VERR_CPU_OFFLINE, ("%d\n", rc));
1574 }
1575
1576 /* broke out of the loop. */
1577 if (iCpu < iEndCpu)
1578 break;
1579 }
1580
1581 if (poffMin)
1582 *poffMin = offMin; /* Almost RTMpOnSpecific profiling. */
1583 Log(("supdrvGipInitDetermineAsyncTsc: returns %d; iEndCpu=%d rc=%d offMin=%llx offMax=%llx\n",
1584 fAsync, iEndCpu, rc, offMin, offMax));
1585#if !defined(RT_OS_SOLARIS) && !defined(RT_OS_OS2) && !defined(RT_OS_WINDOWS)
1586 OSDBGPRINT(("vboxdrv: fAsync=%d offMin=%#lx offMax=%#lx\n", fAsync, (long)offMin, (long)offMax));
1587#endif
1588 return fAsync;
1589}
1590
1591
1592/**
1593 * supdrvGipInit() worker that determines the GIP TSC mode.
1594 *
1595 * @returns The most suitable TSC mode.
1596 * @param pDevExt Pointer to the device instance data.
1597 */
1598static SUPGIPMODE supdrvGipInitDetermineTscMode(PSUPDRVDEVEXT pDevExt)
1599{
1600 uint64_t u64DiffCoresIgnored;
1601 uint32_t uEAX, uEBX, uECX, uEDX;
1602
1603 /*
1604 * Establish whether the CPU advertises TSC as invariant, we need that in
1605 * a couple of places below.
1606 */
1607 bool fInvariantTsc = false;
1608 if (ASMHasCpuId())
1609 {
1610 uEAX = ASMCpuId_EAX(0x80000000);
1611 if (ASMIsValidExtRange(uEAX) && uEAX >= 0x80000007)
1612 {
1613 uEDX = ASMCpuId_EDX(0x80000007);
1614 if (uEDX & X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR)
1615 fInvariantTsc = true;
1616 }
1617 }
1618
1619 /*
1620 * On single CPU systems, we don't need to consider ASYNC mode.
1621 */
1622 if (RTMpGetCount() <= 1)
1623 return fInvariantTsc ? SUPGIPMODE_INVARIANT_TSC : SUPGIPMODE_SYNC_TSC;
1624
1625 /*
1626 * Allow the user and/or OS specific bits to force async mode.
1627 */
1628 if (supdrvOSGetForcedAsyncTscMode(pDevExt))
1629 return SUPGIPMODE_ASYNC_TSC;
1630
1631 /*
1632 * Use invariant mode if the CPU says TSC is invariant.
1633 */
1634 if (fInvariantTsc)
1635 return SUPGIPMODE_INVARIANT_TSC;
1636
1637 /*
1638 * TSC is not invariant and we're on SMP, this presents two problems:
1639 *
1640 * (1) There might be a skew between the CPU, so that cpu0
1641 * returns a TSC that is slightly different from cpu1.
1642 * This screw may be due to (2), bad TSC initialization
1643 * or slightly different TSC rates.
1644 *
1645 * (2) Power management (and other things) may cause the TSC
1646 * to run at a non-constant speed, and cause the speed
1647 * to be different on the cpus. This will result in (1).
1648 *
1649 * If any of the above is detected, we will have to use ASYNC mode.
1650 */
1651 /* (1). Try check for current differences between the cpus. */
1652 if (supdrvGipInitDetermineAsyncTsc(&u64DiffCoresIgnored))
1653 return SUPGIPMODE_ASYNC_TSC;
1654
1655 /* (2) If it's an AMD CPU with power management, we won't trust its TSC. */
1656 ASMCpuId(0, &uEAX, &uEBX, &uECX, &uEDX);
1657 if ( ASMIsValidStdRange(uEAX)
1658 && ASMIsAmdCpuEx(uEBX, uECX, uEDX))
1659 {
1660 /* Check for APM support. */
1661 uEAX = ASMCpuId_EAX(0x80000000);
1662 if (ASMIsValidExtRange(uEAX) && uEAX >= 0x80000007)
1663 {
1664 uEDX = ASMCpuId_EDX(0x80000007);
1665 if (uEDX & 0x3e) /* STC|TM|THERMTRIP|VID|FID. Ignore TS. */
1666 return SUPGIPMODE_ASYNC_TSC;
1667 }
1668 }
1669
1670 return SUPGIPMODE_SYNC_TSC;
1671}
1672
1673
1674/**
1675 * Initializes per-CPU GIP information.
1676 *
1677 * @param pGip Pointer to the GIP.
1678 * @param pCpu Pointer to which GIP CPU to initalize.
1679 * @param u64NanoTS The current nanosecond timestamp.
1680 * @param uCpuHz The CPU frequency to set, 0 if the caller doesn't know.
1681 */
1682static void supdrvGipInitCpu(PSUPGLOBALINFOPAGE pGip, PSUPGIPCPU pCpu, uint64_t u64NanoTS, uint64_t uCpuHz)
1683{
1684 pCpu->u32TransactionId = 2;
1685 pCpu->u64NanoTS = u64NanoTS;
1686 pCpu->u64TSC = ASMReadTSC();
1687 pCpu->u64TSCSample = GIP_TSC_DELTA_RSVD;
1688 pCpu->i64TSCDelta = pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED ? INT64_MAX : 0;
1689
1690 ASMAtomicWriteSize(&pCpu->enmState, SUPGIPCPUSTATE_INVALID);
1691 ASMAtomicWriteSize(&pCpu->idCpu, NIL_RTCPUID);
1692 ASMAtomicWriteS16(&pCpu->iCpuSet, -1);
1693 ASMAtomicWriteU16(&pCpu->idApic, UINT16_MAX);
1694
1695 /*
1696 * The first time we're called, we don't have a CPU frequency handy,
1697 * so pretend it's a 4 GHz CPU. On CPUs that are online, we'll get
1698 * called again and at that point we have a more plausible CPU frequency
1699 * value handy. The frequency history will also be adjusted again on
1700 * the 2nd timer callout (maybe we can skip that now?).
1701 */
1702 if (!uCpuHz)
1703 {
1704 pCpu->u64CpuHz = _4G - 1;
1705 pCpu->u32UpdateIntervalTSC = (uint32_t)((_4G - 1) / pGip->u32UpdateHz);
1706 }
1707 else
1708 {
1709 pCpu->u64CpuHz = uCpuHz;
1710 pCpu->u32UpdateIntervalTSC = (uint32_t)(uCpuHz / pGip->u32UpdateHz);
1711 }
1712 pCpu->au32TSCHistory[0]
1713 = pCpu->au32TSCHistory[1]
1714 = pCpu->au32TSCHistory[2]
1715 = pCpu->au32TSCHistory[3]
1716 = pCpu->au32TSCHistory[4]
1717 = pCpu->au32TSCHistory[5]
1718 = pCpu->au32TSCHistory[6]
1719 = pCpu->au32TSCHistory[7]
1720 = pCpu->u32UpdateIntervalTSC;
1721}
1722
1723
1724/**
1725 * Initializes the GIP data.
1726 *
1727 * @param pDevExt Pointer to the device instance data.
1728 * @param pGip Pointer to the read-write kernel mapping of the GIP.
1729 * @param HCPhys The physical address of the GIP.
1730 * @param u64NanoTS The current nanosecond timestamp.
1731 * @param uUpdateHz The update frequency.
1732 * @param uUpdateIntervalNS The update interval in nanoseconds.
1733 * @param cCpus The CPU count.
1734 */
1735static void supdrvGipInit(PSUPDRVDEVEXT pDevExt, PSUPGLOBALINFOPAGE pGip, RTHCPHYS HCPhys,
1736 uint64_t u64NanoTS, unsigned uUpdateHz, unsigned uUpdateIntervalNS, unsigned cCpus)
1737{
1738 size_t const cbGip = RT_ALIGN_Z(RT_OFFSETOF(SUPGLOBALINFOPAGE, aCPUs[cCpus]), PAGE_SIZE);
1739 unsigned i;
1740#ifdef DEBUG_DARWIN_GIP
1741 OSDBGPRINT(("supdrvGipInit: pGip=%p HCPhys=%lx u64NanoTS=%llu uUpdateHz=%d cCpus=%u\n", pGip, (long)HCPhys, u64NanoTS, uUpdateHz, cCpus));
1742#else
1743 LogFlow(("supdrvGipInit: pGip=%p HCPhys=%lx u64NanoTS=%llu uUpdateHz=%d cCpus=%u\n", pGip, (long)HCPhys, u64NanoTS, uUpdateHz, cCpus));
1744#endif
1745
1746 /*
1747 * Initialize the structure.
1748 */
1749 memset(pGip, 0, cbGip);
1750
1751 pGip->u32Magic = SUPGLOBALINFOPAGE_MAGIC;
1752 pGip->u32Version = SUPGLOBALINFOPAGE_VERSION;
1753 pGip->u32Mode = supdrvGipInitDetermineTscMode(pDevExt);
1754 if ( pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC
1755 /*|| pGip->u32Mode == SUPGIPMODE_SYNC_TSC */)
1756 pGip->enmUseTscDelta = supdrvOSAreTscDeltasInSync() /* Allow OS override (windows). */
1757 ? SUPGIPUSETSCDELTA_ZERO_CLAIMED : SUPGIPUSETSCDELTA_PRACTICALLY_ZERO /* downgrade later */;
1758 else
1759 pGip->enmUseTscDelta = SUPGIPUSETSCDELTA_NOT_APPLICABLE;
1760 pGip->cCpus = (uint16_t)cCpus;
1761 pGip->cPages = (uint16_t)(cbGip / PAGE_SIZE);
1762 pGip->u32UpdateHz = uUpdateHz;
1763 pGip->u32UpdateIntervalNS = uUpdateIntervalNS;
1764 pGip->fGetGipCpu = SUPGIPGETCPU_APIC_ID;
1765 RTCpuSetEmpty(&pGip->OnlineCpuSet);
1766 RTCpuSetEmpty(&pGip->PresentCpuSet);
1767 RTMpGetSet(&pGip->PossibleCpuSet);
1768 pGip->cOnlineCpus = RTMpGetOnlineCount();
1769 pGip->cPresentCpus = RTMpGetPresentCount();
1770 pGip->cPossibleCpus = RTMpGetCount();
1771 pGip->idCpuMax = RTMpGetMaxCpuId();
1772 for (i = 0; i < RT_ELEMENTS(pGip->aiCpuFromApicId); i++)
1773 pGip->aiCpuFromApicId[i] = UINT16_MAX;
1774 for (i = 0; i < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx); i++)
1775 pGip->aiCpuFromCpuSetIdx[i] = UINT16_MAX;
1776 for (i = 0; i < cCpus; i++)
1777 supdrvGipInitCpu(pGip, &pGip->aCPUs[i], u64NanoTS, 0 /*uCpuHz*/);
1778
1779 /*
1780 * Link it to the device extension.
1781 */
1782 pDevExt->pGip = pGip;
1783 pDevExt->HCPhysGip = HCPhys;
1784 pDevExt->cGipUsers = 0;
1785}
1786
1787
1788/**
1789 * Creates the GIP.
1790 *
1791 * @returns VBox status code.
1792 * @param pDevExt Instance data. GIP stuff may be updated.
1793 */
1794int VBOXCALL supdrvGipCreate(PSUPDRVDEVEXT pDevExt)
1795{
1796 PSUPGLOBALINFOPAGE pGip;
1797 RTHCPHYS HCPhysGip;
1798 uint32_t u32SystemResolution;
1799 uint32_t u32Interval;
1800 uint32_t u32MinInterval;
1801 uint32_t uMod;
1802 unsigned cCpus;
1803 int rc;
1804
1805 LogFlow(("supdrvGipCreate:\n"));
1806
1807 /* Assert order. */
1808 Assert(pDevExt->u32SystemTimerGranularityGrant == 0);
1809 Assert(pDevExt->GipMemObj == NIL_RTR0MEMOBJ);
1810 Assert(!pDevExt->pGipTimer);
1811
1812 /*
1813 * Check the CPU count.
1814 */
1815 cCpus = RTMpGetArraySize();
1816 if ( cCpus > RTCPUSET_MAX_CPUS
1817 || cCpus > 256 /* ApicId is used for the mappings */)
1818 {
1819 SUPR0Printf("VBoxDrv: Too many CPUs (%u) for the GIP (max %u)\n", cCpus, RT_MIN(RTCPUSET_MAX_CPUS, 256));
1820 return VERR_TOO_MANY_CPUS;
1821 }
1822
1823 /*
1824 * Allocate a contiguous set of pages with a default kernel mapping.
1825 */
1826 rc = RTR0MemObjAllocCont(&pDevExt->GipMemObj, RT_UOFFSETOF(SUPGLOBALINFOPAGE, aCPUs[cCpus]), false /*fExecutable*/);
1827 if (RT_FAILURE(rc))
1828 {
1829 OSDBGPRINT(("supdrvGipCreate: failed to allocate the GIP page. rc=%d\n", rc));
1830 return rc;
1831 }
1832 pGip = (PSUPGLOBALINFOPAGE)RTR0MemObjAddress(pDevExt->GipMemObj); AssertPtr(pGip);
1833 HCPhysGip = RTR0MemObjGetPagePhysAddr(pDevExt->GipMemObj, 0); Assert(HCPhysGip != NIL_RTHCPHYS);
1834
1835 /*
1836 * Allocate the TSC-delta sync struct on a separate cache line.
1837 */
1838 pDevExt->pvTscDeltaSync = RTMemAllocZ(sizeof(SUPTSCDELTASYNC) + 63);
1839 pDevExt->pTscDeltaSync = RT_ALIGN_PT(pDevExt->pvTscDeltaSync, 64, PSUPTSCDELTASYNC);
1840 Assert(RT_ALIGN_PT(pDevExt->pTscDeltaSync, 64, PSUPTSCDELTASYNC) == pDevExt->pTscDeltaSync);
1841
1842 /*
1843 * Find a reasonable update interval and initialize the structure.
1844 */
1845 supdrvGipRequestHigherTimerFrequencyFromSystem(pDevExt);
1846 /** @todo figure out why using a 100Ms interval upsets timekeeping in VMs.
1847 * See @bugref{6710}. */
1848 u32MinInterval = RT_NS_10MS;
1849 u32SystemResolution = RTTimerGetSystemGranularity();
1850 u32Interval = u32MinInterval;
1851 uMod = u32MinInterval % u32SystemResolution;
1852 if (uMod)
1853 u32Interval += u32SystemResolution - uMod;
1854
1855 supdrvGipInit(pDevExt, pGip, HCPhysGip, RTTimeSystemNanoTS(), RT_NS_1SEC / u32Interval /*=Hz*/, u32Interval, cCpus);
1856
1857 /*
1858 * Important sanity check...
1859 */
1860 if (RT_UNLIKELY( pGip->enmUseTscDelta == SUPGIPUSETSCDELTA_ZERO_CLAIMED
1861 && pGip->u32Mode == SUPGIPMODE_ASYNC_TSC
1862 && !supdrvOSGetForcedAsyncTscMode(pDevExt)))
1863 {
1864 /* Basically, invariant Windows boxes, should never be detected as async (i.e. TSC-deltas should be 0). */
1865 OSDBGPRINT(("supdrvGipCreate: The TSC-deltas should be normalized by the host OS, but verifying shows it's not!\n"));
1866 return VERR_INTERNAL_ERROR_2;
1867 }
1868
1869 /*
1870 * Do the TSC frequency measurements.
1871 *
1872 * If we're in invariant TSC mode, just to a quick preliminary measurement
1873 * that the TSC-delta measurement code can use to yield cross calls.
1874 *
1875 * If we're in any of the other two modes, neither which require MP init,
1876 * notifications or deltas for the job, do the full measurement now so
1877 * that supdrvGipInitOnCpu can populate the TSC interval and history
1878 * array with more reasonable values.
1879 */
1880 if (pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC)
1881 {
1882 rc = supdrvGipInitMeasureTscFreq(pDevExt, pGip, true /*fRough*/); /* cannot fail */
1883 supdrvGipInitStartTimerForRefiningInvariantTscFreq(pDevExt, pGip);
1884 }
1885 else
1886 rc = supdrvGipInitMeasureTscFreq(pDevExt, pGip, false /*fRough*/);
1887 if (RT_SUCCESS(rc))
1888 {
1889 /*
1890 * Start TSC-delta measurement thread before we start getting MP
1891 * events that will try kick it into action (includes the
1892 * RTMpOnAll/supdrvGipInitOnCpu call below).
1893 */
1894 RTCpuSetEmpty(&pDevExt->TscDeltaCpuSet);
1895 RTCpuSetEmpty(&pDevExt->TscDeltaObtainedCpuSet);
1896#ifdef SUPDRV_USE_TSC_DELTA_THREAD
1897 if ( pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED
1898 && pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC)
1899 rc = supdrvTscDeltaThreadInit(pDevExt);
1900#endif
1901 if (RT_SUCCESS(rc))
1902 {
1903 rc = RTMpNotificationRegister(supdrvGipMpEvent, pDevExt);
1904 if (RT_SUCCESS(rc))
1905 {
1906 /*
1907 * Do GIP initialization on all online CPUs. Wake up the
1908 * TSC-delta thread afterwards.
1909 */
1910 rc = RTMpOnAll(supdrvGipInitOnCpu, pDevExt, pGip);
1911 if (RT_SUCCESS(rc))
1912 {
1913#ifdef SUPDRV_USE_TSC_DELTA_THREAD
1914 if (pDevExt->hTscDeltaThread != NIL_RTTHREAD)
1915 RTThreadUserSignal(pDevExt->hTscDeltaThread);
1916#else
1917 uint16_t iCpu;
1918 if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED)
1919 {
1920 /*
1921 * Measure the TSC deltas now that we have MP notifications.
1922 */
1923 int cTries = 5;
1924 do
1925 {
1926 rc = supdrvMeasureInitialTscDeltas(pDevExt);
1927 if ( rc != VERR_TRY_AGAIN
1928 && rc != VERR_CPU_OFFLINE)
1929 break;
1930 } while (--cTries > 0);
1931 for (iCpu = 0; iCpu < pGip->cCpus; iCpu++)
1932 Log(("supdrvTscDeltaInit: cpu[%u] delta %lld\n", iCpu, pGip->aCPUs[iCpu].i64TSCDelta));
1933 }
1934 else
1935 {
1936 for (iCpu = 0; iCpu < pGip->cCpus; iCpu++)
1937 AssertMsg(!pGip->aCPUs[iCpu].i64TSCDelta, ("iCpu=%u %lld mode=%d\n", iCpu, pGip->aCPUs[iCpu].i64TSCDelta, pGip->u32Mode));
1938 }
1939 if (RT_SUCCESS(rc))
1940#endif
1941 {
1942 /*
1943 * Create the timer.
1944 * If CPU_ALL isn't supported we'll have to fall back to synchronous mode.
1945 */
1946 if (pGip->u32Mode == SUPGIPMODE_ASYNC_TSC)
1947 {
1948 rc = RTTimerCreateEx(&pDevExt->pGipTimer, u32Interval, RTTIMER_FLAGS_CPU_ALL,
1949 supdrvGipAsyncTimer, pDevExt);
1950 if (rc == VERR_NOT_SUPPORTED)
1951 {
1952 OSDBGPRINT(("supdrvGipCreate: omni timer not supported, falling back to synchronous mode\n"));
1953 pGip->u32Mode = SUPGIPMODE_SYNC_TSC;
1954 }
1955 }
1956 if (pGip->u32Mode != SUPGIPMODE_ASYNC_TSC)
1957 rc = RTTimerCreateEx(&pDevExt->pGipTimer, u32Interval, 0 /* fFlags */,
1958 supdrvGipSyncAndInvariantTimer, pDevExt);
1959 if (RT_SUCCESS(rc))
1960 {
1961 /*
1962 * We're good.
1963 */
1964 Log(("supdrvGipCreate: %u ns interval.\n", u32Interval));
1965 supdrvGipReleaseHigherTimerFrequencyFromSystem(pDevExt);
1966
1967 g_pSUPGlobalInfoPage = pGip;
1968 return VINF_SUCCESS;
1969 }
1970
1971 OSDBGPRINT(("supdrvGipCreate: failed create GIP timer at %u ns interval. rc=%Rrc\n", u32Interval, rc));
1972 Assert(!pDevExt->pGipTimer);
1973 }
1974 }
1975 else
1976 OSDBGPRINT(("supdrvGipCreate: RTMpOnAll failed. rc=%Rrc\n", rc));
1977 }
1978 else
1979 OSDBGPRINT(("supdrvGipCreate: failed to register MP event notfication. rc=%Rrc\n", rc));
1980 }
1981 else
1982 OSDBGPRINT(("supdrvGipCreate: supdrvTscDeltaInit failed. rc=%Rrc\n", rc));
1983 }
1984 else
1985 OSDBGPRINT(("supdrvGipCreate: supdrvMeasureInitialTscDeltas failed. rc=%Rrc\n", rc));
1986
1987 /* Releases timer frequency increase too. */
1988 supdrvGipDestroy(pDevExt);
1989 return rc;
1990}
1991
1992
1993/**
1994 * Invalidates the GIP data upon termination.
1995 *
1996 * @param pGip Pointer to the read-write kernel mapping of the GIP.
1997 */
1998static void supdrvGipTerm(PSUPGLOBALINFOPAGE pGip)
1999{
2000 unsigned i;
2001 pGip->u32Magic = 0;
2002 for (i = 0; i < pGip->cCpus; i++)
2003 {
2004 pGip->aCPUs[i].u64NanoTS = 0;
2005 pGip->aCPUs[i].u64TSC = 0;
2006 pGip->aCPUs[i].iTSCHistoryHead = 0;
2007 pGip->aCPUs[i].u64TSCSample = 0;
2008 pGip->aCPUs[i].i64TSCDelta = INT64_MAX;
2009 }
2010}
2011
2012
2013/**
2014 * Terminates the GIP.
2015 *
2016 * @param pDevExt Instance data. GIP stuff may be updated.
2017 */
2018void VBOXCALL supdrvGipDestroy(PSUPDRVDEVEXT pDevExt)
2019{
2020 int rc;
2021#ifdef DEBUG_DARWIN_GIP
2022 OSDBGPRINT(("supdrvGipDestroy: pDevExt=%p pGip=%p pGipTimer=%p GipMemObj=%p\n", pDevExt,
2023 pDevExt->GipMemObj != NIL_RTR0MEMOBJ ? RTR0MemObjAddress(pDevExt->GipMemObj) : NULL,
2024 pDevExt->pGipTimer, pDevExt->GipMemObj));
2025#endif
2026
2027 /*
2028 * Stop receiving MP notifications before tearing anything else down.
2029 */
2030 RTMpNotificationDeregister(supdrvGipMpEvent, pDevExt);
2031
2032#ifdef SUPDRV_USE_TSC_DELTA_THREAD
2033 /*
2034 * Terminate the TSC-delta measurement thread and resources.
2035 */
2036 supdrvTscDeltaTerm(pDevExt);
2037#endif
2038
2039 /*
2040 * Destroy the TSC-refinement timer.
2041 */
2042 if (pDevExt->pInvarTscRefineTimer)
2043 {
2044 RTTimerDestroy(pDevExt->pInvarTscRefineTimer);
2045 pDevExt->pInvarTscRefineTimer = NULL;
2046 }
2047
2048 if (pDevExt->pvTscDeltaSync)
2049 {
2050 RTMemFree(pDevExt->pvTscDeltaSync);
2051 pDevExt->pTscDeltaSync = NULL;
2052 pDevExt->pvTscDeltaSync = NULL;
2053 }
2054
2055 /*
2056 * Invalid the GIP data.
2057 */
2058 if (pDevExt->pGip)
2059 {
2060 supdrvGipTerm(pDevExt->pGip);
2061 pDevExt->pGip = NULL;
2062 }
2063 g_pSUPGlobalInfoPage = NULL;
2064
2065 /*
2066 * Destroy the timer and free the GIP memory object.
2067 */
2068 if (pDevExt->pGipTimer)
2069 {
2070 rc = RTTimerDestroy(pDevExt->pGipTimer); AssertRC(rc);
2071 pDevExt->pGipTimer = NULL;
2072 }
2073
2074 if (pDevExt->GipMemObj != NIL_RTR0MEMOBJ)
2075 {
2076 rc = RTR0MemObjFree(pDevExt->GipMemObj, true /* free mappings */); AssertRC(rc);
2077 pDevExt->GipMemObj = NIL_RTR0MEMOBJ;
2078 }
2079
2080 /*
2081 * Finally, make sure we've release the system timer resolution request
2082 * if one actually succeeded and is still pending.
2083 */
2084 supdrvGipReleaseHigherTimerFrequencyFromSystem(pDevExt);
2085}
2086
2087
2088
2089
2090/*
2091 *
2092 *
2093 * GIP Update Timer Related Code
2094 * GIP Update Timer Related Code
2095 * GIP Update Timer Related Code
2096 *
2097 *
2098 */
2099
2100
2101/**
2102 * Worker routine for supdrvGipUpdate() and supdrvGipUpdatePerCpu() that
2103 * updates all the per cpu data except the transaction id.
2104 *
2105 * @param pDevExt The device extension.
2106 * @param pGipCpu Pointer to the per cpu data.
2107 * @param u64NanoTS The current time stamp.
2108 * @param u64TSC The current TSC.
2109 * @param iTick The current timer tick.
2110 *
2111 * @remarks Can be called with interrupts disabled!
2112 */
2113static void supdrvGipDoUpdateCpu(PSUPDRVDEVEXT pDevExt, PSUPGIPCPU pGipCpu, uint64_t u64NanoTS, uint64_t u64TSC, uint64_t iTick)
2114{
2115 uint64_t u64TSCDelta;
2116 uint32_t u32UpdateIntervalTSC;
2117 uint32_t u32UpdateIntervalTSCSlack;
2118 unsigned iTSCHistoryHead;
2119 uint64_t u64CpuHz;
2120 uint32_t u32TransactionId;
2121
2122 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
2123 AssertPtrReturnVoid(pGip);
2124
2125 /* Delta between this and the previous update. */
2126 ASMAtomicUoWriteU32(&pGipCpu->u32PrevUpdateIntervalNS, (uint32_t)(u64NanoTS - pGipCpu->u64NanoTS));
2127
2128 /*
2129 * Update the NanoTS.
2130 */
2131 ASMAtomicWriteU64(&pGipCpu->u64NanoTS, u64NanoTS);
2132
2133 /*
2134 * Calc TSC delta.
2135 */
2136 u64TSCDelta = u64TSC - pGipCpu->u64TSC;
2137 ASMAtomicWriteU64(&pGipCpu->u64TSC, u64TSC);
2138
2139 /*
2140 * We don't need to keep realculating the frequency when it's invariant, so
2141 * the remainder of this function is only for the sync and async TSC modes.
2142 */
2143 if (pGip->u32Mode != SUPGIPMODE_INVARIANT_TSC)
2144 {
2145 if (u64TSCDelta >> 32)
2146 {
2147 u64TSCDelta = pGipCpu->u32UpdateIntervalTSC;
2148 pGipCpu->cErrors++;
2149 }
2150
2151 /*
2152 * On the 2nd and 3rd callout, reset the history with the current TSC
2153 * interval since the values entered by supdrvGipInit are totally off.
2154 * The interval on the 1st callout completely unreliable, the 2nd is a bit
2155 * better, while the 3rd should be most reliable.
2156 */
2157 /** @todo Could we drop this now that we initializes the history
2158 * with nominal TSC frequency values? */
2159 u32TransactionId = pGipCpu->u32TransactionId;
2160 if (RT_UNLIKELY( ( u32TransactionId == 5
2161 || u32TransactionId == 7)
2162 && ( iTick == 2
2163 || iTick == 3) ))
2164 {
2165 unsigned i;
2166 for (i = 0; i < RT_ELEMENTS(pGipCpu->au32TSCHistory); i++)
2167 ASMAtomicUoWriteU32(&pGipCpu->au32TSCHistory[i], (uint32_t)u64TSCDelta);
2168 }
2169
2170 /*
2171 * Validate the NanoTS deltas between timer fires with an arbitrary threshold of 0.5%.
2172 * Wait until we have at least one full history since the above history reset. The
2173 * assumption is that the majority of the previous history values will be tolerable.
2174 * See @bugref{6710} comment #67.
2175 */
2176 /** @todo Could we drop the fuding there now that we initializes the history
2177 * with nominal TSC frequency values? */
2178 if ( u32TransactionId > 23 /* 7 + (8 * 2) */
2179 && pGip->u32Mode != SUPGIPMODE_ASYNC_TSC)
2180 {
2181 uint32_t uNanoTsThreshold = pGip->u32UpdateIntervalNS / 200;
2182 if ( pGipCpu->u32PrevUpdateIntervalNS > pGip->u32UpdateIntervalNS + uNanoTsThreshold
2183 || pGipCpu->u32PrevUpdateIntervalNS < pGip->u32UpdateIntervalNS - uNanoTsThreshold)
2184 {
2185 uint32_t u32;
2186 u32 = pGipCpu->au32TSCHistory[0];
2187 u32 += pGipCpu->au32TSCHistory[1];
2188 u32 += pGipCpu->au32TSCHistory[2];
2189 u32 += pGipCpu->au32TSCHistory[3];
2190 u32 >>= 2;
2191 u64TSCDelta = pGipCpu->au32TSCHistory[4];
2192 u64TSCDelta += pGipCpu->au32TSCHistory[5];
2193 u64TSCDelta += pGipCpu->au32TSCHistory[6];
2194 u64TSCDelta += pGipCpu->au32TSCHistory[7];
2195 u64TSCDelta >>= 2;
2196 u64TSCDelta += u32;
2197 u64TSCDelta >>= 1;
2198 }
2199 }
2200
2201 /*
2202 * TSC History.
2203 */
2204 Assert(RT_ELEMENTS(pGipCpu->au32TSCHistory) == 8);
2205 iTSCHistoryHead = (pGipCpu->iTSCHistoryHead + 1) & 7;
2206 ASMAtomicWriteU32(&pGipCpu->iTSCHistoryHead, iTSCHistoryHead);
2207 ASMAtomicWriteU32(&pGipCpu->au32TSCHistory[iTSCHistoryHead], (uint32_t)u64TSCDelta);
2208
2209 /*
2210 * UpdateIntervalTSC = average of last 8,2,1 intervals depending on update HZ.
2211 *
2212 * On Windows, we have an occasional (but recurring) sour value that messed up
2213 * the history but taking only 1 interval reduces the precision overall.
2214 */
2215 if ( pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC
2216 || pGip->u32UpdateHz >= 1000)
2217 {
2218 uint32_t u32;
2219 u32 = pGipCpu->au32TSCHistory[0];
2220 u32 += pGipCpu->au32TSCHistory[1];
2221 u32 += pGipCpu->au32TSCHistory[2];
2222 u32 += pGipCpu->au32TSCHistory[3];
2223 u32 >>= 2;
2224 u32UpdateIntervalTSC = pGipCpu->au32TSCHistory[4];
2225 u32UpdateIntervalTSC += pGipCpu->au32TSCHistory[5];
2226 u32UpdateIntervalTSC += pGipCpu->au32TSCHistory[6];
2227 u32UpdateIntervalTSC += pGipCpu->au32TSCHistory[7];
2228 u32UpdateIntervalTSC >>= 2;
2229 u32UpdateIntervalTSC += u32;
2230 u32UpdateIntervalTSC >>= 1;
2231
2232 /* Value chosen for a 2GHz Athlon64 running linux 2.6.10/11. */
2233 u32UpdateIntervalTSCSlack = u32UpdateIntervalTSC >> 14;
2234 }
2235 else if (pGip->u32UpdateHz >= 90)
2236 {
2237 u32UpdateIntervalTSC = (uint32_t)u64TSCDelta;
2238 u32UpdateIntervalTSC += pGipCpu->au32TSCHistory[(iTSCHistoryHead - 1) & 7];
2239 u32UpdateIntervalTSC >>= 1;
2240
2241 /* value chosen on a 2GHz thinkpad running windows */
2242 u32UpdateIntervalTSCSlack = u32UpdateIntervalTSC >> 7;
2243 }
2244 else
2245 {
2246 u32UpdateIntervalTSC = (uint32_t)u64TSCDelta;
2247
2248 /* This value hasn't be checked yet.. waiting for OS/2 and 33Hz timers.. :-) */
2249 u32UpdateIntervalTSCSlack = u32UpdateIntervalTSC >> 6;
2250 }
2251 ASMAtomicWriteU32(&pGipCpu->u32UpdateIntervalTSC, u32UpdateIntervalTSC + u32UpdateIntervalTSCSlack);
2252
2253 /*
2254 * CpuHz.
2255 */
2256 u64CpuHz = ASMMult2xU32RetU64(u32UpdateIntervalTSC, RT_NS_1SEC);
2257 u64CpuHz /= pGip->u32UpdateIntervalNS;
2258 ASMAtomicWriteU64(&pGipCpu->u64CpuHz, u64CpuHz);
2259 }
2260}
2261
2262
2263/**
2264 * Updates the GIP.
2265 *
2266 * @param pDevExt The device extension.
2267 * @param u64NanoTS The current nanosecond timesamp.
2268 * @param u64TSC The current TSC timesamp.
2269 * @param idCpu The CPU ID.
2270 * @param iTick The current timer tick.
2271 *
2272 * @remarks Can be called with interrupts disabled!
2273 */
2274static void supdrvGipUpdate(PSUPDRVDEVEXT pDevExt, uint64_t u64NanoTS, uint64_t u64TSC, RTCPUID idCpu, uint64_t iTick)
2275{
2276 /*
2277 * Determine the relevant CPU data.
2278 */
2279 PSUPGIPCPU pGipCpu;
2280 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
2281 AssertPtrReturnVoid(pGip);
2282
2283 if (pGip->u32Mode != SUPGIPMODE_ASYNC_TSC)
2284 pGipCpu = &pGip->aCPUs[0];
2285 else
2286 {
2287 unsigned iCpu = pGip->aiCpuFromApicId[ASMGetApicId()];
2288 if (RT_UNLIKELY(iCpu >= pGip->cCpus))
2289 return;
2290 pGipCpu = &pGip->aCPUs[iCpu];
2291 if (RT_UNLIKELY(pGipCpu->idCpu != idCpu))
2292 return;
2293 }
2294
2295 /*
2296 * Start update transaction.
2297 */
2298 if (!(ASMAtomicIncU32(&pGipCpu->u32TransactionId) & 1))
2299 {
2300 /* this can happen on win32 if we're taking to long and there are more CPUs around. shouldn't happen though. */
2301 AssertMsgFailed(("Invalid transaction id, %#x, not odd!\n", pGipCpu->u32TransactionId));
2302 ASMAtomicIncU32(&pGipCpu->u32TransactionId);
2303 pGipCpu->cErrors++;
2304 return;
2305 }
2306
2307 /*
2308 * Recalc the update frequency every 0x800th time.
2309 */
2310 if ( pGip->u32Mode != SUPGIPMODE_INVARIANT_TSC /* cuz we're not recalculating the frequency on invariants hosts. */
2311 && !(pGipCpu->u32TransactionId & (GIP_UPDATEHZ_RECALC_FREQ * 2 - 2)))
2312 {
2313 if (pGip->u64NanoTSLastUpdateHz)
2314 {
2315#ifdef RT_ARCH_AMD64 /** @todo fix 64-bit div here to work on x86 linux. */
2316 uint64_t u64Delta = u64NanoTS - pGip->u64NanoTSLastUpdateHz;
2317 uint32_t u32UpdateHz = (uint32_t)((RT_NS_1SEC_64 * GIP_UPDATEHZ_RECALC_FREQ) / u64Delta);
2318 if (u32UpdateHz <= 2000 && u32UpdateHz >= 30)
2319 {
2320 /** @todo r=ramshankar: Changing u32UpdateHz might screw up TSC frequency
2321 * calculation on non-invariant hosts if it changes the history decision
2322 * taken in supdrvGipDoUpdateCpu(). */
2323 uint64_t u64Interval = u64Delta / GIP_UPDATEHZ_RECALC_FREQ;
2324 ASMAtomicWriteU32(&pGip->u32UpdateHz, u32UpdateHz);
2325 ASMAtomicWriteU32(&pGip->u32UpdateIntervalNS, (uint32_t)u64Interval);
2326 }
2327#endif
2328 }
2329 ASMAtomicWriteU64(&pGip->u64NanoTSLastUpdateHz, u64NanoTS | 1);
2330 }
2331
2332 /*
2333 * Update the data.
2334 */
2335 supdrvGipDoUpdateCpu(pDevExt, pGipCpu, u64NanoTS, u64TSC, iTick);
2336
2337 /*
2338 * Complete transaction.
2339 */
2340 ASMAtomicIncU32(&pGipCpu->u32TransactionId);
2341}
2342
2343
2344/**
2345 * Updates the per cpu GIP data for the calling cpu.
2346 *
2347 * @param pDevExt The device extension.
2348 * @param u64NanoTS The current nanosecond timesamp.
2349 * @param u64TSC The current TSC timesamp.
2350 * @param idCpu The CPU ID.
2351 * @param idApic The APIC id for the CPU index.
2352 * @param iTick The current timer tick.
2353 *
2354 * @remarks Can be called with interrupts disabled!
2355 */
2356static void supdrvGipUpdatePerCpu(PSUPDRVDEVEXT pDevExt, uint64_t u64NanoTS, uint64_t u64TSC,
2357 RTCPUID idCpu, uint8_t idApic, uint64_t iTick)
2358{
2359 uint32_t iCpu;
2360 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
2361
2362 /*
2363 * Avoid a potential race when a CPU online notification doesn't fire on
2364 * the onlined CPU but the tick creeps in before the event notification is
2365 * run.
2366 */
2367 if (RT_UNLIKELY(iTick == 1))
2368 {
2369 iCpu = supdrvGipFindOrAllocCpuIndexForCpuId(pGip, idCpu);
2370 if (pGip->aCPUs[iCpu].enmState == SUPGIPCPUSTATE_OFFLINE)
2371 supdrvGipMpEventOnlineOrInitOnCpu(pDevExt, idCpu);
2372 }
2373
2374 iCpu = pGip->aiCpuFromApicId[idApic];
2375 if (RT_LIKELY(iCpu < pGip->cCpus))
2376 {
2377 PSUPGIPCPU pGipCpu = &pGip->aCPUs[iCpu];
2378 if (pGipCpu->idCpu == idCpu)
2379 {
2380 /*
2381 * Start update transaction.
2382 */
2383 if (!(ASMAtomicIncU32(&pGipCpu->u32TransactionId) & 1))
2384 {
2385 AssertMsgFailed(("Invalid transaction id, %#x, not odd!\n", pGipCpu->u32TransactionId));
2386 ASMAtomicIncU32(&pGipCpu->u32TransactionId);
2387 pGipCpu->cErrors++;
2388 return;
2389 }
2390
2391 /*
2392 * Update the data.
2393 */
2394 supdrvGipDoUpdateCpu(pDevExt, pGipCpu, u64NanoTS, u64TSC, iTick);
2395
2396 /*
2397 * Complete transaction.
2398 */
2399 ASMAtomicIncU32(&pGipCpu->u32TransactionId);
2400 }
2401 }
2402}
2403
2404
2405/**
2406 * Timer callback function for the sync and invariant GIP modes.
2407 *
2408 * @param pTimer The timer.
2409 * @param pvUser Opaque pointer to the device extension.
2410 * @param iTick The timer tick.
2411 */
2412static DECLCALLBACK(void) supdrvGipSyncAndInvariantTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick)
2413{
2414 RTCCUINTREG uFlags;
2415 uint64_t u64TSC;
2416 uint64_t u64NanoTS;
2417 PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser;
2418 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
2419
2420 uFlags = ASMIntDisableFlags(); /* No interruptions please (real problem on S10). */
2421 u64TSC = ASMReadTSC();
2422 u64NanoTS = RTTimeSystemNanoTS();
2423
2424 if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_PRACTICALLY_ZERO)
2425 {
2426 /*
2427 * The calculations in supdrvGipUpdate() is very timing sensitive and doesn't handle
2428 * missed timer ticks. So for now it is better to use a delta of 0 and have the TSC rate
2429 * affected a bit until we get proper TSC deltas than implementing options like
2430 * rescheduling the tick to be delivered on the right CPU or missing the tick entirely.
2431 *
2432 * The likely hood of this happening is really low. On Windows, Linux, and Solaris
2433 * timers fire on the CPU they were registered/started on. Darwin timers doesn't
2434 * necessarily (they are high priority threads waiting).
2435 */
2436 Assert(!ASMIntAreEnabled());
2437 supdrvTscDeltaApply(pGip, &u64TSC, ASMGetApicId(), NULL /* pfDeltaApplied */);
2438 }
2439
2440 supdrvGipUpdate(pDevExt, u64NanoTS, u64TSC, NIL_RTCPUID, iTick);
2441
2442 ASMSetFlags(uFlags);
2443
2444#ifdef SUPDRV_USE_TSC_DELTA_THREAD
2445 if ( pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED
2446 && !RTCpuSetIsEmpty(&pDevExt->TscDeltaCpuSet))
2447 {
2448 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
2449 if ( pDevExt->enmTscDeltaThreadState == kTscDeltaThreadState_Listening
2450 || pDevExt->enmTscDeltaThreadState == kTscDeltaThreadState_Measuring)
2451 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_WaitAndMeasure;
2452 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
2453 /** @todo Do the actual poking using -- RTThreadUserSignal() */
2454 }
2455#endif
2456}
2457
2458
2459/**
2460 * Timer callback function for async GIP mode.
2461 * @param pTimer The timer.
2462 * @param pvUser Opaque pointer to the device extension.
2463 * @param iTick The timer tick.
2464 */
2465static DECLCALLBACK(void) supdrvGipAsyncTimer(PRTTIMER pTimer, void *pvUser, uint64_t iTick)
2466{
2467 RTCCUINTREG fOldFlags = ASMIntDisableFlags(); /* No interruptions please (real problem on S10). */
2468 PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser;
2469 RTCPUID idCpu = RTMpCpuId();
2470 uint64_t u64TSC = ASMReadTSC();
2471 uint64_t NanoTS = RTTimeSystemNanoTS();
2472
2473 /** @todo reset the transaction number and whatnot when iTick == 1. */
2474 if (pDevExt->idGipMaster == idCpu)
2475 supdrvGipUpdate(pDevExt, NanoTS, u64TSC, idCpu, iTick);
2476 else
2477 supdrvGipUpdatePerCpu(pDevExt, NanoTS, u64TSC, idCpu, ASMGetApicId(), iTick);
2478
2479 ASMSetFlags(fOldFlags);
2480}
2481
2482
2483
2484
2485/*
2486 *
2487 *
2488 * TSC Delta Measurements And Related Code
2489 * TSC Delta Measurements And Related Code
2490 * TSC Delta Measurements And Related Code
2491 *
2492 *
2493 */
2494
2495
2496/*
2497 * Select TSC delta measurement algorithm.
2498 */
2499#if 1
2500# define GIP_TSC_DELTA_METHOD_1
2501#else
2502# define GIP_TSC_DELTA_METHOD_2
2503#endif
2504
2505/** For padding variables to keep them away from other cache lines. Better too
2506 * large than too small!
2507 * @remarks Current AMD64 and x86 CPUs seems to use 64 bytes. There are claims
2508 * that NetBurst had 128 byte cache lines while the 486 thru Pentium
2509 * III had 32 bytes cache lines. */
2510#define GIP_TSC_DELTA_CACHE_LINE_SIZE 128
2511
2512
2513/**
2514 * TSC delta measurment algorithm \#2 result entry.
2515 */
2516typedef struct SUPDRVTSCDELTAMETHOD2ENTRY
2517{
2518 uint32_t iSeqMine;
2519 uint32_t iSeqOther;
2520 uint64_t uTsc;
2521} SUPDRVTSCDELTAMETHOD2ENTRY;
2522
2523/**
2524 * TSC delta measurment algorithm \#2 Data.
2525 */
2526typedef struct SUPDRVTSCDELTAMETHOD2
2527{
2528 /** Padding to make sure the iCurSeqNo is in its own cache line. */
2529 uint64_t au64CacheLinePaddingBefore[GIP_TSC_DELTA_CACHE_LINE_SIZE / sizeof(uint64_t) - 1];
2530 /** The current sequence number of this worker. */
2531 uint32_t volatile iCurSeqNo;
2532 /** Padding to make sure the iCurSeqNo is in its own cache line. */
2533 uint32_t au64CacheLinePaddingAfter[GIP_TSC_DELTA_CACHE_LINE_SIZE / sizeof(uint32_t) - 1];
2534 /** Result table. */
2535 SUPDRVTSCDELTAMETHOD2ENTRY aResults[96];
2536} SUPDRVTSCDELTAMETHOD2;
2537/** Pointer to the data for TSC delta mesurment algorithm \#2 .*/
2538typedef SUPDRVTSCDELTAMETHOD2 *PSUPDRVTSCDELTAMETHOD2;
2539
2540
2541/**
2542 * The TSC delta synchronization struct, version 2.
2543 *
2544 * The syncrhonization variable is completely isolated in its own cache line
2545 * (provided our max cache line size estimate is correct).
2546 */
2547typedef struct SUPTSCDELTASYNC2
2548{
2549 /** Padding to make sure the uVar1 is in its own cache line. */
2550 uint64_t au64CacheLinePaddingBefore[GIP_TSC_DELTA_CACHE_LINE_SIZE / sizeof(uint64_t)];
2551 /** The synchronization variable, holds values GIP_TSC_DELTA_SYNC_*. */
2552 volatile uint32_t uVar1;
2553 /** Unused. */
2554 volatile uint32_t uVar2;
2555
2556 /** Start RDTSC value. This does not need to be in its own cache line, it's
2557 * just put here to save stack space. */
2558 uint64_t uTscStart;
2559 /** Max number of ticks we can allow to elapse in the RTMpOn callback.
2560 * This is estimated from the CPU frequency... */
2561 uint64_t cMaxTicks;
2562
2563 /** Padding to make sure the uVar1 is in its own cache line. */
2564 uint64_t au64CacheLinePaddingAfter[GIP_TSC_DELTA_CACHE_LINE_SIZE / sizeof(uint64_t) - 2];
2565} SUPTSCDELTASYNC2;
2566AssertCompileSize(SUPTSCDELTASYNC2, GIP_TSC_DELTA_CACHE_LINE_SIZE * 2 + sizeof(uint64_t));
2567typedef SUPTSCDELTASYNC2 *PSUPTSCDELTASYNC2;
2568
2569
2570/**
2571 * Argument package/state passed by supdrvMeasureTscDeltaOne to the RTMpOn
2572 * callback worker.
2573 */
2574typedef struct SUPDRVGIPTSCDELTARGS
2575{
2576 /** The device extension. */
2577 PSUPDRVDEVEXT pDevExt;
2578 /** Pointer to the GIP CPU array entry for the worker. */
2579 PSUPGIPCPU pWorker;
2580 /** Pointer to the GIP CPU array entry for the master. */
2581 PSUPGIPCPU pMaster;
2582 /** Pointer to the master's synchronization struct (on stack). */
2583 PSUPTSCDELTASYNC2 pSyncMaster;
2584 /** Pointer to the worker's synchronization struct (on stack). */
2585 PSUPTSCDELTASYNC2 pSyncWorker;
2586
2587#if 0
2588 /** Method 1 data. */
2589 struct
2590 {
2591 } M1;
2592#endif
2593
2594#ifdef GIP_TSC_DELTA_METHOD_2
2595 struct
2596 {
2597 PSUPDRVTSCDELTAMETHOD2 pMasterData;
2598 PSUPDRVTSCDELTAMETHOD2 pWorkerData;
2599 uint32_t cHits;
2600 bool fLagMaster;
2601 bool fLagWorker;
2602 bool volatile fQuitEarly;
2603 } M2;
2604#endif
2605} SUPDRVGIPTSCDELTARGS;
2606typedef SUPDRVGIPTSCDELTARGS *PSUPDRVGIPTSCDELTARGS;
2607
2608
2609/** @name Macros that implements the basic synchronization steps common to
2610 * the algorithms.
2611 * @{
2612 */
2613#define TSCDELTA_MASTER_SYNC_BEFORE(a_pTscDeltaSync) \
2614 do {\
2615 ASMAtomicWriteU32(&(a_pTscDeltaSync)->u, GIP_TSC_DELTA_SYNC_START); \
2616 \
2617 /* Disable interrupts only in the master for as short a period \
2618 as possible, thanks again to Windows. See @bugref{6710} comment #73. */ \
2619 uFlags = ASMIntDisableFlags(); \
2620 \
2621 while (ASMAtomicReadU32(&(a_pTscDeltaSync)->u) == GIP_TSC_DELTA_SYNC_START) \
2622 { /* nothing */ } \
2623 } while (0)
2624#define TSCDELTA_MASTER_SYNC_AFTER(a_pTscDeltaSync) \
2625 do {\
2626 /* Sync up with worker. */ \
2627 ASMSetFlags(uFlags); \
2628 \
2629 while (ASMAtomicReadU32(&(a_pTscDeltaSync)->u) != GIP_TSC_DELTA_SYNC_WORKER_DONE) \
2630 { /* nothing */ } \
2631 } while (0)
2632#define TSCDELTA_MASTER_KICK_OTHER_OUT_OF_AFTER(a_pTscDeltaSync) \
2633 do {\
2634 ASMAtomicWriteU32(&(a_pTscDeltaSync)->u, GIP_TSC_DELTA_SYNC_STOP); \
2635 } while (0)
2636
2637#define TSCDELTA_OTHER_SYNC_BEFORE(a_pTscDeltaSync, a_MidSyncExpr) \
2638 do { \
2639 while (ASMAtomicReadU32(&(a_pTscDeltaSync)->u) != GIP_TSC_DELTA_SYNC_START) \
2640 { /* nothing */ } \
2641 a_MidSyncExpr; \
2642 ASMAtomicWriteU32(&(a_pTscDeltaSync)->u, GIP_TSC_DELTA_SYNC_WORKER_READY); \
2643 } while (0)
2644#define TSCDELTA_OTHER_SYNC_AFTER(a_pTscDeltaSync) \
2645 do { \
2646 /* Tell master we're done collecting our data. */ \
2647 ASMAtomicWriteU32(&(a_pTscDeltaSync)->u, GIP_TSC_DELTA_SYNC_WORKER_DONE); \
2648 \
2649 /* Wait for the master to process the data. */ \
2650 while (ASMAtomicReadU32(&(a_pTscDeltaSync)->u) == GIP_TSC_DELTA_SYNC_WORKER_DONE) \
2651 ASMNopPause(); \
2652 } while (0)
2653/** @} */
2654
2655#ifdef GIP_TSC_DELTA_METHOD_1
2656
2657/**
2658 * TSC delta measurment algorithm \#1 (GIP_TSC_DELTA_METHOD_1).
2659 *
2660 *
2661 * We ignore the first few runs of the loop in order to prime the
2662 * cache. Also, we need to be careful about using 'pause' instruction
2663 * in critical busy-wait loops in this code - it can cause undesired
2664 * behaviour with hyperthreading.
2665 *
2666 * We try to minimize the measurement error by computing the minimum
2667 * read time of the compare statement in the worker by taking TSC
2668 * measurements across it.
2669 *
2670 * It must be noted that the computed minimum read time is mostly to
2671 * eliminate huge deltas when the worker is too early and doesn't by
2672 * itself help produce more accurate deltas. We allow two times the
2673 * computed minimum as an arbibtrary acceptable threshold. Therefore,
2674 * it is still possible to get negative deltas where there are none
2675 * when the worker is earlier. As long as these occasional negative
2676 * deltas are lower than the time it takes to exit guest-context and
2677 * the OS to reschedule EMT on a different CPU we won't expose a TSC
2678 * that jumped backwards. It is because of the existence of the
2679 * negative deltas we don't recompute the delta with the master and
2680 * worker interchanged to eliminate the remaining measurement error.
2681 *
2682 *
2683 * @param pArgs The argument/state data.
2684 * @param pSync The synchronization structure
2685 * (pDevExt->pTscDeltaSync).
2686 * @param fIsMaster Set if master, clear if worker.
2687 * @param iTry The attempt number.
2688 */
2689static void supdrvTscDeltaMethod1Loop(PSUPDRVGIPTSCDELTARGS pArgs, PSUPTSCDELTASYNC pSync, bool fIsMaster, uint32_t iTry)
2690{
2691 PSUPGIPCPU pGipCpuWorker = pArgs->pWorker;
2692 PSUPGIPCPU pGipCpuMaster = pArgs->pMaster;
2693 uint64_t uMinCmpReadTime = UINT64_MAX;
2694 unsigned iLoop;
2695 NOREF(iTry);
2696
2697 for (iLoop = 0; iLoop < GIP_TSC_DELTA_LOOPS; iLoop++)
2698 {
2699 if (fIsMaster)
2700 {
2701 /*
2702 * The master.
2703 */
2704 RTCCUINTREG uFlags;
2705 AssertMsg(pGipCpuMaster->u64TSCSample == GIP_TSC_DELTA_RSVD,
2706 ("%#llx idMaster=%#x idWorker=%#x (idGipMaster=%#x)\n",
2707 pGipCpuMaster->u64TSCSample, pGipCpuMaster->idCpu, pGipCpuWorker->idCpu, pArgs->pDevExt->idGipMaster));
2708 TSCDELTA_MASTER_SYNC_BEFORE(pSync);
2709
2710 do
2711 {
2712 ASMSerializeInstruction();
2713 ASMAtomicWriteU64(&pGipCpuMaster->u64TSCSample, ASMReadTSC());
2714 } while (pGipCpuMaster->u64TSCSample == GIP_TSC_DELTA_RSVD);
2715
2716 TSCDELTA_MASTER_SYNC_AFTER(pSync);
2717
2718 /* Process the data. */
2719 if (iLoop > GIP_TSC_DELTA_PRIMER_LOOPS + GIP_TSC_DELTA_READ_TIME_LOOPS)
2720 {
2721 if (pGipCpuWorker->u64TSCSample != GIP_TSC_DELTA_RSVD)
2722 {
2723 int64_t iDelta = pGipCpuWorker->u64TSCSample
2724 - (pGipCpuMaster->u64TSCSample - pGipCpuMaster->i64TSCDelta);
2725 if ( iDelta >= GIP_TSC_DELTA_INITIAL_MASTER_VALUE
2726 ? iDelta < pGipCpuWorker->i64TSCDelta
2727 : iDelta > pGipCpuWorker->i64TSCDelta || pGipCpuWorker->i64TSCDelta == INT64_MAX)
2728 pGipCpuWorker->i64TSCDelta = iDelta;
2729 }
2730 }
2731
2732 /* Reset our TSC sample and tell the worker to move on. */
2733 ASMAtomicWriteU64(&pGipCpuMaster->u64TSCSample, GIP_TSC_DELTA_RSVD);
2734 TSCDELTA_MASTER_KICK_OTHER_OUT_OF_AFTER(pSync);
2735 }
2736 else
2737 {
2738 /*
2739 * The worker.
2740 */
2741 uint64_t uTscWorker;
2742 uint64_t uTscWorkerFlushed;
2743 uint64_t uCmpReadTime;
2744
2745 ASMAtomicReadU64(&pGipCpuMaster->u64TSCSample); /* Warm the cache line. */
2746 TSCDELTA_OTHER_SYNC_BEFORE(pSync, Assert(pGipCpuMaster->u64TSCSample == GIP_TSC_DELTA_RSVD));
2747
2748 /*
2749 * Keep reading the TSC until we notice that the master has read his. Reading
2750 * the TSC -after- the master has updated the memory is way too late. We thus
2751 * compensate by trying to measure how long it took for the worker to notice
2752 * the memory flushed from the master.
2753 */
2754 do
2755 {
2756 ASMSerializeInstruction();
2757 uTscWorker = ASMReadTSC();
2758 } while (pGipCpuMaster->u64TSCSample == GIP_TSC_DELTA_RSVD);
2759 ASMSerializeInstruction();
2760 uTscWorkerFlushed = ASMReadTSC();
2761
2762 uCmpReadTime = uTscWorkerFlushed - uTscWorker;
2763 if (iLoop > GIP_TSC_DELTA_PRIMER_LOOPS + GIP_TSC_DELTA_READ_TIME_LOOPS)
2764 {
2765 /* This is totally arbitrary a.k.a I don't like it but I have no better ideas for now. */
2766 if (uCmpReadTime < (uMinCmpReadTime << 1))
2767 {
2768 ASMAtomicWriteU64(&pGipCpuWorker->u64TSCSample, uTscWorker);
2769 if (uCmpReadTime < uMinCmpReadTime)
2770 uMinCmpReadTime = uCmpReadTime;
2771 }
2772 else
2773 ASMAtomicWriteU64(&pGipCpuWorker->u64TSCSample, GIP_TSC_DELTA_RSVD);
2774 }
2775 else if (iLoop > GIP_TSC_DELTA_PRIMER_LOOPS)
2776 {
2777 if (uCmpReadTime < uMinCmpReadTime)
2778 uMinCmpReadTime = uCmpReadTime;
2779 }
2780
2781 TSCDELTA_OTHER_SYNC_AFTER(pSync);
2782 }
2783 }
2784
2785 /*
2786 * We must reset the worker TSC sample value in case it gets picked as a
2787 * GIP master later on (it's trashed above, naturally).
2788 */
2789 if (!fIsMaster)
2790 ASMAtomicWriteU64(&pGipCpuWorker->u64TSCSample, GIP_TSC_DELTA_RSVD);
2791}
2792
2793
2794/**
2795 * Initializes the argument/state data belonging to algorithm \#1.
2796 *
2797 * @returns VBox status code.
2798 * @param pArgs The argument/state data.
2799 */
2800static int supdrvTscDeltaMethod1Init(PSUPDRVGIPTSCDELTARGS pArgs)
2801{
2802 NOREF(pArgs);
2803 return VINF_SUCCESS;
2804}
2805
2806
2807/**
2808 * Undoes what supdrvTscDeltaMethod1Init() did.
2809 *
2810 * @param pArgs The argument/state data.
2811 */
2812static void supdrvTscDeltaMethod1Delete(PSUPDRVGIPTSCDELTARGS pArgs)
2813{
2814 NOREF(pArgs);
2815}
2816
2817#endif /* GIP_TSC_DELTA_METHOD_1 */
2818
2819
2820#ifdef GIP_TSC_DELTA_METHOD_2
2821/*
2822 * TSC delta measurement algorithm \#2 configuration and code - Experimental!!
2823 */
2824
2825# define GIP_TSC_DELTA_M2_LOOPS (12 + GIP_TSC_DELTA_M2_PRIMER_LOOPS)
2826# define GIP_TSC_DELTA_M2_PRIMER_LOOPS 1
2827
2828
2829static void supdrvTscDeltaMethod2ProcessDataOnMaster(PSUPDRVGIPTSCDELTARGS pArgs, uint32_t iLoop)
2830{
2831 PSUPDRVTSCDELTAMETHOD2 pMasterData = pArgs->M2.pMasterData;
2832 PSUPDRVTSCDELTAMETHOD2 pOtherData = pArgs->M2.pWorkerData;
2833 int64_t iMasterTscDelta = pArgs->pMaster->i64TSCDelta;
2834 int64_t iBestDelta = pArgs->pWorker->i64TSCDelta;
2835 uint32_t idxResult;
2836 uint32_t cHits = 0;
2837
2838 /*
2839 * Look for matching entries in the master and worker tables.
2840 */
2841 for (idxResult = 0; idxResult < RT_ELEMENTS(pMasterData->aResults); idxResult++)
2842 {
2843 uint32_t idxOther = pMasterData->aResults[idxResult].iSeqOther;
2844 if (idxOther & 1)
2845 {
2846 idxOther >>= 1;
2847 if (idxOther < RT_ELEMENTS(pOtherData->aResults))
2848 {
2849 if (pOtherData->aResults[idxOther].iSeqOther == pMasterData->aResults[idxResult].iSeqMine)
2850 {
2851 int64_t iDelta;
2852 iDelta = pOtherData->aResults[idxOther].uTsc
2853 - (pMasterData->aResults[idxResult].uTsc - iMasterTscDelta);
2854 if ( iDelta >= GIP_TSC_DELTA_INITIAL_MASTER_VALUE
2855 ? iDelta < iBestDelta
2856 : iDelta > iBestDelta || iBestDelta == INT64_MAX)
2857 iBestDelta = iDelta;
2858 cHits++;
2859 }
2860 }
2861 }
2862 }
2863
2864 /*
2865 * Save the results.
2866 */
2867 if (cHits > 2)
2868 pArgs->pWorker->i64TSCDelta = iBestDelta;
2869 pArgs->M2.cHits += cHits;
2870
2871 /*
2872 * Check and see if we can quit a little early. If the result is already
2873 * extremely good (+/-16 ticks seems reasonable), just stop.
2874 */
2875 if ( iBestDelta >= 0 + GIP_TSC_DELTA_INITIAL_MASTER_VALUE
2876 ? iBestDelta <= 16 + GIP_TSC_DELTA_INITIAL_MASTER_VALUE
2877 : iBestDelta >= -16 + GIP_TSC_DELTA_INITIAL_MASTER_VALUE)
2878 {
2879 /*SUPR0Printf("quitting early #1: hits=%#x iLoop=%d iBestDelta=%lld\n", cHits, iLoop, iBestDelta);*/
2880 ASMAtomicWriteBool(&pArgs->M2.fQuitEarly, true);
2881 }
2882 /*
2883 * After a while, just stop if we get sufficent hits.
2884 */
2885 else if ( iLoop >= GIP_TSC_DELTA_M2_LOOPS / 3
2886 && cHits > 8)
2887 {
2888 uint32_t const cHitsNeeded = GIP_TSC_DELTA_M2_LOOPS * RT_ELEMENTS(pArgs->M2.pMasterData->aResults) / 4; /* 25% */
2889 if ( pArgs->M2.cHits >= cHitsNeeded
2890 && ( iBestDelta >= 0 + GIP_TSC_DELTA_INITIAL_MASTER_VALUE
2891 ? iBestDelta <= GIP_TSC_DELTA_THRESHOLD_PRACTICALLY_ZERO + GIP_TSC_DELTA_INITIAL_MASTER_VALUE
2892 : iBestDelta >= -GIP_TSC_DELTA_THRESHOLD_PRACTICALLY_ZERO + GIP_TSC_DELTA_INITIAL_MASTER_VALUE) )
2893 {
2894 /*SUPR0Printf("quitting early hits=%#x (%#x) needed=%#x iLoop=%d iBestDelta=%lld\n",
2895 pArgs->M2.cHits, cHits, cHitsNeeded, iLoop, iBestDelta);*/
2896 ASMAtomicWriteBool(&pArgs->M2.fQuitEarly, true);
2897 }
2898 }
2899}
2900
2901
2902/**
2903 * The core function of the 2nd TSC delta mesurment algorithm.
2904 *
2905 * The idea here is that we have the two CPUs execute the exact same code
2906 * collecting a largish set of TSC samples. The code has one data dependency on
2907 * the other CPU which intention it is to synchronize the execution as well as
2908 * help cross references the two sets of TSC samples (the sequence numbers).
2909 *
2910 * The @a fLag parameter is used to modify the execution a tiny bit on one or
2911 * both of the CPUs. When @a fLag differs between the CPUs, it is thought that
2912 * it will help with making the CPUs enter lock step execution occationally.
2913 *
2914 */
2915static void supdrvTscDeltaMethod2CollectData(PSUPDRVTSCDELTAMETHOD2 pMyData, uint32_t volatile *piOtherSeqNo, bool fLag)
2916{
2917 SUPDRVTSCDELTAMETHOD2ENTRY *pEntry = &pMyData->aResults[0];
2918 uint32_t cLeft = RT_ELEMENTS(pMyData->aResults);
2919
2920 ASMAtomicWriteU32(&pMyData->iCurSeqNo, 0);
2921 ASMSerializeInstruction();
2922 while (cLeft-- > 0)
2923 {
2924 uint64_t uTsc;
2925 uint32_t iSeqMine = ASMAtomicIncU32(&pMyData->iCurSeqNo);
2926 uint32_t iSeqOther = ASMAtomicReadU32(piOtherSeqNo);
2927 ASMCompilerBarrier();
2928 ASMSerializeInstruction(); /* Way better result than with ASMMemoryFenceSSE2() in this position! */
2929 uTsc = ASMReadTSC();
2930 ASMAtomicIncU32(&pMyData->iCurSeqNo);
2931 ASMCompilerBarrier();
2932 ASMSerializeInstruction();
2933 pEntry->iSeqMine = iSeqMine;
2934 pEntry->iSeqOther = iSeqOther;
2935 pEntry->uTsc = uTsc;
2936 pEntry++;
2937 ASMSerializeInstruction();
2938 if (fLag)
2939 ASMNopPause();
2940 }
2941}
2942
2943
2944/**
2945 * TSC delta measurment algorithm \#2 (GIP_TSC_DELTA_METHOD_2).
2946 *
2947 * See supdrvTscDeltaMethod2CollectData for algorithm details.
2948 *
2949 * @param pArgs The argument/state data.
2950 * @param pSync The synchronization structure
2951 * (pDevExt->pTscDeltaSync).
2952 * @param fIsMaster Set if master, clear if worker.
2953 * @param iTry The attempt number.
2954 */
2955static void supdrvTscDeltaMethod2Loop(PSUPDRVGIPTSCDELTARGS pArgs, PSUPTSCDELTASYNC pSync, bool fIsMaster, uint32_t iTry)
2956{
2957 unsigned iLoop;
2958
2959 if (fIsMaster)
2960 ASMAtomicWriteBool(&pArgs->M2.fQuitEarly, false);
2961
2962 for (iLoop = 0; iLoop < GIP_TSC_DELTA_M2_LOOPS; iLoop++)
2963 {
2964 if (fIsMaster)
2965 {
2966 RTCCUINTREG uFlags;
2967
2968 /*
2969 * Adjust the loop lag fudge.
2970 */
2971# if GIP_TSC_DELTA_M2_PRIMER_LOOPS > 0
2972 if (iLoop < GIP_TSC_DELTA_M2_PRIMER_LOOPS)
2973 {
2974 /* Lag during the priming to be nice to everyone.. */
2975 pArgs->M2.fLagMaster = true;
2976 pArgs->M2.fLagWorker = true;
2977 }
2978 else
2979# endif
2980 if (iLoop < (GIP_TSC_DELTA_M2_LOOPS - GIP_TSC_DELTA_M2_PRIMER_LOOPS) / 4)
2981 {
2982 /* 25 % of the body without lagging. */
2983 pArgs->M2.fLagMaster = false;
2984 pArgs->M2.fLagWorker = false;
2985 }
2986 else if (iLoop < (GIP_TSC_DELTA_M2_LOOPS - GIP_TSC_DELTA_M2_PRIMER_LOOPS) / 4 * 2)
2987 {
2988 /* 25 % of the body with both lagging. */
2989 pArgs->M2.fLagMaster = true;
2990 pArgs->M2.fLagWorker = true;
2991 }
2992 else
2993 {
2994 /* 50% of the body with alternating lag. */
2995 pArgs->M2.fLagMaster = (iLoop & 1) == 0;
2996 pArgs->M2.fLagWorker = (iLoop & 1) == 1;
2997 }
2998
2999 /*
3000 * Sync up with the worker and collect data.
3001 */
3002 TSCDELTA_MASTER_SYNC_BEFORE(pSync);
3003 supdrvTscDeltaMethod2CollectData(pArgs->M2.pMasterData, &pArgs->M2.pWorkerData->iCurSeqNo, pArgs->M2.fLagMaster);
3004 TSCDELTA_MASTER_SYNC_AFTER(pSync);
3005
3006 /*
3007 * Process the data.
3008 */
3009# if GIP_TSC_DELTA_M2_PRIMER_LOOPS > 0
3010 if (iLoop >= GIP_TSC_DELTA_M2_PRIMER_LOOPS)
3011# endif
3012 supdrvTscDeltaMethod2ProcessDataOnMaster(pArgs, iLoop);
3013
3014 TSCDELTA_MASTER_KICK_OTHER_OUT_OF_AFTER(pSync);
3015 }
3016 else
3017 {
3018 /*
3019 * The worker.
3020 */
3021 TSCDELTA_OTHER_SYNC_BEFORE(pSync, (void)0);
3022 supdrvTscDeltaMethod2CollectData(pArgs->M2.pWorkerData, &pArgs->M2.pMasterData->iCurSeqNo, pArgs->M2.fLagWorker);
3023 TSCDELTA_OTHER_SYNC_AFTER(pSync);
3024 }
3025
3026 if (ASMAtomicReadBool(&pArgs->M2.fQuitEarly))
3027 break;
3028
3029 }
3030}
3031
3032
3033/**
3034 * Initializes the argument/state data belonging to algorithm \#2.
3035 *
3036 * @returns VBox status code.
3037 * @param pArgs The argument/state data.
3038 */
3039static int supdrvTscDeltaMethod2Init(PSUPDRVGIPTSCDELTARGS pArgs)
3040{
3041 pArgs->M2.pMasterData = NULL;
3042 pArgs->M2.pWorkerData = NULL;
3043
3044 uint32_t const fFlags = /*RTMEMALLOCEX_FLAGS_ANY_CTX |*/ RTMEMALLOCEX_FLAGS_ZEROED;
3045 int rc = RTMemAllocEx(sizeof(*pArgs->M2.pWorkerData), 0, fFlags, (void **)&pArgs->M2.pWorkerData);
3046 if (RT_SUCCESS(rc))
3047 rc = RTMemAllocEx(sizeof(*pArgs->M2.pMasterData), 0, fFlags, (void **)&pArgs->M2.pMasterData);
3048 return rc;
3049}
3050
3051
3052/**
3053 * Undoes what supdrvTscDeltaMethod2Init() did.
3054 *
3055 * @param pArgs The argument/state data.
3056 */
3057static void supdrvTscDeltaMethod2Delete(PSUPDRVGIPTSCDELTARGS pArgs)
3058{
3059 RTMemFreeEx(pArgs->M2.pMasterData, sizeof(*pArgs->M2.pMasterData));
3060 RTMemFreeEx(pArgs->M2.pWorkerData, sizeof(*pArgs->M2.pWorkerData));
3061# if 0
3062 SUPR0Printf("cHits=%d m=%d w=%d\n", pArgs->M2.cHits, pArgs->pMaster->idApic, pArgs->pWorker->idApic);
3063# endif
3064}
3065
3066
3067#endif /* GIP_TSC_DELTA_METHOD_2 */
3068
3069/** Prestart wait. */
3070#define GIP_TSC_DELTA_SYNC2_PRESTART_WAIT UINT32_C(0xffe)
3071
3072/** Start measurement of TSC delta. */
3073#define GIP_TSC_DELTA_SYNC2_START UINT32_C(1)
3074/** Worker thread is ready for reading the TSC. */
3075#define GIP_TSC_DELTA_SYNC2_WORKER_READY UINT32_C(2)
3076/** Worker thread is done updating TSC delta info. */
3077#define GIP_TSC_DELTA_SYNC2_WORKER_DONE UINT32_C(3)
3078/** When IPRT is isn't concurrent safe: Master is ready and will wait for worker
3079 * with a timeout. */
3080#define GIP_TSC_DELTA_SYNC2_PRESTART_MASTER UINT32_C(4)
3081
3082
3083/**
3084 * Callback used by supdrvMeasureInitialTscDeltas() to read the TSC on two CPUs
3085 * and compute the delta between them.
3086 *
3087 * @param idCpu The CPU we are current scheduled on.
3088 * @param pvUser1 Pointer to a parameter package (SUPDRVGIPTSCDELTARGS).
3089 * @param pvUser2 Unused.
3090 *
3091 * @remarks Measuring TSC deltas between the CPUs is tricky because we need to
3092 * read the TSC at exactly the same time on both the master and the
3093 * worker CPUs. Due to DMA, bus arbitration, cache locality,
3094 * contention, SMI, pipelining etc. there is no guaranteed way of
3095 * doing this on x86 CPUs.
3096 */
3097static DECLCALLBACK(void) supdrvMeasureTscDeltaCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
3098{
3099 PSUPDRVGIPTSCDELTARGS pArgs = (PSUPDRVGIPTSCDELTARGS)pvUser1;
3100 PSUPDRVDEVEXT pDevExt = pArgs->pDevExt;
3101 PSUPTSCDELTASYNC pSync = pDevExt->pTscDeltaSync;
3102 PSUPGIPCPU pGipCpuWorker = pArgs->pWorker;
3103 PSUPGIPCPU pGipCpuMaster = pArgs->pMaster;
3104 bool const fIsMaster = idCpu == pGipCpuMaster->idCpu;
3105 uint32_t iTry;
3106#if 0
3107 PSUPTSCDELTASYNC2 pOtherSync;
3108 SUPTSCDELTASYNC2 MySync;
3109#endif
3110
3111 /* A bit of paranoia first. */
3112 if (!pGipCpuMaster || !pGipCpuWorker)
3113 return;
3114
3115 /*
3116 * If the CPU isn't part of the measurement, return immediately.
3117 */
3118 if ( !fIsMaster
3119 && idCpu != pGipCpuWorker->idCpu)
3120 return;
3121
3122#if 0
3123 /*
3124 * Set up my synchronization stuff and wait for the other party to show up.
3125 * We don't wait forever since the other party may have gone fishing after
3126 * we checked it out in supdrvMeasureTscDeltaOne, and then there is of course
3127 * windows and it's BSOD if we waste too much time here.
3128 */
3129 if (fIsMaster)
3130 {
3131 MySync.uVar1 = GIP_TSC_DELTA_SYNC2_PRESTART_WAIT;
3132 ASMSerializeInstruction(); ASMCompilerBarrier();
3133 ASMAtomicWritePtr(&pArgs->pSyncMaster, &MySync);
3134 }
3135 else
3136 {
3137 MySync.uVar1 = GIP_TSC_DELTA_SYNC2_PRESTART_WAIT;
3138 ASMSerializeInstruction(); ASMCompilerBarrier();
3139 ASMAtomicWritePtr(&pArgs->pSyncWorker, &MySync);
3140 }
3141
3142 MySync.uTscStart = ASMReadTSC();
3143 MySync.cMaxTicks = u64CpuHz
3144
3145 while ((pOtherSync = ASMAtomicReadPtr((void * volatile *)(fIsMaster ? &pArgs->pSyncWorker : &pArgs->pSyncMaster))) != NULL)
3146 {
3147 uint32_t cInner = 10240;
3148 while ( cInner-- > 0
3149 && ASMAtomicUoReadU32(MySync.uVar1) == GIP_TSC_DELTA_SYNC2_PRESTART_WAIT)
3150 ASMNopPause();
3151
3152 }
3153#endif
3154
3155
3156 /* If the IPRT API isn't concurrent safe, the master and worker wait for each other
3157 with a timeout to avoid deadlocking the entire system. */
3158 if (!RTMpOnAllIsConcurrentSafe())
3159 {
3160 /** @todo This was introduced for Windows, but since Windows doesn't use this
3161 * code path any longer (as DPC timeouts BSOD regardless of interrupts,
3162 * see @bugref{6710} comment 81), eventually phase it out. */
3163 uint64_t uTscNow;
3164 uint64_t uTscStart;
3165 uint64_t const cWaitTicks = 130000; /* Arbitrary value, can be tweaked later. */
3166
3167 ASMSerializeInstruction();
3168 uTscStart = ASMReadTSC();
3169 if (fIsMaster)
3170 {
3171 ASMAtomicWriteU32(&pDevExt->pTscDeltaSync->u, GIP_TSC_DELTA_SYNC_PRESTART_MASTER);
3172 while (ASMAtomicReadU32(&pDevExt->pTscDeltaSync->u) != GIP_TSC_DELTA_SYNC_PRESTART_WORKER)
3173 {
3174 ASMSerializeInstruction();
3175 uTscNow = ASMReadTSC();
3176 if (uTscNow - uTscStart > cWaitTicks)
3177 {
3178 /* Set the worker delta to indicate failure, not the master. */
3179 ASMAtomicWriteS64(&pGipCpuWorker->i64TSCDelta, INT64_MAX);
3180 return;
3181 }
3182
3183 ASMNopPause();
3184 }
3185 }
3186 else
3187 {
3188 while (ASMAtomicReadU32(&pDevExt->pTscDeltaSync->u) != GIP_TSC_DELTA_SYNC_PRESTART_MASTER)
3189 {
3190 ASMSerializeInstruction();
3191 uTscNow = ASMReadTSC();
3192 if (uTscNow - uTscStart > cWaitTicks)
3193 {
3194 ASMAtomicWriteS64(&pGipCpuWorker->i64TSCDelta, INT64_MAX);
3195 return;
3196 }
3197
3198 ASMNopPause();
3199 }
3200 ASMAtomicWriteU32(&pDevExt->pTscDeltaSync->u, GIP_TSC_DELTA_SYNC_PRESTART_WORKER);
3201 }
3202 }
3203
3204 /*
3205 * Retry loop.
3206 */
3207 Assert(pGipCpuWorker->i64TSCDelta == INT64_MAX);
3208 for (iTry = 0; iTry < 12; iTry++)
3209 {
3210 /*
3211 * Do the measurements.
3212 */
3213#ifdef GIP_TSC_DELTA_METHOD_1
3214 supdrvTscDeltaMethod1Loop(pArgs, pSync, fIsMaster, iTry);
3215#elif defined(GIP_TSC_DELTA_METHOD_2)
3216 supdrvTscDeltaMethod2Loop(pArgs, pSync, fIsMaster, iTry);
3217#else
3218# error "huh??"
3219#endif
3220
3221 /*
3222 * Success? If so, stop trying.
3223 */
3224 if (pGipCpuWorker->i64TSCDelta != INT64_MAX)
3225 {
3226 if (fIsMaster)
3227 {
3228 RTCpuSetDelByIndex(&pDevExt->TscDeltaCpuSet, pGipCpuMaster->iCpuSet);
3229 RTCpuSetAddByIndex(&pDevExt->TscDeltaObtainedCpuSet, pGipCpuMaster->iCpuSet);
3230 }
3231 else
3232 {
3233 RTCpuSetDelByIndex(&pDevExt->TscDeltaCpuSet, pGipCpuWorker->iCpuSet);
3234 RTCpuSetAddByIndex(&pDevExt->TscDeltaObtainedCpuSet, pGipCpuWorker->iCpuSet);
3235 }
3236 break;
3237 }
3238 }
3239}
3240
3241
3242/**
3243 * Clears TSC delta related variables.
3244 *
3245 * Clears all TSC samples as well as the delta synchronization variable on the
3246 * all the per-CPU structs. Optionally also clears the per-cpu deltas too.
3247 *
3248 * @param pDevExt Pointer to the device instance data.
3249 * @param fClearDeltas Whether the deltas are also to be cleared.
3250 */
3251DECLINLINE(void) supdrvClearTscSamples(PSUPDRVDEVEXT pDevExt, bool fClearDeltas)
3252{
3253 unsigned iCpu;
3254 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
3255 for (iCpu = 0; iCpu < pGip->cCpus; iCpu++)
3256 {
3257 PSUPGIPCPU pGipCpu = &pGip->aCPUs[iCpu];
3258 ASMAtomicWriteU64(&pGipCpu->u64TSCSample, GIP_TSC_DELTA_RSVD);
3259 if (fClearDeltas)
3260 ASMAtomicWriteS64(&pGipCpu->i64TSCDelta, INT64_MAX);
3261 }
3262 ASMAtomicWriteU32(&pDevExt->pTscDeltaSync->u, GIP_TSC_DELTA_SYNC_STOP);
3263}
3264
3265
3266/**
3267 * Measures the TSC delta between the master GIP CPU and one specified worker
3268 * CPU.
3269 *
3270 * @returns VBox status code.
3271 * @retval VERR_SUPDRV_TSC_DELTA_MEASUREMENT_FAILED on pure measurement
3272 * failure.
3273 * @param pDevExt Pointer to the device instance data.
3274 * @param idxWorker The index of the worker CPU from the GIP's array of
3275 * CPUs.
3276 *
3277 * @remarks This must be called with preemption enabled!
3278 */
3279static int supdrvMeasureTscDeltaOne(PSUPDRVDEVEXT pDevExt, uint32_t idxWorker)
3280{
3281 int rc;
3282 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
3283 RTCPUID idMaster = pDevExt->idGipMaster;
3284 PSUPGIPCPU pGipCpuWorker = &pGip->aCPUs[idxWorker];
3285 PSUPGIPCPU pGipCpuMaster;
3286 uint32_t iGipCpuMaster;
3287
3288 /* Validate input a bit. */
3289 AssertReturn(pGip, VERR_INVALID_PARAMETER);
3290 Assert(pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED);
3291 Assert(RTThreadPreemptIsEnabled(NIL_RTTHREAD));
3292
3293 /*
3294 * Don't attempt measuring the delta for the GIP master.
3295 */
3296 if (pGipCpuWorker->idCpu == idMaster)
3297 {
3298 if (pGipCpuWorker->i64TSCDelta == INT64_MAX) /* This shouldn't happen, but just in case. */
3299 ASMAtomicWriteS64(&pGipCpuWorker->i64TSCDelta, GIP_TSC_DELTA_INITIAL_MASTER_VALUE);
3300 return VINF_SUCCESS;
3301 }
3302
3303 /*
3304 * If the CPU has hyper-threading and the APIC IDs of the master and worker are adjacent,
3305 * try pick a different master. (This fudge only works with multi core systems.)
3306 * ASSUMES related threads have adjacent APIC IDs. ASSUMES two threads per core.
3307 */
3308 iGipCpuMaster = supdrvGipFindCpuIndexForCpuId(pGip, idMaster);
3309 AssertReturn(iGipCpuMaster < pGip->cCpus, VERR_INVALID_CPU_ID);
3310 pGipCpuMaster = &pGip->aCPUs[iGipCpuMaster];
3311 if ( (pGipCpuMaster->idApic & ~1) == (pGipCpuWorker->idApic & ~1)
3312 && ASMHasCpuId()
3313 && ASMIsValidStdRange(ASMCpuId_EAX(0))
3314 && (ASMCpuId_EDX(1) & X86_CPUID_FEATURE_EDX_HTT)
3315 && pGip->cOnlineCpus > 2)
3316 {
3317 uint32_t i;
3318 for (i = 0; i < pGip->cCpus; i++)
3319 if ( i != iGipCpuMaster
3320 && i != idxWorker
3321 && pGip->aCPUs[i].enmState == SUPGIPCPUSTATE_ONLINE
3322 && pGip->aCPUs[i].i64TSCDelta != INT64_MAX
3323 && pGip->aCPUs[i].idCpu != NIL_RTCPUID
3324 && pGip->aCPUs[i].idCpu != idMaster /* paranoia starts here... */
3325 && pGip->aCPUs[i].idCpu != pGipCpuWorker->idCpu
3326 && pGip->aCPUs[i].idApic != pGipCpuWorker->idApic
3327 && pGip->aCPUs[i].idApic != pGipCpuMaster->idApic)
3328 {
3329 iGipCpuMaster = i;
3330 pGipCpuMaster = &pGip->aCPUs[i];
3331 idMaster = pGipCpuMaster->idCpu;
3332 break;
3333 }
3334 }
3335
3336 /*
3337 * Set the master TSC as the initiator. This serializes delta measurments.
3338 */
3339 while (!ASMAtomicCmpXchgU32(&pDevExt->idTscDeltaInitiator, idMaster, NIL_RTCPUID))
3340 {
3341 /*
3342 * Sleep here rather than spin as there is a parallel measurement
3343 * being executed and that can take a good while to be done.
3344 */
3345 RTThreadSleep(1);
3346 }
3347
3348 if (RTCpuSetIsMemberByIndex(&pGip->OnlineCpuSet, pGipCpuWorker->iCpuSet))
3349 {
3350 /*
3351 * Initialize data package for the RTMpOnAll callback.
3352 */
3353 SUPDRVGIPTSCDELTARGS Args;
3354 RT_ZERO(Args);
3355 Args.pWorker = pGipCpuWorker;
3356 Args.pMaster = pGipCpuMaster;
3357 Args.pDevExt = pDevExt;
3358 Args.pSyncMaster = NULL;
3359 Args.pSyncWorker = NULL;
3360#ifdef GIP_TSC_DELTA_METHOD_1
3361 rc = supdrvTscDeltaMethod1Init(&Args);
3362#elif defined(GIP_TSC_DELTA_METHOD_2)
3363 rc = supdrvTscDeltaMethod2Init(&Args);
3364#else
3365# error "huh?"
3366#endif
3367 if (RT_SUCCESS(rc))
3368 {
3369 /*
3370 * Fire TSC-read workers on all CPUs but only synchronize between master
3371 * and one worker to ease memory contention.
3372 */
3373 ASMAtomicWriteS64(&pGipCpuWorker->i64TSCDelta, INT64_MAX);
3374 ASMAtomicWriteU32(&pDevExt->pTscDeltaSync->u, GIP_TSC_DELTA_SYNC_STOP);
3375
3376 rc = RTMpOnAll(supdrvMeasureTscDeltaCallback, &Args, NULL);
3377 if (RT_SUCCESS(rc))
3378 {
3379 if (RT_LIKELY(pGipCpuWorker->i64TSCDelta != INT64_MAX))
3380 {
3381 /*
3382 * Work the TSC delta applicability rating. It starts
3383 * optimistic in supdrvGipInit, we downgrade it here.
3384 */
3385 SUPGIPUSETSCDELTA enmRating;
3386 if ( pGipCpuWorker->i64TSCDelta > GIP_TSC_DELTA_THRESHOLD_ROUGHLY_ZERO
3387 || pGipCpuWorker->i64TSCDelta < -GIP_TSC_DELTA_THRESHOLD_ROUGHLY_ZERO)
3388 enmRating = SUPGIPUSETSCDELTA_NOT_ZERO;
3389 else if ( pGipCpuWorker->i64TSCDelta > GIP_TSC_DELTA_THRESHOLD_PRACTICALLY_ZERO
3390 || pGipCpuWorker->i64TSCDelta < -GIP_TSC_DELTA_THRESHOLD_PRACTICALLY_ZERO)
3391 enmRating = SUPGIPUSETSCDELTA_ROUGHLY_ZERO;
3392 else
3393 enmRating = SUPGIPUSETSCDELTA_PRACTICALLY_ZERO;
3394 if (pGip->enmUseTscDelta < enmRating)
3395 {
3396 AssertCompile(sizeof(pGip->enmUseTscDelta) == sizeof(uint32_t));
3397 ASMAtomicWriteU32((uint32_t volatile *)&pGip->enmUseTscDelta, enmRating);
3398 }
3399 }
3400 else
3401 rc = VERR_SUPDRV_TSC_DELTA_MEASUREMENT_FAILED;
3402 }
3403 }
3404
3405#ifdef GIP_TSC_DELTA_METHOD_1
3406 supdrvTscDeltaMethod1Delete(&Args);
3407#elif defined(GIP_TSC_DELTA_METHOD_2)
3408 supdrvTscDeltaMethod2Delete(&Args);
3409#else
3410# error "huh?"
3411#endif
3412 }
3413 else
3414 rc = VERR_CPU_OFFLINE;
3415
3416 ASMAtomicWriteU32(&pDevExt->idTscDeltaInitiator, NIL_RTCPUID);
3417 return rc;
3418}
3419
3420
3421/**
3422 * Performs the initial measurements of the TSC deltas between CPUs.
3423 *
3424 * This is called by supdrvGipCreate or triggered by it if threaded.
3425 *
3426 * @returns VBox status code.
3427 * @param pDevExt Pointer to the device instance data.
3428 *
3429 * @remarks Must be called only after supdrvGipInitOnCpu() as this function uses
3430 * idCpu, GIP's online CPU set which are populated in
3431 * supdrvGipInitOnCpu().
3432 */
3433static int supdrvMeasureInitialTscDeltas(PSUPDRVDEVEXT pDevExt)
3434{
3435 PSUPGIPCPU pGipCpuMaster;
3436 unsigned iCpu;
3437 unsigned iOddEven;
3438 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
3439 uint32_t idxMaster = UINT32_MAX;
3440 int rc = VINF_SUCCESS;
3441 uint32_t cMpOnOffEvents = ASMAtomicReadU32(&pDevExt->cMpOnOffEvents);
3442
3443 Assert(pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED);
3444
3445 /*
3446 * Pick the first CPU online as the master TSC and make it the new GIP master based
3447 * on the APIC ID.
3448 *
3449 * Technically we can simply use "idGipMaster" but doing this gives us master as CPU 0
3450 * in most cases making it nicer/easier for comparisons. It is safe to update the GIP
3451 * master as this point since the sync/async timer isn't created yet.
3452 */
3453 supdrvClearTscSamples(pDevExt, true /* fClearDeltas */);
3454 for (iCpu = 0; iCpu < RT_ELEMENTS(pGip->aiCpuFromApicId); iCpu++)
3455 {
3456 uint16_t idxCpu = pGip->aiCpuFromApicId[iCpu];
3457 if (idxCpu != UINT16_MAX)
3458 {
3459 PSUPGIPCPU pGipCpu = &pGip->aCPUs[idxCpu];
3460 if (RTCpuSetIsMemberByIndex(&pGip->OnlineCpuSet, pGipCpu->iCpuSet))
3461 {
3462 idxMaster = idxCpu;
3463 pGipCpu->i64TSCDelta = GIP_TSC_DELTA_INITIAL_MASTER_VALUE;
3464 break;
3465 }
3466 }
3467 }
3468 AssertReturn(idxMaster != UINT32_MAX, VERR_CPU_NOT_FOUND);
3469 pGipCpuMaster = &pGip->aCPUs[idxMaster];
3470 ASMAtomicWriteSize(&pDevExt->idGipMaster, pGipCpuMaster->idCpu);
3471
3472 /*
3473 * If there is only a single CPU online we have nothing to do.
3474 */
3475 if (pGip->cOnlineCpus <= 1)
3476 {
3477 AssertReturn(pGip->cOnlineCpus > 0, VERR_INTERNAL_ERROR_5);
3478 return VINF_SUCCESS;
3479 }
3480
3481 /*
3482 * Loop thru the GIP CPU array and get deltas for each CPU (except the
3483 * master). We do the CPUs with the even numbered APIC IDs first so that
3484 * we've got alternative master CPUs to pick from on hyper-threaded systems.
3485 */
3486 for (iOddEven = 0; iOddEven < 2; iOddEven++)
3487 {
3488 for (iCpu = 0; iCpu < pGip->cCpus; iCpu++)
3489 {
3490 PSUPGIPCPU pGipCpuWorker = &pGip->aCPUs[iCpu];
3491 if ( iCpu != idxMaster
3492 && (iOddEven > 0 || (pGipCpuWorker->idApic & 1) == 0)
3493 && RTCpuSetIsMemberByIndex(&pDevExt->TscDeltaCpuSet, pGipCpuWorker->iCpuSet))
3494 {
3495 rc = supdrvMeasureTscDeltaOne(pDevExt, iCpu);
3496 if (RT_FAILURE(rc))
3497 {
3498 SUPR0Printf("supdrvMeasureTscDeltaOne failed. rc=%d CPU[%u].idCpu=%u Master[%u].idCpu=%u\n", rc, iCpu,
3499 pGipCpuWorker->idCpu, idxMaster, pDevExt->idGipMaster, pGipCpuMaster->idCpu);
3500 break;
3501 }
3502
3503 if (ASMAtomicReadU32(&pDevExt->cMpOnOffEvents) != cMpOnOffEvents)
3504 {
3505 SUPR0Printf("One or more CPUs transitioned between online & offline states. I'm confused, retry...\n");
3506 rc = VERR_TRY_AGAIN;
3507 break;
3508 }
3509 }
3510 }
3511 }
3512
3513 return rc;
3514}
3515
3516
3517#ifdef SUPDRV_USE_TSC_DELTA_THREAD
3518
3519/**
3520 * Switches the TSC-delta measurement thread into the butchered state.
3521 *
3522 * @returns VBox status code.
3523 * @param pDevExt Pointer to the device instance data.
3524 * @param fSpinlockHeld Whether the TSC-delta spinlock is held or not.
3525 * @param pszFailed An error message to log.
3526 * @param rcFailed The error code to exit the thread with.
3527 */
3528static int supdrvTscDeltaThreadButchered(PSUPDRVDEVEXT pDevExt, bool fSpinlockHeld, const char *pszFailed, int rcFailed)
3529{
3530 if (!fSpinlockHeld)
3531 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
3532
3533 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Butchered;
3534 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
3535 OSDBGPRINT(("supdrvTscDeltaThreadButchered: %s. rc=%Rrc\n", rcFailed));
3536 return rcFailed;
3537}
3538
3539
3540/**
3541 * The TSC-delta measurement thread.
3542 *
3543 * @returns VBox status code.
3544 * @param hThread The thread handle.
3545 * @param pvUser Opaque pointer to the device instance data.
3546 */
3547static DECLCALLBACK(int) supdrvTscDeltaThread(RTTHREAD hThread, void *pvUser)
3548{
3549 PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pvUser;
3550 bool fInitialMeasurement = true;
3551 uint32_t cConsecutiveTimeouts = 0;
3552 int rc = VERR_INTERNAL_ERROR_2;
3553 for (;;)
3554 {
3555 /*
3556 * Switch on the current state.
3557 */
3558 SUPDRVTSCDELTATHREADSTATE enmState;
3559 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
3560 enmState = pDevExt->enmTscDeltaThreadState;
3561 switch (enmState)
3562 {
3563 case kTscDeltaThreadState_Creating:
3564 {
3565 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Listening;
3566 rc = RTSemEventSignal(pDevExt->hTscDeltaEvent);
3567 if (RT_FAILURE(rc))
3568 return supdrvTscDeltaThreadButchered(pDevExt, true /* fSpinlockHeld */, "RTSemEventSignal", rc);
3569 /* fall thru */
3570 }
3571
3572 case kTscDeltaThreadState_Listening:
3573 {
3574 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
3575
3576 /* Simple adaptive timeout. */
3577 if (cConsecutiveTimeouts++ == 10)
3578 {
3579 if (pDevExt->cMsTscDeltaTimeout == 1) /* 10 ms */
3580 pDevExt->cMsTscDeltaTimeout = 10;
3581 else if (pDevExt->cMsTscDeltaTimeout == 10) /* +100 ms */
3582 pDevExt->cMsTscDeltaTimeout = 100;
3583 else if (pDevExt->cMsTscDeltaTimeout == 100) /* +1000 ms */
3584 pDevExt->cMsTscDeltaTimeout = 500;
3585 cConsecutiveTimeouts = 0;
3586 }
3587 rc = RTThreadUserWait(pDevExt->hTscDeltaThread, pDevExt->cMsTscDeltaTimeout);
3588 if ( RT_FAILURE(rc)
3589 && rc != VERR_TIMEOUT)
3590 return supdrvTscDeltaThreadButchered(pDevExt, false /* fSpinlockHeld */, "RTThreadUserWait", rc);
3591 RTThreadUserReset(pDevExt->hTscDeltaThread);
3592 break;
3593 }
3594
3595 case kTscDeltaThreadState_WaitAndMeasure:
3596 {
3597 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Measuring;
3598 rc = RTSemEventSignal(pDevExt->hTscDeltaEvent); /* (Safe on windows as long as spinlock isn't IRQ safe.) */
3599 if (RT_FAILURE(rc))
3600 return supdrvTscDeltaThreadButchered(pDevExt, true /* fSpinlockHeld */, "RTSemEventSignal", rc);
3601 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
3602 pDevExt->cMsTscDeltaTimeout = 1;
3603 RTThreadSleep(10);
3604 /* fall thru */
3605 }
3606
3607 case kTscDeltaThreadState_Measuring:
3608 {
3609 cConsecutiveTimeouts = 0;
3610 if (fInitialMeasurement)
3611 {
3612 int cTries = 8;
3613 int cMsWaitPerTry = 10;
3614 fInitialMeasurement = false;
3615 do
3616 {
3617 rc = supdrvMeasureInitialTscDeltas(pDevExt);
3618 if ( RT_SUCCESS(rc)
3619 || ( RT_FAILURE(rc)
3620 && rc != VERR_TRY_AGAIN
3621 && rc != VERR_CPU_OFFLINE))
3622 {
3623 break;
3624 }
3625 RTThreadSleep(cMsWaitPerTry);
3626 } while (cTries-- > 0);
3627 }
3628 else
3629 {
3630 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
3631 unsigned iCpu;
3632
3633 /* Measure TSC-deltas only for the CPUs that are in the set. */
3634 rc = VINF_SUCCESS;
3635 for (iCpu = 0; iCpu < pGip->cCpus; iCpu++)
3636 {
3637 PSUPGIPCPU pGipCpuWorker = &pGip->aCPUs[iCpu];
3638 if ( pGipCpuWorker->i64TSCDelta == INT64_MAX
3639 && RTCpuSetIsMemberByIndex(&pDevExt->TscDeltaCpuSet, pGipCpuWorker->iCpuSet))
3640 {
3641 rc |= supdrvMeasureTscDeltaOne(pDevExt, iCpu);
3642 }
3643 }
3644 }
3645 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
3646 if (pDevExt->enmTscDeltaThreadState == kTscDeltaThreadState_Measuring)
3647 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Listening;
3648 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
3649 Assert(rc != VERR_NOT_AVAILABLE); /* VERR_NOT_AVAILABLE is used as the initial value. */
3650 ASMAtomicWriteS32(&pDevExt->rcTscDelta, rc);
3651 break;
3652 }
3653
3654 case kTscDeltaThreadState_Terminating:
3655 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Destroyed;
3656 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
3657 return VINF_SUCCESS;
3658
3659 case kTscDeltaThreadState_Butchered:
3660 default:
3661 return supdrvTscDeltaThreadButchered(pDevExt, true /* fSpinlockHeld */, "Invalid state", VERR_INVALID_STATE);
3662 }
3663 }
3664
3665 return rc;
3666}
3667
3668
3669/**
3670 * Waits for the TSC-delta measurement thread to respond to a state change.
3671 *
3672 * @returns VINF_SUCCESS on success, VERR_TIMEOUT if it doesn't respond in time,
3673 * other error code on internal error.
3674 *
3675 * @param pThis Pointer to the grant service instance data.
3676 * @param enmCurState The current state.
3677 * @param enmNewState The new state we're waiting for it to enter.
3678 */
3679static int supdrvTscDeltaThreadWait(PSUPDRVDEVEXT pDevExt, SUPDRVTSCDELTATHREADSTATE enmCurState,
3680 SUPDRVTSCDELTATHREADSTATE enmNewState)
3681{
3682 /*
3683 * Wait a short while for the expected state transition.
3684 */
3685 int rc;
3686 RTSemEventWait(pDevExt->hTscDeltaEvent, RT_MS_1SEC);
3687 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
3688 if (pDevExt->enmTscDeltaThreadState == enmNewState)
3689 {
3690 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
3691 rc = VINF_SUCCESS;
3692 }
3693 else if (pDevExt->enmTscDeltaThreadState == enmCurState)
3694 {
3695 /*
3696 * Wait longer if the state has not yet transitioned to the one we want.
3697 */
3698 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
3699 rc = RTSemEventWait(pDevExt->hTscDeltaEvent, 50 * RT_MS_1SEC);
3700 if ( RT_SUCCESS(rc)
3701 || rc == VERR_TIMEOUT)
3702 {
3703 /*
3704 * Check the state whether we've succeeded.
3705 */
3706 SUPDRVTSCDELTATHREADSTATE enmState;
3707 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
3708 enmState = pDevExt->enmTscDeltaThreadState;
3709 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
3710 if (enmState == enmNewState)
3711 rc = VINF_SUCCESS;
3712 else if (enmState == enmCurState)
3713 {
3714 rc = VERR_TIMEOUT;
3715 OSDBGPRINT(("supdrvTscDeltaThreadWait: timed out state transition. enmState=%d enmNewState=%d\n", enmState,
3716 enmNewState));
3717 }
3718 else
3719 {
3720 rc = VERR_INTERNAL_ERROR;
3721 OSDBGPRINT(("supdrvTscDeltaThreadWait: invalid state transition from %d to %d, expected %d\n", enmCurState,
3722 enmState, enmNewState));
3723 }
3724 }
3725 else
3726 OSDBGPRINT(("supdrvTscDeltaThreadWait: RTSemEventWait failed. rc=%Rrc\n", rc));
3727 }
3728 else
3729 {
3730 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
3731 OSDBGPRINT(("supdrvTscDeltaThreadWait: invalid state transition from %d to %d\n", enmCurState, enmNewState));
3732 rc = VERR_INTERNAL_ERROR;
3733 }
3734
3735 return rc;
3736}
3737
3738
3739/**
3740 * Waits for TSC-delta measurements to be completed for all online CPUs.
3741 *
3742 * @returns VBox status code.
3743 * @param pDevExt Pointer to the device instance data.
3744 */
3745static int supdrvTscDeltaThreadWaitForOnlineCpus(PSUPDRVDEVEXT pDevExt)
3746{
3747 int cTriesLeft = 5;
3748 int cMsTotalWait;
3749 int cMsWaited = 0;
3750 int cMsWaitGranularity = 1;
3751
3752 PSUPGLOBALINFOPAGE pGip = pDevExt->pGip;
3753 AssertReturn(pGip, VERR_INVALID_POINTER);
3754
3755 if (RT_UNLIKELY(pDevExt->hTscDeltaThread == NIL_RTTHREAD))
3756 return VERR_THREAD_NOT_WAITABLE;
3757
3758 cMsTotalWait = RT_MIN(pGip->cPresentCpus + 10, 200);
3759 while (cTriesLeft-- > 0)
3760 {
3761 if (RTCpuSetIsEqual(&pDevExt->TscDeltaObtainedCpuSet, &pGip->OnlineCpuSet))
3762 return VINF_SUCCESS;
3763 RTThreadSleep(cMsWaitGranularity);
3764 cMsWaited += cMsWaitGranularity;
3765 if (cMsWaited >= cMsTotalWait)
3766 break;
3767 }
3768
3769 return VERR_TIMEOUT;
3770}
3771
3772
3773/**
3774 * Terminates the actual thread running supdrvTscDeltaThread().
3775 *
3776 * This is an internal worker function for supdrvTscDeltaThreadInit() and
3777 * supdrvTscDeltaTerm().
3778 *
3779 * @param pDevExt Pointer to the device instance data.
3780 */
3781static void supdrvTscDeltaThreadTerminate(PSUPDRVDEVEXT pDevExt)
3782{
3783 int rc;
3784 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
3785 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Terminating;
3786 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
3787 RTThreadUserSignal(pDevExt->hTscDeltaThread);
3788 rc = RTThreadWait(pDevExt->hTscDeltaThread, 50 * RT_MS_1SEC, NULL /* prc */);
3789 if (RT_FAILURE(rc))
3790 {
3791 /* Signal a few more times before giving up. */
3792 int cTriesLeft = 5;
3793 while (--cTriesLeft > 0)
3794 {
3795 RTThreadUserSignal(pDevExt->hTscDeltaThread);
3796 rc = RTThreadWait(pDevExt->hTscDeltaThread, 2 * RT_MS_1SEC, NULL /* prc */);
3797 if (rc != VERR_TIMEOUT)
3798 break;
3799 }
3800 }
3801}
3802
3803
3804/**
3805 * Initializes and spawns the TSC-delta measurement thread.
3806 *
3807 * A thread is required for servicing re-measurement requests from events like
3808 * CPUs coming online, suspend/resume etc. as it cannot be done synchronously
3809 * under all contexts on all OSs.
3810 *
3811 * @returns VBox status code.
3812 * @param pDevExt Pointer to the device instance data.
3813 *
3814 * @remarks Must only be called -after- initializing GIP and setting up MP
3815 * notifications!
3816 */
3817static int supdrvTscDeltaThreadInit(PSUPDRVDEVEXT pDevExt)
3818{
3819 int rc;
3820 Assert(pDevExt->pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED);
3821 rc = RTSpinlockCreate(&pDevExt->hTscDeltaSpinlock, RTSPINLOCK_FLAGS_INTERRUPT_UNSAFE, "VBoxTscSpnLck");
3822 if (RT_SUCCESS(rc))
3823 {
3824 rc = RTSemEventCreate(&pDevExt->hTscDeltaEvent);
3825 if (RT_SUCCESS(rc))
3826 {
3827 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_Creating;
3828 pDevExt->cMsTscDeltaTimeout = 1;
3829 rc = RTThreadCreate(&pDevExt->hTscDeltaThread, supdrvTscDeltaThread, pDevExt, 0 /* cbStack */,
3830 RTTHREADTYPE_DEFAULT, RTTHREADFLAGS_WAITABLE, "VBoxTscThread");
3831 if (RT_SUCCESS(rc))
3832 {
3833 rc = supdrvTscDeltaThreadWait(pDevExt, kTscDeltaThreadState_Creating, kTscDeltaThreadState_Listening);
3834 if (RT_SUCCESS(rc))
3835 {
3836 ASMAtomicWriteS32(&pDevExt->rcTscDelta, VERR_NOT_AVAILABLE);
3837 return rc;
3838 }
3839
3840 OSDBGPRINT(("supdrvTscDeltaInit: supdrvTscDeltaThreadWait failed. rc=%Rrc\n", rc));
3841 supdrvTscDeltaThreadTerminate(pDevExt);
3842 }
3843 else
3844 OSDBGPRINT(("supdrvTscDeltaInit: RTThreadCreate failed. rc=%Rrc\n", rc));
3845 RTSemEventDestroy(pDevExt->hTscDeltaEvent);
3846 pDevExt->hTscDeltaEvent = NIL_RTSEMEVENT;
3847 }
3848 else
3849 OSDBGPRINT(("supdrvTscDeltaInit: RTSemEventCreate failed. rc=%Rrc\n", rc));
3850 RTSpinlockDestroy(pDevExt->hTscDeltaSpinlock);
3851 pDevExt->hTscDeltaSpinlock = NIL_RTSPINLOCK;
3852 }
3853 else
3854 OSDBGPRINT(("supdrvTscDeltaInit: RTSpinlockCreate failed. rc=%Rrc\n", rc));
3855
3856 return rc;
3857}
3858
3859
3860/**
3861 * Terminates the TSC-delta measurement thread and cleanup.
3862 *
3863 * @param pDevExt Pointer to the device instance data.
3864 */
3865static void supdrvTscDeltaTerm(PSUPDRVDEVEXT pDevExt)
3866{
3867 if ( pDevExt->hTscDeltaSpinlock != NIL_RTSPINLOCK
3868 && pDevExt->hTscDeltaEvent != NIL_RTSEMEVENT)
3869 {
3870 supdrvTscDeltaThreadTerminate(pDevExt);
3871 }
3872
3873 if (pDevExt->hTscDeltaSpinlock != NIL_RTSPINLOCK)
3874 {
3875 RTSpinlockDestroy(pDevExt->hTscDeltaSpinlock);
3876 pDevExt->hTscDeltaSpinlock = NIL_RTSPINLOCK;
3877 }
3878
3879 if (pDevExt->hTscDeltaEvent != NIL_RTSEMEVENT)
3880 {
3881 RTSemEventDestroy(pDevExt->hTscDeltaEvent);
3882 pDevExt->hTscDeltaEvent = NIL_RTSEMEVENT;
3883 }
3884
3885 ASMAtomicWriteS32(&pDevExt->rcTscDelta, VERR_NOT_AVAILABLE);
3886}
3887
3888#endif /* SUPDRV_USE_TSC_DELTA_THREAD */
3889
3890/**
3891 * Measure the TSC delta for the CPU given by its CPU set index.
3892 *
3893 * @returns VBox status code.
3894 * @retval VERR_INTERRUPTED if interrupted while waiting.
3895 * @retval VERR_SUPDRV_TSC_DELTA_MEASUREMENT_FAILED if we were unable to get a
3896 * measurment.
3897 * @retval VERR_CPU_OFFLINE if the specified CPU is offline.
3898 * @retval VERR_CPU_OFFLINE if the specified CPU is offline.
3899 *
3900 * @param pSession The caller's session. GIP must've been mapped.
3901 * @param iCpuSet The CPU set index of the CPU to measure.
3902 * @param fFlags Flags, SUP_TSCDELTA_MEASURE_F_XXX.
3903 * @param cMsWaitRetry Number of milliseconds to wait between each retry.
3904 * @param cMsWaitThread Number of milliseconds to wait for the thread to get
3905 * ready.
3906 * @param cTries Number of times to try, pass 0 for the default.
3907 */
3908SUPR0DECL(int) SUPR0TscDeltaMeasureBySetIndex(PSUPDRVSESSION pSession, uint32_t iCpuSet, uint32_t fFlags,
3909 RTMSINTERVAL cMsWaitRetry, RTMSINTERVAL cMsWaitThread, uint32_t cTries)
3910{
3911 PSUPDRVDEVEXT pDevExt;
3912 PSUPGLOBALINFOPAGE pGip;
3913 uint16_t iGipCpu;
3914 int rc;
3915#ifdef SUPDRV_USE_TSC_DELTA_THREAD
3916 uint64_t msTsStartWait;
3917 uint32_t iWaitLoop;
3918#endif
3919
3920 /*
3921 * Validate and adjust the input.
3922 */
3923 AssertReturn(SUP_IS_SESSION_VALID(pSession), VERR_INVALID_PARAMETER);
3924 if (!pSession->fGipReferenced)
3925 return VERR_WRONG_ORDER;
3926
3927 pDevExt = pSession->pDevExt;
3928 AssertReturn(SUP_IS_DEVEXT_VALID(pDevExt), VERR_INVALID_PARAMETER);
3929
3930 pGip = pDevExt->pGip;
3931 AssertPtrReturn(pGip, VERR_INTERNAL_ERROR_2);
3932
3933 AssertReturn(iCpuSet < RTCPUSET_MAX_CPUS, VERR_INVALID_CPU_INDEX);
3934 AssertReturn(iCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx), VERR_INVALID_CPU_INDEX);
3935 iGipCpu = pGip->aiCpuFromCpuSetIdx[iCpuSet];
3936 AssertReturn(iGipCpu < pGip->cCpus, VERR_INVALID_CPU_INDEX);
3937
3938 if (fFlags & ~SUP_TSCDELTA_MEASURE_F_VALID_MASK)
3939 return VERR_INVALID_FLAGS;
3940
3941 if (cTries == 0)
3942 cTries = 12;
3943 else if (cTries > 256)
3944 cTries = 256;
3945
3946 if (cMsWaitRetry > 1000)
3947 cMsWaitRetry = 1000;
3948
3949 /*
3950 * The request is a noop if the TSC delta isn't being used.
3951 */
3952 if (pGip->enmUseTscDelta <= SUPGIPUSETSCDELTA_ZERO_CLAIMED)
3953 return VINF_SUCCESS;
3954
3955#ifdef SUPDRV_USE_TSC_DELTA_THREAD
3956 /*
3957 * Has the TSC already been measured and we're not forced to redo it?
3958 */
3959 if ( pGip->aCPUs[iGipCpu].i64TSCDelta != INT64_MAX
3960 && !(fFlags & SUP_TSCDELTA_MEASURE_F_FORCE))
3961 return VINF_SUCCESS;
3962
3963 /*
3964 * Asynchronous request? Forward it to the thread, no waiting.
3965 */
3966 if (fFlags & SUP_TSCDELTA_MEASURE_F_ASYNC)
3967 {
3968 /** @todo Async. doesn't implement options like retries, waiting. We'll need
3969 * to pass those options to the thread somehow and implement it in the
3970 * thread. Check if anyone uses/needs fAsync before implementing this. */
3971 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
3972 RTCpuSetAddByIndex(&pDevExt->TscDeltaCpuSet, iCpuSet);
3973 if ( pDevExt->enmTscDeltaThreadState == kTscDeltaThreadState_Listening
3974 || pDevExt->enmTscDeltaThreadState == kTscDeltaThreadState_Measuring)
3975 {
3976 pDevExt->enmTscDeltaThreadState = kTscDeltaThreadState_WaitAndMeasure;
3977 rc = VINF_SUCCESS;
3978 }
3979 else
3980 rc = VERR_THREAD_IS_DEAD;
3981 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
3982 RTThreadUserSignal(pDevExt->hTscDeltaThread);
3983 return VINF_SUCCESS;
3984 }
3985
3986 /*
3987 * If a TSC-delta measurement request is already being serviced by the thread,
3988 * wait 'cTries' times if a retry-timeout is provided, otherwise bail as busy.
3989 */
3990 msTsStartWait = RTTimeSystemMilliTS();
3991 for (iWaitLoop = 0;; iWaitLoop++)
3992 {
3993 uint64_t cMsElapsed;
3994 SUPDRVTSCDELTATHREADSTATE enmState;
3995 RTSpinlockAcquire(pDevExt->hTscDeltaSpinlock);
3996 enmState = pDevExt->enmTscDeltaThreadState;
3997 RTSpinlockRelease(pDevExt->hTscDeltaSpinlock);
3998
3999 if (enmState == kTscDeltaThreadState_Measuring)
4000 { /* Must wait, the thread is busy. */ }
4001 else if (enmState == kTscDeltaThreadState_WaitAndMeasure)
4002 { /* Must wait, this state only says what will happen next. */ }
4003 else if (enmState == kTscDeltaThreadState_Terminating)
4004 { /* Must wait, this state only says what should happen next. */ }
4005 else
4006 break; /* All other states, the thread is either idly listening or dead. */
4007
4008 /* Wait or fail. */
4009 if (cMsWaitThread == 0)
4010 return VERR_SUPDRV_TSC_DELTA_MEASUREMENT_BUSY;
4011 cMsElapsed = RTTimeSystemMilliTS() - msTsStartWait;
4012 if (cMsElapsed >= cMsWaitThread)
4013 return VERR_SUPDRV_TSC_DELTA_MEASUREMENT_BUSY;
4014
4015 rc = RTThreadSleep(RT_MIN((RTMSINTERVAL)(cMsWaitThread - cMsElapsed), RT_MIN(iWaitLoop + 1, 10)));
4016 if (rc == VERR_INTERRUPTED)
4017 return rc;
4018 }
4019#endif /* SUPDRV_USE_TSC_DELTA_THREAD */
4020
4021 /*
4022 * Try measure the TSC delta the given number of times.
4023 */
4024 for (;;)
4025 {
4026 /* Unless we're forced to measure the delta, check whether it's done already. */
4027 if ( !(fFlags & SUP_TSCDELTA_MEASURE_F_FORCE)
4028 && pGip->aCPUs[iGipCpu].i64TSCDelta != INT64_MAX)
4029 {
4030 rc = VINF_SUCCESS;
4031 break;
4032 }
4033
4034 /* Measure it. */
4035 rc = supdrvMeasureTscDeltaOne(pDevExt, iGipCpu);
4036 if (rc != VERR_SUPDRV_TSC_DELTA_MEASUREMENT_FAILED)
4037 {
4038 Assert(pGip->aCPUs[iGipCpu].i64TSCDelta != INT64_MAX || RT_FAILURE_NP(rc));
4039 break;
4040 }
4041
4042 /* Retry? */
4043 if (cTries <= 1)
4044 break;
4045 cTries--;
4046
4047 if (cMsWaitRetry)
4048 {
4049 rc = RTThreadSleep(cMsWaitRetry);
4050 if (rc == VERR_INTERRUPTED)
4051 break;
4052 }
4053 }
4054
4055 return rc;
4056}
4057
4058
4059/**
4060 * Service a TSC-delta measurement request.
4061 *
4062 * @returns VBox status code.
4063 * @param pDevExt Pointer to the device instance data.
4064 * @param pSession The support driver session.
4065 * @param pReq Pointer to the TSC-delta measurement request.
4066 */
4067int VBOXCALL supdrvIOCtl_TscDeltaMeasure(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPTSCDELTAMEASURE pReq)
4068{
4069 uint32_t cTries;
4070 uint32_t iCpuSet;
4071 uint32_t fFlags;
4072 RTMSINTERVAL cMsWaitRetry;
4073
4074 /*
4075 * Validate and adjust/resolve the input so they can be passed onto SUPR0TscDeltaMeasureBySetIndex.
4076 */
4077 AssertPtr(pDevExt); AssertPtr(pSession); AssertPtr(pReq); /* paranoia^2 */
4078
4079 if (pReq->u.In.idCpu == NIL_RTCPUID)
4080 return VERR_INVALID_CPU_ID;
4081 iCpuSet = RTMpCpuIdToSetIndex(pReq->u.In.idCpu);
4082 if (iCpuSet >= RTCPUSET_MAX_CPUS)
4083 return VERR_INVALID_CPU_ID;
4084
4085 cTries = pReq->u.In.cRetries == 0 ? 0 : (uint32_t)pReq->u.In.cRetries + 1;
4086
4087 cMsWaitRetry = RT_MAX(pReq->u.In.cMsWaitRetry, 5);
4088
4089 fFlags = 0;
4090 if (pReq->u.In.fAsync)
4091 fFlags |= SUP_TSCDELTA_MEASURE_F_ASYNC;
4092 if (pReq->u.In.fForce)
4093 fFlags |= SUP_TSCDELTA_MEASURE_F_FORCE;
4094
4095 return SUPR0TscDeltaMeasureBySetIndex(pSession, iCpuSet, fFlags, cMsWaitRetry,
4096 cTries == 0 ? 5*RT_MS_1SEC : cMsWaitRetry * cTries /*cMsWaitThread*/,
4097 cTries);
4098}
4099
4100
4101/**
4102 * Reads TSC with delta applied.
4103 *
4104 * Will try to resolve delta value INT64_MAX before applying it. This is the
4105 * main purpose of this function, to handle the case where the delta needs to be
4106 * determined.
4107 *
4108 * @returns VBox status code.
4109 * @param pDevExt Pointer to the device instance data.
4110 * @param pSession The support driver session.
4111 * @param pReq Pointer to the TSC-read request.
4112 */
4113int VBOXCALL supdrvIOCtl_TscRead(PSUPDRVDEVEXT pDevExt, PSUPDRVSESSION pSession, PSUPTSCREAD pReq)
4114{
4115 PSUPGLOBALINFOPAGE pGip;
4116 int rc;
4117
4118 /*
4119 * Validate. We require the client to have mapped GIP (no asserting on
4120 * ring-3 preconditions).
4121 */
4122 AssertPtr(pDevExt); AssertPtr(pReq); AssertPtr(pSession); /* paranoia^2 */
4123 if (pSession->GipMapObjR3 == NIL_RTR0MEMOBJ)
4124 return VERR_WRONG_ORDER;
4125 pGip = pDevExt->pGip;
4126 AssertReturn(pGip, VERR_INTERNAL_ERROR_2);
4127
4128 /*
4129 * We're usually here because we need to apply delta, but we shouldn't be
4130 * upset if the GIP is some different mode.
4131 */
4132 if (pGip->enmUseTscDelta > SUPGIPUSETSCDELTA_ZERO_CLAIMED)
4133 {
4134 uint32_t cTries = 0;
4135 for (;;)
4136 {
4137 /*
4138 * Start by gathering the data, using CLI for disabling preemption
4139 * while we do that.
4140 */
4141 RTCCUINTREG uFlags = ASMIntDisableFlags();
4142 int iCpuSet = RTMpCpuIdToSetIndex(RTMpCpuId());
4143 int iGipCpu;
4144 if (RT_LIKELY( (unsigned)iCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx)
4145 && (iGipCpu = pGip->aiCpuFromCpuSetIdx[iCpuSet]) < pGip->cCpus ))
4146 {
4147 int64_t i64Delta = pGip->aCPUs[iGipCpu].i64TSCDelta;
4148 pReq->u.Out.idApic = pGip->aCPUs[iGipCpu].idApic;
4149 pReq->u.Out.u64AdjustedTsc = ASMReadTSC();
4150 ASMSetFlags(uFlags);
4151
4152 /*
4153 * If we're lucky we've got a delta, but no predicitions here
4154 * as this I/O control is normally only used when the TSC delta
4155 * is set to INT64_MAX.
4156 */
4157 if (i64Delta != INT64_MAX)
4158 {
4159 pReq->u.Out.u64AdjustedTsc -= i64Delta;
4160 rc = VINF_SUCCESS;
4161 break;
4162 }
4163
4164 /* Give up after a few times. */
4165 if (cTries >= 4)
4166 {
4167 rc = VWRN_SUPDRV_TSC_DELTA_MEASUREMENT_FAILED;
4168 break;
4169 }
4170
4171 /* Need to measure the delta an try again. */
4172 rc = supdrvMeasureTscDeltaOne(pDevExt, iGipCpu);
4173 Assert(pGip->aCPUs[iGipCpu].i64TSCDelta != INT64_MAX || RT_FAILURE_NP(rc));
4174 }
4175 else
4176 {
4177 /* This really shouldn't happen. */
4178 AssertMsgFailed(("idCpu=%#x iCpuSet=%#x (%d)\n", RTMpCpuId(), iCpuSet, iCpuSet));
4179 pReq->u.Out.idApic = ASMGetApicId();
4180 pReq->u.Out.u64AdjustedTsc = ASMReadTSC();
4181 ASMSetFlags(uFlags);
4182 rc = VERR_INTERNAL_ERROR_5; /** @todo change to warning. */
4183 break;
4184 }
4185 }
4186 }
4187 else
4188 {
4189 /*
4190 * No delta to apply. Easy. Deal with preemption the lazy way.
4191 */
4192 RTCCUINTREG uFlags = ASMIntDisableFlags();
4193 int iCpuSet = RTMpCpuIdToSetIndex(RTMpCpuId());
4194 int iGipCpu;
4195 if (RT_LIKELY( (unsigned)iCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx)
4196 && (iGipCpu = pGip->aiCpuFromCpuSetIdx[iCpuSet]) < pGip->cCpus ))
4197 pReq->u.Out.idApic = pGip->aCPUs[iGipCpu].idApic;
4198 else
4199 pReq->u.Out.idApic = ASMGetApicId();
4200 pReq->u.Out.u64AdjustedTsc = ASMReadTSC();
4201 ASMSetFlags(uFlags);
4202 rc = VINF_SUCCESS;
4203 }
4204
4205 return rc;
4206}
4207
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette