1 | /* $Id: bignum.cpp 52050 2014-07-16 13:53:24Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IPRT - Big Integer Numbers.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2006-2014 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.215389.xyz. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | *
|
---|
17 | * The contents of this file may alternatively be used under the terms
|
---|
18 | * of the Common Development and Distribution License Version 1.0
|
---|
19 | * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
|
---|
20 | * VirtualBox OSE distribution, in which case the provisions of the
|
---|
21 | * CDDL are applicable instead of those of the GPL.
|
---|
22 | *
|
---|
23 | * You may elect to license modified versions of this file under the
|
---|
24 | * terms and conditions of either the GPL or the CDDL or both.
|
---|
25 | */
|
---|
26 |
|
---|
27 |
|
---|
28 | /*******************************************************************************
|
---|
29 | * Header Files *
|
---|
30 | *******************************************************************************/
|
---|
31 | #include "internal/iprt.h"
|
---|
32 | #include <iprt/bignum.h>
|
---|
33 |
|
---|
34 | #include <iprt/asm.h>
|
---|
35 | #include <iprt/asm-math.h>
|
---|
36 | #include <iprt/err.h>
|
---|
37 | #include <iprt/mem.h>
|
---|
38 | #include <iprt/memsafer.h>
|
---|
39 | #include <iprt/string.h>
|
---|
40 |
|
---|
41 |
|
---|
42 | /** The max size (in bytes) of an elements array. */
|
---|
43 | #define RTBIGNUM_MAX_SIZE _4M
|
---|
44 |
|
---|
45 |
|
---|
46 | /**
|
---|
47 | * Scrambles a big number if required.
|
---|
48 | *
|
---|
49 | * @param pBigNum The big number.
|
---|
50 | */
|
---|
51 | DECLINLINE(void) rtBigNumScramble(PRTBIGNUM pBigNum)
|
---|
52 | {
|
---|
53 | if (pBigNum->fSensitive)
|
---|
54 | {
|
---|
55 | AssertReturnVoid(!pBigNum->fCurScrambled);
|
---|
56 | if (pBigNum->pauElements)
|
---|
57 | {
|
---|
58 | int rc = RTMemSaferScramble(pBigNum->pauElements, pBigNum->cAllocated * RTBIGNUM_ELEMENT_SIZE); AssertRC(rc);
|
---|
59 | pBigNum->fCurScrambled = RT_SUCCESS(rc);
|
---|
60 | }
|
---|
61 | else
|
---|
62 | pBigNum->fCurScrambled = true;
|
---|
63 | }
|
---|
64 | }
|
---|
65 |
|
---|
66 |
|
---|
67 | /**
|
---|
68 | * Unscrambles a big number if required.
|
---|
69 | *
|
---|
70 | * @returns IPRT status code.
|
---|
71 | * @param pBigNum The big number.
|
---|
72 | */
|
---|
73 | DECLINLINE(int) rtBigNumUnscramble(PRTBIGNUM pBigNum)
|
---|
74 | {
|
---|
75 | if (pBigNum->fSensitive)
|
---|
76 | {
|
---|
77 | AssertReturn(pBigNum->fCurScrambled, VERR_INTERNAL_ERROR_2);
|
---|
78 | if (pBigNum->pauElements)
|
---|
79 | {
|
---|
80 | int rc = RTMemSaferUnscramble(pBigNum->pauElements, pBigNum->cAllocated * RTBIGNUM_ELEMENT_SIZE); AssertRC(rc);
|
---|
81 | pBigNum->fCurScrambled = !RT_SUCCESS(rc);
|
---|
82 | return rc;
|
---|
83 | }
|
---|
84 | else
|
---|
85 | pBigNum->fCurScrambled = false;
|
---|
86 | }
|
---|
87 | return VINF_SUCCESS;
|
---|
88 | }
|
---|
89 |
|
---|
90 |
|
---|
91 | /**
|
---|
92 | * Getter function for pauElements which extends the array to infinity.
|
---|
93 | *
|
---|
94 | * @returns The element value.
|
---|
95 | * @param pBigNum The big number.
|
---|
96 | * @param iElement The element index.
|
---|
97 | */
|
---|
98 | DECLINLINE(RTBIGNUMELEMENT) rtBigNumGetElement(PCRTBIGNUM pBigNum, uint32_t iElement)
|
---|
99 | {
|
---|
100 | if (iElement < pBigNum->cUsed)
|
---|
101 | return pBigNum->pauElements[iElement];
|
---|
102 | return 0;
|
---|
103 | }
|
---|
104 |
|
---|
105 |
|
---|
106 | /**
|
---|
107 | * Grows the pauElements array so it can fit at least @a cNewUsed entries.
|
---|
108 | *
|
---|
109 | * @returns IPRT status code.
|
---|
110 | * @param pBigNum The big number.
|
---|
111 | * @param cNewUsed The new cUsed value.
|
---|
112 | */
|
---|
113 | static int rtBigNumGrow(PRTBIGNUM pBigNum, uint32_t cNewUsed)
|
---|
114 | {
|
---|
115 | uint32_t const cbOld = pBigNum->cAllocated * RTBIGNUM_ELEMENT_SIZE;
|
---|
116 | uint32_t const cNew = RT_ALIGN_32(cNewUsed, 4);
|
---|
117 | uint32_t const cbNew = cNew * RTBIGNUM_ELEMENT_SIZE;
|
---|
118 | Assert(cbNew > cbOld);
|
---|
119 |
|
---|
120 | void *pvNew;
|
---|
121 | if (pBigNum->fSensitive)
|
---|
122 | pvNew = RTMemSaferReallocZ(cbOld, pBigNum->pauElements, cbNew);
|
---|
123 | else
|
---|
124 | pvNew = RTMemRealloc(pBigNum->pauElements, cbNew);
|
---|
125 | if (RT_LIKELY(pvNew))
|
---|
126 | {
|
---|
127 | if (cbNew > cbOld)
|
---|
128 | RT_BZERO((char *)pvNew + cbOld, cbNew - cbOld);
|
---|
129 |
|
---|
130 | pBigNum->pauElements = (RTBIGNUMELEMENT *)pvNew;
|
---|
131 | pBigNum->cUsed = cNewUsed;
|
---|
132 | pBigNum->cAllocated = cNew;
|
---|
133 | return VINF_SUCCESS;
|
---|
134 | }
|
---|
135 | return VERR_NO_MEMORY;
|
---|
136 | }
|
---|
137 |
|
---|
138 |
|
---|
139 | /**
|
---|
140 | * Changes the cUsed member, growing the pauElements array if necessary.
|
---|
141 | *
|
---|
142 | * No assumptions about the value of any added elements should be made. This
|
---|
143 | * method is mainly for resizing result values where the caller will repopulate
|
---|
144 | * the element values short after this call.
|
---|
145 | *
|
---|
146 | * @returns IPRT status code.
|
---|
147 | * @param pBigNum The big number.
|
---|
148 | * @param cNewUsed The new cUsed value.
|
---|
149 | */
|
---|
150 | DECLINLINE(int) rtBigNumSetUsed(PRTBIGNUM pBigNum, uint32_t cNewUsed)
|
---|
151 | {
|
---|
152 | if (pBigNum->cAllocated >= cNewUsed)
|
---|
153 | {
|
---|
154 | pBigNum->cUsed = cNewUsed;
|
---|
155 | return VINF_SUCCESS;
|
---|
156 | }
|
---|
157 | return rtBigNumGrow(pBigNum, cNewUsed);
|
---|
158 | }
|
---|
159 |
|
---|
160 | /**
|
---|
161 | * The slow part of rtBigNumEnsureElementPresent where we need to do actual zero
|
---|
162 | * extending.
|
---|
163 | *
|
---|
164 | * @returns IPRT status code.
|
---|
165 | * @param pBigNum The big number.
|
---|
166 | * @param iElement The element we wish to access.
|
---|
167 | */
|
---|
168 | static int rtBigNumEnsureElementPresentSlow(PRTBIGNUM pBigNum, uint32_t iElement)
|
---|
169 | {
|
---|
170 | uint32_t const cOldUsed = pBigNum->cUsed;
|
---|
171 | int rc = rtBigNumSetUsed(pBigNum, iElement + 1);
|
---|
172 | if (RT_SUCCESS(rc))
|
---|
173 | {
|
---|
174 | RT_BZERO(&pBigNum->pauElements[cOldUsed], (iElement + 1 - cOldUsed) * RTBIGNUM_ELEMENT_SIZE);
|
---|
175 | return VINF_SUCCESS;
|
---|
176 | }
|
---|
177 | return rc;
|
---|
178 | }
|
---|
179 |
|
---|
180 |
|
---|
181 | /**
|
---|
182 | * Zero extends the element array to make sure a the specified element index is
|
---|
183 | * accessible.
|
---|
184 | *
|
---|
185 | * This is typically used with bit operations and self modifying methods. Any
|
---|
186 | * new elements added will be initialized to zero. The caller is responsible
|
---|
187 | * for there not being any trailing zero elements.
|
---|
188 | *
|
---|
189 | * The number must be unscrambled.
|
---|
190 | *
|
---|
191 | * @returns IPRT status code.
|
---|
192 | * @param pBigNum The big number.
|
---|
193 | * @param iElement The element we wish to access.
|
---|
194 | */
|
---|
195 | DECLINLINE(int) rtBigNumEnsureElementPresent(PRTBIGNUM pBigNum, uint32_t iElement)
|
---|
196 | {
|
---|
197 | if (iElement < pBigNum->cUsed)
|
---|
198 | return VINF_SUCCESS;
|
---|
199 | return rtBigNumEnsureElementPresentSlow(pBigNum, iElement);
|
---|
200 | }
|
---|
201 |
|
---|
202 |
|
---|
203 | /**
|
---|
204 | * Strips zero elements from the magnitude value.
|
---|
205 | *
|
---|
206 | * @param pBigNum The big number to strip.
|
---|
207 | */
|
---|
208 | static void rtBigNumStripTrailingZeros(PRTBIGNUM pBigNum)
|
---|
209 | {
|
---|
210 | uint32_t i = pBigNum->cUsed;
|
---|
211 | while (i > 0 && pBigNum->pauElements[i - 1] == 0)
|
---|
212 | i--;
|
---|
213 | pBigNum->cUsed = i;
|
---|
214 | }
|
---|
215 |
|
---|
216 |
|
---|
217 | /**
|
---|
218 | * Initialize the big number to zero.
|
---|
219 | *
|
---|
220 | * @returns @a pBigNum
|
---|
221 | * @param pBigNum The big number.
|
---|
222 | * @param fFlags The flags.
|
---|
223 | * @internal
|
---|
224 | */
|
---|
225 | DECLINLINE(PRTBIGNUM) rtBigNumInitZeroInternal(PRTBIGNUM pBigNum, uint32_t fFlags)
|
---|
226 | {
|
---|
227 | RT_ZERO(*pBigNum);
|
---|
228 | pBigNum->fSensitive = RT_BOOL(fFlags & RTBIGNUMINIT_F_SENSITIVE);
|
---|
229 | return pBigNum;
|
---|
230 | }
|
---|
231 |
|
---|
232 |
|
---|
233 | /**
|
---|
234 | * Initialize the big number to zero from a template variable.
|
---|
235 | *
|
---|
236 | * @returns @a pBigNum
|
---|
237 | * @param pBigNum The big number.
|
---|
238 | * @param pTemplate The template big number.
|
---|
239 | * @internal
|
---|
240 | */
|
---|
241 | DECLINLINE(PRTBIGNUM) rtBigNumInitZeroTemplate(PRTBIGNUM pBigNum, PCRTBIGNUM pTemplate)
|
---|
242 | {
|
---|
243 | RT_ZERO(*pBigNum);
|
---|
244 | pBigNum->fSensitive = pTemplate->fSensitive;
|
---|
245 | return pBigNum;
|
---|
246 | }
|
---|
247 |
|
---|
248 |
|
---|
249 | RTDECL(int) RTBigNumInit(PRTBIGNUM pBigNum, uint32_t fFlags, void const *pvRaw, size_t cbRaw)
|
---|
250 | {
|
---|
251 | /*
|
---|
252 | * Validate input.
|
---|
253 | */
|
---|
254 | AssertPtrReturn(pBigNum, VERR_INVALID_POINTER);
|
---|
255 | AssertReturn(RT_BOOL(fFlags & RTBIGNUMINIT_F_ENDIAN_BIG) ^ RT_BOOL(fFlags & RTBIGNUMINIT_F_ENDIAN_LITTLE),
|
---|
256 | VERR_INVALID_PARAMETER);
|
---|
257 | AssertReturn(RT_BOOL(fFlags & RTBIGNUMINIT_F_UNSIGNED) ^ RT_BOOL(fFlags & RTBIGNUMINIT_F_SIGNED), VERR_INVALID_PARAMETER);
|
---|
258 | if (cbRaw)
|
---|
259 | AssertPtrReturn(pvRaw, VERR_INVALID_POINTER);
|
---|
260 |
|
---|
261 | /*
|
---|
262 | * Initalize the big number to zero.
|
---|
263 | */
|
---|
264 | rtBigNumInitZeroInternal(pBigNum, fFlags);
|
---|
265 |
|
---|
266 | /*
|
---|
267 | * Strip the input and figure the sign flag.
|
---|
268 | */
|
---|
269 | uint8_t const *pb = (uint8_t const *)pvRaw;
|
---|
270 | if (cbRaw)
|
---|
271 | {
|
---|
272 | if (fFlags & RTBIGNUMINIT_F_ENDIAN_LITTLE)
|
---|
273 | {
|
---|
274 | if (fFlags & RTBIGNUMINIT_F_UNSIGNED)
|
---|
275 | {
|
---|
276 | while (cbRaw > 0 && pb[cbRaw - 1] == 0)
|
---|
277 | cbRaw--;
|
---|
278 | }
|
---|
279 | else
|
---|
280 | {
|
---|
281 | if (pb[cbRaw - 1] >> 7)
|
---|
282 | {
|
---|
283 | pBigNum->fNegative = 1;
|
---|
284 | while (cbRaw > 1 && pb[cbRaw - 1] == 0xff)
|
---|
285 | cbRaw--;
|
---|
286 | }
|
---|
287 | else
|
---|
288 | while (cbRaw > 0 && pb[cbRaw - 1] == 0)
|
---|
289 | cbRaw--;
|
---|
290 | }
|
---|
291 | }
|
---|
292 | else
|
---|
293 | {
|
---|
294 | if (fFlags & RTBIGNUMINIT_F_UNSIGNED)
|
---|
295 | {
|
---|
296 | while (cbRaw > 0 && *pb == 0)
|
---|
297 | pb++, cbRaw--;
|
---|
298 | }
|
---|
299 | else
|
---|
300 | {
|
---|
301 | if (*pb >> 7)
|
---|
302 | {
|
---|
303 | pBigNum->fNegative = 1;
|
---|
304 | while (cbRaw > 1 && *pb == 0xff)
|
---|
305 | pb++, cbRaw--;
|
---|
306 | }
|
---|
307 | else
|
---|
308 | while (cbRaw > 0 && *pb == 0)
|
---|
309 | pb++, cbRaw--;
|
---|
310 | }
|
---|
311 | }
|
---|
312 | }
|
---|
313 |
|
---|
314 | /*
|
---|
315 | * Allocate memory for the elements.
|
---|
316 | */
|
---|
317 | size_t cbAligned = RT_ALIGN_Z(cbRaw, RTBIGNUM_ELEMENT_SIZE);
|
---|
318 | if (RT_UNLIKELY(cbAligned >= RTBIGNUM_MAX_SIZE))
|
---|
319 | return VERR_OUT_OF_RANGE;
|
---|
320 | pBigNum->cUsed = (uint32_t)cbAligned / RTBIGNUM_ELEMENT_SIZE;
|
---|
321 | if (pBigNum->cUsed)
|
---|
322 | {
|
---|
323 | pBigNum->cAllocated = RT_ALIGN_32(pBigNum->cUsed, 4);
|
---|
324 | if (pBigNum->fSensitive)
|
---|
325 | pBigNum->pauElements = (RTBIGNUMELEMENT *)RTMemSaferAllocZ(pBigNum->cAllocated * RTBIGNUM_ELEMENT_SIZE);
|
---|
326 | else
|
---|
327 | pBigNum->pauElements = (RTBIGNUMELEMENT *)RTMemAlloc(pBigNum->cAllocated * RTBIGNUM_ELEMENT_SIZE);
|
---|
328 | if (RT_UNLIKELY(!pBigNum->pauElements))
|
---|
329 | return VERR_NO_MEMORY;
|
---|
330 |
|
---|
331 | /*
|
---|
332 | * Initialize the array.
|
---|
333 | */
|
---|
334 | uint32_t i = 0;
|
---|
335 | if (fFlags & RTBIGNUMINIT_F_ENDIAN_LITTLE)
|
---|
336 | {
|
---|
337 | while (cbRaw >= RTBIGNUM_ELEMENT_SIZE)
|
---|
338 | {
|
---|
339 | #if RTBIGNUM_ELEMENT_SIZE == 8
|
---|
340 | pBigNum->pauElements[i] = RT_MAKE_U64_FROM_U8(pb[0], pb[1], pb[2], pb[3], pb[4], pb[5], pb[6], pb[7]);
|
---|
341 | #elif RTBIGNUM_ELEMENT_SIZE == 4
|
---|
342 | pBigNum->pauElements[i] = RT_MAKE_U32_FROM_U8(pb[0], pb[1], pb[2], pb[3]);
|
---|
343 | #else
|
---|
344 | # error "Bad RTBIGNUM_ELEMENT_SIZE value"
|
---|
345 | #endif
|
---|
346 | i++;
|
---|
347 | pb += RTBIGNUM_ELEMENT_SIZE;
|
---|
348 | cbRaw -= RTBIGNUM_ELEMENT_SIZE;
|
---|
349 | }
|
---|
350 |
|
---|
351 | if (cbRaw > 0)
|
---|
352 | {
|
---|
353 | RTBIGNUMELEMENT uLast = pBigNum->fNegative ? ~(RTBIGNUMELEMENT)0 : 0;
|
---|
354 | switch (cbRaw)
|
---|
355 | {
|
---|
356 | default: AssertFailed();
|
---|
357 | #if RTBIGNUM_ELEMENT_SIZE == 8
|
---|
358 | case 7: uLast = (uLast << 8) | pb[6];
|
---|
359 | case 6: uLast = (uLast << 8) | pb[5];
|
---|
360 | case 5: uLast = (uLast << 8) | pb[4];
|
---|
361 | case 4: uLast = (uLast << 8) | pb[3];
|
---|
362 | #endif
|
---|
363 | case 3: uLast = (uLast << 8) | pb[2];
|
---|
364 | case 2: uLast = (uLast << 8) | pb[1];
|
---|
365 | case 1: uLast = (uLast << 8) | pb[0];
|
---|
366 | }
|
---|
367 | pBigNum->pauElements[i] = uLast;
|
---|
368 | }
|
---|
369 | }
|
---|
370 | else
|
---|
371 | {
|
---|
372 | pb += cbRaw;
|
---|
373 | while (cbRaw >= RTBIGNUM_ELEMENT_SIZE)
|
---|
374 | {
|
---|
375 | pb -= RTBIGNUM_ELEMENT_SIZE;
|
---|
376 | #if RTBIGNUM_ELEMENT_SIZE == 8
|
---|
377 | pBigNum->pauElements[i] = RT_MAKE_U64_FROM_U8(pb[7], pb[6], pb[5], pb[4], pb[3], pb[2], pb[1], pb[0]);
|
---|
378 | #elif RTBIGNUM_ELEMENT_SIZE == 4
|
---|
379 | pBigNum->pauElements[i] = RT_MAKE_U32_FROM_U8(pb[3], pb[2], pb[1], pb[0]);
|
---|
380 | #else
|
---|
381 | # error "Bad RTBIGNUM_ELEMENT_SIZE value"
|
---|
382 | #endif
|
---|
383 | i++;
|
---|
384 | cbRaw -= RTBIGNUM_ELEMENT_SIZE;
|
---|
385 | }
|
---|
386 |
|
---|
387 | if (cbRaw > 0)
|
---|
388 | {
|
---|
389 | RTBIGNUMELEMENT uLast = pBigNum->fNegative ? ~(RTBIGNUMELEMENT)0 : 0;
|
---|
390 | pb -= cbRaw;
|
---|
391 | switch (cbRaw)
|
---|
392 | {
|
---|
393 | default: AssertFailed();
|
---|
394 | #if RTBIGNUM_ELEMENT_SIZE == 8
|
---|
395 | case 7: uLast = (uLast << 8) | *pb++;
|
---|
396 | case 6: uLast = (uLast << 8) | *pb++;
|
---|
397 | case 5: uLast = (uLast << 8) | *pb++;
|
---|
398 | case 4: uLast = (uLast << 8) | *pb++;
|
---|
399 | #endif
|
---|
400 | case 3: uLast = (uLast << 8) | *pb++;
|
---|
401 | case 2: uLast = (uLast << 8) | *pb++;
|
---|
402 | case 1: uLast = (uLast << 8) | *pb++;
|
---|
403 | }
|
---|
404 | pBigNum->pauElements[i] = uLast;
|
---|
405 | }
|
---|
406 | }
|
---|
407 |
|
---|
408 | /*
|
---|
409 | * If negative, negate it so we get a positive magnitude value in pauElements.
|
---|
410 | */
|
---|
411 | if (pBigNum->fNegative)
|
---|
412 | {
|
---|
413 | pBigNum->pauElements[0] = 0U - pBigNum->pauElements[0];
|
---|
414 | for (i = 1; i < pBigNum->cUsed; i++)
|
---|
415 | pBigNum->pauElements[i] = 0U - pBigNum->pauElements[i] - 1U;
|
---|
416 | }
|
---|
417 | }
|
---|
418 |
|
---|
419 | rtBigNumScramble(pBigNum);
|
---|
420 | return VINF_SUCCESS;
|
---|
421 | }
|
---|
422 |
|
---|
423 |
|
---|
424 | RTDECL(int) RTBigNumInitZero(PRTBIGNUM pBigNum, uint32_t fFlags)
|
---|
425 | {
|
---|
426 | AssertReturn(!(fFlags & ~RTBIGNUMINIT_F_SENSITIVE), VERR_INVALID_PARAMETER);
|
---|
427 | AssertPtrReturn(pBigNum, VERR_INVALID_POINTER);
|
---|
428 |
|
---|
429 | rtBigNumInitZeroInternal(pBigNum, fFlags);
|
---|
430 | rtBigNumScramble(pBigNum);
|
---|
431 | return VINF_SUCCESS;
|
---|
432 | }
|
---|
433 |
|
---|
434 |
|
---|
435 | /**
|
---|
436 | * Internal clone function that assumes the caller takes care of scrambling.
|
---|
437 | *
|
---|
438 | * @returns IPRT status code.
|
---|
439 | * @param pBigNum The target number.
|
---|
440 | * @param pSrc The source number.
|
---|
441 | */
|
---|
442 | static int rtBigNumCloneInternal(PRTBIGNUM pBigNum, PCRTBIGNUM pSrc)
|
---|
443 | {
|
---|
444 | Assert(!pSrc->fCurScrambled);
|
---|
445 | int rc = VINF_SUCCESS;
|
---|
446 |
|
---|
447 | /*
|
---|
448 | * Copy over the data.
|
---|
449 | */
|
---|
450 | RT_ZERO(*pBigNum);
|
---|
451 | pBigNum->fNegative = pSrc->fNegative;
|
---|
452 | pBigNum->fSensitive = pSrc->fSensitive;
|
---|
453 | pBigNum->cUsed = pSrc->cUsed;
|
---|
454 | if (pSrc->cUsed)
|
---|
455 | {
|
---|
456 | /* Duplicate the element array. */
|
---|
457 | pBigNum->cAllocated = RT_ALIGN_32(pBigNum->cUsed, 4);
|
---|
458 | if (pBigNum->fSensitive)
|
---|
459 | pBigNum->pauElements = (RTBIGNUMELEMENT *)RTMemSaferAllocZ(pBigNum->cAllocated * RTBIGNUM_ELEMENT_SIZE);
|
---|
460 | else
|
---|
461 | pBigNum->pauElements = (RTBIGNUMELEMENT *)RTMemAlloc(pBigNum->cAllocated * RTBIGNUM_ELEMENT_SIZE);
|
---|
462 | if (RT_LIKELY(pBigNum->pauElements))
|
---|
463 | memcpy(pBigNum->pauElements, pSrc->pauElements, pBigNum->cUsed * RTBIGNUM_ELEMENT_SIZE);
|
---|
464 | else
|
---|
465 | {
|
---|
466 | RT_ZERO(*pBigNum);
|
---|
467 | rc = VERR_NO_MEMORY;
|
---|
468 | }
|
---|
469 | }
|
---|
470 | return rc;
|
---|
471 | }
|
---|
472 |
|
---|
473 |
|
---|
474 | RTDECL(int) RTBigNumClone(PRTBIGNUM pBigNum, PCRTBIGNUM pSrc)
|
---|
475 | {
|
---|
476 | int rc = rtBigNumUnscramble((PRTBIGNUM)pSrc);
|
---|
477 | if (RT_SUCCESS(rc))
|
---|
478 | {
|
---|
479 | rc = rtBigNumCloneInternal(pBigNum, pSrc);
|
---|
480 | if (RT_SUCCESS(rc))
|
---|
481 | rtBigNumScramble(pBigNum);
|
---|
482 | rtBigNumScramble((PRTBIGNUM)pSrc);
|
---|
483 | }
|
---|
484 | return rc;
|
---|
485 | }
|
---|
486 |
|
---|
487 |
|
---|
488 | RTDECL(int) RTBigNumDestroy(PRTBIGNUM pBigNum)
|
---|
489 | {
|
---|
490 | if (pBigNum)
|
---|
491 | {
|
---|
492 | if (pBigNum->pauElements)
|
---|
493 | {
|
---|
494 | Assert(pBigNum->cAllocated > 0);
|
---|
495 | if (pBigNum->fSensitive)
|
---|
496 | {
|
---|
497 | RTMemSaferFree(pBigNum->pauElements, pBigNum->cAllocated * RTBIGNUM_ELEMENT_SIZE);
|
---|
498 | RT_ZERO(*pBigNum);
|
---|
499 | }
|
---|
500 | RTMemFree(pBigNum->pauElements);
|
---|
501 | pBigNum->pauElements = NULL;
|
---|
502 | }
|
---|
503 | }
|
---|
504 | return VINF_SUCCESS;
|
---|
505 | }
|
---|
506 |
|
---|
507 |
|
---|
508 | RTDECL(int) RTBigNumAssign(PRTBIGNUM pDst, PCRTBIGNUM pSrc)
|
---|
509 | {
|
---|
510 | AssertReturn(pDst->fSensitive >= pSrc->fSensitive, VERR_BIGNUM_SENSITIVE_INPUT);
|
---|
511 | int rc = rtBigNumUnscramble(pDst);
|
---|
512 | if (RT_SUCCESS(rc))
|
---|
513 | {
|
---|
514 | rc = rtBigNumUnscramble((PRTBIGNUM)pSrc);
|
---|
515 | if (RT_SUCCESS(rc))
|
---|
516 | {
|
---|
517 | if ( pDst->fSensitive == pSrc->fSensitive
|
---|
518 | || pDst->fSensitive)
|
---|
519 | {
|
---|
520 | if (pDst->cAllocated >= pSrc->cUsed)
|
---|
521 | {
|
---|
522 | pDst->cUsed = pSrc->cUsed;
|
---|
523 | pDst->fNegative = pSrc->fNegative;
|
---|
524 | memcpy(pDst->pauElements, pSrc->pauElements, pSrc->cUsed * RTBIGNUM_ELEMENT_SIZE);
|
---|
525 | }
|
---|
526 | else
|
---|
527 | {
|
---|
528 | rc = rtBigNumGrow(pDst, pSrc->cUsed);
|
---|
529 | if (RT_SUCCESS(rc))
|
---|
530 | {
|
---|
531 | pDst->fNegative = pSrc->fNegative;
|
---|
532 | memcpy(pDst->pauElements, pSrc->pauElements, pSrc->cUsed * RTBIGNUM_ELEMENT_SIZE);
|
---|
533 | }
|
---|
534 | }
|
---|
535 | }
|
---|
536 | else
|
---|
537 | rc = VERR_BIGNUM_SENSITIVE_INPUT;
|
---|
538 | rtBigNumScramble((PRTBIGNUM)pSrc);
|
---|
539 | }
|
---|
540 | rtBigNumScramble(pDst);
|
---|
541 | }
|
---|
542 | return rc;
|
---|
543 | }
|
---|
544 |
|
---|
545 |
|
---|
546 | static uint32_t rtBigNumElementBitCount(RTBIGNUMELEMENT uElement)
|
---|
547 | {
|
---|
548 | #if RTBIGNUM_ELEMENT_SIZE == 8
|
---|
549 | if (uElement >> 32)
|
---|
550 | return ASMBitLastSetU32((uint32_t)(uElement >> 32)) + 32;
|
---|
551 | return ASMBitLastSetU32((uint32_t)uElement);
|
---|
552 | #elif RTBIGNUM_ELEMENT_SIZE == 4
|
---|
553 | return ASMBitLastSetU32(uElement);
|
---|
554 | #else
|
---|
555 | # error "Bad RTBIGNUM_ELEMENT_SIZE value"
|
---|
556 | #endif
|
---|
557 | }
|
---|
558 |
|
---|
559 |
|
---|
560 | /**
|
---|
561 | * Same as RTBigNumBitWidth, except that it ignore the signed bit.
|
---|
562 | *
|
---|
563 | * The number must be unscrambled.
|
---|
564 | *
|
---|
565 | * @returns The effective width of the magnitude, in bits. Returns 0 if the
|
---|
566 | * value is zero.
|
---|
567 | * @param pBigNum The bit number.
|
---|
568 | */
|
---|
569 | static uint32_t rtBigNumMagnitudeBitWidth(PCRTBIGNUM pBigNum)
|
---|
570 | {
|
---|
571 | uint32_t idxLast = pBigNum->cUsed;
|
---|
572 | if (idxLast)
|
---|
573 | {
|
---|
574 | idxLast--;
|
---|
575 | RTBIGNUMELEMENT uLast = pBigNum->pauElements[idxLast]; Assert(uLast);
|
---|
576 | return rtBigNumElementBitCount(uLast) + idxLast * RTBIGNUM_ELEMENT_BITS;
|
---|
577 | }
|
---|
578 | return 0;
|
---|
579 | }
|
---|
580 |
|
---|
581 |
|
---|
582 | RTDECL(uint32_t) RTBigNumBitWidth(PCRTBIGNUM pBigNum)
|
---|
583 | {
|
---|
584 | uint32_t idxLast = pBigNum->cUsed;
|
---|
585 | if (idxLast)
|
---|
586 | {
|
---|
587 | idxLast--;
|
---|
588 | rtBigNumUnscramble((PRTBIGNUM)pBigNum);
|
---|
589 | RTBIGNUMELEMENT uLast = pBigNum->pauElements[idxLast]; Assert(uLast);
|
---|
590 | rtBigNumScramble((PRTBIGNUM)pBigNum);
|
---|
591 | return rtBigNumElementBitCount(uLast) + idxLast * RTBIGNUM_ELEMENT_BITS + pBigNum->fNegative;
|
---|
592 | }
|
---|
593 | return 0;
|
---|
594 | }
|
---|
595 |
|
---|
596 |
|
---|
597 | RTDECL(uint32_t) RTBigNumByteWidth(PCRTBIGNUM pBigNum)
|
---|
598 | {
|
---|
599 | uint32_t cBits = RTBigNumBitWidth(pBigNum);
|
---|
600 | return (cBits + 7) / 8;
|
---|
601 | }
|
---|
602 |
|
---|
603 |
|
---|
604 | RTDECL(int) RTBigNumToBytesBigEndian(PCRTBIGNUM pBigNum, void *pvBuf, size_t cbWanted)
|
---|
605 | {
|
---|
606 | AssertPtrReturn(pvBuf, VERR_INVALID_POINTER);
|
---|
607 | AssertReturn(cbWanted > 0, VERR_INVALID_PARAMETER);
|
---|
608 |
|
---|
609 | int rc = rtBigNumUnscramble((PRTBIGNUM)pBigNum);
|
---|
610 | if (RT_SUCCESS(rc))
|
---|
611 | {
|
---|
612 | rc = VINF_SUCCESS;
|
---|
613 | if (pBigNum->cUsed != 0)
|
---|
614 | {
|
---|
615 | uint8_t *pbDst = (uint8_t *)pvBuf;
|
---|
616 | pbDst += cbWanted - 1;
|
---|
617 | for (uint32_t i = 0; i < pBigNum->cUsed; i++)
|
---|
618 | {
|
---|
619 | RTBIGNUMELEMENT uElement = pBigNum->pauElements[i];
|
---|
620 | if (pBigNum->fNegative)
|
---|
621 | uElement = (RTBIGNUMELEMENT)0 - uElement - (i > 0);
|
---|
622 | if (cbWanted >= sizeof(uElement))
|
---|
623 | {
|
---|
624 | *pbDst-- = (uint8_t)uElement;
|
---|
625 | uElement >>= 8;
|
---|
626 | *pbDst-- = (uint8_t)uElement;
|
---|
627 | uElement >>= 8;
|
---|
628 | *pbDst-- = (uint8_t)uElement;
|
---|
629 | uElement >>= 8;
|
---|
630 | *pbDst-- = (uint8_t)uElement;
|
---|
631 | #if RTBIGNUM_ELEMENT_SIZE == 8
|
---|
632 | uElement >>= 8;
|
---|
633 | *pbDst-- = (uint8_t)uElement;
|
---|
634 | uElement >>= 8;
|
---|
635 | *pbDst-- = (uint8_t)uElement;
|
---|
636 | uElement >>= 8;
|
---|
637 | *pbDst-- = (uint8_t)uElement;
|
---|
638 | uElement >>= 8;
|
---|
639 | *pbDst-- = (uint8_t)uElement;
|
---|
640 | #elif RTBIGNUM_ELEMENT_SIZE != 4
|
---|
641 | # error "Bad RTBIGNUM_ELEMENT_SIZE value"
|
---|
642 | #endif
|
---|
643 | cbWanted -= sizeof(uElement);
|
---|
644 | }
|
---|
645 | else
|
---|
646 | {
|
---|
647 |
|
---|
648 | uint32_t cBitsLeft = RTBIGNUM_ELEMENT_BITS;
|
---|
649 | while (cbWanted > 0)
|
---|
650 | {
|
---|
651 | *pbDst-- = (uint8_t)uElement;
|
---|
652 | uElement >>= 8;
|
---|
653 | cBitsLeft -= 8;
|
---|
654 | cbWanted--;
|
---|
655 | }
|
---|
656 | Assert(cBitsLeft > 0); Assert(cBitsLeft < RTBIGNUM_ELEMENT_BITS);
|
---|
657 | if ( i + 1 < pBigNum->cUsed
|
---|
658 | || ( !pBigNum->fNegative
|
---|
659 | ? uElement != 0
|
---|
660 | : uElement != ((RTBIGNUMELEMENT)1 << cBitsLeft) - 1U ) )
|
---|
661 | rc = VERR_BUFFER_OVERFLOW;
|
---|
662 | break;
|
---|
663 | }
|
---|
664 | }
|
---|
665 |
|
---|
666 | /* Sign extend the number to the desired output size. */
|
---|
667 | if (cbWanted > 0)
|
---|
668 | memset(pbDst - cbWanted, pBigNum->fNegative ? 0 : 0xff, cbWanted);
|
---|
669 | }
|
---|
670 | else
|
---|
671 | RT_BZERO(pvBuf, cbWanted);
|
---|
672 | rtBigNumScramble((PRTBIGNUM)pBigNum);
|
---|
673 | }
|
---|
674 | return rc;
|
---|
675 | }
|
---|
676 |
|
---|
677 |
|
---|
678 | RTDECL(int) RTBigNumCompare(PRTBIGNUM pLeft, PRTBIGNUM pRight)
|
---|
679 | {
|
---|
680 | int rc = rtBigNumUnscramble(pLeft);
|
---|
681 | if (RT_SUCCESS(rc))
|
---|
682 | {
|
---|
683 | rc = rtBigNumUnscramble(pRight);
|
---|
684 | if (RT_SUCCESS(rc))
|
---|
685 | {
|
---|
686 | if (pLeft->fNegative == pRight->fNegative)
|
---|
687 | {
|
---|
688 | if (pLeft->cUsed == pRight->cUsed)
|
---|
689 | {
|
---|
690 | rc = 0;
|
---|
691 | uint32_t i = pLeft->cUsed;
|
---|
692 | while (i-- > 0)
|
---|
693 | if (pLeft->pauElements[i] != pRight->pauElements[i])
|
---|
694 | {
|
---|
695 | rc = pLeft->pauElements[i] < pRight->pauElements[i] ? -1 : 1;
|
---|
696 | break;
|
---|
697 | }
|
---|
698 | if (pLeft->fNegative)
|
---|
699 | rc = -rc;
|
---|
700 | }
|
---|
701 | else
|
---|
702 | rc = !pLeft->fNegative
|
---|
703 | ? pLeft->cUsed < pRight->cUsed ? -1 : 1
|
---|
704 | : pLeft->cUsed < pRight->cUsed ? 1 : -1;
|
---|
705 | }
|
---|
706 | else
|
---|
707 | rc = pLeft->fNegative ? -1 : 1;
|
---|
708 |
|
---|
709 | rtBigNumScramble(pRight);
|
---|
710 | }
|
---|
711 | rtBigNumScramble(pLeft);
|
---|
712 | }
|
---|
713 | return rc;
|
---|
714 | }
|
---|
715 |
|
---|
716 |
|
---|
717 | RTDECL(int) RTBigNumCompareWithU64(PRTBIGNUM pLeft, uint64_t uRight)
|
---|
718 | {
|
---|
719 | int rc = rtBigNumUnscramble(pLeft);
|
---|
720 | if (RT_SUCCESS(rc))
|
---|
721 | {
|
---|
722 | if (!pLeft->fNegative)
|
---|
723 | {
|
---|
724 | if (pLeft->cUsed * RTBIGNUM_ELEMENT_SIZE <= sizeof(uRight))
|
---|
725 | {
|
---|
726 | if (pLeft->cUsed == 0)
|
---|
727 | rc = uRight == 0 ? 0 : -1;
|
---|
728 | else
|
---|
729 | {
|
---|
730 | #if RTBIGNUM_ELEMENT_SIZE == 8
|
---|
731 | uint64_t uLeft = rtBigNumGetElement(pLeft, 0);
|
---|
732 | if (uLeft < uRight)
|
---|
733 | rc = -1;
|
---|
734 | else
|
---|
735 | rc = uLeft == uRight ? 0 : 1;
|
---|
736 | #elif RTBIGNUM_ELEMENT_SIZE == 4
|
---|
737 | uint32_t uSubLeft = rtBigNumGetElement(pLeft, 1);
|
---|
738 | uint32_t uSubRight = uRight >> 32;
|
---|
739 | if (uSubLeft == uSubRight)
|
---|
740 | {
|
---|
741 | uSubLeft = rtBigNumGetElement(pLeft, 0);
|
---|
742 | uSubRight = (uint32_t)uRight;
|
---|
743 | }
|
---|
744 | if (uSubLeft < uSubRight)
|
---|
745 | rc = -1;
|
---|
746 | else
|
---|
747 | rc = uSubLeft == uSubRight ? 0 : 1;
|
---|
748 | #else
|
---|
749 | # error "Bad RTBIGNUM_ELEMENT_SIZE value"
|
---|
750 | #endif
|
---|
751 | }
|
---|
752 | }
|
---|
753 | else
|
---|
754 | rc = 1;
|
---|
755 | }
|
---|
756 | else
|
---|
757 | rc = -1;
|
---|
758 | rtBigNumScramble(pLeft);
|
---|
759 | }
|
---|
760 | return rc;
|
---|
761 | }
|
---|
762 |
|
---|
763 |
|
---|
764 | RTDECL(int) RTBigNumCompareWithS64(PRTBIGNUM pLeft, int64_t iRight)
|
---|
765 | {
|
---|
766 | int rc = rtBigNumUnscramble(pLeft);
|
---|
767 | if (RT_SUCCESS(rc))
|
---|
768 | {
|
---|
769 | if (pLeft->fNegative == (iRight < 0))
|
---|
770 | {
|
---|
771 | if (pLeft->cUsed * RTBIGNUM_ELEMENT_SIZE <= sizeof(iRight))
|
---|
772 | {
|
---|
773 | uint64_t uRightMagn = !pLeft->fNegative ? (uint64_t)iRight : (uint64_t)-iRight;
|
---|
774 | #if RTBIGNUM_ELEMENT_SIZE == 8
|
---|
775 | uint64_t uLeft = rtBigNumGetElement(pLeft, 0);
|
---|
776 | if (uLeft < uRightMagn)
|
---|
777 | rc = -1;
|
---|
778 | else
|
---|
779 | rc = uLeft == (uint64_t)uRightMagn ? 0 : 1;
|
---|
780 | #elif RTBIGNUM_ELEMENT_SIZE == 4
|
---|
781 | uint32_t uSubLeft = rtBigNumGetElement(pLeft, 1);
|
---|
782 | uint32_t uSubRight = uRightMagn >> 32;
|
---|
783 | if (uSubLeft == uSubRight)
|
---|
784 | {
|
---|
785 | uSubLeft = rtBigNumGetElement(pLeft, 0);
|
---|
786 | uSubRight = (uint32_t)uRightMagn;
|
---|
787 | }
|
---|
788 | if (uSubLeft < uSubRight)
|
---|
789 | rc = -1;
|
---|
790 | else
|
---|
791 | rc = uSubLeft == uSubRight ? 0 : 1;
|
---|
792 | #else
|
---|
793 | # error "Bad RTBIGNUM_ELEMENT_SIZE value"
|
---|
794 | #endif
|
---|
795 | if (pLeft->fNegative)
|
---|
796 | rc = -rc;
|
---|
797 | }
|
---|
798 | else
|
---|
799 | rc = pLeft->fNegative ? -1 : 1;
|
---|
800 | }
|
---|
801 | else
|
---|
802 | rc = pLeft->fNegative ? -1 : 1;
|
---|
803 | rtBigNumScramble(pLeft);
|
---|
804 | }
|
---|
805 | return rc;
|
---|
806 | }
|
---|
807 |
|
---|
808 |
|
---|
809 | #define RTBIGNUMELEMENT_HALF_MASK ( ((RTBIGNUMELEMENT)1 << (RTBIGNUM_ELEMENT_BITS / 2)) - (RTBIGNUMELEMENT)1)
|
---|
810 | #define RTBIGNUMELEMENT_LO_HALF(a_uElement) ( (RTBIGNUMELEMENT_HALF_MASK) & (a_uElement) )
|
---|
811 | #define RTBIGNUMELEMENT_HI_HALF(a_uElement) ( (a_uElement) >> (RTBIGNUM_ELEMENT_BITS / 2) )
|
---|
812 |
|
---|
813 |
|
---|
814 | /**
|
---|
815 | * Compares the magnitude values of two big numbers.
|
---|
816 | *
|
---|
817 | * @retval -1 if pLeft is smaller than pRight.
|
---|
818 | * @retval 0 if pLeft is equal to pRight.
|
---|
819 | * @retval 1 if pLeft is larger than pRight.
|
---|
820 | * @param pLeft The left side number.
|
---|
821 | * @param pRight The right side number.
|
---|
822 | */
|
---|
823 | static int rtBigNumMagnitudeCompare(PCRTBIGNUM pLeft, PCRTBIGNUM pRight)
|
---|
824 | {
|
---|
825 | Assert(!pLeft->fCurScrambled); Assert(!pRight->fCurScrambled);
|
---|
826 | int rc;
|
---|
827 | uint32_t i = pLeft->cUsed;
|
---|
828 | if (i == pRight->cUsed)
|
---|
829 | {
|
---|
830 | rc = 0;
|
---|
831 | while (i-- > 0)
|
---|
832 | if (pLeft->pauElements[i] != pRight->pauElements[i])
|
---|
833 | {
|
---|
834 | rc = pLeft->pauElements[i] < pRight->pauElements[i] ? -1 : 1;
|
---|
835 | break;
|
---|
836 | }
|
---|
837 | }
|
---|
838 | else
|
---|
839 | rc = i < pRight->cUsed ? -1 : 1;
|
---|
840 | return rc;
|
---|
841 | }
|
---|
842 |
|
---|
843 |
|
---|
844 | /**
|
---|
845 | * Does addition with carry.
|
---|
846 | *
|
---|
847 | * This is a candidate for inline assembly on some platforms.
|
---|
848 | *
|
---|
849 | * @returns The result (the sum)
|
---|
850 | * @param uAugend What to add to.
|
---|
851 | * @param uAddend What to add to it.
|
---|
852 | * @param pfCarry Where to read the input carry and return the output
|
---|
853 | * carry.
|
---|
854 | */
|
---|
855 | DECLINLINE(RTBIGNUMELEMENT) rtBigNumElementAddWithCarry(RTBIGNUMELEMENT uAugend, RTBIGNUMELEMENT uAddend,
|
---|
856 | RTBIGNUMELEMENT *pfCarry)
|
---|
857 | {
|
---|
858 | RTBIGNUMELEMENT uRet = uAugend + uAddend + *pfCarry;
|
---|
859 |
|
---|
860 | /* Determin carry the expensive way. */
|
---|
861 | RTBIGNUMELEMENT uTmp = RTBIGNUMELEMENT_HI_HALF(uAugend) + RTBIGNUMELEMENT_HI_HALF(uAddend);
|
---|
862 | if (uTmp < RTBIGNUMELEMENT_HALF_MASK)
|
---|
863 | *pfCarry = 0;
|
---|
864 | else
|
---|
865 | *pfCarry = uTmp > RTBIGNUMELEMENT_HALF_MASK
|
---|
866 | || RTBIGNUMELEMENT_LO_HALF(uAugend) + RTBIGNUMELEMENT_LO_HALF(uAddend) + *pfCarry
|
---|
867 | > RTBIGNUMELEMENT_HALF_MASK;
|
---|
868 | return uRet;
|
---|
869 | }
|
---|
870 |
|
---|
871 |
|
---|
872 | /**
|
---|
873 | * Adds two magnitudes and stores them into a third.
|
---|
874 | *
|
---|
875 | * All variables must be unscrambled. The sign flag is not considered nor
|
---|
876 | * touched.
|
---|
877 | *
|
---|
878 | * @returns IPRT status code.
|
---|
879 | * @param pResult The resultant.
|
---|
880 | * @param pAugend To whom it shall be addede.
|
---|
881 | * @param pAddend The nombre to addede.
|
---|
882 | */
|
---|
883 | static int rtBigNumMagnitudeAdd(PRTBIGNUM pResult, PCRTBIGNUM pAugend, PCRTBIGNUM pAddend)
|
---|
884 | {
|
---|
885 | Assert(!pResult->fCurScrambled); Assert(!pAugend->fCurScrambled); Assert(!pAddend->fCurScrambled);
|
---|
886 | Assert(pResult != pAugend); Assert(pResult != pAddend);
|
---|
887 |
|
---|
888 | uint32_t cElements = RT_MAX(pAugend->cUsed, pAddend->cUsed);
|
---|
889 | int rc = rtBigNumSetUsed(pResult, cElements);
|
---|
890 | if (RT_SUCCESS(rc))
|
---|
891 | {
|
---|
892 | /*
|
---|
893 | * The primitive way, requires at least two additions for each entry
|
---|
894 | * without machine code help.
|
---|
895 | */
|
---|
896 | RTBIGNUMELEMENT fCarry = 0;
|
---|
897 | for (uint32_t i = 0; i < cElements; i++)
|
---|
898 | pResult->pauElements[i] = rtBigNumElementAddWithCarry(rtBigNumGetElement(pAugend, i),
|
---|
899 | rtBigNumGetElement(pAddend, i),
|
---|
900 | &fCarry);
|
---|
901 | if (fCarry)
|
---|
902 | {
|
---|
903 | rc = rtBigNumSetUsed(pResult, cElements + 1);
|
---|
904 | if (RT_SUCCESS(rc))
|
---|
905 | pResult->pauElements[cElements++] = 1;
|
---|
906 | }
|
---|
907 | Assert(pResult->cUsed == cElements || RT_FAILURE_NP(rc));
|
---|
908 | }
|
---|
909 |
|
---|
910 | return rc;
|
---|
911 | }
|
---|
912 |
|
---|
913 |
|
---|
914 | /**
|
---|
915 | * Does addition with borrow.
|
---|
916 | *
|
---|
917 | * This is a candidate for inline assembly on some platforms.
|
---|
918 | *
|
---|
919 | * @returns The result (the sum)
|
---|
920 | * @param uMinuend What to subtract from.
|
---|
921 | * @param uSubtrahend What to subtract.
|
---|
922 | * @param pfBorrow Where to read the input borrow and return the output
|
---|
923 | * borrow.
|
---|
924 | */
|
---|
925 | DECLINLINE(RTBIGNUMELEMENT) rtBigNumElementSubWithBorrow(RTBIGNUMELEMENT uMinuend, RTBIGNUMELEMENT uSubtrahend,
|
---|
926 | RTBIGNUMELEMENT *pfBorrow)
|
---|
927 | {
|
---|
928 | RTBIGNUMELEMENT uRet = uMinuend - uSubtrahend - *pfBorrow;
|
---|
929 |
|
---|
930 | /* Figure out if we borrowed. */
|
---|
931 | *pfBorrow = !*pfBorrow ? uMinuend < uSubtrahend : uMinuend <= uSubtrahend;
|
---|
932 | return uRet;
|
---|
933 | }
|
---|
934 |
|
---|
935 |
|
---|
936 | /**
|
---|
937 | * Substracts a smaller (or equal) magnitude from another one and stores it into
|
---|
938 | * a third.
|
---|
939 | *
|
---|
940 | * All variables must be unscrambled. The sign flag is not considered nor
|
---|
941 | * touched. For this reason, the @a pMinuend must be larger or equal to @a
|
---|
942 | * pSubtrahend.
|
---|
943 | *
|
---|
944 | * @returns IPRT status code.
|
---|
945 | * @param pResult There to store the result.
|
---|
946 | * @param pMinuend What to subtract from.
|
---|
947 | * @param pSubtrahend What to subtract.
|
---|
948 | */
|
---|
949 | static int rtBigNumMagnitudeSub(PRTBIGNUM pResult, PCRTBIGNUM pMinuend, PCRTBIGNUM pSubtrahend)
|
---|
950 | {
|
---|
951 | Assert(!pResult->fCurScrambled); Assert(!pMinuend->fCurScrambled); Assert(!pSubtrahend->fCurScrambled);
|
---|
952 | Assert(pResult != pMinuend); Assert(pResult != pSubtrahend);
|
---|
953 | Assert(pMinuend->cUsed >= pSubtrahend->cUsed);
|
---|
954 |
|
---|
955 | int rc = rtBigNumSetUsed(pResult, pMinuend->cUsed);
|
---|
956 | if (RT_SUCCESS(rc))
|
---|
957 | {
|
---|
958 | /*
|
---|
959 | * The primitive way, as usual.
|
---|
960 | */
|
---|
961 | RTBIGNUMELEMENT fBorrow = 0;
|
---|
962 | for (uint32_t i = 0; i < pMinuend->cUsed; i++)
|
---|
963 | pResult->pauElements[i] = rtBigNumElementSubWithBorrow(pMinuend->pauElements[i],
|
---|
964 | rtBigNumGetElement(pSubtrahend, i),
|
---|
965 | &fBorrow);
|
---|
966 | Assert(fBorrow == 0);
|
---|
967 |
|
---|
968 | /*
|
---|
969 | * Trim the result.
|
---|
970 | */
|
---|
971 | rtBigNumStripTrailingZeros(pResult);
|
---|
972 | }
|
---|
973 |
|
---|
974 | return rc;
|
---|
975 | }
|
---|
976 |
|
---|
977 |
|
---|
978 | /**
|
---|
979 | * Substracts a smaller (or equal) magnitude from another one and stores the
|
---|
980 | * result into the first.
|
---|
981 | *
|
---|
982 | * All variables must be unscrambled. The sign flag is not considered nor
|
---|
983 | * touched. For this reason, the @a pMinuendResult must be larger or equal to
|
---|
984 | * @a pSubtrahend.
|
---|
985 | *
|
---|
986 | * @param pMinuendResult What to subtract from and return as result.
|
---|
987 | * @param pSubtrahend What to subtract.
|
---|
988 | */
|
---|
989 | static void rtBigNumMagnitudeSubThis(PRTBIGNUM pMinuendResult, PCRTBIGNUM pSubtrahend)
|
---|
990 | {
|
---|
991 | Assert(!pMinuendResult->fCurScrambled); Assert(!pSubtrahend->fCurScrambled);
|
---|
992 | Assert(pMinuendResult != pSubtrahend);
|
---|
993 | Assert(pMinuendResult->cUsed >= pSubtrahend->cUsed);
|
---|
994 |
|
---|
995 | /*
|
---|
996 | * The primitive way, as usual.
|
---|
997 | */
|
---|
998 | RTBIGNUMELEMENT fBorrow = 0;
|
---|
999 | for (uint32_t i = 0; i < pMinuendResult->cUsed; i++)
|
---|
1000 | pMinuendResult->pauElements[i] = rtBigNumElementSubWithBorrow(pMinuendResult->pauElements[i],
|
---|
1001 | rtBigNumGetElement(pSubtrahend, i),
|
---|
1002 | &fBorrow);
|
---|
1003 | Assert(fBorrow == 0);
|
---|
1004 |
|
---|
1005 | /*
|
---|
1006 | * Trim the result.
|
---|
1007 | */
|
---|
1008 | rtBigNumStripTrailingZeros(pMinuendResult);
|
---|
1009 | }
|
---|
1010 |
|
---|
1011 |
|
---|
1012 | RTDECL(int) RTBigNumAdd(PRTBIGNUM pResult, PCRTBIGNUM pAugend, PCRTBIGNUM pAddend)
|
---|
1013 | {
|
---|
1014 | Assert(pResult != pAugend); Assert(pResult != pAddend);
|
---|
1015 | AssertReturn(pResult->fSensitive >= (pAugend->fSensitive | pAddend->fSensitive), VERR_BIGNUM_SENSITIVE_INPUT);
|
---|
1016 |
|
---|
1017 | int rc = rtBigNumUnscramble(pResult);
|
---|
1018 | if (RT_SUCCESS(rc))
|
---|
1019 | {
|
---|
1020 | rc = rtBigNumUnscramble((PRTBIGNUM)pAugend);
|
---|
1021 | if (RT_SUCCESS(rc))
|
---|
1022 | {
|
---|
1023 | rc = rtBigNumUnscramble((PRTBIGNUM)pAddend);
|
---|
1024 | if (RT_SUCCESS(rc))
|
---|
1025 | {
|
---|
1026 | /*
|
---|
1027 | * Same sign: Add magnitude, keep sign.
|
---|
1028 | * 1 + 1 = 2
|
---|
1029 | * (-1) + (-1) = -2
|
---|
1030 | */
|
---|
1031 | if (pAugend->fNegative == pAddend->fNegative)
|
---|
1032 | {
|
---|
1033 | pResult->fNegative = pAugend->fNegative;
|
---|
1034 | rc = rtBigNumMagnitudeAdd(pResult, pAugend, pAddend);
|
---|
1035 | }
|
---|
1036 | /*
|
---|
1037 | * Different sign: Subtract smaller from larger, keep sign of larger.
|
---|
1038 | * (-5) + 3 = -2
|
---|
1039 | * 5 + (-3) = 2
|
---|
1040 | * (-1) + 3 = 2
|
---|
1041 | * 1 + (-3) = -2
|
---|
1042 | */
|
---|
1043 | else if (rtBigNumMagnitudeCompare(pAugend, pAddend) >= 0)
|
---|
1044 | {
|
---|
1045 | pResult->fNegative = pAugend->fNegative;
|
---|
1046 | rc = rtBigNumMagnitudeSub(pResult, pAugend, pAddend);
|
---|
1047 | if (!pResult->cUsed)
|
---|
1048 | pResult->fNegative = 0;
|
---|
1049 | }
|
---|
1050 | else
|
---|
1051 | {
|
---|
1052 | pResult->fNegative = pAddend->fNegative;
|
---|
1053 | rc = rtBigNumMagnitudeSub(pResult, pAddend, pAugend);
|
---|
1054 | }
|
---|
1055 | rtBigNumScramble((PRTBIGNUM)pAddend);
|
---|
1056 | }
|
---|
1057 | rtBigNumScramble((PRTBIGNUM)pAugend);
|
---|
1058 | }
|
---|
1059 | rtBigNumScramble(pResult);
|
---|
1060 | }
|
---|
1061 | return rc;
|
---|
1062 | }
|
---|
1063 |
|
---|
1064 |
|
---|
1065 | RTDECL(int) RTBigNumSubtract(PRTBIGNUM pResult, PCRTBIGNUM pMinuend, PCRTBIGNUM pSubtrahend)
|
---|
1066 | {
|
---|
1067 | Assert(pResult != pMinuend); Assert(pResult != pSubtrahend);
|
---|
1068 | AssertReturn(pResult->fSensitive >= (pMinuend->fSensitive | pSubtrahend->fSensitive), VERR_BIGNUM_SENSITIVE_INPUT);
|
---|
1069 |
|
---|
1070 | int rc = rtBigNumUnscramble(pResult);
|
---|
1071 | if (RT_SUCCESS(rc))
|
---|
1072 | {
|
---|
1073 | if (pMinuend != pSubtrahend)
|
---|
1074 | {
|
---|
1075 | rc = rtBigNumUnscramble((PRTBIGNUM)pMinuend);
|
---|
1076 | if (RT_SUCCESS(rc))
|
---|
1077 | {
|
---|
1078 | rc = rtBigNumUnscramble((PRTBIGNUM)pSubtrahend);
|
---|
1079 | if (RT_SUCCESS(rc))
|
---|
1080 | {
|
---|
1081 | /*
|
---|
1082 | * Different sign: Add magnitude, keep sign of first.
|
---|
1083 | * 1 - (-2) == 3
|
---|
1084 | * -1 - 2 == -3
|
---|
1085 | */
|
---|
1086 | if (pMinuend->fNegative != pSubtrahend->fNegative)
|
---|
1087 | {
|
---|
1088 | pResult->fNegative = pMinuend->fNegative;
|
---|
1089 | rc = rtBigNumMagnitudeAdd(pResult, pMinuend, pSubtrahend);
|
---|
1090 | }
|
---|
1091 | /*
|
---|
1092 | * Same sign, minuend has greater or equal absolute value: Subtract, keep sign of first.
|
---|
1093 | * 10 - 7 = 3
|
---|
1094 | */
|
---|
1095 | else if (rtBigNumMagnitudeCompare(pMinuend, pSubtrahend) >= 0)
|
---|
1096 | {
|
---|
1097 | pResult->fNegative = pMinuend->fNegative;
|
---|
1098 | rc = rtBigNumMagnitudeSub(pResult, pMinuend, pSubtrahend);
|
---|
1099 | }
|
---|
1100 | /*
|
---|
1101 | * Same sign, subtrahend is larger: Reverse and subtract, invert sign of first.
|
---|
1102 | * 7 - 10 = -3
|
---|
1103 | * -1 - (-3) = 2
|
---|
1104 | */
|
---|
1105 | else
|
---|
1106 | {
|
---|
1107 | pResult->fNegative = !pMinuend->fNegative;
|
---|
1108 | rc = rtBigNumMagnitudeSub(pResult, pSubtrahend, pMinuend);
|
---|
1109 | }
|
---|
1110 | rtBigNumScramble((PRTBIGNUM)pSubtrahend);
|
---|
1111 | }
|
---|
1112 | rtBigNumScramble((PRTBIGNUM)pMinuend);
|
---|
1113 | }
|
---|
1114 | }
|
---|
1115 | else
|
---|
1116 | {
|
---|
1117 | /* zero. */
|
---|
1118 | pResult->fNegative = 0;
|
---|
1119 | pResult->cUsed = 0;
|
---|
1120 | }
|
---|
1121 | rtBigNumScramble(pResult);
|
---|
1122 | }
|
---|
1123 | return rc;
|
---|
1124 | }
|
---|
1125 |
|
---|
1126 |
|
---|
1127 | RTDECL(int) RTBigNumNegateThis(PRTBIGNUM pThis)
|
---|
1128 | {
|
---|
1129 | pThis->fNegative = !pThis->fNegative;
|
---|
1130 | return VINF_SUCCESS;
|
---|
1131 | }
|
---|
1132 |
|
---|
1133 |
|
---|
1134 | RTDECL(int) RTBigNumNegate(PRTBIGNUM pResult, PCRTBIGNUM pBigNum)
|
---|
1135 | {
|
---|
1136 | int rc = RTBigNumAssign(pResult, pBigNum);
|
---|
1137 | if (RT_SUCCESS(rc))
|
---|
1138 | rc = RTBigNumNegateThis(pResult);
|
---|
1139 | return rc;
|
---|
1140 | }
|
---|
1141 |
|
---|
1142 |
|
---|
1143 | /**
|
---|
1144 | * Multiplies the magnitudes of two values, letting the caller care about the
|
---|
1145 | * sign bit.
|
---|
1146 | *
|
---|
1147 | * @returns IPRT status code.
|
---|
1148 | * @param pResult Where to store the result.
|
---|
1149 | * @param pMultiplicand The first value.
|
---|
1150 | * @param pMultiplier The second value.
|
---|
1151 | */
|
---|
1152 | static int rtBigNumMagnitudeMultiply(PRTBIGNUM pResult, PCRTBIGNUM pMultiplicand, PCRTBIGNUM pMultiplier)
|
---|
1153 | {
|
---|
1154 | Assert(pResult != pMultiplicand); Assert(pResult != pMultiplier);
|
---|
1155 | Assert(!pResult->fCurScrambled); Assert(!pMultiplicand->fCurScrambled); Assert(!pMultiplier->fCurScrambled);
|
---|
1156 |
|
---|
1157 | /*
|
---|
1158 | * Multiplication involving zero is zero.
|
---|
1159 | */
|
---|
1160 | if (!pMultiplicand->cUsed || !pMultiplier->cUsed)
|
---|
1161 | {
|
---|
1162 | pResult->fNegative = 0;
|
---|
1163 | pResult->cUsed = 0;
|
---|
1164 | return VINF_SUCCESS;
|
---|
1165 | }
|
---|
1166 |
|
---|
1167 | /*
|
---|
1168 | * Allocate a result array that is the sum of the two factors, initialize
|
---|
1169 | * it to zero.
|
---|
1170 | */
|
---|
1171 | uint32_t cMax = pMultiplicand->cUsed + pMultiplier->cUsed;
|
---|
1172 | int rc = rtBigNumSetUsed(pResult, cMax);
|
---|
1173 | if (RT_SUCCESS(rc))
|
---|
1174 | {
|
---|
1175 | RT_BZERO(pResult->pauElements, pResult->cUsed * RTBIGNUM_ELEMENT_SIZE);
|
---|
1176 |
|
---|
1177 | for (uint32_t i = 0; i < pMultiplier->cUsed; i++)
|
---|
1178 | {
|
---|
1179 | RTBIGNUMELEMENT uMultiplier = pMultiplier->pauElements[i];
|
---|
1180 | for (uint32_t j = 0; j < pMultiplicand->cUsed; j++)
|
---|
1181 | {
|
---|
1182 | RTBIGNUMELEMENT uHi;
|
---|
1183 | RTBIGNUMELEMENT uLo;
|
---|
1184 | #if RTBIGNUM_ELEMENT_SIZE == 4
|
---|
1185 | uint64_t u64 = ASMMult2xU32RetU64(pMultiplicand->pauElements[j], uMultiplier);
|
---|
1186 | uLo = (uint32_t)u64;
|
---|
1187 | uHi = u64 >> 32;
|
---|
1188 | #elif RTBIGNUM_ELEMENT_SIZE == 8
|
---|
1189 | uLo = ASMMult2xU64Ret2xU64(pMultiplicand->pauElements[j], uMultiplier, &uHi);
|
---|
1190 | #else
|
---|
1191 | # error "Invalid RTBIGNUM_ELEMENT_SIZE value"
|
---|
1192 | #endif
|
---|
1193 | RTBIGNUMELEMENT fCarry = 0;
|
---|
1194 | uint64_t k = i + j;
|
---|
1195 | pResult->pauElements[k] = rtBigNumElementAddWithCarry(pResult->pauElements[k], uLo, &fCarry);
|
---|
1196 | k++;
|
---|
1197 | pResult->pauElements[k] = rtBigNumElementAddWithCarry(pResult->pauElements[k], uHi, &fCarry);
|
---|
1198 | while (fCarry)
|
---|
1199 | {
|
---|
1200 | k++;
|
---|
1201 | pResult->pauElements[k] = rtBigNumElementAddWithCarry(pResult->pauElements[k], 0, &fCarry);
|
---|
1202 | }
|
---|
1203 | Assert(k < cMax);
|
---|
1204 | }
|
---|
1205 | }
|
---|
1206 |
|
---|
1207 | /* It's possible we overestimated the output size by 1 element. */
|
---|
1208 | rtBigNumStripTrailingZeros(pResult);
|
---|
1209 | }
|
---|
1210 | return rc;
|
---|
1211 | }
|
---|
1212 |
|
---|
1213 |
|
---|
1214 | RTDECL(int) RTBigNumMultiply(PRTBIGNUM pResult, PCRTBIGNUM pMultiplicand, PCRTBIGNUM pMultiplier)
|
---|
1215 | {
|
---|
1216 | Assert(pResult != pMultiplicand); Assert(pResult != pMultiplier);
|
---|
1217 | AssertReturn(pResult->fSensitive >= (pMultiplicand->fSensitive | pMultiplier->fSensitive), VERR_BIGNUM_SENSITIVE_INPUT);
|
---|
1218 |
|
---|
1219 | int rc = rtBigNumUnscramble(pResult);
|
---|
1220 | if (RT_SUCCESS(rc))
|
---|
1221 | {
|
---|
1222 | rc = rtBigNumUnscramble((PRTBIGNUM)pMultiplicand);
|
---|
1223 | if (RT_SUCCESS(rc))
|
---|
1224 | {
|
---|
1225 | rc = rtBigNumUnscramble((PRTBIGNUM)pMultiplier);
|
---|
1226 | if (RT_SUCCESS(rc))
|
---|
1227 | {
|
---|
1228 | /*
|
---|
1229 | * The sign values follow XOR rules:
|
---|
1230 | * -1 * 1 = -1; 1 ^ 0 = 1
|
---|
1231 | * 1 * -1 = -1; 1 ^ 0 = 1
|
---|
1232 | * -1 * -1 = 1; 1 ^ 1 = 0
|
---|
1233 | * 1 * 1 = 1; 0 ^ 0 = 0
|
---|
1234 | */
|
---|
1235 | pResult->fNegative = pMultiplicand->fNegative ^ pMultiplier->fNegative;
|
---|
1236 | rc = rtBigNumMagnitudeMultiply(pResult, pMultiplicand, pMultiplier);
|
---|
1237 |
|
---|
1238 | rtBigNumScramble((PRTBIGNUM)pMultiplier);
|
---|
1239 | }
|
---|
1240 | rtBigNumScramble((PRTBIGNUM)pMultiplicand);
|
---|
1241 | }
|
---|
1242 | rtBigNumScramble(pResult);
|
---|
1243 | }
|
---|
1244 | return rc;
|
---|
1245 | }
|
---|
1246 |
|
---|
1247 |
|
---|
1248 | /**
|
---|
1249 | * Copies the magnitude of on number (@a pSrc) to another (@a pBigNum).
|
---|
1250 | *
|
---|
1251 | * The variables must be unscrambled. The sign flag is not considered nor
|
---|
1252 | * touched.
|
---|
1253 | *
|
---|
1254 | * @returns IPRT status code.
|
---|
1255 | * @param pDst The destination number.
|
---|
1256 | * @param pSrc The source number.
|
---|
1257 | */
|
---|
1258 | DECLINLINE(int) rtBigNumMagnitudeCopy(PRTBIGNUM pDst, PCRTBIGNUM pSrc)
|
---|
1259 | {
|
---|
1260 | int rc = rtBigNumSetUsed(pDst, pSrc->cUsed);
|
---|
1261 | if (RT_SUCCESS(rc))
|
---|
1262 | memcpy(pDst->pauElements, pSrc->pauElements, pSrc->cUsed * RTBIGNUM_ELEMENT_SIZE);
|
---|
1263 | return rc;
|
---|
1264 | }
|
---|
1265 |
|
---|
1266 |
|
---|
1267 | /**
|
---|
1268 | * Clears a bit in the magnitude of @a pBigNum.
|
---|
1269 | *
|
---|
1270 | * The variables must be unscrambled.
|
---|
1271 | *
|
---|
1272 | * @param pBigNum The big number.
|
---|
1273 | * @param iBit The bit to clear (0-based).
|
---|
1274 | */
|
---|
1275 | DECLINLINE(void) rtBigNumMagnitudeClearBit(PRTBIGNUM pBigNum, uint32_t iBit)
|
---|
1276 | {
|
---|
1277 | uint32_t iElement = iBit / RTBIGNUM_ELEMENT_BITS;
|
---|
1278 | if (iElement < pBigNum->cUsed)
|
---|
1279 | {
|
---|
1280 | pBigNum->pauElements[iElement] &= ~RTBIGNUM_ELEMENT_BIT(iBit);
|
---|
1281 | if (iElement + 1 == pBigNum->cUsed && !pBigNum->pauElements[iElement])
|
---|
1282 | rtBigNumStripTrailingZeros(pBigNum);
|
---|
1283 | }
|
---|
1284 | }
|
---|
1285 |
|
---|
1286 |
|
---|
1287 | /**
|
---|
1288 | * Sets a bit in the magnitude of @a pBigNum.
|
---|
1289 | *
|
---|
1290 | * The variables must be unscrambled.
|
---|
1291 | *
|
---|
1292 | * @returns IPRT status code.
|
---|
1293 | * @param pBigNum The big number.
|
---|
1294 | * @param iBit The bit to clear (0-based).
|
---|
1295 | */
|
---|
1296 | DECLINLINE(int) rtBigNumMagnitudeSetBit(PRTBIGNUM pBigNum, uint32_t iBit)
|
---|
1297 | {
|
---|
1298 | uint32_t iElement = iBit / RTBIGNUM_ELEMENT_BITS;
|
---|
1299 | int rc = rtBigNumEnsureElementPresent(pBigNum, iElement);
|
---|
1300 | if (RT_SUCCESS(rc))
|
---|
1301 | {
|
---|
1302 | pBigNum->pauElements[iElement] |= RTBIGNUM_ELEMENT_BIT(iBit);
|
---|
1303 | return VINF_SUCCESS;
|
---|
1304 | }
|
---|
1305 | return rc;
|
---|
1306 | }
|
---|
1307 |
|
---|
1308 |
|
---|
1309 | /**
|
---|
1310 | * Writes a bit in the magnitude of @a pBigNum.
|
---|
1311 | *
|
---|
1312 | * The variables must be unscrambled.
|
---|
1313 | *
|
---|
1314 | * @returns IPRT status code.
|
---|
1315 | * @param pBigNum The big number.
|
---|
1316 | * @param iBit The bit to write (0-based).
|
---|
1317 | * @param fValue The bit value.
|
---|
1318 | */
|
---|
1319 | DECLINLINE(int) rtBigNumMagnitudeWriteBit(PRTBIGNUM pBigNum, uint32_t iBit, bool fValue)
|
---|
1320 | {
|
---|
1321 | if (fValue)
|
---|
1322 | return rtBigNumMagnitudeSetBit(pBigNum, iBit);
|
---|
1323 | rtBigNumMagnitudeClearBit(pBigNum, iBit);
|
---|
1324 | return VINF_SUCCESS;
|
---|
1325 | }
|
---|
1326 |
|
---|
1327 |
|
---|
1328 | /**
|
---|
1329 | * Returns the given magnitude bit.
|
---|
1330 | *
|
---|
1331 | * The variables must be unscrambled.
|
---|
1332 | *
|
---|
1333 | * @returns The bit value (1 or 0).
|
---|
1334 | * @param pBigNum The big number.
|
---|
1335 | * @param iBit The bit to return (0-based).
|
---|
1336 | */
|
---|
1337 | DECLINLINE(RTBIGNUMELEMENT) rtBigNumMagnitudeGetBit(PCRTBIGNUM pBigNum, uint32_t iBit)
|
---|
1338 | {
|
---|
1339 | uint32_t iElement = iBit / RTBIGNUM_ELEMENT_BITS;
|
---|
1340 | if (iElement < pBigNum->cUsed)
|
---|
1341 | return (pBigNum->pauElements[iElement] >> iBit) & 1;
|
---|
1342 | return 0;
|
---|
1343 | }
|
---|
1344 |
|
---|
1345 |
|
---|
1346 | /**
|
---|
1347 | * Shifts the magnitude left by one.
|
---|
1348 | *
|
---|
1349 | * The variables must be unscrambled.
|
---|
1350 | *
|
---|
1351 | * @returns IPRT status code.
|
---|
1352 | * @param pBigNum The big number.
|
---|
1353 | * @param uCarry The value to shift in at the bottom.
|
---|
1354 | */
|
---|
1355 | DECLINLINE(int) rtBigNumMagnitudeShiftLeftOne(PRTBIGNUM pBigNum, RTBIGNUMELEMENT uCarry)
|
---|
1356 | {
|
---|
1357 | Assert(uCarry <= 1);
|
---|
1358 |
|
---|
1359 | /* Do the shifting. */
|
---|
1360 | uint32_t cUsed = pBigNum->cUsed;
|
---|
1361 | for (uint32_t i = 0; i < cUsed; i++)
|
---|
1362 | {
|
---|
1363 | RTBIGNUMELEMENT uTmp = pBigNum->pauElements[i];
|
---|
1364 | pBigNum->pauElements[i] = (uTmp << 1) | uCarry;
|
---|
1365 | uCarry = uTmp >> (RTBIGNUM_ELEMENT_BITS - 1);
|
---|
1366 | }
|
---|
1367 |
|
---|
1368 | /* If we still carry a bit, we need to increase the size. */
|
---|
1369 | if (uCarry)
|
---|
1370 | {
|
---|
1371 | int rc = rtBigNumSetUsed(pBigNum, cUsed + 1);
|
---|
1372 | pBigNum->pauElements[cUsed] = uCarry;
|
---|
1373 | }
|
---|
1374 |
|
---|
1375 | return VINF_SUCCESS;
|
---|
1376 | }
|
---|
1377 |
|
---|
1378 |
|
---|
1379 | /**
|
---|
1380 | * Divides the magnitudes of two values, letting the caller care about the sign
|
---|
1381 | * bit.
|
---|
1382 | *
|
---|
1383 | * All variables must be unscrambled. The sign flag is not considered nor
|
---|
1384 | * touched, this means the caller have to check for zero outputs.
|
---|
1385 | *
|
---|
1386 | * @returns IPRT status code.
|
---|
1387 | * @param pQuotient Where to return the quotient.
|
---|
1388 | * @param pRemainder Where to return the reminder.
|
---|
1389 | * @param pDividend What to divide.
|
---|
1390 | * @param pDivisor What to divide by.
|
---|
1391 | */
|
---|
1392 | static int rtBigNumMagnitudeDivide(PRTBIGNUM pQuotient, PRTBIGNUM pRemainder, PCRTBIGNUM pDividend, PCRTBIGNUM pDivisor)
|
---|
1393 | {
|
---|
1394 | Assert(pQuotient != pDividend); Assert(pQuotient != pDivisor); Assert(pRemainder != pDividend); Assert(pRemainder != pDivisor); Assert(pRemainder != pQuotient);
|
---|
1395 | Assert(!pQuotient->fCurScrambled); Assert(!pRemainder->fCurScrambled); Assert(!pDividend->fCurScrambled); Assert(!pDivisor->fCurScrambled);
|
---|
1396 |
|
---|
1397 | /*
|
---|
1398 | * Just set both output values to zero as that's the return for several
|
---|
1399 | * special case and the initial state of the general case.
|
---|
1400 | */
|
---|
1401 | pQuotient->cUsed = 0;
|
---|
1402 | pRemainder->cUsed = 0;
|
---|
1403 |
|
---|
1404 | /*
|
---|
1405 | * Dividing something by zero is undefined.
|
---|
1406 | * Diving zero by something is zero, unless the divsor is also zero.
|
---|
1407 | */
|
---|
1408 | if (!pDivisor->cUsed || !pDividend->cUsed)
|
---|
1409 | return pDivisor->cUsed ? VINF_SUCCESS : VERR_BIGNUM_DIV_BY_ZERO;
|
---|
1410 |
|
---|
1411 | /*
|
---|
1412 | * Dividing by one? Quotient = dividend, no remainder.
|
---|
1413 | */
|
---|
1414 | if (pDivisor->cUsed == 1 && pDivisor->pauElements[0] == 1)
|
---|
1415 | return rtBigNumMagnitudeCopy(pQuotient, pDividend);
|
---|
1416 |
|
---|
1417 | /*
|
---|
1418 | * Dividend smaller than the divisor. Zero quotient, all divisor.
|
---|
1419 | */
|
---|
1420 | int iDiff = rtBigNumMagnitudeCompare(pDividend, pDivisor);
|
---|
1421 | if (iDiff < 0)
|
---|
1422 | return rtBigNumMagnitudeCopy(pRemainder, pDividend);
|
---|
1423 |
|
---|
1424 | /*
|
---|
1425 | * Since we already have done the compare, check if the two values are the
|
---|
1426 | * same. The result is 1 and no remainder then.
|
---|
1427 | */
|
---|
1428 | if (iDiff == 0)
|
---|
1429 | {
|
---|
1430 | int rc = rtBigNumSetUsed(pQuotient, 1);
|
---|
1431 | if (RT_SUCCESS(rc))
|
---|
1432 | pQuotient->pauElements[0] = 1;
|
---|
1433 | return rc;
|
---|
1434 | }
|
---|
1435 |
|
---|
1436 | /*
|
---|
1437 | * Do very simple long division. This ain't fast, but it does the trick.
|
---|
1438 | */
|
---|
1439 | int rc = VINF_SUCCESS;
|
---|
1440 | uint32_t iBit = rtBigNumMagnitudeBitWidth(pDividend);
|
---|
1441 | while (iBit-- > 0)
|
---|
1442 | {
|
---|
1443 | rc = rtBigNumMagnitudeShiftLeftOne(pRemainder, rtBigNumMagnitudeGetBit(pDividend, iBit));
|
---|
1444 | AssertRCBreak(rc);
|
---|
1445 | iDiff = rtBigNumMagnitudeCompare(pRemainder, pDivisor);
|
---|
1446 | if (iDiff >= 0)
|
---|
1447 | {
|
---|
1448 | if (iDiff != 0)
|
---|
1449 | rtBigNumMagnitudeSubThis(pRemainder, pDivisor);
|
---|
1450 | else
|
---|
1451 | pRemainder->cUsed = 0;
|
---|
1452 | rc = rtBigNumMagnitudeSetBit(pQuotient, iBit);
|
---|
1453 | AssertRCBreak(rc);
|
---|
1454 | }
|
---|
1455 | }
|
---|
1456 |
|
---|
1457 | /* This shouldn't be necessary. */
|
---|
1458 | rtBigNumStripTrailingZeros(pQuotient);
|
---|
1459 | rtBigNumStripTrailingZeros(pRemainder);
|
---|
1460 | return rc;
|
---|
1461 | }
|
---|
1462 |
|
---|
1463 |
|
---|
1464 | RTDECL(int) RTBigNumDivide(PRTBIGNUM pQuotient, PRTBIGNUM pRemainder, PCRTBIGNUM pDividend, PCRTBIGNUM pDivisor)
|
---|
1465 | {
|
---|
1466 | Assert(pQuotient != pDividend); Assert(pQuotient != pDivisor); Assert(pRemainder != pDividend); Assert(pRemainder != pDivisor); Assert(pRemainder != pQuotient);
|
---|
1467 | AssertReturn(pQuotient->fSensitive >= (pDividend->fSensitive | pDivisor->fSensitive), VERR_BIGNUM_SENSITIVE_INPUT);
|
---|
1468 | AssertReturn(pRemainder->fSensitive >= (pDividend->fSensitive | pDivisor->fSensitive), VERR_BIGNUM_SENSITIVE_INPUT);
|
---|
1469 |
|
---|
1470 | int rc = rtBigNumUnscramble(pQuotient);
|
---|
1471 | if (RT_SUCCESS(rc))
|
---|
1472 | {
|
---|
1473 | rc = rtBigNumUnscramble(pRemainder);
|
---|
1474 | if (RT_SUCCESS(rc))
|
---|
1475 | {
|
---|
1476 | rc = rtBigNumUnscramble((PRTBIGNUM)pDividend);
|
---|
1477 | if (RT_SUCCESS(rc))
|
---|
1478 | {
|
---|
1479 | rc = rtBigNumUnscramble((PRTBIGNUM)pDivisor);
|
---|
1480 | if (RT_SUCCESS(rc))
|
---|
1481 | {
|
---|
1482 | /*
|
---|
1483 | * The sign value of the remainder is the same as the dividend.
|
---|
1484 | * The sign values of the quotient follow XOR rules, just like multiplication:
|
---|
1485 | * -3 / 2 = -1; r=-1; 1 ^ 0 = 1
|
---|
1486 | * 3 / -2 = -1; r= 1; 1 ^ 0 = 1
|
---|
1487 | * -3 / -2 = 1; r=-1; 1 ^ 1 = 0
|
---|
1488 | * 3 / 2 = 1; r= 1; 0 ^ 0 = 0
|
---|
1489 | */
|
---|
1490 | pQuotient->fNegative = pDividend->fNegative ^ pDivisor->fNegative;
|
---|
1491 | pRemainder->fNegative = pDividend->fNegative;
|
---|
1492 |
|
---|
1493 | rc = rtBigNumMagnitudeDivide(pQuotient, pRemainder, pDividend, pDivisor);
|
---|
1494 |
|
---|
1495 | if (pQuotient->cUsed == 0)
|
---|
1496 | pQuotient->fNegative = 0;
|
---|
1497 | if (pRemainder->cUsed == 0)
|
---|
1498 | pRemainder->fNegative = 0;
|
---|
1499 |
|
---|
1500 | rtBigNumScramble((PRTBIGNUM)pDivisor);
|
---|
1501 | }
|
---|
1502 | rtBigNumScramble((PRTBIGNUM)pDividend);
|
---|
1503 | }
|
---|
1504 | rtBigNumScramble(pRemainder);
|
---|
1505 | }
|
---|
1506 | rtBigNumScramble(pQuotient);
|
---|
1507 | }
|
---|
1508 | return rc;
|
---|
1509 | }
|
---|
1510 |
|
---|
1511 |
|
---|
1512 | /**
|
---|
1513 | * Calculates the modulus of a magnitude value, leaving the sign bit to the
|
---|
1514 | * caller.
|
---|
1515 | *
|
---|
1516 | * All variables must be unscrambled. The sign flag is not considered nor
|
---|
1517 | * touched, this means the caller have to check for zero outputs.
|
---|
1518 | *
|
---|
1519 | * @returns IPRT status code.
|
---|
1520 | * @param pRemainder Where to return the reminder.
|
---|
1521 | * @param pDividend What to divide.
|
---|
1522 | * @param pDivisor What to divide by.
|
---|
1523 | */
|
---|
1524 | static int rtBigNumMagnitudeModulo(PRTBIGNUM pRemainder, PCRTBIGNUM pDividend, PCRTBIGNUM pDivisor)
|
---|
1525 | {
|
---|
1526 | Assert(pRemainder != pDividend); Assert(pRemainder != pDivisor);
|
---|
1527 | Assert(!pRemainder->fCurScrambled); Assert(!pDividend->fCurScrambled); Assert(!pDivisor->fCurScrambled);
|
---|
1528 |
|
---|
1529 | /*
|
---|
1530 | * Just set the output value to zero as that's the return for several
|
---|
1531 | * special case and the initial state of the general case.
|
---|
1532 | */
|
---|
1533 | pRemainder->cUsed = 0;
|
---|
1534 |
|
---|
1535 | /*
|
---|
1536 | * Dividing something by zero is undefined.
|
---|
1537 | * Diving zero by something is zero, unless the divsor is also zero.
|
---|
1538 | */
|
---|
1539 | if (!pDivisor->cUsed || !pDividend->cUsed)
|
---|
1540 | return pDivisor->cUsed ? VINF_SUCCESS : VERR_BIGNUM_DIV_BY_ZERO;
|
---|
1541 |
|
---|
1542 | /*
|
---|
1543 | * Dividing by one? Quotient = dividend, no remainder.
|
---|
1544 | */
|
---|
1545 | if (pDivisor->cUsed == 1 && pDivisor->pauElements[0] == 1)
|
---|
1546 | return VINF_SUCCESS;
|
---|
1547 |
|
---|
1548 | /*
|
---|
1549 | * Dividend smaller than the divisor. Zero quotient, all divisor.
|
---|
1550 | */
|
---|
1551 | int iDiff = rtBigNumMagnitudeCompare(pDividend, pDivisor);
|
---|
1552 | if (iDiff < 0)
|
---|
1553 | return rtBigNumMagnitudeCopy(pRemainder, pDividend);
|
---|
1554 |
|
---|
1555 | /*
|
---|
1556 | * Since we already have done the compare, check if the two values are the
|
---|
1557 | * same. The result is 1 and no remainder then.
|
---|
1558 | */
|
---|
1559 | if (iDiff == 0)
|
---|
1560 | return VINF_SUCCESS;
|
---|
1561 |
|
---|
1562 | /*
|
---|
1563 | * Do very simple long division. This ain't fast, but it does the trick.
|
---|
1564 | */
|
---|
1565 | int rc = VINF_SUCCESS;
|
---|
1566 | uint32_t iBit = rtBigNumMagnitudeBitWidth(pDividend);
|
---|
1567 | while (iBit-- > 0)
|
---|
1568 | {
|
---|
1569 | rc = rtBigNumMagnitudeShiftLeftOne(pRemainder, rtBigNumMagnitudeGetBit(pDividend, iBit));
|
---|
1570 | AssertRCBreak(rc);
|
---|
1571 | iDiff = rtBigNumMagnitudeCompare(pRemainder, pDivisor);
|
---|
1572 | if (iDiff >= 0)
|
---|
1573 | {
|
---|
1574 | if (iDiff != 0)
|
---|
1575 | rtBigNumMagnitudeSubThis(pRemainder, pDivisor);
|
---|
1576 | else
|
---|
1577 | pRemainder->cUsed = 0;
|
---|
1578 | AssertRCBreak(rc);
|
---|
1579 | }
|
---|
1580 | }
|
---|
1581 |
|
---|
1582 | /* This shouldn't be necessary. */
|
---|
1583 | rtBigNumStripTrailingZeros(pRemainder);
|
---|
1584 | return rc;
|
---|
1585 | }
|
---|
1586 |
|
---|
1587 |
|
---|
1588 | RTDECL(int) RTBigNumModulo(PRTBIGNUM pRemainder, PCRTBIGNUM pDividend, PCRTBIGNUM pDivisor)
|
---|
1589 | {
|
---|
1590 | Assert(pRemainder != pDividend); Assert(pRemainder != pDivisor);
|
---|
1591 | AssertReturn(pRemainder->fSensitive >= (pDividend->fSensitive | pDivisor->fSensitive), VERR_BIGNUM_SENSITIVE_INPUT);
|
---|
1592 |
|
---|
1593 | int rc = rtBigNumUnscramble(pRemainder);
|
---|
1594 | if (RT_SUCCESS(rc))
|
---|
1595 | {
|
---|
1596 | rc = rtBigNumUnscramble((PRTBIGNUM)pDividend);
|
---|
1597 | if (RT_SUCCESS(rc))
|
---|
1598 | {
|
---|
1599 | rc = rtBigNumUnscramble((PRTBIGNUM)pDivisor);
|
---|
1600 | if (RT_SUCCESS(rc))
|
---|
1601 | {
|
---|
1602 | /*
|
---|
1603 | * The sign value of the remainder is the same as the dividend.
|
---|
1604 | */
|
---|
1605 | pRemainder->fNegative = pDividend->fNegative;
|
---|
1606 |
|
---|
1607 | rc = rtBigNumMagnitudeModulo(pRemainder, pDividend, pDivisor);
|
---|
1608 |
|
---|
1609 | if (pRemainder->cUsed == 0)
|
---|
1610 | pRemainder->fNegative = 0;
|
---|
1611 |
|
---|
1612 | rtBigNumScramble((PRTBIGNUM)pDivisor);
|
---|
1613 | }
|
---|
1614 | rtBigNumScramble((PRTBIGNUM)pDividend);
|
---|
1615 | }
|
---|
1616 | rtBigNumScramble(pRemainder);
|
---|
1617 | }
|
---|
1618 | return rc;
|
---|
1619 | }
|
---|
1620 |
|
---|
1621 |
|
---|
1622 |
|
---|
1623 | /**
|
---|
1624 | * Exponentiate the magnitude.
|
---|
1625 | *
|
---|
1626 | * All variables must be unscrambled. The sign flag is not considered nor
|
---|
1627 | * touched, this means the caller have to reject negative exponents.
|
---|
1628 | *
|
---|
1629 | * @returns IPRT status code.
|
---|
1630 | * @param pResult Where to return power.
|
---|
1631 | * @param pBase The base value.
|
---|
1632 | * @param pExponent The exponent (assumed positive or zero).
|
---|
1633 | */
|
---|
1634 | static int rtBigNumMagnitudeExponentiate(PRTBIGNUM pResult, PCRTBIGNUM pBase, PCRTBIGNUM pExponent)
|
---|
1635 | {
|
---|
1636 | Assert(pResult != pBase); Assert(pResult != pExponent);
|
---|
1637 | Assert(!pResult->fCurScrambled); Assert(!pBase->fCurScrambled); Assert(!pExponent->fCurScrambled);
|
---|
1638 |
|
---|
1639 | /*
|
---|
1640 | * A couple of special cases.
|
---|
1641 | */
|
---|
1642 | int rc;
|
---|
1643 | /* base ^ 0 => 1. */
|
---|
1644 | if (pExponent->cUsed == 0)
|
---|
1645 | {
|
---|
1646 | rc = rtBigNumSetUsed(pResult, 1);
|
---|
1647 | if (RT_SUCCESS(rc))
|
---|
1648 | pResult->pauElements[0] = 1;
|
---|
1649 | return rc;
|
---|
1650 | }
|
---|
1651 |
|
---|
1652 | /* base ^ 1 => base. */
|
---|
1653 | if (pExponent->cUsed == 1 && pExponent->pauElements[0] == 1)
|
---|
1654 | return rtBigNumMagnitudeCopy(pResult, pBase);
|
---|
1655 |
|
---|
1656 | /*
|
---|
1657 | * Set up.
|
---|
1658 | */
|
---|
1659 | /* Init temporary power-of-two variable to base. */
|
---|
1660 | RTBIGNUM Pow2;
|
---|
1661 | rc = rtBigNumCloneInternal(&Pow2, pBase);
|
---|
1662 | if (RT_SUCCESS(rc))
|
---|
1663 | {
|
---|
1664 | /* Init result to 1. */
|
---|
1665 | rc = rtBigNumSetUsed(pResult, 1);
|
---|
1666 | if (RT_SUCCESS(rc))
|
---|
1667 | {
|
---|
1668 | pResult->pauElements[0] = 1;
|
---|
1669 |
|
---|
1670 | /* Make a temporary variable that we can use for temporary storage of the result. */
|
---|
1671 | RTBIGNUM TmpMultiplicand;
|
---|
1672 | rc = rtBigNumCloneInternal(&TmpMultiplicand, pResult);
|
---|
1673 | if (RT_SUCCESS(rc))
|
---|
1674 | {
|
---|
1675 | /*
|
---|
1676 | * Exponentiation by squaring. Reduces the number of
|
---|
1677 | * multiplications to: NumBitsSet(Exponent) + BitWidth(Exponent).
|
---|
1678 | */
|
---|
1679 | uint32_t const cExpBits = rtBigNumMagnitudeBitWidth(pExponent);
|
---|
1680 | uint32_t iBit = 0;
|
---|
1681 | for (;;)
|
---|
1682 | {
|
---|
1683 | if (rtBigNumMagnitudeGetBit(pExponent, iBit) != 0)
|
---|
1684 | {
|
---|
1685 | rc = rtBigNumMagnitudeCopy(&TmpMultiplicand, pResult);
|
---|
1686 | if (RT_SUCCESS(rc))
|
---|
1687 | rc = rtBigNumMagnitudeMultiply(pResult, &TmpMultiplicand, &Pow2);
|
---|
1688 | if (RT_FAILURE(rc))
|
---|
1689 | break;
|
---|
1690 | }
|
---|
1691 |
|
---|
1692 | /* Done? */
|
---|
1693 | iBit++;
|
---|
1694 | if (iBit >= cExpBits)
|
---|
1695 | break;
|
---|
1696 |
|
---|
1697 | /* Not done yet, square the base again. */
|
---|
1698 | rc = rtBigNumMagnitudeCopy(&TmpMultiplicand, &Pow2);
|
---|
1699 | if (RT_SUCCESS(rc))
|
---|
1700 | rc = rtBigNumMagnitudeMultiply(&Pow2, &TmpMultiplicand, &TmpMultiplicand);
|
---|
1701 | if (RT_FAILURE(rc))
|
---|
1702 | break;
|
---|
1703 | }
|
---|
1704 | }
|
---|
1705 | }
|
---|
1706 | RTBigNumDestroy(&Pow2);
|
---|
1707 | }
|
---|
1708 | return rc;
|
---|
1709 | }
|
---|
1710 |
|
---|
1711 |
|
---|
1712 | RTDECL(int) RTBigNumExponentiate(PRTBIGNUM pResult, PCRTBIGNUM pBase, PCRTBIGNUM pExponent)
|
---|
1713 | {
|
---|
1714 | Assert(pResult != pBase); Assert(pResult != pExponent);
|
---|
1715 | AssertReturn(pResult->fSensitive >= (pBase->fSensitive | pExponent->fSensitive), VERR_BIGNUM_SENSITIVE_INPUT);
|
---|
1716 |
|
---|
1717 | int rc = rtBigNumUnscramble(pResult);
|
---|
1718 | if (RT_SUCCESS(rc))
|
---|
1719 | {
|
---|
1720 | rc = rtBigNumUnscramble((PRTBIGNUM)pBase);
|
---|
1721 | if (RT_SUCCESS(rc))
|
---|
1722 | {
|
---|
1723 | rc = rtBigNumUnscramble((PRTBIGNUM)pExponent);
|
---|
1724 | if (RT_SUCCESS(rc))
|
---|
1725 | {
|
---|
1726 | if (!pExponent->fNegative)
|
---|
1727 | {
|
---|
1728 | pResult->fNegative = pBase->fNegative; /* sign unchanged. */
|
---|
1729 | rc = rtBigNumMagnitudeExponentiate(pResult, pBase, pExponent);
|
---|
1730 | }
|
---|
1731 | else
|
---|
1732 | rc = VERR_BIGNUM_NEGATIVE_EXPONENT;
|
---|
1733 |
|
---|
1734 | rtBigNumScramble((PRTBIGNUM)pExponent);
|
---|
1735 | }
|
---|
1736 | rtBigNumScramble((PRTBIGNUM)pBase);
|
---|
1737 | }
|
---|
1738 | rtBigNumScramble(pResult);
|
---|
1739 | }
|
---|
1740 | return rc;
|
---|
1741 | }
|
---|
1742 |
|
---|
1743 |
|
---|
1744 | /**
|
---|
1745 | * Modular exponentiation, magnitudes only.
|
---|
1746 | *
|
---|
1747 | * All variables must be unscrambled. The sign flag is not considered nor
|
---|
1748 | * touched, this means the caller have to reject negative exponents and do any
|
---|
1749 | * other necessary sign bit fiddling.
|
---|
1750 | *
|
---|
1751 | * @returns IPRT status code.
|
---|
1752 | * @param pResult Where to return the remainder of the power.
|
---|
1753 | * @param pBase The base value.
|
---|
1754 | * @param pExponent The exponent (assumed positive or zero).
|
---|
1755 | * @param pModulus The modulus value (or divisor if you like).
|
---|
1756 | */
|
---|
1757 | static int rtBigNumMagnitudeModExp(PRTBIGNUM pResult, PRTBIGNUM pBase, PRTBIGNUM pExponent, PRTBIGNUM pModulus)
|
---|
1758 | {
|
---|
1759 | Assert(pResult != pBase); Assert(pResult != pBase); Assert(pResult != pExponent); Assert(pResult != pModulus);
|
---|
1760 | Assert(!pResult->fCurScrambled); Assert(!pBase->fCurScrambled); Assert(!pExponent->fCurScrambled); Assert(!pModulus->fCurScrambled);
|
---|
1761 | int rc;
|
---|
1762 |
|
---|
1763 | /*
|
---|
1764 | * Check some special cases to get them out of the way.
|
---|
1765 | */
|
---|
1766 | /* Div by 0 => invalid. */
|
---|
1767 | if (pModulus->cUsed == 0)
|
---|
1768 | return VERR_BIGNUM_DIV_BY_ZERO;
|
---|
1769 |
|
---|
1770 | /* Div by 1 => no remainder. */
|
---|
1771 | if (pModulus->cUsed == 1 && pModulus->pauElements[0] == 1)
|
---|
1772 | {
|
---|
1773 | pResult->cUsed = 0;
|
---|
1774 | return VINF_SUCCESS;
|
---|
1775 | }
|
---|
1776 |
|
---|
1777 | /* base ^ 0 => 1. */
|
---|
1778 | if (pExponent->cUsed == 0)
|
---|
1779 | {
|
---|
1780 | rc = rtBigNumSetUsed(pResult, 1);
|
---|
1781 | if (RT_SUCCESS(rc))
|
---|
1782 | pResult->pauElements[0] = 1;
|
---|
1783 | return rc;
|
---|
1784 | }
|
---|
1785 |
|
---|
1786 | /* base ^ 1 => base. */
|
---|
1787 | if (pExponent->cUsed == 1 && pExponent->pauElements[0] == 1)
|
---|
1788 | return rtBigNumMagnitudeModulo(pResult, pBase, pModulus);
|
---|
1789 |
|
---|
1790 | /*
|
---|
1791 | * Set up.
|
---|
1792 | */
|
---|
1793 | /* Result = 1; preallocate space for the result while at it. */
|
---|
1794 | rc = rtBigNumSetUsed(pResult, pModulus->cUsed + 1);
|
---|
1795 | if (RT_SUCCESS(rc))
|
---|
1796 | rc = rtBigNumSetUsed(pResult, 1);
|
---|
1797 | if (RT_SUCCESS(rc))
|
---|
1798 | {
|
---|
1799 | pResult->pauElements[0] = 1;
|
---|
1800 |
|
---|
1801 | /* ModBase = pBase or pBase % pModulus depending on the difference in size. */
|
---|
1802 | RTBIGNUM Pow2;
|
---|
1803 | if (pBase->cUsed <= pModulus->cUsed + pModulus->cUsed / 2)
|
---|
1804 | rc = rtBigNumCloneInternal(&Pow2, pBase);
|
---|
1805 | else
|
---|
1806 | rc = rtBigNumMagnitudeModulo(rtBigNumInitZeroTemplate(&Pow2, pBase), pBase, pModulus);
|
---|
1807 |
|
---|
1808 | /* Need a couple of temporary variables. */
|
---|
1809 | RTBIGNUM TmpMultiplicand;
|
---|
1810 | rtBigNumInitZeroTemplate(&TmpMultiplicand, pResult);
|
---|
1811 |
|
---|
1812 | RTBIGNUM TmpProduct;
|
---|
1813 | rtBigNumInitZeroTemplate(&TmpProduct, pResult);
|
---|
1814 |
|
---|
1815 | /*
|
---|
1816 | * We combine the exponentiation by squaring with the fact that:
|
---|
1817 | * (a*b) mod n = ( (a mod n) * (b mod n) ) mod n
|
---|
1818 | *
|
---|
1819 | * Thus, we can reduce the size of intermediate results by mod'ing them
|
---|
1820 | * in each step.
|
---|
1821 | */
|
---|
1822 | uint32_t const cExpBits = rtBigNumMagnitudeBitWidth(pExponent);
|
---|
1823 | uint32_t iBit = 0;
|
---|
1824 | for (;;)
|
---|
1825 | {
|
---|
1826 | if (rtBigNumMagnitudeGetBit(pExponent, iBit) != 0)
|
---|
1827 | {
|
---|
1828 | rc = rtBigNumMagnitudeCopy(&TmpMultiplicand, pResult);
|
---|
1829 | if (RT_SUCCESS(rc))
|
---|
1830 | rc = rtBigNumMagnitudeMultiply(&TmpProduct, &TmpMultiplicand, &Pow2);
|
---|
1831 | if (RT_SUCCESS(rc))
|
---|
1832 | rc = rtBigNumMagnitudeModulo(pResult, &TmpProduct, pModulus);
|
---|
1833 | if (RT_FAILURE(rc))
|
---|
1834 | break;
|
---|
1835 | }
|
---|
1836 |
|
---|
1837 | /* Done? */
|
---|
1838 | iBit++;
|
---|
1839 | if (iBit >= cExpBits)
|
---|
1840 | break;
|
---|
1841 |
|
---|
1842 | /* Not done yet, square and mod the base again. */
|
---|
1843 | rc = rtBigNumMagnitudeCopy(&TmpMultiplicand, &Pow2);
|
---|
1844 | if (RT_SUCCESS(rc))
|
---|
1845 | rc = rtBigNumMagnitudeMultiply(&TmpProduct, &TmpMultiplicand, &TmpMultiplicand);
|
---|
1846 | if (RT_SUCCESS(rc))
|
---|
1847 | rc = rtBigNumMagnitudeModulo(&Pow2, &TmpProduct, pModulus);
|
---|
1848 | if (RT_FAILURE(rc))
|
---|
1849 | break;
|
---|
1850 | }
|
---|
1851 |
|
---|
1852 | RTBigNumDestroy(&TmpMultiplicand);
|
---|
1853 | RTBigNumDestroy(&TmpProduct);
|
---|
1854 | RTBigNumDestroy(&Pow2);
|
---|
1855 | }
|
---|
1856 | return rc;
|
---|
1857 | }
|
---|
1858 |
|
---|
1859 |
|
---|
1860 | RTDECL(int) RTBigNumModExp(PRTBIGNUM pResult, PRTBIGNUM pBase, PRTBIGNUM pExponent, PRTBIGNUM pModulus)
|
---|
1861 | {
|
---|
1862 | Assert(pResult != pBase); Assert(pResult != pBase); Assert(pResult != pExponent); Assert(pResult != pModulus);
|
---|
1863 | AssertReturn(pResult->fSensitive >= (pBase->fSensitive | pExponent->fSensitive | pModulus->fSensitive),
|
---|
1864 | VERR_BIGNUM_SENSITIVE_INPUT);
|
---|
1865 |
|
---|
1866 | int rc = rtBigNumUnscramble(pResult);
|
---|
1867 | if (RT_SUCCESS(rc))
|
---|
1868 | {
|
---|
1869 | rc = rtBigNumUnscramble((PRTBIGNUM)pBase);
|
---|
1870 | if (RT_SUCCESS(rc))
|
---|
1871 | {
|
---|
1872 | rc = rtBigNumUnscramble((PRTBIGNUM)pExponent);
|
---|
1873 | if (RT_SUCCESS(rc))
|
---|
1874 | {
|
---|
1875 | rc = rtBigNumUnscramble((PRTBIGNUM)pModulus);
|
---|
1876 | if (RT_SUCCESS(rc))
|
---|
1877 | {
|
---|
1878 | if (!pExponent->fNegative)
|
---|
1879 | {
|
---|
1880 | pResult->fNegative = pModulus->fNegative; /* pBase ^ pExponent / pModulus; result = remainder. */
|
---|
1881 | rc = rtBigNumMagnitudeModExp(pResult, pBase, pExponent, pModulus);
|
---|
1882 | }
|
---|
1883 | else
|
---|
1884 | rc = VERR_BIGNUM_NEGATIVE_EXPONENT;
|
---|
1885 | rtBigNumScramble((PRTBIGNUM)pModulus);
|
---|
1886 | }
|
---|
1887 | rtBigNumScramble((PRTBIGNUM)pExponent);
|
---|
1888 | }
|
---|
1889 | rtBigNumScramble((PRTBIGNUM)pBase);
|
---|
1890 | }
|
---|
1891 | rtBigNumScramble(pResult);
|
---|
1892 | }
|
---|
1893 | return rc;
|
---|
1894 | }
|
---|
1895 |
|
---|