VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 23306

Last change on this file since 23306 was 23306, checked in by vboxsync, 16 years ago

PGM: Live state saving work (in progress).

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 248.5 KB
Line 
1/* $Id: PGM.cpp 23306 2009-09-24 17:16:02Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.215389.xyz. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/** @page pg_pgm PGM - The Page Manager and Monitor
24 *
25 * @see grp_pgm,
26 * @ref pg_pgm_pool,
27 * @ref pg_pgm_phys.
28 *
29 *
30 * @section sec_pgm_modes Paging Modes
31 *
32 * There are three memory contexts: Host Context (HC), Guest Context (GC)
33 * and intermediate context. When talking about paging HC can also be refered to
34 * as "host paging", and GC refered to as "shadow paging".
35 *
36 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
37 * is defined by the host operating system. The mode used in the shadow paging mode
38 * depends on the host paging mode and what the mode the guest is currently in. The
39 * following relation between the two is defined:
40 *
41 * @verbatim
42 Host > 32-bit | PAE | AMD64 |
43 Guest | | | |
44 ==v================================
45 32-bit 32-bit PAE PAE
46 -------|--------|--------|--------|
47 PAE PAE PAE PAE
48 -------|--------|--------|--------|
49 AMD64 AMD64 AMD64 AMD64
50 -------|--------|--------|--------| @endverbatim
51 *
52 * All configuration except those in the diagonal (upper left) are expected to
53 * require special effort from the switcher (i.e. a bit slower).
54 *
55 *
56 *
57 *
58 * @section sec_pgm_shw The Shadow Memory Context
59 *
60 *
61 * [..]
62 *
63 * Because of guest context mappings requires PDPT and PML4 entries to allow
64 * writing on AMD64, the two upper levels will have fixed flags whatever the
65 * guest is thinking of using there. So, when shadowing the PD level we will
66 * calculate the effective flags of PD and all the higher levels. In legacy
67 * PAE mode this only applies to the PWT and PCD bits (the rest are
68 * ignored/reserved/MBZ). We will ignore those bits for the present.
69 *
70 *
71 *
72 * @section sec_pgm_int The Intermediate Memory Context
73 *
74 * The world switch goes thru an intermediate memory context which purpose it is
75 * to provide different mappings of the switcher code. All guest mappings are also
76 * present in this context.
77 *
78 * The switcher code is mapped at the same location as on the host, at an
79 * identity mapped location (physical equals virtual address), and at the
80 * hypervisor location. The identity mapped location is for when the world
81 * switches that involves disabling paging.
82 *
83 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
84 * simplifies switching guest CPU mode and consistency at the cost of more
85 * code to do the work. All memory use for those page tables is located below
86 * 4GB (this includes page tables for guest context mappings).
87 *
88 *
89 * @subsection subsec_pgm_int_gc Guest Context Mappings
90 *
91 * During assignment and relocation of a guest context mapping the intermediate
92 * memory context is used to verify the new location.
93 *
94 * Guest context mappings are currently restricted to below 4GB, for reasons
95 * of simplicity. This may change when we implement AMD64 support.
96 *
97 *
98 *
99 *
100 * @section sec_pgm_misc Misc
101 *
102 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
103 *
104 * The differences between legacy PAE and long mode PAE are:
105 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
106 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
107 * usual meanings while 6 is ignored (AMD). This means that upon switching to
108 * legacy PAE mode we'll have to clear these bits and when going to long mode
109 * they must be set. This applies to both intermediate and shadow contexts,
110 * however we don't need to do it for the intermediate one since we're
111 * executing with CR0.WP at that time.
112 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
113 * a page aligned one is required.
114 *
115 *
116 * @section sec_pgm_handlers Access Handlers
117 *
118 * Placeholder.
119 *
120 *
121 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
122 *
123 * Placeholder.
124 *
125 *
126 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
127 *
128 * We currently implement three types of virtual access handlers: ALL, WRITE
129 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
130 *
131 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
132 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
133 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
134 * rest of this section is going to be about these handlers.
135 *
136 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
137 * how successfull this is gonna be...
138 *
139 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
140 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
141 * and create a new node that is inserted into the AVL tree (range key). Then
142 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
143 *
144 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
145 *
146 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
147 * via the current guest CR3 and update the physical page -> virtual handler
148 * translation. Needless to say, this doesn't exactly scale very well. If any changes
149 * are detected, it will flag a virtual bit update just like we did on registration.
150 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
151 *
152 * 2b. The virtual bit update process will iterate all the pages covered by all the
153 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
154 * virtual handlers on that page.
155 *
156 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
157 * we don't miss any alias mappings of the monitored pages.
158 *
159 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
160 *
161 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
162 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
163 * will call the handlers like in the next step. If the physical mapping has
164 * changed we will - some time in the future - perform a handler callback
165 * (optional) and update the physical -> virtual handler cache.
166 *
167 * 4. \#PF(,write) on a page in the range. This will cause the handler to
168 * be invoked.
169 *
170 * 5. The guest invalidates the page and changes the physical backing or
171 * unmaps it. This should cause the invalidation callback to be invoked
172 * (it might not yet be 100% perfect). Exactly what happens next... is
173 * this where we mess up and end up out of sync for a while?
174 *
175 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
176 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
177 * this handler to NONE and trigger a full PGM resync (basically the same
178 * as int step 1). Which means 2 is executed again.
179 *
180 *
181 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
182 *
183 * There is a bunch of things that needs to be done to make the virtual handlers
184 * work 100% correctly and work more efficiently.
185 *
186 * The first bit hasn't been implemented yet because it's going to slow the
187 * whole mess down even more, and besides it seems to be working reliably for
188 * our current uses. OTOH, some of the optimizations might end up more or less
189 * implementing the missing bits, so we'll see.
190 *
191 * On the optimization side, the first thing to do is to try avoid unnecessary
192 * cache flushing. Then try team up with the shadowing code to track changes
193 * in mappings by means of access to them (shadow in), updates to shadows pages,
194 * invlpg, and shadow PT discarding (perhaps).
195 *
196 * Some idea that have popped up for optimization for current and new features:
197 * - bitmap indicating where there are virtual handlers installed.
198 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
199 * - Further optimize this by min/max (needs min/max avl getters).
200 * - Shadow page table entry bit (if any left)?
201 *
202 */
203
204
205/** @page pg_pgm_phys PGM Physical Guest Memory Management
206 *
207 *
208 * Objectives:
209 * - Guest RAM over-commitment using memory ballooning,
210 * zero pages and general page sharing.
211 * - Moving or mirroring a VM onto a different physical machine.
212 *
213 *
214 * @subsection subsec_pgmPhys_Definitions Definitions
215 *
216 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
217 * machinery assoicated with it.
218 *
219 *
220 *
221 *
222 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
223 *
224 * Initially we map *all* guest memory to the (per VM) zero page, which
225 * means that none of the read functions will cause pages to be allocated.
226 *
227 * Exception, access bit in page tables that have been shared. This must
228 * be handled, but we must also make sure PGMGst*Modify doesn't make
229 * unnecessary modifications.
230 *
231 * Allocation points:
232 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
233 * - Replacing a zero page mapping at \#PF.
234 * - Replacing a shared page mapping at \#PF.
235 * - ROM registration (currently MMR3RomRegister).
236 * - VM restore (pgmR3Load).
237 *
238 * For the first three it would make sense to keep a few pages handy
239 * until we've reached the max memory commitment for the VM.
240 *
241 * For the ROM registration, we know exactly how many pages we need
242 * and will request these from ring-0. For restore, we will save
243 * the number of non-zero pages in the saved state and allocate
244 * them up front. This would allow the ring-0 component to refuse
245 * the request if the isn't sufficient memory available for VM use.
246 *
247 * Btw. for both ROM and restore allocations we won't be requiring
248 * zeroed pages as they are going to be filled instantly.
249 *
250 *
251 * @subsection subsec_pgmPhys_FreePage Freeing a page
252 *
253 * There are a few points where a page can be freed:
254 * - After being replaced by the zero page.
255 * - After being replaced by a shared page.
256 * - After being ballooned by the guest additions.
257 * - At reset.
258 * - At restore.
259 *
260 * When freeing one or more pages they will be returned to the ring-0
261 * component and replaced by the zero page.
262 *
263 * The reasoning for clearing out all the pages on reset is that it will
264 * return us to the exact same state as on power on, and may thereby help
265 * us reduce the memory load on the system. Further it might have a
266 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
267 *
268 * On restore, as mention under the allocation topic, pages should be
269 * freed / allocated depending on how many is actually required by the
270 * new VM state. The simplest approach is to do like on reset, and free
271 * all non-ROM pages and then allocate what we need.
272 *
273 * A measure to prevent some fragmentation, would be to let each allocation
274 * chunk have some affinity towards the VM having allocated the most pages
275 * from it. Also, try make sure to allocate from allocation chunks that
276 * are almost full. Admittedly, both these measures might work counter to
277 * our intentions and its probably not worth putting a lot of effort,
278 * cpu time or memory into this.
279 *
280 *
281 * @subsection subsec_pgmPhys_SharePage Sharing a page
282 *
283 * The basic idea is that there there will be a idle priority kernel
284 * thread walking the non-shared VM pages hashing them and looking for
285 * pages with the same checksum. If such pages are found, it will compare
286 * them byte-by-byte to see if they actually are identical. If found to be
287 * identical it will allocate a shared page, copy the content, check that
288 * the page didn't change while doing this, and finally request both the
289 * VMs to use the shared page instead. If the page is all zeros (special
290 * checksum and byte-by-byte check) it will request the VM that owns it
291 * to replace it with the zero page.
292 *
293 * To make this efficient, we will have to make sure not to try share a page
294 * that will change its contents soon. This part requires the most work.
295 * A simple idea would be to request the VM to write monitor the page for
296 * a while to make sure it isn't modified any time soon. Also, it may
297 * make sense to skip pages that are being write monitored since this
298 * information is readily available to the thread if it works on the
299 * per-VM guest memory structures (presently called PGMRAMRANGE).
300 *
301 *
302 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
303 *
304 * The pages are organized in allocation chunks in ring-0, this is a necessity
305 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
306 * could easily work on a page-by-page basis if we liked. Whether this is possible
307 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
308 * become a problem as part of the idea here is that we wish to return memory to
309 * the host system.
310 *
311 * For instance, starting two VMs at the same time, they will both allocate the
312 * guest memory on-demand and if permitted their page allocations will be
313 * intermixed. Shut down one of the two VMs and it will be difficult to return
314 * any memory to the host system because the page allocation for the two VMs are
315 * mixed up in the same allocation chunks.
316 *
317 * To further complicate matters, when pages are freed because they have been
318 * ballooned or become shared/zero the whole idea is that the page is supposed
319 * to be reused by another VM or returned to the host system. This will cause
320 * allocation chunks to contain pages belonging to different VMs and prevent
321 * returning memory to the host when one of those VM shuts down.
322 *
323 * The only way to really deal with this problem is to move pages. This can
324 * either be done at VM shutdown and or by the idle priority worker thread
325 * that will be responsible for finding sharable/zero pages. The mechanisms
326 * involved for coercing a VM to move a page (or to do it for it) will be
327 * the same as when telling it to share/zero a page.
328 *
329 *
330 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
331 *
332 * There's a difficult balance between keeping the per-page tracking structures
333 * (global and guest page) easy to use and keeping them from eating too much
334 * memory. We have limited virtual memory resources available when operating in
335 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
336 * tracking structures will be attemted designed such that we can deal with up
337 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
338 *
339 *
340 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
341 *
342 * @see pg_GMM
343 *
344 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
345 *
346 * Fixed info is the physical address of the page (HCPhys) and the page id
347 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
348 * Today we've restricting ourselves to 40(-12) bits because this is the current
349 * restrictions of all AMD64 implementations (I think Barcelona will up this
350 * to 48(-12) bits, not that it really matters) and I needed the bits for
351 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
352 * decent range for the page id: 2^(28+12) = 1024TB.
353 *
354 * In additions to these, we'll have to keep maintaining the page flags as we
355 * currently do. Although it wouldn't harm to optimize these quite a bit, like
356 * for instance the ROM shouldn't depend on having a write handler installed
357 * in order for it to become read-only. A RO/RW bit should be considered so
358 * that the page syncing code doesn't have to mess about checking multiple
359 * flag combinations (ROM || RW handler || write monitored) in order to
360 * figure out how to setup a shadow PTE. But this of course, is second
361 * priority at present. Current this requires 12 bits, but could probably
362 * be optimized to ~8.
363 *
364 * Then there's the 24 bits used to track which shadow page tables are
365 * currently mapping a page for the purpose of speeding up physical
366 * access handlers, and thereby the page pool cache. More bit for this
367 * purpose wouldn't hurt IIRC.
368 *
369 * Then there is a new bit in which we need to record what kind of page
370 * this is, shared, zero, normal or write-monitored-normal. This'll
371 * require 2 bits. One bit might be needed for indicating whether a
372 * write monitored page has been written to. And yet another one or
373 * two for tracking migration status. 3-4 bits total then.
374 *
375 * Whatever is left will can be used to record the sharabilitiy of a
376 * page. The page checksum will not be stored in the per-VM table as
377 * the idle thread will not be permitted to do modifications to it.
378 * It will instead have to keep its own working set of potentially
379 * shareable pages and their check sums and stuff.
380 *
381 * For the present we'll keep the current packing of the
382 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
383 * we'll have to change it to a struct with a total of 128-bits at
384 * our disposal.
385 *
386 * The initial layout will be like this:
387 * @verbatim
388 RTHCPHYS HCPhys; The current stuff.
389 63:40 Current shadow PT tracking stuff.
390 39:12 The physical page frame number.
391 11:0 The current flags.
392 uint32_t u28PageId : 28; The page id.
393 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
394 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
395 uint32_t u1Reserved : 1; Reserved for later.
396 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
397 @endverbatim
398 *
399 * The final layout will be something like this:
400 * @verbatim
401 RTHCPHYS HCPhys; The current stuff.
402 63:48 High page id (12+).
403 47:12 The physical page frame number.
404 11:0 Low page id.
405 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
406 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
407 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
408 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
409 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
410 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
411 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
412 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
413 @endverbatim
414 *
415 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
416 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
417 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
418 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
419 *
420 * A couple of cost examples for the total cost per-VM + kernel.
421 * 32-bit Windows and 32-bit linux:
422 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
423 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
424 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
425 * 64-bit Windows and 64-bit linux:
426 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
427 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
428 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
429 *
430 * UPDATE - 2007-09-27:
431 * Will need a ballooned flag/state too because we cannot
432 * trust the guest 100% and reporting the same page as ballooned more
433 * than once will put the GMM off balance.
434 *
435 *
436 * @subsection subsec_pgmPhys_Serializing Serializing Access
437 *
438 * Initially, we'll try a simple scheme:
439 *
440 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
441 * by the EMT thread of that VM while in the pgm critsect.
442 * - Other threads in the VM process that needs to make reliable use of
443 * the per-VM RAM tracking structures will enter the critsect.
444 * - No process external thread or kernel thread will ever try enter
445 * the pgm critical section, as that just won't work.
446 * - The idle thread (and similar threads) doesn't not need 100% reliable
447 * data when performing it tasks as the EMT thread will be the one to
448 * do the actual changes later anyway. So, as long as it only accesses
449 * the main ram range, it can do so by somehow preventing the VM from
450 * being destroyed while it works on it...
451 *
452 * - The over-commitment management, including the allocating/freeing
453 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
454 * more mundane mutex implementation is broken on Linux).
455 * - A separeate mutex is protecting the set of allocation chunks so
456 * that pages can be shared or/and freed up while some other VM is
457 * allocating more chunks. This mutex can be take from under the other
458 * one, but not the otherway around.
459 *
460 *
461 * @subsection subsec_pgmPhys_Request VM Request interface
462 *
463 * When in ring-0 it will become necessary to send requests to a VM so it can
464 * for instance move a page while defragmenting during VM destroy. The idle
465 * thread will make use of this interface to request VMs to setup shared
466 * pages and to perform write monitoring of pages.
467 *
468 * I would propose an interface similar to the current VMReq interface, similar
469 * in that it doesn't require locking and that the one sending the request may
470 * wait for completion if it wishes to. This shouldn't be very difficult to
471 * realize.
472 *
473 * The requests themselves are also pretty simple. They are basically:
474 * -# Check that some precondition is still true.
475 * -# Do the update.
476 * -# Update all shadow page tables involved with the page.
477 *
478 * The 3rd step is identical to what we're already doing when updating a
479 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
480 *
481 *
482 *
483 * @section sec_pgmPhys_MappingCaches Mapping Caches
484 *
485 * In order to be able to map in and out memory and to be able to support
486 * guest with more RAM than we've got virtual address space, we'll employing
487 * a mapping cache. There is already a tiny one for GC (see PGMGCDynMapGCPageEx)
488 * and we'll create a similar one for ring-0 unless we decide to setup a dedicate
489 * memory context for the HWACCM execution.
490 *
491 *
492 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
493 *
494 * We've considered implementing the ring-3 mapping cache page based but found
495 * that this was bother some when one had to take into account TLBs+SMP and
496 * portability (missing the necessary APIs on several platforms). There were
497 * also some performance concerns with this approach which hadn't quite been
498 * worked out.
499 *
500 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
501 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
502 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
503 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
504 * costly than a single page, although how much more costly is uncertain. We'll
505 * try address this by using a very big cache, preferably bigger than the actual
506 * VM RAM size if possible. The current VM RAM sizes should give some idea for
507 * 32-bit boxes, while on 64-bit we can probably get away with employing an
508 * unlimited cache.
509 *
510 * The cache have to parts, as already indicated, the ring-3 side and the
511 * ring-0 side.
512 *
513 * The ring-0 will be tied to the page allocator since it will operate on the
514 * memory objects it contains. It will therefore require the first ring-0 mutex
515 * discussed in @ref subsec_pgmPhys_Serializing. We
516 * some double house keeping wrt to who has mapped what I think, since both
517 * VMMR0.r0 and RTR0MemObj will keep track of mapping relataions
518 *
519 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
520 * require anyone that desires to do changes to the mapping cache to do that
521 * from within this critsect. Alternatively, we could employ a separate critsect
522 * for serializing changes to the mapping cache as this would reduce potential
523 * contention with other threads accessing mappings unrelated to the changes
524 * that are in process. We can see about this later, contention will show
525 * up in the statistics anyway, so it'll be simple to tell.
526 *
527 * The organization of the ring-3 part will be very much like how the allocation
528 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
529 * having to walk the tree all the time, we'll have a couple of lookaside entries
530 * like in we do for I/O ports and MMIO in IOM.
531 *
532 * The simplified flow of a PGMPhysRead/Write function:
533 * -# Enter the PGM critsect.
534 * -# Lookup GCPhys in the ram ranges and get the Page ID.
535 * -# Calc the Allocation Chunk ID from the Page ID.
536 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
537 * If not found in cache:
538 * -# Call ring-0 and request it to be mapped and supply
539 * a chunk to be unmapped if the cache is maxed out already.
540 * -# Insert the new mapping into the AVL tree (id + R3 address).
541 * -# Update the relevant lookaside entry and return the mapping address.
542 * -# Do the read/write according to monitoring flags and everything.
543 * -# Leave the critsect.
544 *
545 *
546 * @section sec_pgmPhys_Fallback Fallback
547 *
548 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
549 * API and thus require a fallback.
550 *
551 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
552 * will return to the ring-3 caller (and later ring-0) and asking it to seed
553 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
554 * then perform an SUPR3PageAlloc(cbChunk >> PAGE_SHIFT) call and make a
555 * "SeededAllocPages" call to ring-0.
556 *
557 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
558 * all page sharing (zero page detection will continue). It will also force
559 * all allocations to come from the VM which seeded the page. Both these
560 * measures are taken to make sure that there will never be any need for
561 * mapping anything into ring-3 - everything will be mapped already.
562 *
563 * Whether we'll continue to use the current MM locked memory management
564 * for this I don't quite know (I'd prefer not to and just ditch that all
565 * togther), we'll see what's simplest to do.
566 *
567 *
568 *
569 * @section sec_pgmPhys_Changes Changes
570 *
571 * Breakdown of the changes involved?
572 */
573
574/*******************************************************************************
575* Header Files *
576*******************************************************************************/
577#define LOG_GROUP LOG_GROUP_PGM
578#include <VBox/dbgf.h>
579#include <VBox/pgm.h>
580#include <VBox/cpum.h>
581#include <VBox/iom.h>
582#include <VBox/sup.h>
583#include <VBox/mm.h>
584#include <VBox/em.h>
585#include <VBox/stam.h>
586#include <VBox/rem.h>
587#include <VBox/selm.h>
588#include <VBox/ssm.h>
589#include <VBox/hwaccm.h>
590#include "PGMInternal.h"
591#include <VBox/vm.h>
592
593#include <VBox/dbg.h>
594#include <VBox/param.h>
595#include <VBox/err.h>
596
597#include <iprt/asm.h>
598#include <iprt/assert.h>
599#include <iprt/env.h>
600#include <iprt/mem.h>
601#include <iprt/file.h>
602#include <iprt/string.h>
603#include <iprt/thread.h>
604
605
606/*******************************************************************************
607* Defined Constants And Macros *
608*******************************************************************************/
609/** Saved state data unit version for 2.5.x and later. */
610#define PGM_SAVED_STATE_VERSION 9
611/** Saved state data unit version for 2.2.2 and later. */
612#define PGM_SAVED_STATE_VERSION_2_2_2 8
613/** Saved state data unit version for 2.2.0. */
614#define PGM_SAVED_STATE_VERSION_RR_DESC 7
615/** Saved state data unit version. */
616#define PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE 6
617
618
619/*******************************************************************************
620* Internal Functions *
621*******************************************************************************/
622static int pgmR3InitPaging(PVM pVM);
623static void pgmR3InitStats(PVM pVM);
624static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
625static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
626static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
627static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
628static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
629static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
630#ifdef VBOX_STRICT
631static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
632#endif
633static DECLCALLBACK(int) pgmR3LivePrep(PVM pVM, PSSMHANDLE pSSM);
634static DECLCALLBACK(int) pgmR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass);
635static DECLCALLBACK(int) pgmR3LiveVote(PVM pVM, PSSMHANDLE pSSM);
636static DECLCALLBACK(int) pgmR3SaveExec(PVM pVM, PSSMHANDLE pSSM);
637static DECLCALLBACK(int) pgmR3SaveDone(PVM pVM, PSSMHANDLE pSSM);
638static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
639static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
640static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst);
641static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
642
643#ifdef VBOX_WITH_DEBUGGER
644/** @todo Convert the first two commands to 'info' items. */
645static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
646static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
647static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
648static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
649static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
650# ifdef VBOX_STRICT
651static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
652# endif
653static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
654#endif
655
656
657/*******************************************************************************
658* Global Variables *
659*******************************************************************************/
660#ifdef VBOX_WITH_DEBUGGER
661/** Argument descriptors for '.pgmerror' and '.pgmerroroff'. */
662static const DBGCVARDESC g_aPgmErrorArgs[] =
663{
664 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
665 { 0, 1, DBGCVAR_CAT_STRING, 0, "where", "Error injection location." },
666};
667
668static const DBGCVARDESC g_aPgmPhysToFileArgs[] =
669{
670 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
671 { 1, 1, DBGCVAR_CAT_STRING, 0, "file", "The file name." },
672 { 0, 1, DBGCVAR_CAT_STRING, 0, "nozero", "If present, zero pages are skipped." },
673};
674
675/** Command descriptors. */
676static const DBGCCMD g_aCmds[] =
677{
678 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
679 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
680 { "pgmmap", 0, 0, NULL, 0, NULL, 0, pgmR3CmdMap, "", "Display the mapping ranges." },
681 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
682 { "pgmerror", 0, 1, &g_aPgmErrorArgs[0], 1, NULL, 0, pgmR3CmdError, "", "Enables inject runtime of errors into parts of PGM." },
683 { "pgmerroroff", 0, 1, &g_aPgmErrorArgs[0], 1, NULL, 0, pgmR3CmdError, "", "Disables inject runtime errors into parts of PGM." },
684#ifdef VBOX_STRICT
685 { "pgmassertcr3", 0, 0, NULL, 0, NULL, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
686#endif
687 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
688 { "pgmphystofile", 1, 2, &g_aPgmPhysToFileArgs[0], 2, NULL, 0, pgmR3CmdPhysToFile, "", "Save the physical memory to file." },
689};
690#endif
691
692
693
694
695/*
696 * Shadow - 32-bit mode
697 */
698#define PGM_SHW_TYPE PGM_TYPE_32BIT
699#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
700#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
701#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
702#include "PGMShw.h"
703
704/* Guest - real mode */
705#define PGM_GST_TYPE PGM_TYPE_REAL
706#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
707#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
708#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
709#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
710#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
711#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
712#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
713#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
714#include "PGMBth.h"
715#include "PGMGstDefs.h"
716#include "PGMGst.h"
717#undef BTH_PGMPOOLKIND_PT_FOR_PT
718#undef BTH_PGMPOOLKIND_ROOT
719#undef PGM_BTH_NAME
720#undef PGM_BTH_NAME_RC_STR
721#undef PGM_BTH_NAME_R0_STR
722#undef PGM_GST_TYPE
723#undef PGM_GST_NAME
724#undef PGM_GST_NAME_RC_STR
725#undef PGM_GST_NAME_R0_STR
726
727/* Guest - protected mode */
728#define PGM_GST_TYPE PGM_TYPE_PROT
729#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
730#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
731#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
732#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
733#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
734#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
735#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
736#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
737#include "PGMBth.h"
738#include "PGMGstDefs.h"
739#include "PGMGst.h"
740#undef BTH_PGMPOOLKIND_PT_FOR_PT
741#undef BTH_PGMPOOLKIND_ROOT
742#undef PGM_BTH_NAME
743#undef PGM_BTH_NAME_RC_STR
744#undef PGM_BTH_NAME_R0_STR
745#undef PGM_GST_TYPE
746#undef PGM_GST_NAME
747#undef PGM_GST_NAME_RC_STR
748#undef PGM_GST_NAME_R0_STR
749
750/* Guest - 32-bit mode */
751#define PGM_GST_TYPE PGM_TYPE_32BIT
752#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
753#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
754#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
755#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
756#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
757#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
758#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
759#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
760#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
761#include "PGMBth.h"
762#include "PGMGstDefs.h"
763#include "PGMGst.h"
764#undef BTH_PGMPOOLKIND_PT_FOR_BIG
765#undef BTH_PGMPOOLKIND_PT_FOR_PT
766#undef BTH_PGMPOOLKIND_ROOT
767#undef PGM_BTH_NAME
768#undef PGM_BTH_NAME_RC_STR
769#undef PGM_BTH_NAME_R0_STR
770#undef PGM_GST_TYPE
771#undef PGM_GST_NAME
772#undef PGM_GST_NAME_RC_STR
773#undef PGM_GST_NAME_R0_STR
774
775#undef PGM_SHW_TYPE
776#undef PGM_SHW_NAME
777#undef PGM_SHW_NAME_RC_STR
778#undef PGM_SHW_NAME_R0_STR
779
780
781/*
782 * Shadow - PAE mode
783 */
784#define PGM_SHW_TYPE PGM_TYPE_PAE
785#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
786#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
787#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
788#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
789#include "PGMShw.h"
790
791/* Guest - real mode */
792#define PGM_GST_TYPE PGM_TYPE_REAL
793#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
794#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
795#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
796#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
797#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
798#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
799#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
800#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
801#include "PGMGstDefs.h"
802#include "PGMBth.h"
803#undef BTH_PGMPOOLKIND_PT_FOR_PT
804#undef BTH_PGMPOOLKIND_ROOT
805#undef PGM_BTH_NAME
806#undef PGM_BTH_NAME_RC_STR
807#undef PGM_BTH_NAME_R0_STR
808#undef PGM_GST_TYPE
809#undef PGM_GST_NAME
810#undef PGM_GST_NAME_RC_STR
811#undef PGM_GST_NAME_R0_STR
812
813/* Guest - protected mode */
814#define PGM_GST_TYPE PGM_TYPE_PROT
815#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
816#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
817#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
818#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
819#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
820#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
821#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
822#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
823#include "PGMGstDefs.h"
824#include "PGMBth.h"
825#undef BTH_PGMPOOLKIND_PT_FOR_PT
826#undef BTH_PGMPOOLKIND_ROOT
827#undef PGM_BTH_NAME
828#undef PGM_BTH_NAME_RC_STR
829#undef PGM_BTH_NAME_R0_STR
830#undef PGM_GST_TYPE
831#undef PGM_GST_NAME
832#undef PGM_GST_NAME_RC_STR
833#undef PGM_GST_NAME_R0_STR
834
835/* Guest - 32-bit mode */
836#define PGM_GST_TYPE PGM_TYPE_32BIT
837#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
838#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
839#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
840#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
841#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
842#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
843#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
844#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
845#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
846#include "PGMGstDefs.h"
847#include "PGMBth.h"
848#undef BTH_PGMPOOLKIND_PT_FOR_BIG
849#undef BTH_PGMPOOLKIND_PT_FOR_PT
850#undef BTH_PGMPOOLKIND_ROOT
851#undef PGM_BTH_NAME
852#undef PGM_BTH_NAME_RC_STR
853#undef PGM_BTH_NAME_R0_STR
854#undef PGM_GST_TYPE
855#undef PGM_GST_NAME
856#undef PGM_GST_NAME_RC_STR
857#undef PGM_GST_NAME_R0_STR
858
859/* Guest - PAE mode */
860#define PGM_GST_TYPE PGM_TYPE_PAE
861#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
862#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
863#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
864#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
865#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
866#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
867#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
868#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
869#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
870#include "PGMBth.h"
871#include "PGMGstDefs.h"
872#include "PGMGst.h"
873#undef BTH_PGMPOOLKIND_PT_FOR_BIG
874#undef BTH_PGMPOOLKIND_PT_FOR_PT
875#undef BTH_PGMPOOLKIND_ROOT
876#undef PGM_BTH_NAME
877#undef PGM_BTH_NAME_RC_STR
878#undef PGM_BTH_NAME_R0_STR
879#undef PGM_GST_TYPE
880#undef PGM_GST_NAME
881#undef PGM_GST_NAME_RC_STR
882#undef PGM_GST_NAME_R0_STR
883
884#undef PGM_SHW_TYPE
885#undef PGM_SHW_NAME
886#undef PGM_SHW_NAME_RC_STR
887#undef PGM_SHW_NAME_R0_STR
888
889
890/*
891 * Shadow - AMD64 mode
892 */
893#define PGM_SHW_TYPE PGM_TYPE_AMD64
894#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
895#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
896#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
897#include "PGMShw.h"
898
899#ifdef VBOX_WITH_64_BITS_GUESTS
900/* Guest - AMD64 mode */
901# define PGM_GST_TYPE PGM_TYPE_AMD64
902# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
903# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
904# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
905# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
906# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
907# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
908# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
909# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
910# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
911# include "PGMBth.h"
912# include "PGMGstDefs.h"
913# include "PGMGst.h"
914# undef BTH_PGMPOOLKIND_PT_FOR_BIG
915# undef BTH_PGMPOOLKIND_PT_FOR_PT
916# undef BTH_PGMPOOLKIND_ROOT
917# undef PGM_BTH_NAME
918# undef PGM_BTH_NAME_RC_STR
919# undef PGM_BTH_NAME_R0_STR
920# undef PGM_GST_TYPE
921# undef PGM_GST_NAME
922# undef PGM_GST_NAME_RC_STR
923# undef PGM_GST_NAME_R0_STR
924#endif /* VBOX_WITH_64_BITS_GUESTS */
925
926#undef PGM_SHW_TYPE
927#undef PGM_SHW_NAME
928#undef PGM_SHW_NAME_RC_STR
929#undef PGM_SHW_NAME_R0_STR
930
931
932/*
933 * Shadow - Nested paging mode
934 */
935#define PGM_SHW_TYPE PGM_TYPE_NESTED
936#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
937#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
938#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
939#include "PGMShw.h"
940
941/* Guest - real mode */
942#define PGM_GST_TYPE PGM_TYPE_REAL
943#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
944#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
945#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
946#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
947#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
948#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
949#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
950#include "PGMGstDefs.h"
951#include "PGMBth.h"
952#undef BTH_PGMPOOLKIND_PT_FOR_PT
953#undef PGM_BTH_NAME
954#undef PGM_BTH_NAME_RC_STR
955#undef PGM_BTH_NAME_R0_STR
956#undef PGM_GST_TYPE
957#undef PGM_GST_NAME
958#undef PGM_GST_NAME_RC_STR
959#undef PGM_GST_NAME_R0_STR
960
961/* Guest - protected mode */
962#define PGM_GST_TYPE PGM_TYPE_PROT
963#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
964#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
965#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
966#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
967#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
968#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
969#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
970#include "PGMGstDefs.h"
971#include "PGMBth.h"
972#undef BTH_PGMPOOLKIND_PT_FOR_PT
973#undef PGM_BTH_NAME
974#undef PGM_BTH_NAME_RC_STR
975#undef PGM_BTH_NAME_R0_STR
976#undef PGM_GST_TYPE
977#undef PGM_GST_NAME
978#undef PGM_GST_NAME_RC_STR
979#undef PGM_GST_NAME_R0_STR
980
981/* Guest - 32-bit mode */
982#define PGM_GST_TYPE PGM_TYPE_32BIT
983#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
984#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
985#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
986#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
987#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
988#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
989#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
990#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
991#include "PGMGstDefs.h"
992#include "PGMBth.h"
993#undef BTH_PGMPOOLKIND_PT_FOR_BIG
994#undef BTH_PGMPOOLKIND_PT_FOR_PT
995#undef PGM_BTH_NAME
996#undef PGM_BTH_NAME_RC_STR
997#undef PGM_BTH_NAME_R0_STR
998#undef PGM_GST_TYPE
999#undef PGM_GST_NAME
1000#undef PGM_GST_NAME_RC_STR
1001#undef PGM_GST_NAME_R0_STR
1002
1003/* Guest - PAE mode */
1004#define PGM_GST_TYPE PGM_TYPE_PAE
1005#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1006#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1007#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1008#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
1009#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
1010#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
1011#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1012#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1013#include "PGMGstDefs.h"
1014#include "PGMBth.h"
1015#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1016#undef BTH_PGMPOOLKIND_PT_FOR_PT
1017#undef PGM_BTH_NAME
1018#undef PGM_BTH_NAME_RC_STR
1019#undef PGM_BTH_NAME_R0_STR
1020#undef PGM_GST_TYPE
1021#undef PGM_GST_NAME
1022#undef PGM_GST_NAME_RC_STR
1023#undef PGM_GST_NAME_R0_STR
1024
1025#ifdef VBOX_WITH_64_BITS_GUESTS
1026/* Guest - AMD64 mode */
1027# define PGM_GST_TYPE PGM_TYPE_AMD64
1028# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1029# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1030# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1031# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
1032# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
1033# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
1034# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1035# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1036# include "PGMGstDefs.h"
1037# include "PGMBth.h"
1038# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1039# undef BTH_PGMPOOLKIND_PT_FOR_PT
1040# undef PGM_BTH_NAME
1041# undef PGM_BTH_NAME_RC_STR
1042# undef PGM_BTH_NAME_R0_STR
1043# undef PGM_GST_TYPE
1044# undef PGM_GST_NAME
1045# undef PGM_GST_NAME_RC_STR
1046# undef PGM_GST_NAME_R0_STR
1047#endif /* VBOX_WITH_64_BITS_GUESTS */
1048
1049#undef PGM_SHW_TYPE
1050#undef PGM_SHW_NAME
1051#undef PGM_SHW_NAME_RC_STR
1052#undef PGM_SHW_NAME_R0_STR
1053
1054
1055/*
1056 * Shadow - EPT
1057 */
1058#define PGM_SHW_TYPE PGM_TYPE_EPT
1059#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1060#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1061#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1062#include "PGMShw.h"
1063
1064/* Guest - real mode */
1065#define PGM_GST_TYPE PGM_TYPE_REAL
1066#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1067#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1068#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1069#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1070#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1071#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1072#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1073#include "PGMGstDefs.h"
1074#include "PGMBth.h"
1075#undef BTH_PGMPOOLKIND_PT_FOR_PT
1076#undef PGM_BTH_NAME
1077#undef PGM_BTH_NAME_RC_STR
1078#undef PGM_BTH_NAME_R0_STR
1079#undef PGM_GST_TYPE
1080#undef PGM_GST_NAME
1081#undef PGM_GST_NAME_RC_STR
1082#undef PGM_GST_NAME_R0_STR
1083
1084/* Guest - protected mode */
1085#define PGM_GST_TYPE PGM_TYPE_PROT
1086#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1087#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1088#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1089#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1090#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1091#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1092#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1093#include "PGMGstDefs.h"
1094#include "PGMBth.h"
1095#undef BTH_PGMPOOLKIND_PT_FOR_PT
1096#undef PGM_BTH_NAME
1097#undef PGM_BTH_NAME_RC_STR
1098#undef PGM_BTH_NAME_R0_STR
1099#undef PGM_GST_TYPE
1100#undef PGM_GST_NAME
1101#undef PGM_GST_NAME_RC_STR
1102#undef PGM_GST_NAME_R0_STR
1103
1104/* Guest - 32-bit mode */
1105#define PGM_GST_TYPE PGM_TYPE_32BIT
1106#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1107#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1108#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1109#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1110#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1111#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1112#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1113#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1114#include "PGMGstDefs.h"
1115#include "PGMBth.h"
1116#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1117#undef BTH_PGMPOOLKIND_PT_FOR_PT
1118#undef PGM_BTH_NAME
1119#undef PGM_BTH_NAME_RC_STR
1120#undef PGM_BTH_NAME_R0_STR
1121#undef PGM_GST_TYPE
1122#undef PGM_GST_NAME
1123#undef PGM_GST_NAME_RC_STR
1124#undef PGM_GST_NAME_R0_STR
1125
1126/* Guest - PAE mode */
1127#define PGM_GST_TYPE PGM_TYPE_PAE
1128#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1129#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1130#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1131#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1132#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1133#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1134#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1135#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1136#include "PGMGstDefs.h"
1137#include "PGMBth.h"
1138#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1139#undef BTH_PGMPOOLKIND_PT_FOR_PT
1140#undef PGM_BTH_NAME
1141#undef PGM_BTH_NAME_RC_STR
1142#undef PGM_BTH_NAME_R0_STR
1143#undef PGM_GST_TYPE
1144#undef PGM_GST_NAME
1145#undef PGM_GST_NAME_RC_STR
1146#undef PGM_GST_NAME_R0_STR
1147
1148#ifdef VBOX_WITH_64_BITS_GUESTS
1149/* Guest - AMD64 mode */
1150# define PGM_GST_TYPE PGM_TYPE_AMD64
1151# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1152# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1153# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1154# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1155# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1156# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1157# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1158# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1159# include "PGMGstDefs.h"
1160# include "PGMBth.h"
1161# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1162# undef BTH_PGMPOOLKIND_PT_FOR_PT
1163# undef PGM_BTH_NAME
1164# undef PGM_BTH_NAME_RC_STR
1165# undef PGM_BTH_NAME_R0_STR
1166# undef PGM_GST_TYPE
1167# undef PGM_GST_NAME
1168# undef PGM_GST_NAME_RC_STR
1169# undef PGM_GST_NAME_R0_STR
1170#endif /* VBOX_WITH_64_BITS_GUESTS */
1171
1172#undef PGM_SHW_TYPE
1173#undef PGM_SHW_NAME
1174#undef PGM_SHW_NAME_RC_STR
1175#undef PGM_SHW_NAME_R0_STR
1176
1177
1178
1179/**
1180 * Initiates the paging of VM.
1181 *
1182 * @returns VBox status code.
1183 * @param pVM Pointer to VM structure.
1184 */
1185VMMR3DECL(int) PGMR3Init(PVM pVM)
1186{
1187 LogFlow(("PGMR3Init:\n"));
1188 PCFGMNODE pCfgPGM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM");
1189 int rc;
1190
1191 /*
1192 * Assert alignment and sizes.
1193 */
1194 AssertCompile(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1195 AssertCompileMemberAlignment(PGM, CritSect, sizeof(uintptr_t));
1196
1197 /*
1198 * Init the structure.
1199 */
1200 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1201 pVM->pgm.s.offVCpuPGM = RT_OFFSETOF(VMCPU, pgm.s);
1202
1203 /* Init the per-CPU part. */
1204 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1205 {
1206 PVMCPU pVCpu = &pVM->aCpus[i];
1207 PPGMCPU pPGM = &pVCpu->pgm.s;
1208
1209 pPGM->offVM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)pVM;
1210 pPGM->offVCpu = RT_OFFSETOF(VMCPU, pgm.s);
1211 pPGM->offPGM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)&pVM->pgm.s;
1212
1213 pPGM->enmShadowMode = PGMMODE_INVALID;
1214 pPGM->enmGuestMode = PGMMODE_INVALID;
1215
1216 pPGM->GCPhysCR3 = NIL_RTGCPHYS;
1217
1218 pPGM->pGstPaePdptR3 = NULL;
1219#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1220 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
1221#endif
1222 pPGM->pGstPaePdptRC = NIL_RTRCPTR;
1223 for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->pgm.s.apGstPaePDsR3); i++)
1224 {
1225 pPGM->apGstPaePDsR3[i] = NULL;
1226#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1227 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
1228#endif
1229 pPGM->apGstPaePDsRC[i] = NIL_RTRCPTR;
1230 pPGM->aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1231 pPGM->aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1232 }
1233
1234 pPGM->fA20Enabled = true;
1235 }
1236
1237 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1238 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1239 pVM->pgm.s.GCPtrPrevRamRangeMapping = MM_HYPER_AREA_ADDRESS;
1240
1241 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "RamPreAlloc", &pVM->pgm.s.fRamPreAlloc,
1242#ifdef VBOX_WITH_PREALLOC_RAM_BY_DEFAULT
1243 true
1244#else
1245 false
1246#endif
1247 );
1248 AssertLogRelRCReturn(rc, rc);
1249
1250#if HC_ARCH_BITS == 64 || 1 /** @todo 4GB/32-bit: remove || 1 later and adjust the limit. */
1251 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, UINT32_MAX);
1252#else
1253 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE);
1254#endif
1255 AssertLogRelRCReturn(rc, rc);
1256 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
1257 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
1258
1259 /*
1260 * Get the configured RAM size - to estimate saved state size.
1261 */
1262 uint64_t cbRam;
1263 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1264 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1265 cbRam = 0;
1266 else if (RT_SUCCESS(rc))
1267 {
1268 if (cbRam < PAGE_SIZE)
1269 cbRam = 0;
1270 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1271 }
1272 else
1273 {
1274 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
1275 return rc;
1276 }
1277
1278 /*
1279 * Register callbacks, string formatters and the saved state data unit.
1280 */
1281#ifdef VBOX_STRICT
1282 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1283#endif
1284 PGMRegisterStringFormatTypes();
1285
1286 rc = SSMR3RegisterInternal(pVM, "pgm", 1, PGM_SAVED_STATE_VERSION, (size_t)cbRam + sizeof(PGM),
1287 pgmR3LivePrep, pgmR3LiveExec, pgmR3LiveVote,
1288 NULL, pgmR3SaveExec, pgmR3SaveDone,
1289 NULL, pgmR3Load, NULL);
1290 if (RT_FAILURE(rc))
1291 return rc;
1292
1293 /*
1294 * Initialize the PGM critical section and flush the phys TLBs
1295 */
1296 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, "PGM");
1297 AssertRCReturn(rc, rc);
1298
1299 PGMR3PhysChunkInvalidateTLB(pVM);
1300 PGMPhysInvalidatePageR3MapTLB(pVM);
1301 PGMPhysInvalidatePageR0MapTLB(pVM);
1302 PGMPhysInvalidatePageGCMapTLB(pVM);
1303
1304 /*
1305 * For the time being we sport a full set of handy pages in addition to the base
1306 * memory to simplify things.
1307 */
1308 rc = MMR3ReserveHandyPages(pVM, RT_ELEMENTS(pVM->pgm.s.aHandyPages)); /** @todo this should be changed to PGM_HANDY_PAGES_MIN but this needs proper testing... */
1309 AssertRCReturn(rc, rc);
1310
1311 /*
1312 * Trees
1313 */
1314 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1315 if (RT_SUCCESS(rc))
1316 {
1317 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1318 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1319
1320 /*
1321 * Alocate the zero page.
1322 */
1323 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1324 }
1325 if (RT_SUCCESS(rc))
1326 {
1327 pVM->pgm.s.pvZeroPgRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1328 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1329 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1330 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1331
1332 /*
1333 * Init the paging.
1334 */
1335 rc = pgmR3InitPaging(pVM);
1336 }
1337 if (RT_SUCCESS(rc))
1338 {
1339 /*
1340 * Init the page pool.
1341 */
1342 rc = pgmR3PoolInit(pVM);
1343 }
1344 if (RT_SUCCESS(rc))
1345 {
1346 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1347 {
1348 PVMCPU pVCpu = &pVM->aCpus[i];
1349 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
1350 if (RT_FAILURE(rc))
1351 break;
1352 }
1353 }
1354
1355 if (RT_SUCCESS(rc))
1356 {
1357 /*
1358 * Info & statistics
1359 */
1360 DBGFR3InfoRegisterInternal(pVM, "mode",
1361 "Shows the current paging mode. "
1362 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing's given.",
1363 pgmR3InfoMode);
1364 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1365 "Dumps all the entries in the top level paging table. No arguments.",
1366 pgmR3InfoCr3);
1367 DBGFR3InfoRegisterInternal(pVM, "phys",
1368 "Dumps all the physical address ranges. No arguments.",
1369 pgmR3PhysInfo);
1370 DBGFR3InfoRegisterInternal(pVM, "handlers",
1371 "Dumps physical, virtual and hyper virtual handlers. "
1372 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1373 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1374 pgmR3InfoHandlers);
1375 DBGFR3InfoRegisterInternal(pVM, "mappings",
1376 "Dumps guest mappings.",
1377 pgmR3MapInfo);
1378
1379 pgmR3InitStats(pVM);
1380
1381#ifdef VBOX_WITH_DEBUGGER
1382 /*
1383 * Debugger commands.
1384 */
1385 static bool s_fRegisteredCmds = false;
1386 if (!s_fRegisteredCmds)
1387 {
1388 int rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1389 if (RT_SUCCESS(rc))
1390 s_fRegisteredCmds = true;
1391 }
1392#endif
1393 return VINF_SUCCESS;
1394 }
1395
1396 /* Almost no cleanup necessary, MM frees all memory. */
1397 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1398
1399 return rc;
1400}
1401
1402
1403/**
1404 * Initializes the per-VCPU PGM.
1405 *
1406 * @returns VBox status code.
1407 * @param pVM The VM to operate on.
1408 */
1409VMMR3DECL(int) PGMR3InitCPU(PVM pVM)
1410{
1411 LogFlow(("PGMR3InitCPU\n"));
1412 return VINF_SUCCESS;
1413}
1414
1415
1416/**
1417 * Init paging.
1418 *
1419 * Since we need to check what mode the host is operating in before we can choose
1420 * the right paging functions for the host we have to delay this until R0 has
1421 * been initialized.
1422 *
1423 * @returns VBox status code.
1424 * @param pVM VM handle.
1425 */
1426static int pgmR3InitPaging(PVM pVM)
1427{
1428 /*
1429 * Force a recalculation of modes and switcher so everyone gets notified.
1430 */
1431 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1432 {
1433 PVMCPU pVCpu = &pVM->aCpus[i];
1434
1435 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
1436 pVCpu->pgm.s.enmGuestMode = PGMMODE_INVALID;
1437 }
1438
1439 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1440
1441 /*
1442 * Allocate static mapping space for whatever the cr3 register
1443 * points to and in the case of PAE mode to the 4 PDs.
1444 */
1445 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1446 if (RT_FAILURE(rc))
1447 {
1448 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
1449 return rc;
1450 }
1451 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1452
1453 /*
1454 * Allocate pages for the three possible intermediate contexts
1455 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1456 * for the sake of simplicity. The AMD64 uses the PAE for the
1457 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1458 *
1459 * We assume that two page tables will be enought for the core code
1460 * mappings (HC virtual and identity).
1461 */
1462 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPD, VERR_NO_PAGE_MEMORY);
1463 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[0], VERR_NO_PAGE_MEMORY);
1464 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[1], VERR_NO_PAGE_MEMORY);
1465 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[0], VERR_NO_PAGE_MEMORY);
1466 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[1], VERR_NO_PAGE_MEMORY);
1467 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[0], VERR_NO_PAGE_MEMORY);
1468 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[1], VERR_NO_PAGE_MEMORY);
1469 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[2], VERR_NO_PAGE_MEMORY);
1470 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[3], VERR_NO_PAGE_MEMORY);
1471 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT, VERR_NO_PAGE_MEMORY);
1472 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT64, VERR_NO_PAGE_MEMORY);
1473 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePML4, VERR_NO_PAGE_MEMORY);
1474
1475 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1476 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1477 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1478 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1479 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1480 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK) && pVM->pgm.s.HCPhysInterPaePML4 < 0xffffffff);
1481
1482 /*
1483 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1484 */
1485 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1486 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1487 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1488
1489 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1490 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1491
1492 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1493 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1494 {
1495 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1496 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1497 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1498 }
1499
1500 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1501 {
1502 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1503 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1504 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1505 }
1506
1507 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1508 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1509 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1510 | HCPhysInterPaePDPT64;
1511
1512 /*
1513 * Initialize paging workers and mode from current host mode
1514 * and the guest running in real mode.
1515 */
1516 pVM->pgm.s.enmHostMode = SUPR3GetPagingMode();
1517 switch (pVM->pgm.s.enmHostMode)
1518 {
1519 case SUPPAGINGMODE_32_BIT:
1520 case SUPPAGINGMODE_32_BIT_GLOBAL:
1521 case SUPPAGINGMODE_PAE:
1522 case SUPPAGINGMODE_PAE_GLOBAL:
1523 case SUPPAGINGMODE_PAE_NX:
1524 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1525 break;
1526
1527 case SUPPAGINGMODE_AMD64:
1528 case SUPPAGINGMODE_AMD64_GLOBAL:
1529 case SUPPAGINGMODE_AMD64_NX:
1530 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1531#ifndef VBOX_WITH_HYBRID_32BIT_KERNEL
1532 if (ARCH_BITS != 64)
1533 {
1534 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1535 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1536 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1537 }
1538#endif
1539 break;
1540 default:
1541 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1542 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1543 }
1544 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1545 if (RT_SUCCESS(rc))
1546 {
1547 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1548#if HC_ARCH_BITS == 64
1549 LogRel(("Debug: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1550 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1551 LogRel(("Debug: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1552 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1553 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1554 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1555 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1556#endif
1557
1558 return VINF_SUCCESS;
1559 }
1560
1561 LogFlow(("pgmR3InitPaging: returns %Rrc\n", rc));
1562 return rc;
1563}
1564
1565
1566/**
1567 * Init statistics
1568 */
1569static void pgmR3InitStats(PVM pVM)
1570{
1571 PPGM pPGM = &pVM->pgm.s;
1572 int rc;
1573
1574 /* Common - misc variables */
1575 STAM_REL_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_OCCURENCES, "The total number of pages.");
1576 STAM_REL_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_OCCURENCES, "The number of private pages.");
1577 STAM_REL_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_OCCURENCES, "The number of shared pages.");
1578 STAM_REL_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_OCCURENCES, "The number of zero backed pages.");
1579 STAM_REL_REG(pVM, &pPGM->cHandyPages, STAMTYPE_U32, "/PGM/Page/cHandyPages", STAMUNIT_OCCURENCES, "The number of handy pages (not included in cAllPages).");
1580 STAM_REL_REG(pVM, &pPGM->cRelocations, STAMTYPE_COUNTER, "/PGM/cRelocations", STAMUNIT_OCCURENCES, "Number of hypervisor relocations.");
1581 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_OCCURENCES, "Number of mapped chunks.");
1582 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_OCCURENCES, "Maximum number of mapped chunks.");
1583
1584#ifdef VBOX_WITH_STATISTICS
1585
1586# define PGM_REG_COUNTER(a, b, c) \
1587 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
1588 AssertRC(rc);
1589
1590# define PGM_REG_COUNTER_BYTES(a, b, c) \
1591 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, c, b); \
1592 AssertRC(rc);
1593
1594# define PGM_REG_PROFILE(a, b, c) \
1595 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b); \
1596 AssertRC(rc);
1597
1598 PGM_REG_COUNTER(&pPGM->StatR3DetectedConflicts, "/PGM/R3/DetectedConflicts", "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1599 PGM_REG_PROFILE(&pPGM->StatR3ResolveConflict, "/PGM/R3/ResolveConflict", "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1600 PGM_REG_COUNTER(&pPGM->StatR3PhysRead, "/PGM/R3/Phys/Read", "The number of times PGMPhysRead was called.");
1601 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysReadBytes, "/PGM/R3/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1602 PGM_REG_COUNTER(&pPGM->StatR3PhysWrite, "/PGM/R3/Phys/Write", "The number of times PGMPhysWrite was called.");
1603 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysWriteBytes, "/PGM/R3/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1604 PGM_REG_COUNTER(&pPGM->StatR3PhysSimpleRead, "/PGM/R3/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1605 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysSimpleReadBytes, "/PGM/R3/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1606 PGM_REG_COUNTER(&pPGM->StatR3PhysSimpleWrite, "/PGM/R3/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1607 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysSimpleWriteBytes, "/PGM/R3/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1608
1609 PGM_REG_COUNTER(&pPGM->StatRZChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsRZ", "TLB hits.");
1610 PGM_REG_COUNTER(&pPGM->StatRZChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesRZ", "TLB misses.");
1611 PGM_REG_COUNTER(&pPGM->StatRZPageMapTlbHits, "/PGM/RZ/Page/MapTlbHits", "TLB hits.");
1612 PGM_REG_COUNTER(&pPGM->StatRZPageMapTlbMisses, "/PGM/RZ/Page/MapTlbMisses", "TLB misses.");
1613 PGM_REG_COUNTER(&pPGM->StatR3ChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsR3", "TLB hits.");
1614 PGM_REG_COUNTER(&pPGM->StatR3ChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesR3", "TLB misses.");
1615 PGM_REG_COUNTER(&pPGM->StatR3PageMapTlbHits, "/PGM/R3/Page/MapTlbHits", "TLB hits.");
1616 PGM_REG_COUNTER(&pPGM->StatR3PageMapTlbMisses, "/PGM/R3/Page/MapTlbMisses", "TLB misses.");
1617
1618 PGM_REG_PROFILE(&pPGM->StatRZSyncCR3HandlerVirtualUpdate, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1619 PGM_REG_PROFILE(&pPGM->StatRZSyncCR3HandlerVirtualReset, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1620 PGM_REG_PROFILE(&pPGM->StatR3SyncCR3HandlerVirtualUpdate, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1621 PGM_REG_PROFILE(&pPGM->StatR3SyncCR3HandlerVirtualReset, "/PGM/R3/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1622
1623 PGM_REG_COUNTER(&pPGM->StatRZPhysHandlerReset, "/PGM/RZ/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1624 PGM_REG_COUNTER(&pPGM->StatR3PhysHandlerReset, "/PGM/R3/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1625 PGM_REG_PROFILE(&pPGM->StatRZVirtHandlerSearchByPhys, "/PGM/RZ/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1626 PGM_REG_PROFILE(&pPGM->StatR3VirtHandlerSearchByPhys, "/PGM/R3/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1627
1628 PGM_REG_COUNTER(&pPGM->StatRZPageReplaceShared, "/PGM/RZ/Page/ReplacedShared", "Times a shared page was replaced.");
1629 PGM_REG_COUNTER(&pPGM->StatRZPageReplaceZero, "/PGM/RZ/Page/ReplacedZero", "Times the zero page was replaced.");
1630/// @todo PGM_REG_COUNTER(&pPGM->StatRZPageHandyAllocs, "/PGM/RZ/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1631 PGM_REG_COUNTER(&pPGM->StatR3PageReplaceShared, "/PGM/R3/Page/ReplacedShared", "Times a shared page was replaced.");
1632 PGM_REG_COUNTER(&pPGM->StatR3PageReplaceZero, "/PGM/R3/Page/ReplacedZero", "Times the zero page was replaced.");
1633/// @todo PGM_REG_COUNTER(&pPGM->StatR3PageHandyAllocs, "/PGM/R3/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1634
1635 PGM_REG_COUNTER(&pPGM->StatRZPhysRead, "/PGM/RZ/Phys/Read", "The number of times PGMPhysRead was called.");
1636 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysReadBytes, "/PGM/RZ/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1637 PGM_REG_COUNTER(&pPGM->StatRZPhysWrite, "/PGM/RZ/Phys/Write", "The number of times PGMPhysWrite was called.");
1638 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysWriteBytes, "/PGM/RZ/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1639 PGM_REG_COUNTER(&pPGM->StatRZPhysSimpleRead, "/PGM/RZ/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1640 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysSimpleReadBytes, "/PGM/RZ/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1641 PGM_REG_COUNTER(&pPGM->StatRZPhysSimpleWrite, "/PGM/RZ/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1642 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysSimpleWriteBytes, "/PGM/RZ/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1643
1644 /* GC only: */
1645 PGM_REG_COUNTER(&pPGM->StatRCDynMapCacheHits, "/PGM/RC/DynMapCache/Hits" , "Number of dynamic page mapping cache hits.");
1646 PGM_REG_COUNTER(&pPGM->StatRCDynMapCacheMisses, "/PGM/RC/DynMapCache/Misses" , "Number of dynamic page mapping cache misses.");
1647 PGM_REG_COUNTER(&pPGM->StatRCInvlPgConflict, "/PGM/RC/InvlPgConflict", "Number of times PGMInvalidatePage() detected a mapping conflict.");
1648 PGM_REG_COUNTER(&pPGM->StatRCInvlPgSyncMonCR3, "/PGM/RC/InvlPgSyncMonitorCR3", "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1649
1650 PGM_REG_COUNTER(&pPGM->StatRCPhysRead, "/PGM/RC/Phys/Read", "The number of times PGMPhysRead was called.");
1651 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysReadBytes, "/PGM/RC/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1652 PGM_REG_COUNTER(&pPGM->StatRCPhysWrite, "/PGM/RC/Phys/Write", "The number of times PGMPhysWrite was called.");
1653 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysWriteBytes, "/PGM/RC/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1654 PGM_REG_COUNTER(&pPGM->StatRCPhysSimpleRead, "/PGM/RC/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1655 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysSimpleReadBytes, "/PGM/RC/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1656 PGM_REG_COUNTER(&pPGM->StatRCPhysSimpleWrite, "/PGM/RC/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1657 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysSimpleWriteBytes, "/PGM/RC/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1658
1659# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1660 PGM_REG_COUNTER(&pPGM->StatTrackVirgin, "/PGM/Track/Virgin", "The number of first time shadowings");
1661 PGM_REG_COUNTER(&pPGM->StatTrackAliased, "/PGM/Track/Aliased", "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1662 PGM_REG_COUNTER(&pPGM->StatTrackAliasedMany, "/PGM/Track/AliasedMany", "The number of times we're tracking using cRef2.");
1663 PGM_REG_COUNTER(&pPGM->StatTrackAliasedLots, "/PGM/Track/AliasedLots", "The number of times we're hitting pages which has overflowed cRef2");
1664 PGM_REG_COUNTER(&pPGM->StatTrackOverflows, "/PGM/Track/Overflows", "The number of times the extent list grows too long.");
1665 PGM_REG_PROFILE(&pPGM->StatTrackDeref, "/PGM/Track/Deref", "Profiling of SyncPageWorkerTrackDeref (expensive).");
1666# endif
1667
1668# undef PGM_REG_COUNTER
1669# undef PGM_REG_PROFILE
1670#endif
1671
1672 /*
1673 * Note! The layout below matches the member layout exactly!
1674 */
1675
1676 /*
1677 * Common - stats
1678 */
1679 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1680 {
1681 PVMCPU pVCpu = &pVM->aCpus[i];
1682 PPGMCPU pPGM = &pVCpu->pgm.s;
1683
1684#define PGM_REG_COUNTER(a, b, c) \
1685 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b, i); \
1686 AssertRC(rc);
1687#define PGM_REG_PROFILE(a, b, c) \
1688 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b, i); \
1689 AssertRC(rc);
1690
1691 PGM_REG_COUNTER(&pPGM->cGuestModeChanges, "/PGM/CPU%d/cGuestModeChanges", "Number of guest mode changes.");
1692
1693#ifdef VBOX_WITH_STATISTICS
1694
1695# if 0 /* rarely useful; leave for debugging. */
1696 for (unsigned j = 0; j < RT_ELEMENTS(pPGM->StatSyncPtPD); j++)
1697 STAMR3RegisterF(pVM, &pPGM->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1698 "The number of SyncPT per PD n.", "/PGM/CPU%d/PDSyncPT/%04X", i, j);
1699 for (unsigned j = 0; j < RT_ELEMENTS(pPGM->StatSyncPagePD); j++)
1700 STAMR3RegisterF(pVM, &pPGM->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1701 "The number of SyncPage per PD n.", "/PGM/CPU%d/PDSyncPage/%04X", i, j);
1702# endif
1703 /* R0 only: */
1704 PGM_REG_COUNTER(&pPGM->StatR0DynMapMigrateInvlPg, "/PGM/CPU%d/R0/DynMapMigrateInvlPg", "invlpg count in PGMDynMapMigrateAutoSet.");
1705 PGM_REG_PROFILE(&pPGM->StatR0DynMapGCPageInl, "/PGM/CPU%d/R0/DynMapPageGCPageInl", "Calls to pgmR0DynMapGCPageInlined.");
1706 PGM_REG_COUNTER(&pPGM->StatR0DynMapGCPageInlHits, "/PGM/CPU%d/R0/DynMapPageGCPageInl/Hits", "Hash table lookup hits.");
1707 PGM_REG_COUNTER(&pPGM->StatR0DynMapGCPageInlMisses, "/PGM/CPU%d/R0/DynMapPageGCPageInl/Misses", "Misses that falls back to code common with PGMDynMapHCPage.");
1708 PGM_REG_COUNTER(&pPGM->StatR0DynMapGCPageInlRamHits, "/PGM/CPU%d/R0/DynMapPageGCPageInl/RamHits", "1st ram range hits.");
1709 PGM_REG_COUNTER(&pPGM->StatR0DynMapGCPageInlRamMisses, "/PGM/CPU%d/R0/DynMapPageGCPageInl/RamMisses", "1st ram range misses, takes slow path.");
1710 PGM_REG_PROFILE(&pPGM->StatR0DynMapHCPageInl, "/PGM/CPU%d/R0/DynMapPageHCPageInl", "Calls to pgmR0DynMapHCPageInlined.");
1711 PGM_REG_COUNTER(&pPGM->StatR0DynMapHCPageInlHits, "/PGM/CPU%d/R0/DynMapPageHCPageInl/Hits", "Hash table lookup hits.");
1712 PGM_REG_COUNTER(&pPGM->StatR0DynMapHCPageInlMisses, "/PGM/CPU%d/R0/DynMapPageHCPageInl/Misses", "Misses that falls back to code common with PGMDynMapHCPage.");
1713 PGM_REG_COUNTER(&pPGM->StatR0DynMapPage, "/PGM/CPU%d/R0/DynMapPage", "Calls to pgmR0DynMapPage");
1714 PGM_REG_COUNTER(&pPGM->StatR0DynMapSetOptimize, "/PGM/CPU%d/R0/DynMapPage/SetOptimize", "Calls to pgmDynMapOptimizeAutoSet.");
1715 PGM_REG_COUNTER(&pPGM->StatR0DynMapSetSearchFlushes, "/PGM/CPU%d/R0/DynMapPage/SetSearchFlushes","Set search restorting to subset flushes.");
1716 PGM_REG_COUNTER(&pPGM->StatR0DynMapSetSearchHits, "/PGM/CPU%d/R0/DynMapPage/SetSearchHits", "Set search hits.");
1717 PGM_REG_COUNTER(&pPGM->StatR0DynMapSetSearchMisses, "/PGM/CPU%d/R0/DynMapPage/SetSearchMisses", "Set search misses.");
1718 PGM_REG_PROFILE(&pPGM->StatR0DynMapHCPage, "/PGM/CPU%d/R0/DynMapPage/HCPage", "Calls to PGMDynMapHCPage (ring-0).");
1719 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageHits0, "/PGM/CPU%d/R0/DynMapPage/Hits0", "Hits at iPage+0");
1720 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageHits1, "/PGM/CPU%d/R0/DynMapPage/Hits1", "Hits at iPage+1");
1721 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageHits2, "/PGM/CPU%d/R0/DynMapPage/Hits2", "Hits at iPage+2");
1722 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageInvlPg, "/PGM/CPU%d/R0/DynMapPage/InvlPg", "invlpg count in pgmR0DynMapPageSlow.");
1723 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageSlow, "/PGM/CPU%d/R0/DynMapPage/Slow", "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
1724 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageSlowLoopHits, "/PGM/CPU%d/R0/DynMapPage/SlowLoopHits" , "Hits in the loop path.");
1725 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageSlowLoopMisses, "/PGM/CPU%d/R0/DynMapPage/SlowLoopMisses", "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
1726 //PGM_REG_COUNTER(&pPGM->StatR0DynMapPageSlowLostHits, "/PGM/CPU%d/R0/DynMapPage/SlowLostHits", "Lost hits.");
1727 PGM_REG_COUNTER(&pPGM->StatR0DynMapSubsets, "/PGM/CPU%d/R0/Subsets", "Times PGMDynMapPushAutoSubset was called.");
1728 PGM_REG_COUNTER(&pPGM->StatR0DynMapPopFlushes, "/PGM/CPU%d/R0/SubsetPopFlushes", "Times PGMDynMapPopAutoSubset flushes the subset.");
1729 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[0], "/PGM/CPU%d/R0/SetSize000..09", "00-09% filled");
1730 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[1], "/PGM/CPU%d/R0/SetSize010..19", "10-19% filled");
1731 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[2], "/PGM/CPU%d/R0/SetSize020..29", "20-29% filled");
1732 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[3], "/PGM/CPU%d/R0/SetSize030..39", "30-39% filled");
1733 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[4], "/PGM/CPU%d/R0/SetSize040..49", "40-49% filled");
1734 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[5], "/PGM/CPU%d/R0/SetSize050..59", "50-59% filled");
1735 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[6], "/PGM/CPU%d/R0/SetSize060..69", "60-69% filled");
1736 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[7], "/PGM/CPU%d/R0/SetSize070..79", "70-79% filled");
1737 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[8], "/PGM/CPU%d/R0/SetSize080..89", "80-89% filled");
1738 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[9], "/PGM/CPU%d/R0/SetSize090..99", "90-99% filled");
1739 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[10], "/PGM/CPU%d/R0/SetSize100", "100% filled");
1740
1741 /* RZ only: */
1742 PGM_REG_PROFILE(&pPGM->StatRZTrap0e, "/PGM/CPU%d/RZ/Trap0e", "Profiling of the PGMTrap0eHandler() body.");
1743 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTimeCheckPageFault, "/PGM/CPU%d/RZ/Trap0e/Time/CheckPageFault", "Profiling of checking for dirty/access emulation faults.");
1744 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTimeSyncPT, "/PGM/CPU%d/RZ/Trap0e/Time/SyncPT", "Profiling of lazy page table syncing.");
1745 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTimeMapping, "/PGM/CPU%d/RZ/Trap0e/Time/Mapping", "Profiling of checking virtual mappings.");
1746 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTimeOutOfSync, "/PGM/CPU%d/RZ/Trap0e/Time/OutOfSync", "Profiling of out of sync page handling.");
1747 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTimeHandlers, "/PGM/CPU%d/RZ/Trap0e/Time/Handlers", "Profiling of checking handlers.");
1748 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2CSAM, "/PGM/CPU%d/RZ/Trap0e/Time2/CSAM", "Profiling of the Trap0eHandler body when the cause is CSAM.");
1749 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2DirtyAndAccessed, "/PGM/CPU%d/RZ/Trap0e/Time2/DirtyAndAccessedBits", "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1750 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2GuestTrap, "/PGM/CPU%d/RZ/Trap0e/Time2/GuestTrap", "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1751 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2HndPhys, "/PGM/CPU%d/RZ/Trap0e/Time2/HandlerPhysical", "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1752 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2HndVirt, "/PGM/CPU%d/RZ/Trap0e/Time2/HandlerVirtual", "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1753 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2HndUnhandled, "/PGM/CPU%d/RZ/Trap0e/Time2/HandlerUnhandled", "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1754 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2Misc, "/PGM/CPU%d/RZ/Trap0e/Time2/Misc", "Profiling of the Trap0eHandler body when the cause is not known.");
1755 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2OutOfSync, "/PGM/CPU%d/RZ/Trap0e/Time2/OutOfSync", "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1756 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2OutOfSyncHndPhys, "/PGM/CPU%d/RZ/Trap0e/Time2/OutOfSyncHndPhys", "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1757 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2OutOfSyncHndVirt, "/PGM/CPU%d/RZ/Trap0e/Time2/OutOfSyncHndVirt", "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1758 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2OutOfSyncHndObs, "/PGM/CPU%d/RZ/Trap0e/Time2/OutOfSyncObsHnd", "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1759 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2SyncPT, "/PGM/CPU%d/RZ/Trap0e/Time2/SyncPT", "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1760 PGM_REG_COUNTER(&pPGM->StatRZTrap0eConflicts, "/PGM/CPU%d/RZ/Trap0e/Conflicts", "The number of times #PF was caused by an undetected conflict.");
1761 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersMapping, "/PGM/CPU%d/RZ/Trap0e/Handlers/Mapping", "Number of traps due to access handlers in mappings.");
1762 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersOutOfSync, "/PGM/CPU%d/RZ/Trap0e/Handlers/OutOfSync", "Number of traps due to out-of-sync handled pages.");
1763 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersPhysical, "/PGM/CPU%d/RZ/Trap0e/Handlers/Physical", "Number of traps due to physical access handlers.");
1764 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersVirtual, "/PGM/CPU%d/RZ/Trap0e/Handlers/Virtual", "Number of traps due to virtual access handlers.");
1765 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersVirtualByPhys, "/PGM/CPU%d/RZ/Trap0e/Handlers/VirtualByPhys", "Number of traps due to virtual access handlers by physical address.");
1766 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersVirtualUnmarked,"/PGM/CPU%d/RZ/Trap0e/Handlers/VirtualUnmarked","Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1767 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersUnhandled, "/PGM/CPU%d/RZ/Trap0e/Handlers/Unhandled", "Number of traps due to access outside range of monitored page(s).");
1768 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersInvalid, "/PGM/CPU%d/RZ/Trap0e/Handlers/Invalid", "Number of traps due to access to invalid physical memory.");
1769 PGM_REG_COUNTER(&pPGM->StatRZTrap0eUSNotPresentRead, "/PGM/CPU%d/RZ/Trap0e/Err/User/NPRead", "Number of user mode not present read page faults.");
1770 PGM_REG_COUNTER(&pPGM->StatRZTrap0eUSNotPresentWrite, "/PGM/CPU%d/RZ/Trap0e/Err/User/NPWrite", "Number of user mode not present write page faults.");
1771 PGM_REG_COUNTER(&pPGM->StatRZTrap0eUSWrite, "/PGM/CPU%d/RZ/Trap0e/Err/User/Write", "Number of user mode write page faults.");
1772 PGM_REG_COUNTER(&pPGM->StatRZTrap0eUSReserved, "/PGM/CPU%d/RZ/Trap0e/Err/User/Reserved", "Number of user mode reserved bit page faults.");
1773 PGM_REG_COUNTER(&pPGM->StatRZTrap0eUSNXE, "/PGM/CPU%d/RZ/Trap0e/Err/User/NXE", "Number of user mode NXE page faults.");
1774 PGM_REG_COUNTER(&pPGM->StatRZTrap0eUSRead, "/PGM/CPU%d/RZ/Trap0e/Err/User/Read", "Number of user mode read page faults.");
1775 PGM_REG_COUNTER(&pPGM->StatRZTrap0eSVNotPresentRead, "/PGM/CPU%d/RZ/Trap0e/Err/Supervisor/NPRead", "Number of supervisor mode not present read page faults.");
1776 PGM_REG_COUNTER(&pPGM->StatRZTrap0eSVNotPresentWrite, "/PGM/CPU%d/RZ/Trap0e/Err/Supervisor/NPWrite", "Number of supervisor mode not present write page faults.");
1777 PGM_REG_COUNTER(&pPGM->StatRZTrap0eSVWrite, "/PGM/CPU%d/RZ/Trap0e/Err/Supervisor/Write", "Number of supervisor mode write page faults.");
1778 PGM_REG_COUNTER(&pPGM->StatRZTrap0eSVReserved, "/PGM/CPU%d/RZ/Trap0e/Err/Supervisor/Reserved", "Number of supervisor mode reserved bit page faults.");
1779 PGM_REG_COUNTER(&pPGM->StatRZTrap0eSNXE, "/PGM/CPU%d/RZ/Trap0e/Err/Supervisor/NXE", "Number of supervisor mode NXE page faults.");
1780 PGM_REG_COUNTER(&pPGM->StatRZTrap0eGuestPF, "/PGM/CPU%d/RZ/Trap0e/GuestPF", "Number of real guest page faults.");
1781 PGM_REG_COUNTER(&pPGM->StatRZTrap0eGuestPFUnh, "/PGM/CPU%d/RZ/Trap0e/GuestPF/Unhandled", "Number of real guest page faults from the 'unhandled' case.");
1782 PGM_REG_COUNTER(&pPGM->StatRZTrap0eGuestPFMapping, "/PGM/CPU%d/RZ/Trap0e/GuestPF/InMapping", "Number of real guest page faults in a mapping.");
1783 PGM_REG_COUNTER(&pPGM->StatRZTrap0eWPEmulInRZ, "/PGM/CPU%d/RZ/Trap0e/WP/InRZ", "Number of guest page faults due to X86_CR0_WP emulation.");
1784 PGM_REG_COUNTER(&pPGM->StatRZTrap0eWPEmulToR3, "/PGM/CPU%d/RZ/Trap0e/WP/ToR3", "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1785#if 0 /* rarely useful; leave for debugging. */
1786 for (unsigned j = 0; j < RT_ELEMENTS(pPGM->StatRZTrap0ePD); j++)
1787 STAMR3RegisterF(pVM, &pPGM->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1788 "The number of traps in page directory n.", "/PGM/CPU%d/RZ/Trap0e/PD/%04X", i, j);
1789#endif
1790 PGM_REG_COUNTER(&pPGM->StatRZGuestCR3WriteHandled, "/PGM/CPU%d/RZ/CR3WriteHandled", "The number of times the Guest CR3 change was successfully handled.");
1791 PGM_REG_COUNTER(&pPGM->StatRZGuestCR3WriteUnhandled, "/PGM/CPU%d/RZ/CR3WriteUnhandled", "The number of times the Guest CR3 change was passed back to the recompiler.");
1792 PGM_REG_COUNTER(&pPGM->StatRZGuestCR3WriteConflict, "/PGM/CPU%d/RZ/CR3WriteConflict", "The number of times the Guest CR3 monitoring detected a conflict.");
1793 PGM_REG_COUNTER(&pPGM->StatRZGuestROMWriteHandled, "/PGM/CPU%d/RZ/ROMWriteHandled", "The number of times the Guest ROM change was successfully handled.");
1794 PGM_REG_COUNTER(&pPGM->StatRZGuestROMWriteUnhandled, "/PGM/CPU%d/RZ/ROMWriteUnhandled", "The number of times the Guest ROM change was passed back to the recompiler.");
1795
1796 /* HC only: */
1797
1798 /* RZ & R3: */
1799 PGM_REG_PROFILE(&pPGM->StatRZSyncCR3, "/PGM/CPU%d/RZ/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1800 PGM_REG_PROFILE(&pPGM->StatRZSyncCR3Handlers, "/PGM/CPU%d/RZ/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1801 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3Global, "/PGM/CPU%d/RZ/SyncCR3/Global", "The number of global CR3 syncs.");
1802 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3NotGlobal, "/PGM/CPU%d/RZ/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1803 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3DstCacheHit, "/PGM/CPU%d/RZ/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1804 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3DstFreed, "/PGM/CPU%d/RZ/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1805 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3DstFreedSrcNP, "/PGM/CPU%d/RZ/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1806 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3DstNotPresent, "/PGM/CPU%d/RZ/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1807 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3DstSkippedGlobalPD, "/PGM/CPU%d/RZ/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1808 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3DstSkippedGlobalPT, "/PGM/CPU%d/RZ/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1809 PGM_REG_PROFILE(&pPGM->StatRZSyncPT, "/PGM/CPU%d/RZ/SyncPT", "Profiling of the pfnSyncPT() body.");
1810 PGM_REG_COUNTER(&pPGM->StatRZSyncPTFailed, "/PGM/CPU%d/RZ/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1811 PGM_REG_COUNTER(&pPGM->StatRZSyncPT4K, "/PGM/CPU%d/RZ/SyncPT/4K", "Nr of 4K PT syncs");
1812 PGM_REG_COUNTER(&pPGM->StatRZSyncPT4M, "/PGM/CPU%d/RZ/SyncPT/4M", "Nr of 4M PT syncs");
1813 PGM_REG_COUNTER(&pPGM->StatRZSyncPagePDNAs, "/PGM/CPU%d/RZ/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1814 PGM_REG_COUNTER(&pPGM->StatRZSyncPagePDOutOfSync, "/PGM/CPU%d/RZ/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1815 PGM_REG_COUNTER(&pPGM->StatRZAccessedPage, "/PGM/CPU%d/RZ/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1816 PGM_REG_PROFILE(&pPGM->StatRZDirtyBitTracking, "/PGM/CPU%d/RZ/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1817 PGM_REG_COUNTER(&pPGM->StatRZDirtyPage, "/PGM/CPU%d/RZ/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1818 PGM_REG_COUNTER(&pPGM->StatRZDirtyPageBig, "/PGM/CPU%d/RZ/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1819 PGM_REG_COUNTER(&pPGM->StatRZDirtyPageSkipped, "/PGM/CPU%d/RZ/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1820 PGM_REG_COUNTER(&pPGM->StatRZDirtyPageTrap, "/PGM/CPU%d/RZ/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1821 PGM_REG_COUNTER(&pPGM->StatRZDirtyPageStale, "/PGM/CPU%d/RZ/DirtyPage/Stale", "The number of traps generated for dirty bit tracking (stale tlb entries).");
1822 PGM_REG_COUNTER(&pPGM->StatRZDirtiedPage, "/PGM/CPU%d/RZ/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1823 PGM_REG_COUNTER(&pPGM->StatRZDirtyTrackRealPF, "/PGM/CPU%d/RZ/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1824 PGM_REG_COUNTER(&pPGM->StatRZPageAlreadyDirty, "/PGM/CPU%d/RZ/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1825 PGM_REG_PROFILE(&pPGM->StatRZInvalidatePage, "/PGM/CPU%d/RZ/InvalidatePage", "PGMInvalidatePage() profiling.");
1826 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePage4KBPages, "/PGM/CPU%d/RZ/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1827 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePage4MBPages, "/PGM/CPU%d/RZ/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1828 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePage4MBPagesSkip, "/PGM/CPU%d/RZ/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1829 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePagePDMappings, "/PGM/CPU%d/RZ/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1830 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePagePDNAs, "/PGM/CPU%d/RZ/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1831 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePagePDNPs, "/PGM/CPU%d/RZ/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1832 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePagePDOutOfSync, "/PGM/CPU%d/RZ/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1833 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePageSkipped, "/PGM/CPU%d/RZ/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1834 PGM_REG_COUNTER(&pPGM->StatRZPageOutOfSyncSupervisor, "/PGM/CPU%d/RZ/OutOfSync/SuperVisor", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
1835 PGM_REG_COUNTER(&pPGM->StatRZPageOutOfSyncUser, "/PGM/CPU%d/RZ/OutOfSync/User", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
1836 PGM_REG_COUNTER(&pPGM->StatRZPageOutOfSyncSupervisorWrite,"/PGM/CPU%d/RZ/OutOfSync/SuperVisorWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
1837 PGM_REG_COUNTER(&pPGM->StatRZPageOutOfSyncUserWrite, "/PGM/CPU%d/RZ/OutOfSync/UserWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
1838 PGM_REG_PROFILE(&pPGM->StatRZPrefetch, "/PGM/CPU%d/RZ/Prefetch", "PGMPrefetchPage profiling.");
1839 PGM_REG_PROFILE(&pPGM->StatRZFlushTLB, "/PGM/CPU%d/RZ/FlushTLB", "Profiling of the PGMFlushTLB() body.");
1840 PGM_REG_COUNTER(&pPGM->StatRZFlushTLBNewCR3, "/PGM/CPU%d/RZ/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1841 PGM_REG_COUNTER(&pPGM->StatRZFlushTLBNewCR3Global, "/PGM/CPU%d/RZ/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1842 PGM_REG_COUNTER(&pPGM->StatRZFlushTLBSameCR3, "/PGM/CPU%d/RZ/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1843 PGM_REG_COUNTER(&pPGM->StatRZFlushTLBSameCR3Global, "/PGM/CPU%d/RZ/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1844 PGM_REG_PROFILE(&pPGM->StatRZGstModifyPage, "/PGM/CPU%d/RZ/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
1845
1846 PGM_REG_PROFILE(&pPGM->StatR3SyncCR3, "/PGM/CPU%d/R3/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1847 PGM_REG_PROFILE(&pPGM->StatR3SyncCR3Handlers, "/PGM/CPU%d/R3/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1848 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3Global, "/PGM/CPU%d/R3/SyncCR3/Global", "The number of global CR3 syncs.");
1849 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3NotGlobal, "/PGM/CPU%d/R3/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1850 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3DstCacheHit, "/PGM/CPU%d/R3/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1851 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3DstFreed, "/PGM/CPU%d/R3/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1852 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3DstFreedSrcNP, "/PGM/CPU%d/R3/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1853 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3DstNotPresent, "/PGM/CPU%d/R3/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1854 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3DstSkippedGlobalPD, "/PGM/CPU%d/R3/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1855 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3DstSkippedGlobalPT, "/PGM/CPU%d/R3/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1856 PGM_REG_PROFILE(&pPGM->StatR3SyncPT, "/PGM/CPU%d/R3/SyncPT", "Profiling of the pfnSyncPT() body.");
1857 PGM_REG_COUNTER(&pPGM->StatR3SyncPTFailed, "/PGM/CPU%d/R3/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1858 PGM_REG_COUNTER(&pPGM->StatR3SyncPT4K, "/PGM/CPU%d/R3/SyncPT/4K", "Nr of 4K PT syncs");
1859 PGM_REG_COUNTER(&pPGM->StatR3SyncPT4M, "/PGM/CPU%d/R3/SyncPT/4M", "Nr of 4M PT syncs");
1860 PGM_REG_COUNTER(&pPGM->StatR3SyncPagePDNAs, "/PGM/CPU%d/R3/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1861 PGM_REG_COUNTER(&pPGM->StatR3SyncPagePDOutOfSync, "/PGM/CPU%d/R3/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1862 PGM_REG_COUNTER(&pPGM->StatR3AccessedPage, "/PGM/CPU%d/R3/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1863 PGM_REG_PROFILE(&pPGM->StatR3DirtyBitTracking, "/PGM/CPU%d/R3/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1864 PGM_REG_COUNTER(&pPGM->StatR3DirtyPage, "/PGM/CPU%d/R3/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1865 PGM_REG_COUNTER(&pPGM->StatR3DirtyPageBig, "/PGM/CPU%d/R3/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1866 PGM_REG_COUNTER(&pPGM->StatR3DirtyPageSkipped, "/PGM/CPU%d/R3/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1867 PGM_REG_COUNTER(&pPGM->StatR3DirtyPageTrap, "/PGM/CPU%d/R3/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1868 PGM_REG_COUNTER(&pPGM->StatR3DirtiedPage, "/PGM/CPU%d/R3/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1869 PGM_REG_COUNTER(&pPGM->StatR3DirtyTrackRealPF, "/PGM/CPU%d/R3/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1870 PGM_REG_COUNTER(&pPGM->StatR3PageAlreadyDirty, "/PGM/CPU%d/R3/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1871 PGM_REG_PROFILE(&pPGM->StatR3InvalidatePage, "/PGM/CPU%d/R3/InvalidatePage", "PGMInvalidatePage() profiling.");
1872 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePage4KBPages, "/PGM/CPU%d/R3/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1873 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePage4MBPages, "/PGM/CPU%d/R3/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1874 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePage4MBPagesSkip, "/PGM/CPU%d/R3/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1875 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePagePDMappings, "/PGM/CPU%d/R3/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1876 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePagePDNAs, "/PGM/CPU%d/R3/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1877 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePagePDNPs, "/PGM/CPU%d/R3/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1878 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePagePDOutOfSync, "/PGM/CPU%d/R3/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1879 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePageSkipped, "/PGM/CPU%d/R3/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1880 PGM_REG_COUNTER(&pPGM->StatR3PageOutOfSyncSupervisor, "/PGM/CPU%d/R3/OutOfSync/SuperVisor", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1881 PGM_REG_COUNTER(&pPGM->StatR3PageOutOfSyncUser, "/PGM/CPU%d/R3/OutOfSync/User", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1882 PGM_REG_PROFILE(&pPGM->StatR3Prefetch, "/PGM/CPU%d/R3/Prefetch", "PGMPrefetchPage profiling.");
1883 PGM_REG_PROFILE(&pPGM->StatR3FlushTLB, "/PGM/CPU%d/R3/FlushTLB", "Profiling of the PGMFlushTLB() body.");
1884 PGM_REG_COUNTER(&pPGM->StatR3FlushTLBNewCR3, "/PGM/CPU%d/R3/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1885 PGM_REG_COUNTER(&pPGM->StatR3FlushTLBNewCR3Global, "/PGM/CPU%d/R3/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1886 PGM_REG_COUNTER(&pPGM->StatR3FlushTLBSameCR3, "/PGM/CPU%d/R3/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1887 PGM_REG_COUNTER(&pPGM->StatR3FlushTLBSameCR3Global, "/PGM/CPU%d/R3/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1888 PGM_REG_PROFILE(&pPGM->StatR3GstModifyPage, "/PGM/CPU%d/R3/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
1889#endif /* VBOX_WITH_STATISTICS */
1890
1891#undef PGM_REG_PROFILE
1892#undef PGM_REG_COUNTER
1893
1894 }
1895}
1896
1897
1898/**
1899 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
1900 *
1901 * The dynamic mapping area will also be allocated and initialized at this
1902 * time. We could allocate it during PGMR3Init of course, but the mapping
1903 * wouldn't be allocated at that time preventing us from setting up the
1904 * page table entries with the dummy page.
1905 *
1906 * @returns VBox status code.
1907 * @param pVM VM handle.
1908 */
1909VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
1910{
1911 RTGCPTR GCPtr;
1912 int rc;
1913
1914 /*
1915 * Reserve space for the dynamic mappings.
1916 */
1917 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
1918 if (RT_SUCCESS(rc))
1919 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1920
1921 if ( RT_SUCCESS(rc)
1922 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
1923 {
1924 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
1925 if (RT_SUCCESS(rc))
1926 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1927 }
1928 if (RT_SUCCESS(rc))
1929 {
1930 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
1931 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1932 }
1933 return rc;
1934}
1935
1936
1937/**
1938 * Ring-3 init finalizing.
1939 *
1940 * @returns VBox status code.
1941 * @param pVM The VM handle.
1942 */
1943VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
1944{
1945 int rc;
1946
1947 /*
1948 * Reserve space for the dynamic mappings.
1949 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
1950 */
1951 /* get the pointer to the page table entries. */
1952 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
1953 AssertRelease(pMapping);
1954 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
1955 const unsigned iPT = off >> X86_PD_SHIFT;
1956 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
1957 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
1958 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
1959
1960 /* init cache */
1961 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
1962 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache); i++)
1963 pVM->pgm.s.aHCPhysDynPageMapCache[i] = HCPhysDummy;
1964
1965 for (unsigned i = 0; i < MM_HYPER_DYNAMIC_SIZE; i += PAGE_SIZE)
1966 {
1967 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + i, HCPhysDummy, PAGE_SIZE, 0);
1968 AssertRCReturn(rc, rc);
1969 }
1970
1971 /*
1972 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
1973 * Intel only goes up to 36 bits, so we stick to 36 as well.
1974 */
1975 /** @todo How to test for the 40 bits support? Long mode seems to be the test criterium. */
1976 uint32_t u32Dummy, u32Features;
1977 CPUMGetGuestCpuId(VMMGetCpu(pVM), 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
1978
1979 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
1980 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(36) - 1;
1981 else
1982 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
1983
1984 /*
1985 * Allocate memory if we're supposed to do that.
1986 */
1987 if (pVM->pgm.s.fRamPreAlloc)
1988 rc = pgmR3PhysRamPreAllocate(pVM);
1989
1990 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
1991 return rc;
1992}
1993
1994
1995/**
1996 * Applies relocations to data and code managed by this component.
1997 *
1998 * This function will be called at init and whenever the VMM need to relocate it
1999 * self inside the GC.
2000 *
2001 * @param pVM The VM.
2002 * @param offDelta Relocation delta relative to old location.
2003 */
2004VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
2005{
2006 LogFlow(("PGMR3Relocate %RGv to %RGv\n", pVM->pgm.s.GCPtrCR3Mapping, pVM->pgm.s.GCPtrCR3Mapping + offDelta));
2007
2008 /*
2009 * Paging stuff.
2010 */
2011 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
2012
2013 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
2014
2015 /* Shadow, guest and both mode switch & relocation for each VCPU. */
2016 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2017 {
2018 PVMCPU pVCpu = &pVM->aCpus[i];
2019
2020 pgmR3ModeDataSwitch(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
2021
2022 PGM_SHW_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2023 PGM_GST_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2024 PGM_BTH_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2025 }
2026
2027 /*
2028 * Trees.
2029 */
2030 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
2031
2032 /*
2033 * Ram ranges.
2034 */
2035 if (pVM->pgm.s.pRamRangesR3)
2036 {
2037 /* Update the pSelfRC pointers and relink them. */
2038 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2039 if (!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2040 pCur->pSelfRC = MMHyperCCToRC(pVM, pCur);
2041 pgmR3PhysRelinkRamRanges(pVM);
2042 }
2043
2044 /*
2045 * Update the pSelfRC pointer of the MMIO2 ram ranges since they might not
2046 * be mapped and thus not included in the above exercise.
2047 */
2048 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
2049 if (!(pCur->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2050 pCur->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pCur->RamRange);
2051
2052 /*
2053 * Update the two page directories with all page table mappings.
2054 * (One or more of them have changed, that's why we're here.)
2055 */
2056 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
2057 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
2058 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
2059
2060 /* Relocate GC addresses of Page Tables. */
2061 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
2062 {
2063 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
2064 {
2065 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
2066 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
2067 }
2068 }
2069
2070 /*
2071 * Dynamic page mapping area.
2072 */
2073 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
2074 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
2075 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
2076
2077 /*
2078 * The Zero page.
2079 */
2080 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
2081#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2082 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR || !VMMIsHwVirtExtForced(pVM));
2083#else
2084 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR);
2085#endif
2086
2087 /*
2088 * Physical and virtual handlers.
2089 */
2090 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
2091 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
2092 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
2093
2094 /*
2095 * The page pool.
2096 */
2097 pgmR3PoolRelocate(pVM);
2098}
2099
2100
2101/**
2102 * Callback function for relocating a physical access handler.
2103 *
2104 * @returns 0 (continue enum)
2105 * @param pNode Pointer to a PGMPHYSHANDLER node.
2106 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2107 * not certain the delta will fit in a void pointer for all possible configs.
2108 */
2109static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
2110{
2111 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
2112 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2113 if (pHandler->pfnHandlerRC)
2114 pHandler->pfnHandlerRC += offDelta;
2115 if (pHandler->pvUserRC >= 0x10000)
2116 pHandler->pvUserRC += offDelta;
2117 return 0;
2118}
2119
2120
2121/**
2122 * Callback function for relocating a virtual access handler.
2123 *
2124 * @returns 0 (continue enum)
2125 * @param pNode Pointer to a PGMVIRTHANDLER node.
2126 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2127 * not certain the delta will fit in a void pointer for all possible configs.
2128 */
2129static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2130{
2131 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2132 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2133 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
2134 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
2135 Assert(pHandler->pfnHandlerRC);
2136 pHandler->pfnHandlerRC += offDelta;
2137 return 0;
2138}
2139
2140
2141/**
2142 * Callback function for relocating a virtual access handler for the hypervisor mapping.
2143 *
2144 * @returns 0 (continue enum)
2145 * @param pNode Pointer to a PGMVIRTHANDLER node.
2146 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2147 * not certain the delta will fit in a void pointer for all possible configs.
2148 */
2149static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2150{
2151 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2152 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2153 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
2154 Assert(pHandler->pfnHandlerRC);
2155 pHandler->pfnHandlerRC += offDelta;
2156 return 0;
2157}
2158
2159
2160/**
2161 * The VM is being reset.
2162 *
2163 * For the PGM component this means that any PD write monitors
2164 * needs to be removed.
2165 *
2166 * @param pVM VM handle.
2167 */
2168VMMR3DECL(void) PGMR3Reset(PVM pVM)
2169{
2170 int rc;
2171
2172 LogFlow(("PGMR3Reset:\n"));
2173 VM_ASSERT_EMT(pVM);
2174
2175 pgmLock(pVM);
2176
2177 /*
2178 * Unfix any fixed mappings and disable CR3 monitoring.
2179 */
2180 pVM->pgm.s.fMappingsFixed = false;
2181 pVM->pgm.s.GCPtrMappingFixed = 0;
2182 pVM->pgm.s.cbMappingFixed = 0;
2183
2184 /* Exit the guest paging mode before the pgm pool gets reset.
2185 * Important to clean up the amd64 case.
2186 */
2187 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2188 {
2189 PVMCPU pVCpu = &pVM->aCpus[i];
2190 rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2191 AssertRC(rc);
2192 }
2193
2194#ifdef DEBUG
2195 DBGFR3InfoLog(pVM, "mappings", NULL);
2196 DBGFR3InfoLog(pVM, "handlers", "all nostat");
2197#endif
2198
2199 /*
2200 * Switch mode back to real mode. (before resetting the pgm pool!)
2201 */
2202 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2203 {
2204 PVMCPU pVCpu = &pVM->aCpus[i];
2205
2206 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2207 AssertRC(rc);
2208
2209 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2210 }
2211
2212 /*
2213 * Reset the shadow page pool.
2214 */
2215 pgmR3PoolReset(pVM);
2216
2217 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2218 {
2219 PVMCPU pVCpu = &pVM->aCpus[i];
2220
2221 /*
2222 * Re-init other members.
2223 */
2224 pVCpu->pgm.s.fA20Enabled = true;
2225
2226 /*
2227 * Clear the FFs PGM owns.
2228 */
2229 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2230 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2231 }
2232
2233 /*
2234 * Reset (zero) RAM pages.
2235 */
2236 rc = pgmR3PhysRamReset(pVM);
2237 if (RT_SUCCESS(rc))
2238 {
2239 /*
2240 * Reset (zero) shadow ROM pages.
2241 */
2242 rc = pgmR3PhysRomReset(pVM);
2243 }
2244
2245 pgmUnlock(pVM);
2246 //return rc;
2247 AssertReleaseRC(rc);
2248}
2249
2250
2251#ifdef VBOX_STRICT
2252/**
2253 * VM state change callback for clearing fNoMorePhysWrites after
2254 * a snapshot has been created.
2255 */
2256static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2257{
2258 if (enmState == VMSTATE_RUNNING)
2259 pVM->pgm.s.fNoMorePhysWrites = false;
2260}
2261#endif
2262
2263
2264/**
2265 * Terminates the PGM.
2266 *
2267 * @returns VBox status code.
2268 * @param pVM Pointer to VM structure.
2269 */
2270VMMR3DECL(int) PGMR3Term(PVM pVM)
2271{
2272 PGMDeregisterStringFormatTypes();
2273 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
2274}
2275
2276
2277/**
2278 * Terminates the per-VCPU PGM.
2279 *
2280 * Termination means cleaning up and freeing all resources,
2281 * the VM it self is at this point powered off or suspended.
2282 *
2283 * @returns VBox status code.
2284 * @param pVM The VM to operate on.
2285 */
2286VMMR3DECL(int) PGMR3TermCPU(PVM pVM)
2287{
2288 return 0;
2289}
2290
2291
2292/**
2293 * Find the ROM tracking structure for the given page.
2294 *
2295 * @returns Pointer to the ROM page structure. NULL if the caller didn't check
2296 * that it's a ROM page.
2297 * @param pVM The VM handle.
2298 * @param GCPhys The address of the ROM page.
2299 */
2300static PPGMROMPAGE pgmR3GetRomPage(PVM pVM, RTGCPHYS GCPhys)
2301{
2302 for (PPGMROMRANGE pRomRange = pVM->pgm.s.CTX_SUFF(pRomRanges);
2303 pRomRange;
2304 pRomRange = pRomRange->CTX_SUFF(pNext))
2305 {
2306 RTGCPHYS off = GCPhys - pRomRange->GCPhys;
2307 if (GCPhys - pRomRange->GCPhys < pRomRange->cb)
2308 return &pRomRange->aPages[off >> PAGE_SHIFT];
2309 }
2310 return NULL;
2311}
2312
2313
2314/**
2315 * Save zero indicator + bits for the specified page.
2316 *
2317 * @returns VBox status code, errors are logged/asserted before returning.
2318 * @param pVM The VM handle.
2319 * @param pSSH The saved state handle.
2320 * @param pPage The page to save.
2321 * @param GCPhys The address of the page.
2322 * @param pRam The ram range (for error logging).
2323 */
2324static int pgmR3SavePage(PVM pVM, PSSMHANDLE pSSM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2325{
2326 int rc;
2327 if (PGM_PAGE_IS_ZERO(pPage))
2328 rc = SSMR3PutU8(pSSM, 0);
2329 else
2330 {
2331 void const *pvPage;
2332 rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, GCPhys, &pvPage);
2333 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc), rc);
2334
2335 SSMR3PutU8(pSSM, 1);
2336 rc = SSMR3PutMem(pSSM, pvPage, PAGE_SIZE);
2337 }
2338 return rc;
2339}
2340
2341
2342/**
2343 * Save a shadowed ROM page.
2344 *
2345 * Format: Type, protection, and two pages with zero indicators.
2346 *
2347 * @returns VBox status code, errors are logged/asserted before returning.
2348 * @param pVM The VM handle.
2349 * @param pSSH The saved state handle.
2350 * @param pPage The page to save.
2351 * @param GCPhys The address of the page.
2352 * @param pRam The ram range (for error logging).
2353 */
2354static int pgmR3SaveShadowedRomPage(PVM pVM, PSSMHANDLE pSSM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2355{
2356 /* Need to save both pages and the current state. */
2357 PPGMROMPAGE pRomPage = pgmR3GetRomPage(pVM, GCPhys);
2358 AssertLogRelMsgReturn(pRomPage, ("GCPhys=%RGp %s\n", GCPhys, pRam->pszDesc), VERR_INTERNAL_ERROR);
2359
2360 SSMR3PutU8(pSSM, PGMPAGETYPE_ROM_SHADOW);
2361 SSMR3PutU8(pSSM, pRomPage->enmProt);
2362
2363 int rc = pgmR3SavePage(pVM, pSSM, pPage, GCPhys, pRam);
2364 if (RT_SUCCESS(rc))
2365 {
2366 PPGMPAGE pPagePassive = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
2367 rc = pgmR3SavePage(pVM, pSSM, pPagePassive, GCPhys, pRam);
2368 }
2369 return rc;
2370}
2371
2372
2373/**
2374 * Prepare for a live save operation.
2375 *
2376 * This will attempt to allocate and initialize the tracking structures. It
2377 * will also prepare for write monitoring of pages and initialize PGM::LiveSave.
2378 * pgmR3SaveDone will do the cleanups.
2379 *
2380 * @returns VBox status code.
2381 *
2382 * @param pVM The VM handle.
2383 * @param pSSM The SSM handle.
2384 */
2385static DECLCALLBACK(int) pgmR3LivePrep(PVM pVM, PSSMHANDLE pSSM)
2386{
2387 /*
2388 * Indicate that we will be using the write monitoring.
2389 */
2390 pgmLock(pVM);
2391 /** @todo find a way of mediating this when more users are added. */
2392 if (pVM->pgm.s.fPhysWriteMonitoringEngaged)
2393 {
2394 pgmUnlock(pVM);
2395 AssertLogRelFailedReturn(VERR_INTERNAL_ERROR_2);
2396 }
2397 pVM->pgm.s.fPhysWriteMonitoringEngaged = true;
2398 pgmUnlock(pVM);
2399
2400 /*
2401 * Initialize the statistics.
2402 */
2403 pVM->pgm.s.LiveSave.cReadyPages = 0;
2404 pVM->pgm.s.LiveSave.cDirtyPages = 0;
2405 pVM->pgm.s.LiveSave.cMmioPages = 0;
2406
2407 /*
2408 * Try allocating tracking structures for the ram ranges.
2409 *
2410 * To avoid lock contention, we leave the lock every time we're allocating
2411 * a new array. This means we'll have to ditch the allocation and start
2412 * all over again if the RAM range list changes in-between.
2413 *
2414 * Note! pgmR3SaveDone will always be called and it is therefore responsible
2415 * for cleaning up.
2416 */
2417 PPGMRAMRANGE pCur;
2418 pgmLock(pVM);
2419 do
2420 {
2421 for (pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2422 {
2423 if ( !pCur->paLSPages
2424 && !PGM_RAM_RANGE_IS_AD_HOC(pCur))
2425 {
2426 uint32_t const idRamRangeGen = pVM->pgm.s.idRamRangesGen;
2427 uint32_t const cPages = pCur->cb >> PAGE_SHIFT;
2428 pgmUnlock(pVM);
2429 PPGMLIVESAVEPAGE paLSPages = (PPGMLIVESAVEPAGE)MMR3HeapAllocZ(pVM, MM_TAG_PGM, cPages * sizeof(PGMLIVESAVEPAGE));
2430 if (!paLSPages)
2431 return VERR_NO_MEMORY;
2432 pgmLock(pVM);
2433 if (pVM->pgm.s.idRamRangesGen != idRamRangeGen)
2434 {
2435 pgmUnlock(pVM);
2436 MMR3HeapFree(paLSPages);
2437 pgmLock(pVM);
2438 break; /* try again */
2439 }
2440 pCur->paLSPages = paLSPages;
2441
2442 /*
2443 * Initialize the array.
2444 */
2445 uint32_t iPage = cPages;
2446 while (iPage-- > 0)
2447 {
2448 PCPGMPAGE pPage = &pCur->aPages[iPage];
2449 paLSPages[iPage].uPassSaved = UINT32_MAX;
2450 paLSPages[iPage].cDirtied = 0;
2451 paLSPages[iPage].u5Reserved = 0;
2452 switch (PGM_PAGE_GET_TYPE(pPage))
2453 {
2454 case PGMPAGETYPE_RAM:
2455 case PGMPAGETYPE_ROM_SHADOW:
2456 case PGMPAGETYPE_ROM:
2457 if (PGM_PAGE_IS_ZERO(pPage))
2458 {
2459 paLSPages[iPage].fZero = 1;
2460 paLSPages[iPage].fDirty = 0;
2461 pVM->pgm.s.LiveSave.cReadyPages++;
2462 }
2463 else
2464 {
2465 paLSPages[iPage].fZero = 0;
2466 paLSPages[iPage].fDirty = 1;
2467 pVM->pgm.s.LiveSave.cDirtyPages++;
2468 }
2469 paLSPages[iPage].fMmio = 0;
2470 break;
2471 default:
2472 AssertMsgFailed(("%R[pgmpage]", pPage));
2473 case PGMPAGETYPE_MMIO2:
2474 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
2475 paLSPages[iPage].fZero = 0;
2476 paLSPages[iPage].fDirty = 1;
2477 paLSPages[iPage].fMmio = 1;
2478 pVM->pgm.s.LiveSave.cMmioPages++;
2479 break;
2480 case PGMPAGETYPE_MMIO:
2481 paLSPages[iPage].fZero = 1;
2482 paLSPages[iPage].fDirty = 1;
2483 paLSPages[iPage].fMmio = 1;
2484 pVM->pgm.s.LiveSave.cMmioPages++;
2485 break;
2486 }
2487 }
2488 }
2489 }
2490 } while (pCur);
2491 pgmUnlock(pVM);
2492
2493 return VINF_SUCCESS;
2494}
2495
2496
2497/**
2498 * Execute a live save pass.
2499 *
2500 * @returns VBox status code.
2501 *
2502 * @param pVM The VM handle.
2503 * @param pSSM The SSM handle.
2504 */
2505static DECLCALLBACK(int) pgmR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
2506{
2507 return VINF_SUCCESS;
2508}
2509
2510
2511/**
2512 * Votes on whether the live save phase is done or not.
2513 *
2514 * @returns VBox status code.
2515 *
2516 * @param pVM The VM handle.
2517 * @param pSSM The SSM handle.
2518 */
2519static DECLCALLBACK(int) pgmR3LiveVote(PVM pVM, PSSMHANDLE pSSM)
2520{
2521 return VINF_SUCCESS;
2522}
2523
2524
2525/** PGM fields to save/load. */
2526static const SSMFIELD s_aPGMFields[] =
2527{
2528 SSMFIELD_ENTRY( PGM, fMappingsFixed),
2529 SSMFIELD_ENTRY_GCPTR( PGM, GCPtrMappingFixed),
2530 SSMFIELD_ENTRY( PGM, cbMappingFixed),
2531 SSMFIELD_ENTRY_TERM()
2532};
2533
2534static const SSMFIELD s_aPGMCpuFields[] =
2535{
2536 SSMFIELD_ENTRY( PGMCPU, fA20Enabled),
2537 SSMFIELD_ENTRY_GCPHYS( PGMCPU, GCPhysA20Mask),
2538 SSMFIELD_ENTRY( PGMCPU, enmGuestMode),
2539 SSMFIELD_ENTRY_TERM()
2540};
2541
2542/* For loading old saved states. (pre-smp) */
2543typedef struct
2544{
2545 /** If set no conflict checks are required. (boolean) */
2546 bool fMappingsFixed;
2547 /** Size of fixed mapping */
2548 uint32_t cbMappingFixed;
2549 /** Base address (GC) of fixed mapping */
2550 RTGCPTR GCPtrMappingFixed;
2551 /** A20 gate mask.
2552 * Our current approach to A20 emulation is to let REM do it and don't bother
2553 * anywhere else. The interesting Guests will be operating with it enabled anyway.
2554 * But whould need arrise, we'll subject physical addresses to this mask. */
2555 RTGCPHYS GCPhysA20Mask;
2556 /** A20 gate state - boolean! */
2557 bool fA20Enabled;
2558 /** The guest paging mode. */
2559 PGMMODE enmGuestMode;
2560} PGMOLD;
2561
2562static const SSMFIELD s_aPGMFields_Old[] =
2563{
2564 SSMFIELD_ENTRY( PGMOLD, fMappingsFixed),
2565 SSMFIELD_ENTRY_GCPTR( PGMOLD, GCPtrMappingFixed),
2566 SSMFIELD_ENTRY( PGMOLD, cbMappingFixed),
2567 SSMFIELD_ENTRY( PGMOLD, fA20Enabled),
2568 SSMFIELD_ENTRY_GCPHYS( PGMOLD, GCPhysA20Mask),
2569 SSMFIELD_ENTRY( PGMOLD, enmGuestMode),
2570 SSMFIELD_ENTRY_TERM()
2571};
2572
2573
2574/**
2575 * Execute state save operation.
2576 *
2577 * @returns VBox status code.
2578 * @param pVM VM Handle.
2579 * @param pSSM SSM operation handle.
2580 */
2581static DECLCALLBACK(int) pgmR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
2582{
2583 int rc;
2584 unsigned i;
2585 PPGM pPGM = &pVM->pgm.s;
2586
2587 /*
2588 * Lock PGM and set the no-more-writes indicator.
2589 */
2590 pgmLock(pVM);
2591 pVM->pgm.s.fNoMorePhysWrites = true;
2592
2593 /*
2594 * Save basic data (required / unaffected by relocation).
2595 */
2596 SSMR3PutStruct(pSSM, pPGM, &s_aPGMFields[0]);
2597
2598 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2599 {
2600 PVMCPU pVCpu = &pVM->aCpus[idCpu];
2601 SSMR3PutStruct(pSSM, &pVCpu->pgm.s, &s_aPGMCpuFields[0]);
2602 }
2603
2604 /*
2605 * The guest mappings.
2606 */
2607 i = 0;
2608 for (PPGMMAPPING pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3, i++)
2609 {
2610 SSMR3PutU32( pSSM, i);
2611 SSMR3PutStrZ( pSSM, pMapping->pszDesc); /* This is the best unique id we have... */
2612 SSMR3PutGCPtr( pSSM, pMapping->GCPtr);
2613 SSMR3PutGCUIntPtr(pSSM, pMapping->cPTs);
2614 }
2615 rc = SSMR3PutU32(pSSM, ~0); /* terminator. */
2616
2617 /*
2618 * Ram ranges and the memory they describe.
2619 */
2620 i = 0;
2621 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2622 {
2623 /*
2624 * Save the ram range details.
2625 */
2626 SSMR3PutU32(pSSM, i);
2627 SSMR3PutGCPhys(pSSM, pRam->GCPhys);
2628 SSMR3PutGCPhys(pSSM, pRam->GCPhysLast);
2629 SSMR3PutGCPhys(pSSM, pRam->cb);
2630 SSMR3PutU8(pSSM, !!pRam->pvR3); /* Boolean indicating memory or not. */
2631 SSMR3PutStrZ(pSSM, pRam->pszDesc); /* This is the best unique id we have... */
2632
2633 /*
2634 * Iterate the pages, only two special case.
2635 */
2636 uint32_t const cPages = pRam->cb >> PAGE_SHIFT;
2637 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2638 {
2639 RTGCPHYS GCPhysPage = pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
2640 PPGMPAGE pPage = &pRam->aPages[iPage];
2641 uint8_t uType = PGM_PAGE_GET_TYPE(pPage);
2642
2643 if (uType == PGMPAGETYPE_ROM_SHADOW)
2644 rc = pgmR3SaveShadowedRomPage(pVM, pSSM, pPage, GCPhysPage, pRam);
2645 else if (uType == PGMPAGETYPE_MMIO2_ALIAS_MMIO)
2646 {
2647 /* MMIO2 alias -> MMIO; the device will just have to deal with this. */
2648 SSMR3PutU8(pSSM, PGMPAGETYPE_MMIO);
2649 rc = SSMR3PutU8(pSSM, 0 /* ZERO */);
2650 }
2651 else
2652 {
2653 SSMR3PutU8(pSSM, uType);
2654 rc = pgmR3SavePage(pVM, pSSM, pPage, GCPhysPage, pRam);
2655 }
2656 if (RT_FAILURE(rc))
2657 break;
2658 }
2659 if (RT_FAILURE(rc))
2660 break;
2661 }
2662
2663 pgmUnlock(pVM);
2664 return SSMR3PutU32(pSSM, ~0); /* terminator. */
2665}
2666
2667
2668/**
2669 * Cleans up after an save state operation.
2670 *
2671 * @returns VBox status code.
2672 * @param pVM VM Handle.
2673 * @param pSSM SSM operation handle.
2674 */
2675static DECLCALLBACK(int) pgmR3SaveDone(PVM pVM, PSSMHANDLE pSSM)
2676{
2677 /*
2678 * Free the tracking arrays and disable write monitoring.
2679 *
2680 * Play nice with the PGM lock in case we're called while the VM is still
2681 * running. This means we have to delay the freeing since we wish to use
2682 * paLSPages as an indicator of which RAM ranges which we need to scan for
2683 * write monitored pages.
2684 */
2685 void *pvToFree = NULL;
2686 PPGMRAMRANGE pCur;
2687 uint32_t cMonitoredPages = 0;
2688 pgmLock(pVM);
2689 do
2690 {
2691 for (pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2692 {
2693 if (pCur->paLSPages)
2694 {
2695 if (pvToFree)
2696 {
2697 uint32_t idRamRangesGen = pVM->pgm.s.idRamRangesGen;
2698 pgmUnlock(pVM);
2699 MMR3HeapFree(pvToFree);
2700 pvToFree = NULL;
2701 pgmLock(pVM);
2702 if (idRamRangesGen != pVM->pgm.s.idRamRangesGen)
2703 break; /* start over again. */
2704 }
2705
2706 pvToFree = pCur->paLSPages;
2707 pCur->paLSPages = NULL;
2708
2709 uint32_t iPage = pCur->cb >> PAGE_SHIFT;
2710 while (iPage--)
2711 {
2712 PPGMPAGE pPage = &pCur->aPages[iPage];
2713 PGM_PAGE_CLEAR_WRITTEN_TO(pPage);
2714 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
2715 {
2716 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
2717 cMonitoredPages++;
2718 }
2719 }
2720 }
2721 }
2722 } while (pCur);
2723
2724 /** @todo this is blindly assuming that we're the only user of write
2725 * monitoring. Fix this when more users are added. */
2726 pVM->pgm.s.fPhysWriteMonitoringEngaged = false;
2727 pgmUnlock(pVM);
2728
2729 MMR3HeapFree(pvToFree);
2730 pvToFree = NULL;
2731
2732 return VINF_SUCCESS;
2733}
2734
2735
2736/**
2737 * Load an ignored page.
2738 *
2739 * @returns VBox status code.
2740 * @param pSSM The saved state handle.
2741 */
2742static int pgmR3LoadPageToDevNull(PSSMHANDLE pSSM)
2743{
2744 uint8_t abPage[PAGE_SIZE];
2745 return SSMR3GetMem(pSSM, &abPage[0], sizeof(abPage));
2746}
2747
2748
2749/**
2750 * Loads a page without any bits in the saved state, i.e. making sure it's
2751 * really zero.
2752 *
2753 * @returns VBox status code.
2754 * @param pVM The VM handle.
2755 * @param uType The page type or PGMPAGETYPE_INVALID (old saved
2756 * state).
2757 * @param pPage The guest page tracking structure.
2758 * @param GCPhys The page address.
2759 * @param pRam The ram range (logging).
2760 */
2761static int pgmR3LoadPageZero(PVM pVM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2762{
2763 if ( PGM_PAGE_GET_TYPE(pPage) != uType
2764 && uType != PGMPAGETYPE_INVALID)
2765 return VERR_SSM_UNEXPECTED_DATA;
2766
2767 /* I think this should be sufficient. */
2768 if (!PGM_PAGE_IS_ZERO(pPage))
2769 return VERR_SSM_UNEXPECTED_DATA;
2770
2771 NOREF(pVM);
2772 NOREF(GCPhys);
2773 NOREF(pRam);
2774 return VINF_SUCCESS;
2775}
2776
2777
2778/**
2779 * Loads a page from the saved state.
2780 *
2781 * @returns VBox status code.
2782 * @param pVM The VM handle.
2783 * @param pSSM The SSM handle.
2784 * @param uType The page type or PGMPAGETYEP_INVALID (old saved
2785 * state).
2786 * @param pPage The guest page tracking structure.
2787 * @param GCPhys The page address.
2788 * @param pRam The ram range (logging).
2789 */
2790static int pgmR3LoadPageBits(PVM pVM, PSSMHANDLE pSSM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2791{
2792 int rc;
2793
2794 /*
2795 * Match up the type, dealing with MMIO2 aliases (dropped).
2796 */
2797 AssertLogRelMsgReturn( PGM_PAGE_GET_TYPE(pPage) == uType
2798 || uType == PGMPAGETYPE_INVALID,
2799 ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc),
2800 VERR_SSM_UNEXPECTED_DATA);
2801
2802 /*
2803 * Load the page.
2804 */
2805 void *pvPage;
2806 rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvPage);
2807 if (RT_SUCCESS(rc))
2808 rc = SSMR3GetMem(pSSM, pvPage, PAGE_SIZE);
2809
2810 return rc;
2811}
2812
2813
2814/**
2815 * Loads a page (counter part to pgmR3SavePage).
2816 *
2817 * @returns VBox status code, fully bitched errors.
2818 * @param pVM The VM handle.
2819 * @param pSSM The SSM handle.
2820 * @param uType The page type.
2821 * @param pPage The page.
2822 * @param GCPhys The page address.
2823 * @param pRam The RAM range (for error messages).
2824 */
2825static int pgmR3LoadPage(PVM pVM, PSSMHANDLE pSSM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2826{
2827 uint8_t uState;
2828 int rc = SSMR3GetU8(pSSM, &uState);
2829 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s rc=%Rrc\n", pPage, GCPhys, pRam->pszDesc, rc), rc);
2830 if (uState == 0 /* zero */)
2831 rc = pgmR3LoadPageZero(pVM, uType, pPage, GCPhys, pRam);
2832 else if (uState == 1)
2833 rc = pgmR3LoadPageBits(pVM, pSSM, uType, pPage, GCPhys, pRam);
2834 else
2835 rc = VERR_INTERNAL_ERROR;
2836 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] uState=%d uType=%d GCPhys=%RGp %s rc=%Rrc\n",
2837 pPage, uState, uType, GCPhys, pRam->pszDesc, rc),
2838 rc);
2839 return VINF_SUCCESS;
2840}
2841
2842
2843/**
2844 * Loads a shadowed ROM page.
2845 *
2846 * @returns VBox status code, errors are fully bitched.
2847 * @param pVM The VM handle.
2848 * @param pSSM The saved state handle.
2849 * @param pPage The page.
2850 * @param GCPhys The page address.
2851 * @param pRam The RAM range (for error messages).
2852 */
2853static int pgmR3LoadShadowedRomPage(PVM pVM, PSSMHANDLE pSSM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2854{
2855 /*
2856 * Load and set the protection first, then load the two pages, the first
2857 * one is the active the other is the passive.
2858 */
2859 PPGMROMPAGE pRomPage = pgmR3GetRomPage(pVM, GCPhys);
2860 AssertLogRelMsgReturn(pRomPage, ("GCPhys=%RGp %s\n", GCPhys, pRam->pszDesc), VERR_INTERNAL_ERROR);
2861
2862 uint8_t uProt;
2863 int rc = SSMR3GetU8(pSSM, &uProt);
2864 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc), rc);
2865 PGMROMPROT enmProt = (PGMROMPROT)uProt;
2866 AssertLogRelMsgReturn( enmProt >= PGMROMPROT_INVALID
2867 && enmProt < PGMROMPROT_END,
2868 ("enmProt=%d pPage=%R[pgmpage] GCPhys=%#x %s\n", enmProt, pPage, GCPhys, pRam->pszDesc),
2869 VERR_SSM_UNEXPECTED_DATA);
2870
2871 if (pRomPage->enmProt != enmProt)
2872 {
2873 rc = PGMR3PhysRomProtect(pVM, GCPhys, PAGE_SIZE, enmProt);
2874 AssertLogRelRCReturn(rc, rc);
2875 AssertLogRelReturn(pRomPage->enmProt == enmProt, VERR_INTERNAL_ERROR);
2876 }
2877
2878 PPGMPAGE pPageActive = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
2879 PPGMPAGE pPagePassive = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
2880 uint8_t u8ActiveType = PGMROMPROT_IS_ROM(enmProt) ? PGMPAGETYPE_ROM : PGMPAGETYPE_ROM_SHADOW;
2881 uint8_t u8PassiveType= PGMROMPROT_IS_ROM(enmProt) ? PGMPAGETYPE_ROM_SHADOW : PGMPAGETYPE_ROM;
2882
2883 rc = pgmR3LoadPage(pVM, pSSM, u8ActiveType, pPage, GCPhys, pRam);
2884 if (RT_SUCCESS(rc))
2885 {
2886 *pPageActive = *pPage;
2887 rc = pgmR3LoadPage(pVM, pSSM, u8PassiveType, pPagePassive, GCPhys, pRam);
2888 }
2889 return rc;
2890}
2891
2892
2893/**
2894 * Worker for pgmR3Load.
2895 *
2896 * @returns VBox status code.
2897 *
2898 * @param pVM The VM handle.
2899 * @param pSSM The SSM handle.
2900 * @param uVersion The saved state version.
2901 */
2902static int pgmR3LoadLocked(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion)
2903{
2904 PPGM pPGM = &pVM->pgm.s;
2905 int rc;
2906 uint32_t u32Sep;
2907
2908 /*
2909 * Load basic data (required / unaffected by relocation).
2910 */
2911 if (uVersion >= PGM_SAVED_STATE_VERSION)
2912 {
2913 rc = SSMR3GetStruct(pSSM, pPGM, &s_aPGMFields[0]);
2914 AssertLogRelRCReturn(rc, rc);
2915
2916 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2917 {
2918 rc = SSMR3GetStruct(pSSM, &pVM->aCpus[i].pgm.s, &s_aPGMCpuFields[0]);
2919 AssertLogRelRCReturn(rc, rc);
2920 }
2921 }
2922 else if (uVersion >= PGM_SAVED_STATE_VERSION_RR_DESC)
2923 {
2924 AssertRelease(pVM->cCpus == 1);
2925
2926 PGMOLD pgmOld;
2927 rc = SSMR3GetStruct(pSSM, &pgmOld, &s_aPGMFields_Old[0]);
2928 AssertLogRelRCReturn(rc, rc);
2929
2930 pPGM->fMappingsFixed = pgmOld.fMappingsFixed;
2931 pPGM->GCPtrMappingFixed = pgmOld.GCPtrMappingFixed;
2932 pPGM->cbMappingFixed = pgmOld.cbMappingFixed;
2933
2934 pVM->aCpus[0].pgm.s.fA20Enabled = pgmOld.fA20Enabled;
2935 pVM->aCpus[0].pgm.s.GCPhysA20Mask = pgmOld.GCPhysA20Mask;
2936 pVM->aCpus[0].pgm.s.enmGuestMode = pgmOld.enmGuestMode;
2937 }
2938 else
2939 {
2940 AssertRelease(pVM->cCpus == 1);
2941
2942 SSMR3GetBool(pSSM, &pPGM->fMappingsFixed);
2943 SSMR3GetGCPtr(pSSM, &pPGM->GCPtrMappingFixed);
2944 SSMR3GetU32(pSSM, &pPGM->cbMappingFixed);
2945
2946 uint32_t cbRamSizeIgnored;
2947 rc = SSMR3GetU32(pSSM, &cbRamSizeIgnored);
2948 if (RT_FAILURE(rc))
2949 return rc;
2950 SSMR3GetGCPhys(pSSM, &pVM->aCpus[0].pgm.s.GCPhysA20Mask);
2951
2952 uint32_t u32 = 0;
2953 SSMR3GetUInt(pSSM, &u32);
2954 pVM->aCpus[0].pgm.s.fA20Enabled = !!u32;
2955 SSMR3GetUInt(pSSM, &pVM->aCpus[0].pgm.s.fSyncFlags);
2956 RTUINT uGuestMode;
2957 SSMR3GetUInt(pSSM, &uGuestMode);
2958 pVM->aCpus[0].pgm.s.enmGuestMode = (PGMMODE)uGuestMode;
2959
2960 /* check separator. */
2961 SSMR3GetU32(pSSM, &u32Sep);
2962 if (RT_FAILURE(rc))
2963 return rc;
2964 if (u32Sep != (uint32_t)~0)
2965 {
2966 AssertMsgFailed(("u32Sep=%#x (first)\n", u32Sep));
2967 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2968 }
2969 }
2970
2971 /*
2972 * The guest mappings.
2973 */
2974 uint32_t i = 0;
2975 for (;; i++)
2976 {
2977 /* Check the seqence number / separator. */
2978 rc = SSMR3GetU32(pSSM, &u32Sep);
2979 if (RT_FAILURE(rc))
2980 return rc;
2981 if (u32Sep == ~0U)
2982 break;
2983 if (u32Sep != i)
2984 {
2985 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2986 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2987 }
2988
2989 /* get the mapping details. */
2990 char szDesc[256];
2991 szDesc[0] = '\0';
2992 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2993 if (RT_FAILURE(rc))
2994 return rc;
2995 RTGCPTR GCPtr;
2996 SSMR3GetGCPtr(pSSM, &GCPtr);
2997 RTGCPTR cPTs;
2998 rc = SSMR3GetGCUIntPtr(pSSM, &cPTs);
2999 if (RT_FAILURE(rc))
3000 return rc;
3001
3002 /* find matching range. */
3003 PPGMMAPPING pMapping;
3004 for (pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3)
3005 if ( pMapping->cPTs == cPTs
3006 && !strcmp(pMapping->pszDesc, szDesc))
3007 break;
3008 AssertLogRelMsgReturn(pMapping, ("Couldn't find mapping: cPTs=%#x szDesc=%s (GCPtr=%RGv)\n",
3009 cPTs, szDesc, GCPtr),
3010 VERR_SSM_LOAD_CONFIG_MISMATCH);
3011
3012 /* relocate it. */
3013 if (pMapping->GCPtr != GCPtr)
3014 {
3015 AssertMsg((GCPtr >> X86_PD_SHIFT << X86_PD_SHIFT) == GCPtr, ("GCPtr=%RGv\n", GCPtr));
3016 pgmR3MapRelocate(pVM, pMapping, pMapping->GCPtr, GCPtr);
3017 }
3018 else
3019 Log(("pgmR3Load: '%s' needed no relocation (%RGv)\n", szDesc, GCPtr));
3020 }
3021
3022 /*
3023 * Ram range flags and bits.
3024 */
3025 i = 0;
3026 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; ; pRam = pRam->pNextR3, i++)
3027 {
3028 /* Check the seqence number / separator. */
3029 rc = SSMR3GetU32(pSSM, &u32Sep);
3030 if (RT_FAILURE(rc))
3031 return rc;
3032 if (u32Sep == ~0U)
3033 break;
3034 if (u32Sep != i)
3035 {
3036 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
3037 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
3038 }
3039 AssertLogRelReturn(pRam, VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
3040
3041 /* Get the range details. */
3042 RTGCPHYS GCPhys;
3043 SSMR3GetGCPhys(pSSM, &GCPhys);
3044 RTGCPHYS GCPhysLast;
3045 SSMR3GetGCPhys(pSSM, &GCPhysLast);
3046 RTGCPHYS cb;
3047 SSMR3GetGCPhys(pSSM, &cb);
3048 uint8_t fHaveBits;
3049 rc = SSMR3GetU8(pSSM, &fHaveBits);
3050 if (RT_FAILURE(rc))
3051 return rc;
3052 if (fHaveBits & ~1)
3053 {
3054 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
3055 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
3056 }
3057 size_t cchDesc = 0;
3058 char szDesc[256];
3059 szDesc[0] = '\0';
3060 if (uVersion >= PGM_SAVED_STATE_VERSION_RR_DESC)
3061 {
3062 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
3063 if (RT_FAILURE(rc))
3064 return rc;
3065 /* Since we've modified the description strings in r45878, only compare
3066 them if the saved state is more recent. */
3067 if (uVersion != PGM_SAVED_STATE_VERSION_RR_DESC)
3068 cchDesc = strlen(szDesc);
3069 }
3070
3071 /*
3072 * Match it up with the current range.
3073 *
3074 * Note there is a hack for dealing with the high BIOS mapping
3075 * in the old saved state format, this means we might not have
3076 * a 1:1 match on success.
3077 */
3078 if ( ( GCPhys != pRam->GCPhys
3079 || GCPhysLast != pRam->GCPhysLast
3080 || cb != pRam->cb
3081 || ( cchDesc
3082 && strcmp(szDesc, pRam->pszDesc)) )
3083 /* Hack for PDMDevHlpPhysReserve(pDevIns, 0xfff80000, 0x80000, "High ROM Region"); */
3084 && ( uVersion != PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE
3085 || GCPhys != UINT32_C(0xfff80000)
3086 || GCPhysLast != UINT32_C(0xffffffff)
3087 || pRam->GCPhysLast != GCPhysLast
3088 || pRam->GCPhys < GCPhys
3089 || !fHaveBits)
3090 )
3091 {
3092 LogRel(("Ram range: %RGp-%RGp %RGp bytes %s %s\n"
3093 "State : %RGp-%RGp %RGp bytes %s %s\n",
3094 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvR3 ? "bits" : "nobits", pRam->pszDesc,
3095 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits", szDesc));
3096 /*
3097 * If we're loading a state for debugging purpose, don't make a fuss if
3098 * the MMIO and ROM stuff isn't 100% right, just skip the mismatches.
3099 */
3100 if ( SSMR3HandleGetAfter(pSSM) != SSMAFTER_DEBUG_IT
3101 || GCPhys < 8 * _1M)
3102 AssertFailedReturn(VERR_SSM_LOAD_CONFIG_MISMATCH);
3103
3104 AssertMsgFailed(("debug skipping not implemented, sorry\n"));
3105 continue;
3106 }
3107
3108 uint32_t cPages = (GCPhysLast - GCPhys + 1) >> PAGE_SHIFT;
3109 if (uVersion >= PGM_SAVED_STATE_VERSION_RR_DESC)
3110 {
3111 /*
3112 * Load the pages one by one.
3113 */
3114 for (uint32_t iPage = 0; iPage < cPages; iPage++)
3115 {
3116 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
3117 PPGMPAGE pPage = &pRam->aPages[iPage];
3118 uint8_t uType;
3119 rc = SSMR3GetU8(pSSM, &uType);
3120 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] iPage=%#x GCPhysPage=%#x %s\n", pPage, iPage, GCPhysPage, pRam->pszDesc), rc);
3121 if (uType == PGMPAGETYPE_ROM_SHADOW)
3122 rc = pgmR3LoadShadowedRomPage(pVM, pSSM, pPage, GCPhysPage, pRam);
3123 else
3124 rc = pgmR3LoadPage(pVM, pSSM, uType, pPage, GCPhysPage, pRam);
3125 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhysPage=%#x %s\n", rc, iPage, GCPhysPage, pRam->pszDesc), rc);
3126 }
3127 }
3128 else
3129 {
3130 /*
3131 * Old format.
3132 */
3133 AssertLogRelReturn(!pVM->pgm.s.fRamPreAlloc, VERR_NOT_SUPPORTED); /* can't be detected. */
3134
3135 /* Of the page flags, pick up MMIO2 and ROM/RESERVED for the !fHaveBits case.
3136 The rest is generally irrelevant and wrong since the stuff have to match registrations. */
3137 uint32_t fFlags = 0;
3138 for (uint32_t iPage = 0; iPage < cPages; iPage++)
3139 {
3140 uint16_t u16Flags;
3141 rc = SSMR3GetU16(pSSM, &u16Flags);
3142 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
3143 fFlags |= u16Flags;
3144 }
3145
3146 /* Load the bits */
3147 if ( !fHaveBits
3148 && GCPhysLast < UINT32_C(0xe0000000))
3149 {
3150 /*
3151 * Dynamic chunks.
3152 */
3153 const uint32_t cPagesInChunk = (1*1024*1024) >> PAGE_SHIFT;
3154 AssertLogRelMsgReturn(cPages % cPagesInChunk == 0,
3155 ("cPages=%#x cPagesInChunk=%#x\n", cPages, cPagesInChunk, pRam->GCPhys, pRam->pszDesc),
3156 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
3157
3158 for (uint32_t iPage = 0; iPage < cPages; /* incremented by inner loop */ )
3159 {
3160 uint8_t fPresent;
3161 rc = SSMR3GetU8(pSSM, &fPresent);
3162 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
3163 AssertLogRelMsgReturn(fPresent == (uint8_t)true || fPresent == (uint8_t)false,
3164 ("fPresent=%#x iPage=%#x GCPhys=%#x %s\n", fPresent, iPage, pRam->GCPhys, pRam->pszDesc),
3165 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
3166
3167 for (uint32_t iChunkPage = 0; iChunkPage < cPagesInChunk; iChunkPage++, iPage++)
3168 {
3169 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
3170 PPGMPAGE pPage = &pRam->aPages[iPage];
3171 if (fPresent)
3172 {
3173 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO)
3174 rc = pgmR3LoadPageToDevNull(pSSM);
3175 else
3176 rc = pgmR3LoadPageBits(pVM, pSSM, PGMPAGETYPE_INVALID, pPage, GCPhysPage, pRam);
3177 }
3178 else
3179 rc = pgmR3LoadPageZero(pVM, PGMPAGETYPE_INVALID, pPage, GCPhysPage, pRam);
3180 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhysPage=%#x %s\n", rc, iPage, GCPhysPage, pRam->pszDesc), rc);
3181 }
3182 }
3183 }
3184 else if (pRam->pvR3)
3185 {
3186 /*
3187 * MMIO2.
3188 */
3189 AssertLogRelMsgReturn((fFlags & 0x0f) == RT_BIT(3) /*MM_RAM_FLAGS_MMIO2*/,
3190 ("fFlags=%#x GCPhys=%#x %s\n", fFlags, pRam->GCPhys, pRam->pszDesc),
3191 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
3192 AssertLogRelMsgReturn(pRam->pvR3,
3193 ("GCPhys=%#x %s\n", pRam->GCPhys, pRam->pszDesc),
3194 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
3195
3196 rc = SSMR3GetMem(pSSM, pRam->pvR3, pRam->cb);
3197 AssertLogRelMsgRCReturn(rc, ("GCPhys=%#x %s\n", pRam->GCPhys, pRam->pszDesc), rc);
3198 }
3199 else if (GCPhysLast < UINT32_C(0xfff80000))
3200 {
3201 /*
3202 * PCI MMIO, no pages saved.
3203 */
3204 }
3205 else
3206 {
3207 /*
3208 * Load the 0xfff80000..0xffffffff BIOS range.
3209 * It starts with X reserved pages that we have to skip over since
3210 * the RAMRANGE create by the new code won't include those.
3211 */
3212 AssertLogRelMsgReturn( !(fFlags & RT_BIT(3) /*MM_RAM_FLAGS_MMIO2*/)
3213 && (fFlags & RT_BIT(0) /*MM_RAM_FLAGS_RESERVED*/),
3214 ("fFlags=%#x GCPhys=%#x %s\n", fFlags, pRam->GCPhys, pRam->pszDesc),
3215 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
3216 AssertLogRelMsgReturn(GCPhys == UINT32_C(0xfff80000),
3217 ("GCPhys=%RGp pRamRange{GCPhys=%#x %s}\n", GCPhys, pRam->GCPhys, pRam->pszDesc),
3218 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
3219
3220 /* Skip wasted reserved pages before the ROM. */
3221 while (GCPhys < pRam->GCPhys)
3222 {
3223 rc = pgmR3LoadPageToDevNull(pSSM);
3224 GCPhys += PAGE_SIZE;
3225 }
3226
3227 /* Load the bios pages. */
3228 cPages = pRam->cb >> PAGE_SHIFT;
3229 for (uint32_t iPage = 0; iPage < cPages; iPage++)
3230 {
3231 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
3232 PPGMPAGE pPage = &pRam->aPages[iPage];
3233
3234 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_ROM,
3235 ("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, GCPhys),
3236 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
3237 rc = pgmR3LoadPageBits(pVM, pSSM, PGMPAGETYPE_ROM, pPage, GCPhysPage, pRam);
3238 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
3239 }
3240 }
3241 }
3242 }
3243
3244 return rc;
3245}
3246
3247
3248/**
3249 * Execute state load operation.
3250 *
3251 * @returns VBox status code.
3252 * @param pVM VM Handle.
3253 * @param pSSM SSM operation handle.
3254 * @param uVersion Data layout version.
3255 * @param uPass The data pass.
3256 */
3257static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
3258{
3259 int rc;
3260 PPGM pPGM = &pVM->pgm.s;
3261 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
3262
3263 /*
3264 * Validate version.
3265 */
3266 if ( uVersion != PGM_SAVED_STATE_VERSION
3267 && uVersion != PGM_SAVED_STATE_VERSION_2_2_2
3268 && uVersion != PGM_SAVED_STATE_VERSION_RR_DESC
3269 && uVersion != PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE)
3270 {
3271 AssertMsgFailed(("pgmR3Load: Invalid version uVersion=%d (current %d)!\n", uVersion, PGM_SAVED_STATE_VERSION));
3272 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
3273 }
3274
3275 /*
3276 * Call the reset function to make sure all the memory is cleared.
3277 */
3278 PGMR3Reset(pVM);
3279
3280 /*
3281 * Do the loading while owning the lock because a bunch of the functions
3282 * we're using requires this.
3283 */
3284 pgmLock(pVM);
3285 rc = pgmR3LoadLocked(pVM, pSSM, uVersion);
3286 pgmUnlock(pVM);
3287 if (RT_SUCCESS(rc))
3288 {
3289 /*
3290 * We require a full resync now.
3291 */
3292 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3293 {
3294 PVMCPU pVCpu = &pVM->aCpus[i];
3295 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
3296 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3297
3298 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
3299 }
3300
3301 pgmR3HandlerPhysicalUpdateAll(pVM);
3302
3303 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3304 {
3305 PVMCPU pVCpu = &pVM->aCpus[i];
3306
3307 /*
3308 * Change the paging mode.
3309 */
3310 rc = PGMR3ChangeMode(pVM, pVCpu, pVCpu->pgm.s.enmGuestMode);
3311
3312 /* Restore pVM->pgm.s.GCPhysCR3. */
3313 Assert(pVCpu->pgm.s.GCPhysCR3 == NIL_RTGCPHYS);
3314 RTGCPHYS GCPhysCR3 = CPUMGetGuestCR3(pVCpu);
3315 if ( pVCpu->pgm.s.enmGuestMode == PGMMODE_PAE
3316 || pVCpu->pgm.s.enmGuestMode == PGMMODE_PAE_NX
3317 || pVCpu->pgm.s.enmGuestMode == PGMMODE_AMD64
3318 || pVCpu->pgm.s.enmGuestMode == PGMMODE_AMD64_NX)
3319 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAE_PAGE_MASK);
3320 else
3321 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAGE_MASK);
3322 pVCpu->pgm.s.GCPhysCR3 = GCPhysCR3;
3323 }
3324 }
3325
3326 return rc;
3327}
3328
3329
3330/**
3331 * Show paging mode.
3332 *
3333 * @param pVM VM Handle.
3334 * @param pHlp The info helpers.
3335 * @param pszArgs "all" (default), "guest", "shadow" or "host".
3336 */
3337static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3338{
3339 /* digest argument. */
3340 bool fGuest, fShadow, fHost;
3341 if (pszArgs)
3342 pszArgs = RTStrStripL(pszArgs);
3343 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
3344 fShadow = fHost = fGuest = true;
3345 else
3346 {
3347 fShadow = fHost = fGuest = false;
3348 if (strstr(pszArgs, "guest"))
3349 fGuest = true;
3350 if (strstr(pszArgs, "shadow"))
3351 fShadow = true;
3352 if (strstr(pszArgs, "host"))
3353 fHost = true;
3354 }
3355
3356 /** @todo SMP support! */
3357 /* print info. */
3358 if (fGuest)
3359 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
3360 PGMGetModeName(pVM->aCpus[0].pgm.s.enmGuestMode), pVM->aCpus[0].pgm.s.cGuestModeChanges.c,
3361 pVM->aCpus[0].pgm.s.fA20Enabled ? "enabled" : "disabled");
3362 if (fShadow)
3363 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->aCpus[0].pgm.s.enmShadowMode));
3364 if (fHost)
3365 {
3366 const char *psz;
3367 switch (pVM->pgm.s.enmHostMode)
3368 {
3369 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
3370 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
3371 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
3372 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
3373 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
3374 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
3375 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
3376 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
3377 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
3378 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
3379 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
3380 default: psz = "unknown"; break;
3381 }
3382 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
3383 }
3384}
3385
3386
3387/**
3388 * Dump registered MMIO ranges to the log.
3389 *
3390 * @param pVM VM Handle.
3391 * @param pHlp The info helpers.
3392 * @param pszArgs Arguments, ignored.
3393 */
3394static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3395{
3396 NOREF(pszArgs);
3397 pHlp->pfnPrintf(pHlp,
3398 "RAM ranges (pVM=%p)\n"
3399 "%.*s %.*s\n",
3400 pVM,
3401 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
3402 sizeof(RTHCPTR) * 2, "pvHC ");
3403
3404 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
3405 pHlp->pfnPrintf(pHlp,
3406 "%RGp-%RGp %RHv %s\n",
3407 pCur->GCPhys,
3408 pCur->GCPhysLast,
3409 pCur->pvR3,
3410 pCur->pszDesc);
3411}
3412
3413/**
3414 * Dump the page directory to the log.
3415 *
3416 * @param pVM VM Handle.
3417 * @param pHlp The info helpers.
3418 * @param pszArgs Arguments, ignored.
3419 */
3420static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3421{
3422 /** @todo SMP support!! */
3423 PVMCPU pVCpu = &pVM->aCpus[0];
3424
3425/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
3426 /* Big pages supported? */
3427 const bool fPSE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PSE);
3428
3429 /* Global pages supported? */
3430 const bool fPGE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE);
3431
3432 NOREF(pszArgs);
3433
3434 /*
3435 * Get page directory addresses.
3436 */
3437 PX86PD pPDSrc = pgmGstGet32bitPDPtr(&pVCpu->pgm.s);
3438 Assert(pPDSrc);
3439 Assert(PGMPhysGCPhys2R3PtrAssert(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
3440
3441 /*
3442 * Iterate the page directory.
3443 */
3444 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
3445 {
3446 X86PDE PdeSrc = pPDSrc->a[iPD];
3447 if (PdeSrc.n.u1Present)
3448 {
3449 if (PdeSrc.b.u1Size && fPSE)
3450 pHlp->pfnPrintf(pHlp,
3451 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
3452 iPD,
3453 pgmGstGet4MBPhysPage(&pVM->pgm.s, PdeSrc),
3454 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
3455 else
3456 pHlp->pfnPrintf(pHlp,
3457 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
3458 iPD,
3459 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
3460 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
3461 }
3462 }
3463}
3464
3465
3466/**
3467 * Service a VMMCALLRING3_PGM_LOCK call.
3468 *
3469 * @returns VBox status code.
3470 * @param pVM The VM handle.
3471 */
3472VMMR3DECL(int) PGMR3LockCall(PVM pVM)
3473{
3474 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSect, true /* fHostCall */);
3475 AssertRC(rc);
3476 return rc;
3477}
3478
3479
3480/**
3481 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
3482 *
3483 * @returns PGM_TYPE_*.
3484 * @param pgmMode The mode value to convert.
3485 */
3486DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
3487{
3488 switch (pgmMode)
3489 {
3490 case PGMMODE_REAL: return PGM_TYPE_REAL;
3491 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
3492 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
3493 case PGMMODE_PAE:
3494 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
3495 case PGMMODE_AMD64:
3496 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
3497 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
3498 case PGMMODE_EPT: return PGM_TYPE_EPT;
3499 default:
3500 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
3501 }
3502}
3503
3504
3505/**
3506 * Gets the index into the paging mode data array of a SHW+GST mode.
3507 *
3508 * @returns PGM::paPagingData index.
3509 * @param uShwType The shadow paging mode type.
3510 * @param uGstType The guest paging mode type.
3511 */
3512DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
3513{
3514 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
3515 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
3516 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
3517 + (uGstType - PGM_TYPE_REAL);
3518}
3519
3520
3521/**
3522 * Gets the index into the paging mode data array of a SHW+GST mode.
3523 *
3524 * @returns PGM::paPagingData index.
3525 * @param enmShw The shadow paging mode.
3526 * @param enmGst The guest paging mode.
3527 */
3528DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
3529{
3530 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
3531 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
3532 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
3533}
3534
3535
3536/**
3537 * Calculates the max data index.
3538 * @returns The number of entries in the paging data array.
3539 */
3540DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
3541{
3542 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
3543}
3544
3545
3546/**
3547 * Initializes the paging mode data kept in PGM::paModeData.
3548 *
3549 * @param pVM The VM handle.
3550 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
3551 * This is used early in the init process to avoid trouble with PDM
3552 * not being initialized yet.
3553 */
3554static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
3555{
3556 PPGMMODEDATA pModeData;
3557 int rc;
3558
3559 /*
3560 * Allocate the array on the first call.
3561 */
3562 if (!pVM->pgm.s.paModeData)
3563 {
3564 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
3565 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
3566 }
3567
3568 /*
3569 * Initialize the array entries.
3570 */
3571 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
3572 pModeData->uShwType = PGM_TYPE_32BIT;
3573 pModeData->uGstType = PGM_TYPE_REAL;
3574 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3575 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3576 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3577
3578 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
3579 pModeData->uShwType = PGM_TYPE_32BIT;
3580 pModeData->uGstType = PGM_TYPE_PROT;
3581 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3582 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3583 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3584
3585 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
3586 pModeData->uShwType = PGM_TYPE_32BIT;
3587 pModeData->uGstType = PGM_TYPE_32BIT;
3588 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3589 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3590 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3591
3592 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
3593 pModeData->uShwType = PGM_TYPE_PAE;
3594 pModeData->uGstType = PGM_TYPE_REAL;
3595 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3596 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3597 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3598
3599 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
3600 pModeData->uShwType = PGM_TYPE_PAE;
3601 pModeData->uGstType = PGM_TYPE_PROT;
3602 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3603 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3604 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3605
3606 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
3607 pModeData->uShwType = PGM_TYPE_PAE;
3608 pModeData->uGstType = PGM_TYPE_32BIT;
3609 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3610 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3611 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3612
3613 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
3614 pModeData->uShwType = PGM_TYPE_PAE;
3615 pModeData->uGstType = PGM_TYPE_PAE;
3616 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3617 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3618 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3619
3620#ifdef VBOX_WITH_64_BITS_GUESTS
3621 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
3622 pModeData->uShwType = PGM_TYPE_AMD64;
3623 pModeData->uGstType = PGM_TYPE_AMD64;
3624 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3625 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3626 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3627#endif
3628
3629 /* The nested paging mode. */
3630 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
3631 pModeData->uShwType = PGM_TYPE_NESTED;
3632 pModeData->uGstType = PGM_TYPE_REAL;
3633 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3634 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3635
3636 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
3637 pModeData->uShwType = PGM_TYPE_NESTED;
3638 pModeData->uGstType = PGM_TYPE_PROT;
3639 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3640 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3641
3642 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
3643 pModeData->uShwType = PGM_TYPE_NESTED;
3644 pModeData->uGstType = PGM_TYPE_32BIT;
3645 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3646 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3647
3648 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
3649 pModeData->uShwType = PGM_TYPE_NESTED;
3650 pModeData->uGstType = PGM_TYPE_PAE;
3651 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3652 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3653
3654#ifdef VBOX_WITH_64_BITS_GUESTS
3655 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3656 pModeData->uShwType = PGM_TYPE_NESTED;
3657 pModeData->uGstType = PGM_TYPE_AMD64;
3658 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3659 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3660#endif
3661
3662 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
3663 switch (pVM->pgm.s.enmHostMode)
3664 {
3665#if HC_ARCH_BITS == 32
3666 case SUPPAGINGMODE_32_BIT:
3667 case SUPPAGINGMODE_32_BIT_GLOBAL:
3668 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3669 {
3670 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3671 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3672 }
3673# ifdef VBOX_WITH_64_BITS_GUESTS
3674 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3675 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3676# endif
3677 break;
3678
3679 case SUPPAGINGMODE_PAE:
3680 case SUPPAGINGMODE_PAE_NX:
3681 case SUPPAGINGMODE_PAE_GLOBAL:
3682 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3683 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3684 {
3685 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3686 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3687 }
3688# ifdef VBOX_WITH_64_BITS_GUESTS
3689 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3690 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3691# endif
3692 break;
3693#endif /* HC_ARCH_BITS == 32 */
3694
3695#if HC_ARCH_BITS == 64 || defined(RT_OS_DARWIN)
3696 case SUPPAGINGMODE_AMD64:
3697 case SUPPAGINGMODE_AMD64_GLOBAL:
3698 case SUPPAGINGMODE_AMD64_NX:
3699 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3700# ifdef VBOX_WITH_64_BITS_GUESTS
3701 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_AMD64; i++)
3702# else
3703 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3704# endif
3705 {
3706 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3707 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3708 }
3709 break;
3710#endif /* HC_ARCH_BITS == 64 || RT_OS_DARWIN */
3711
3712 default:
3713 AssertFailed();
3714 break;
3715 }
3716
3717 /* Extended paging (EPT) / Intel VT-x */
3718 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
3719 pModeData->uShwType = PGM_TYPE_EPT;
3720 pModeData->uGstType = PGM_TYPE_REAL;
3721 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3722 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3723 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3724
3725 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
3726 pModeData->uShwType = PGM_TYPE_EPT;
3727 pModeData->uGstType = PGM_TYPE_PROT;
3728 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3729 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3730 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3731
3732 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
3733 pModeData->uShwType = PGM_TYPE_EPT;
3734 pModeData->uGstType = PGM_TYPE_32BIT;
3735 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3736 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3737 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3738
3739 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
3740 pModeData->uShwType = PGM_TYPE_EPT;
3741 pModeData->uGstType = PGM_TYPE_PAE;
3742 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3743 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3744 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3745
3746#ifdef VBOX_WITH_64_BITS_GUESTS
3747 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
3748 pModeData->uShwType = PGM_TYPE_EPT;
3749 pModeData->uGstType = PGM_TYPE_AMD64;
3750 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3751 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3752 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3753#endif
3754 return VINF_SUCCESS;
3755}
3756
3757
3758/**
3759 * Switch to different (or relocated in the relocate case) mode data.
3760 *
3761 * @param pVM The VM handle.
3762 * @param pVCpu The VMCPU to operate on.
3763 * @param enmShw The the shadow paging mode.
3764 * @param enmGst The the guest paging mode.
3765 */
3766static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst)
3767{
3768 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
3769
3770 Assert(pModeData->uGstType == pgmModeToType(enmGst));
3771 Assert(pModeData->uShwType == pgmModeToType(enmShw));
3772
3773 /* shadow */
3774 pVCpu->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
3775 pVCpu->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
3776 pVCpu->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
3777 Assert(pVCpu->pgm.s.pfnR3ShwGetPage);
3778 pVCpu->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
3779
3780 pVCpu->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
3781 pVCpu->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
3782
3783 pVCpu->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
3784 pVCpu->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
3785
3786
3787 /* guest */
3788 pVCpu->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
3789 pVCpu->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
3790 pVCpu->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
3791 Assert(pVCpu->pgm.s.pfnR3GstGetPage);
3792 pVCpu->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
3793 pVCpu->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
3794 pVCpu->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
3795 pVCpu->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
3796 pVCpu->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
3797 pVCpu->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
3798 pVCpu->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
3799 pVCpu->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
3800
3801 /* both */
3802 pVCpu->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
3803 pVCpu->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
3804 pVCpu->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
3805 Assert(pVCpu->pgm.s.pfnR3BthSyncCR3);
3806 pVCpu->pgm.s.pfnR3BthSyncPage = pModeData->pfnR3BthSyncPage;
3807 pVCpu->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
3808 pVCpu->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
3809#ifdef VBOX_STRICT
3810 pVCpu->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
3811#endif
3812 pVCpu->pgm.s.pfnR3BthMapCR3 = pModeData->pfnR3BthMapCR3;
3813 pVCpu->pgm.s.pfnR3BthUnmapCR3 = pModeData->pfnR3BthUnmapCR3;
3814
3815 pVCpu->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
3816 pVCpu->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
3817 pVCpu->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
3818 pVCpu->pgm.s.pfnRCBthSyncPage = pModeData->pfnRCBthSyncPage;
3819 pVCpu->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
3820 pVCpu->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
3821#ifdef VBOX_STRICT
3822 pVCpu->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
3823#endif
3824 pVCpu->pgm.s.pfnRCBthMapCR3 = pModeData->pfnRCBthMapCR3;
3825 pVCpu->pgm.s.pfnRCBthUnmapCR3 = pModeData->pfnRCBthUnmapCR3;
3826
3827 pVCpu->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
3828 pVCpu->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
3829 pVCpu->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
3830 pVCpu->pgm.s.pfnR0BthSyncPage = pModeData->pfnR0BthSyncPage;
3831 pVCpu->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
3832 pVCpu->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
3833#ifdef VBOX_STRICT
3834 pVCpu->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
3835#endif
3836 pVCpu->pgm.s.pfnR0BthMapCR3 = pModeData->pfnR0BthMapCR3;
3837 pVCpu->pgm.s.pfnR0BthUnmapCR3 = pModeData->pfnR0BthUnmapCR3;
3838}
3839
3840
3841/**
3842 * Calculates the shadow paging mode.
3843 *
3844 * @returns The shadow paging mode.
3845 * @param pVM VM handle.
3846 * @param enmGuestMode The guest mode.
3847 * @param enmHostMode The host mode.
3848 * @param enmShadowMode The current shadow mode.
3849 * @param penmSwitcher Where to store the switcher to use.
3850 * VMMSWITCHER_INVALID means no change.
3851 */
3852static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
3853{
3854 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
3855 switch (enmGuestMode)
3856 {
3857 /*
3858 * When switching to real or protected mode we don't change
3859 * anything since it's likely that we'll switch back pretty soon.
3860 *
3861 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
3862 * and is supposed to determine which shadow paging and switcher to
3863 * use during init.
3864 */
3865 case PGMMODE_REAL:
3866 case PGMMODE_PROTECTED:
3867 if ( enmShadowMode != PGMMODE_INVALID
3868 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
3869 break; /* (no change) */
3870
3871 switch (enmHostMode)
3872 {
3873 case SUPPAGINGMODE_32_BIT:
3874 case SUPPAGINGMODE_32_BIT_GLOBAL:
3875 enmShadowMode = PGMMODE_32_BIT;
3876 enmSwitcher = VMMSWITCHER_32_TO_32;
3877 break;
3878
3879 case SUPPAGINGMODE_PAE:
3880 case SUPPAGINGMODE_PAE_NX:
3881 case SUPPAGINGMODE_PAE_GLOBAL:
3882 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3883 enmShadowMode = PGMMODE_PAE;
3884 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3885#ifdef DEBUG_bird
3886 if (RTEnvExist("VBOX_32BIT"))
3887 {
3888 enmShadowMode = PGMMODE_32_BIT;
3889 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3890 }
3891#endif
3892 break;
3893
3894 case SUPPAGINGMODE_AMD64:
3895 case SUPPAGINGMODE_AMD64_GLOBAL:
3896 case SUPPAGINGMODE_AMD64_NX:
3897 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3898 enmShadowMode = PGMMODE_PAE;
3899 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3900#ifdef DEBUG_bird
3901 if (RTEnvExist("VBOX_32BIT"))
3902 {
3903 enmShadowMode = PGMMODE_32_BIT;
3904 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3905 }
3906#endif
3907 break;
3908
3909 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3910 }
3911 break;
3912
3913 case PGMMODE_32_BIT:
3914 switch (enmHostMode)
3915 {
3916 case SUPPAGINGMODE_32_BIT:
3917 case SUPPAGINGMODE_32_BIT_GLOBAL:
3918 enmShadowMode = PGMMODE_32_BIT;
3919 enmSwitcher = VMMSWITCHER_32_TO_32;
3920 break;
3921
3922 case SUPPAGINGMODE_PAE:
3923 case SUPPAGINGMODE_PAE_NX:
3924 case SUPPAGINGMODE_PAE_GLOBAL:
3925 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3926 enmShadowMode = PGMMODE_PAE;
3927 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3928#ifdef DEBUG_bird
3929 if (RTEnvExist("VBOX_32BIT"))
3930 {
3931 enmShadowMode = PGMMODE_32_BIT;
3932 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3933 }
3934#endif
3935 break;
3936
3937 case SUPPAGINGMODE_AMD64:
3938 case SUPPAGINGMODE_AMD64_GLOBAL:
3939 case SUPPAGINGMODE_AMD64_NX:
3940 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3941 enmShadowMode = PGMMODE_PAE;
3942 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3943#ifdef DEBUG_bird
3944 if (RTEnvExist("VBOX_32BIT"))
3945 {
3946 enmShadowMode = PGMMODE_32_BIT;
3947 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3948 }
3949#endif
3950 break;
3951
3952 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3953 }
3954 break;
3955
3956 case PGMMODE_PAE:
3957 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3958 switch (enmHostMode)
3959 {
3960 case SUPPAGINGMODE_32_BIT:
3961 case SUPPAGINGMODE_32_BIT_GLOBAL:
3962 enmShadowMode = PGMMODE_PAE;
3963 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3964 break;
3965
3966 case SUPPAGINGMODE_PAE:
3967 case SUPPAGINGMODE_PAE_NX:
3968 case SUPPAGINGMODE_PAE_GLOBAL:
3969 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3970 enmShadowMode = PGMMODE_PAE;
3971 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3972 break;
3973
3974 case SUPPAGINGMODE_AMD64:
3975 case SUPPAGINGMODE_AMD64_GLOBAL:
3976 case SUPPAGINGMODE_AMD64_NX:
3977 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3978 enmShadowMode = PGMMODE_PAE;
3979 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3980 break;
3981
3982 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3983 }
3984 break;
3985
3986 case PGMMODE_AMD64:
3987 case PGMMODE_AMD64_NX:
3988 switch (enmHostMode)
3989 {
3990 case SUPPAGINGMODE_32_BIT:
3991 case SUPPAGINGMODE_32_BIT_GLOBAL:
3992 enmShadowMode = PGMMODE_AMD64;
3993 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3994 break;
3995
3996 case SUPPAGINGMODE_PAE:
3997 case SUPPAGINGMODE_PAE_NX:
3998 case SUPPAGINGMODE_PAE_GLOBAL:
3999 case SUPPAGINGMODE_PAE_GLOBAL_NX:
4000 enmShadowMode = PGMMODE_AMD64;
4001 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
4002 break;
4003
4004 case SUPPAGINGMODE_AMD64:
4005 case SUPPAGINGMODE_AMD64_GLOBAL:
4006 case SUPPAGINGMODE_AMD64_NX:
4007 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
4008 enmShadowMode = PGMMODE_AMD64;
4009 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
4010 break;
4011
4012 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
4013 }
4014 break;
4015
4016
4017 default:
4018 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
4019 return PGMMODE_INVALID;
4020 }
4021 /* Override the shadow mode is nested paging is active. */
4022 if (HWACCMIsNestedPagingActive(pVM))
4023 enmShadowMode = HWACCMGetShwPagingMode(pVM);
4024
4025 *penmSwitcher = enmSwitcher;
4026 return enmShadowMode;
4027}
4028
4029
4030/**
4031 * Performs the actual mode change.
4032 * This is called by PGMChangeMode and pgmR3InitPaging().
4033 *
4034 * @returns VBox status code. May suspend or power off the VM on error, but this
4035 * will trigger using FFs and not status codes.
4036 *
4037 * @param pVM VM handle.
4038 * @param pVCpu The VMCPU to operate on.
4039 * @param enmGuestMode The new guest mode. This is assumed to be different from
4040 * the current mode.
4041 */
4042VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PVMCPU pVCpu, PGMMODE enmGuestMode)
4043{
4044 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
4045 STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cGuestModeChanges);
4046
4047 /*
4048 * Calc the shadow mode and switcher.
4049 */
4050 VMMSWITCHER enmSwitcher;
4051 PGMMODE enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVCpu->pgm.s.enmShadowMode, &enmSwitcher);
4052 if (enmSwitcher != VMMSWITCHER_INVALID)
4053 {
4054 /*
4055 * Select new switcher.
4056 */
4057 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
4058 if (RT_FAILURE(rc))
4059 {
4060 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Rrc\n", enmSwitcher, rc));
4061 return rc;
4062 }
4063 }
4064
4065 /*
4066 * Exit old mode(s).
4067 */
4068 /* shadow */
4069 if (enmShadowMode != pVCpu->pgm.s.enmShadowMode)
4070 {
4071 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
4072 if (PGM_SHW_PFN(Exit, pVCpu))
4073 {
4074 int rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
4075 if (RT_FAILURE(rc))
4076 {
4077 AssertMsgFailed(("Exit failed for shadow mode %d: %Rrc\n", pVCpu->pgm.s.enmShadowMode, rc));
4078 return rc;
4079 }
4080 }
4081
4082 }
4083 else
4084 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
4085
4086 /* guest */
4087 if (PGM_GST_PFN(Exit, pVCpu))
4088 {
4089 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
4090 if (RT_FAILURE(rc))
4091 {
4092 AssertMsgFailed(("Exit failed for guest mode %d: %Rrc\n", pVCpu->pgm.s.enmGuestMode, rc));
4093 return rc;
4094 }
4095 }
4096
4097 /*
4098 * Load new paging mode data.
4099 */
4100 pgmR3ModeDataSwitch(pVM, pVCpu, enmShadowMode, enmGuestMode);
4101
4102 /*
4103 * Enter new shadow mode (if changed).
4104 */
4105 if (enmShadowMode != pVCpu->pgm.s.enmShadowMode)
4106 {
4107 int rc;
4108 pVCpu->pgm.s.enmShadowMode = enmShadowMode;
4109 switch (enmShadowMode)
4110 {
4111 case PGMMODE_32_BIT:
4112 rc = PGM_SHW_NAME_32BIT(Enter)(pVCpu);
4113 break;
4114 case PGMMODE_PAE:
4115 case PGMMODE_PAE_NX:
4116 rc = PGM_SHW_NAME_PAE(Enter)(pVCpu);
4117 break;
4118 case PGMMODE_AMD64:
4119 case PGMMODE_AMD64_NX:
4120 rc = PGM_SHW_NAME_AMD64(Enter)(pVCpu);
4121 break;
4122 case PGMMODE_NESTED:
4123 rc = PGM_SHW_NAME_NESTED(Enter)(pVCpu);
4124 break;
4125 case PGMMODE_EPT:
4126 rc = PGM_SHW_NAME_EPT(Enter)(pVCpu);
4127 break;
4128 case PGMMODE_REAL:
4129 case PGMMODE_PROTECTED:
4130 default:
4131 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
4132 return VERR_INTERNAL_ERROR;
4133 }
4134 if (RT_FAILURE(rc))
4135 {
4136 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Rrc\n", enmShadowMode, rc));
4137 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
4138 return rc;
4139 }
4140 }
4141
4142 /*
4143 * Always flag the necessary updates
4144 */
4145 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
4146
4147 /*
4148 * Enter the new guest and shadow+guest modes.
4149 */
4150 int rc = -1;
4151 int rc2 = -1;
4152 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
4153 pVCpu->pgm.s.enmGuestMode = enmGuestMode;
4154 switch (enmGuestMode)
4155 {
4156 case PGMMODE_REAL:
4157 rc = PGM_GST_NAME_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
4158 switch (pVCpu->pgm.s.enmShadowMode)
4159 {
4160 case PGMMODE_32_BIT:
4161 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
4162 break;
4163 case PGMMODE_PAE:
4164 case PGMMODE_PAE_NX:
4165 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
4166 break;
4167 case PGMMODE_NESTED:
4168 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
4169 break;
4170 case PGMMODE_EPT:
4171 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
4172 break;
4173 case PGMMODE_AMD64:
4174 case PGMMODE_AMD64_NX:
4175 AssertMsgFailed(("Should use PAE shadow mode!\n"));
4176 default: AssertFailed(); break;
4177 }
4178 break;
4179
4180 case PGMMODE_PROTECTED:
4181 rc = PGM_GST_NAME_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
4182 switch (pVCpu->pgm.s.enmShadowMode)
4183 {
4184 case PGMMODE_32_BIT:
4185 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
4186 break;
4187 case PGMMODE_PAE:
4188 case PGMMODE_PAE_NX:
4189 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
4190 break;
4191 case PGMMODE_NESTED:
4192 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
4193 break;
4194 case PGMMODE_EPT:
4195 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
4196 break;
4197 case PGMMODE_AMD64:
4198 case PGMMODE_AMD64_NX:
4199 AssertMsgFailed(("Should use PAE shadow mode!\n"));
4200 default: AssertFailed(); break;
4201 }
4202 break;
4203
4204 case PGMMODE_32_BIT:
4205 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK;
4206 rc = PGM_GST_NAME_32BIT(Enter)(pVCpu, GCPhysCR3);
4207 switch (pVCpu->pgm.s.enmShadowMode)
4208 {
4209 case PGMMODE_32_BIT:
4210 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVCpu, GCPhysCR3);
4211 break;
4212 case PGMMODE_PAE:
4213 case PGMMODE_PAE_NX:
4214 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVCpu, GCPhysCR3);
4215 break;
4216 case PGMMODE_NESTED:
4217 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVCpu, GCPhysCR3);
4218 break;
4219 case PGMMODE_EPT:
4220 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVCpu, GCPhysCR3);
4221 break;
4222 case PGMMODE_AMD64:
4223 case PGMMODE_AMD64_NX:
4224 AssertMsgFailed(("Should use PAE shadow mode!\n"));
4225 default: AssertFailed(); break;
4226 }
4227 break;
4228
4229 case PGMMODE_PAE_NX:
4230 case PGMMODE_PAE:
4231 {
4232 uint32_t u32Dummy, u32Features;
4233
4234 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
4235 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
4236 return VMSetRuntimeError(pVM, VMSETRTERR_FLAGS_FATAL, "PAEmode",
4237 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. PAE support can be enabled using the VM settings (General/Advanced)"));
4238
4239 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAE_PAGE_MASK;
4240 rc = PGM_GST_NAME_PAE(Enter)(pVCpu, GCPhysCR3);
4241 switch (pVCpu->pgm.s.enmShadowMode)
4242 {
4243 case PGMMODE_PAE:
4244 case PGMMODE_PAE_NX:
4245 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVCpu, GCPhysCR3);
4246 break;
4247 case PGMMODE_NESTED:
4248 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVCpu, GCPhysCR3);
4249 break;
4250 case PGMMODE_EPT:
4251 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVCpu, GCPhysCR3);
4252 break;
4253 case PGMMODE_32_BIT:
4254 case PGMMODE_AMD64:
4255 case PGMMODE_AMD64_NX:
4256 AssertMsgFailed(("Should use PAE shadow mode!\n"));
4257 default: AssertFailed(); break;
4258 }
4259 break;
4260 }
4261
4262#ifdef VBOX_WITH_64_BITS_GUESTS
4263 case PGMMODE_AMD64_NX:
4264 case PGMMODE_AMD64:
4265 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & UINT64_C(0xfffffffffffff000); /** @todo define this mask! */
4266 rc = PGM_GST_NAME_AMD64(Enter)(pVCpu, GCPhysCR3);
4267 switch (pVCpu->pgm.s.enmShadowMode)
4268 {
4269 case PGMMODE_AMD64:
4270 case PGMMODE_AMD64_NX:
4271 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVCpu, GCPhysCR3);
4272 break;
4273 case PGMMODE_NESTED:
4274 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVCpu, GCPhysCR3);
4275 break;
4276 case PGMMODE_EPT:
4277 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVCpu, GCPhysCR3);
4278 break;
4279 case PGMMODE_32_BIT:
4280 case PGMMODE_PAE:
4281 case PGMMODE_PAE_NX:
4282 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
4283 default: AssertFailed(); break;
4284 }
4285 break;
4286#endif
4287
4288 default:
4289 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
4290 rc = VERR_NOT_IMPLEMENTED;
4291 break;
4292 }
4293
4294 /* status codes. */
4295 AssertRC(rc);
4296 AssertRC(rc2);
4297 if (RT_SUCCESS(rc))
4298 {
4299 rc = rc2;
4300 if (RT_SUCCESS(rc)) /* no informational status codes. */
4301 rc = VINF_SUCCESS;
4302 }
4303
4304 /* Notify HWACCM as well. */
4305 HWACCMR3PagingModeChanged(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
4306 return rc;
4307}
4308
4309/**
4310 * Release the pgm lock if owned by the current VCPU
4311 *
4312 * @param pVM The VM to operate on.
4313 */
4314VMMR3DECL(void) PGMR3ReleaseOwnedLocks(PVM pVM)
4315{
4316 while (PDMCritSectIsOwner(&pVM->pgm.s.CritSect))
4317 PDMCritSectLeave(&pVM->pgm.s.CritSect);
4318}
4319
4320/**
4321 * Called by pgmPoolFlushAllInt prior to flushing the pool.
4322 *
4323 * @returns VBox status code, fully asserted.
4324 * @param pVM The VM handle.
4325 * @param pVCpu The VMCPU to operate on.
4326 */
4327int pgmR3ExitShadowModeBeforePoolFlush(PVM pVM, PVMCPU pVCpu)
4328{
4329 /* Unmap the old CR3 value before flushing everything. */
4330 int rc = PGM_BTH_PFN(UnmapCR3, pVCpu)(pVCpu);
4331 AssertRC(rc);
4332
4333 /* Exit the current shadow paging mode as well; nested paging and EPT use a root CR3 which will get flushed here. */
4334 rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
4335 AssertRC(rc);
4336 Assert(pVCpu->pgm.s.pShwPageCR3R3 == NULL);
4337 return rc;
4338}
4339
4340
4341/**
4342 * Called by pgmPoolFlushAllInt after flushing the pool.
4343 *
4344 * @returns VBox status code, fully asserted.
4345 * @param pVM The VM handle.
4346 * @param pVCpu The VMCPU to operate on.
4347 */
4348int pgmR3ReEnterShadowModeAfterPoolFlush(PVM pVM, PVMCPU pVCpu)
4349{
4350 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
4351 int rc = PGMR3ChangeMode(pVM, pVCpu, PGMGetGuestMode(pVCpu));
4352 Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
4353 AssertRCReturn(rc, rc);
4354 AssertRCSuccessReturn(rc, VERR_IPE_UNEXPECTED_INFO_STATUS);
4355
4356 Assert(pVCpu->pgm.s.pShwPageCR3R3 != NULL);
4357 AssertMsg( pVCpu->pgm.s.enmShadowMode >= PGMMODE_NESTED
4358 || CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu),
4359 ("%RHp != %RHp %s\n", (RTHCPHYS)CPUMGetHyperCR3(pVCpu), PGMGetHyperCR3(pVCpu), PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
4360 return rc;
4361}
4362
4363
4364/**
4365 * Dumps a PAE shadow page table.
4366 *
4367 * @returns VBox status code (VINF_SUCCESS).
4368 * @param pVM The VM handle.
4369 * @param pPT Pointer to the page table.
4370 * @param u64Address The virtual address of the page table starts.
4371 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
4372 * @param cMaxDepth The maxium depth.
4373 * @param pHlp Pointer to the output functions.
4374 */
4375static int pgmR3DumpHierarchyHCPaePT(PVM pVM, PX86PTPAE pPT, uint64_t u64Address, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4376{
4377 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
4378 {
4379 X86PTEPAE Pte = pPT->a[i];
4380 if (Pte.n.u1Present)
4381 {
4382 pHlp->pfnPrintf(pHlp,
4383 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
4384 ? "%016llx 3 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n"
4385 : "%08llx 2 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n",
4386 u64Address + ((uint64_t)i << X86_PT_PAE_SHIFT),
4387 Pte.n.u1Write ? 'W' : 'R',
4388 Pte.n.u1User ? 'U' : 'S',
4389 Pte.n.u1Accessed ? 'A' : '-',
4390 Pte.n.u1Dirty ? 'D' : '-',
4391 Pte.n.u1Global ? 'G' : '-',
4392 Pte.n.u1WriteThru ? "WT" : "--",
4393 Pte.n.u1CacheDisable? "CD" : "--",
4394 Pte.n.u1PAT ? "AT" : "--",
4395 Pte.n.u1NoExecute ? "NX" : "--",
4396 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
4397 Pte.u & RT_BIT(10) ? '1' : '0',
4398 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED? 'v' : '-',
4399 Pte.u & X86_PTE_PAE_PG_MASK);
4400 }
4401 }
4402 return VINF_SUCCESS;
4403}
4404
4405
4406/**
4407 * Dumps a PAE shadow page directory table.
4408 *
4409 * @returns VBox status code (VINF_SUCCESS).
4410 * @param pVM The VM handle.
4411 * @param HCPhys The physical address of the page directory table.
4412 * @param u64Address The virtual address of the page table starts.
4413 * @param cr4 The CR4, PSE is currently used.
4414 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
4415 * @param cMaxDepth The maxium depth.
4416 * @param pHlp Pointer to the output functions.
4417 */
4418static int pgmR3DumpHierarchyHCPaePD(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4419{
4420 PX86PDPAE pPD = (PX86PDPAE)MMPagePhys2Page(pVM, HCPhys);
4421 if (!pPD)
4422 {
4423 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory at HCPhys=%RHp was not found in the page pool!\n",
4424 fLongMode ? 16 : 8, u64Address, HCPhys);
4425 return VERR_INVALID_PARAMETER;
4426 }
4427 const bool fBigPagesSupported = fLongMode || !!(cr4 & X86_CR4_PSE);
4428
4429 int rc = VINF_SUCCESS;
4430 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
4431 {
4432 X86PDEPAE Pde = pPD->a[i];
4433 if (Pde.n.u1Present)
4434 {
4435 if (fBigPagesSupported && Pde.b.u1Size)
4436 pHlp->pfnPrintf(pHlp,
4437 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
4438 ? "%016llx 2 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n"
4439 : "%08llx 1 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n",
4440 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
4441 Pde.b.u1Write ? 'W' : 'R',
4442 Pde.b.u1User ? 'U' : 'S',
4443 Pde.b.u1Accessed ? 'A' : '-',
4444 Pde.b.u1Dirty ? 'D' : '-',
4445 Pde.b.u1Global ? 'G' : '-',
4446 Pde.b.u1WriteThru ? "WT" : "--",
4447 Pde.b.u1CacheDisable? "CD" : "--",
4448 Pde.b.u1PAT ? "AT" : "--",
4449 Pde.b.u1NoExecute ? "NX" : "--",
4450 Pde.u & RT_BIT_64(9) ? '1' : '0',
4451 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
4452 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
4453 Pde.u & X86_PDE_PAE_PG_MASK);
4454 else
4455 {
4456 pHlp->pfnPrintf(pHlp,
4457 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
4458 ? "%016llx 2 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n"
4459 : "%08llx 1 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n",
4460 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
4461 Pde.n.u1Write ? 'W' : 'R',
4462 Pde.n.u1User ? 'U' : 'S',
4463 Pde.n.u1Accessed ? 'A' : '-',
4464 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4465 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4466 Pde.n.u1WriteThru ? "WT" : "--",
4467 Pde.n.u1CacheDisable? "CD" : "--",
4468 Pde.n.u1NoExecute ? "NX" : "--",
4469 Pde.u & RT_BIT_64(9) ? '1' : '0',
4470 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
4471 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
4472 Pde.u & X86_PDE_PAE_PG_MASK);
4473 if (cMaxDepth >= 1)
4474 {
4475 /** @todo what about using the page pool for mapping PTs? */
4476 uint64_t u64AddressPT = u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT);
4477 RTHCPHYS HCPhysPT = Pde.u & X86_PDE_PAE_PG_MASK;
4478 PX86PTPAE pPT = NULL;
4479 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
4480 pPT = (PX86PTPAE)MMPagePhys2Page(pVM, HCPhysPT);
4481 else
4482 {
4483 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
4484 {
4485 uint64_t off = u64AddressPT - pMap->GCPtr;
4486 if (off < pMap->cb)
4487 {
4488 const int iPDE = (uint32_t)(off >> X86_PD_SHIFT);
4489 const int iSub = (int)((off >> X86_PD_PAE_SHIFT) & 1); /* MSC is a pain sometimes */
4490 if ((iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0) != HCPhysPT)
4491 pHlp->pfnPrintf(pHlp, "%0*llx error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
4492 fLongMode ? 16 : 8, u64AddressPT, iPDE,
4493 iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0, HCPhysPT);
4494 pPT = &pMap->aPTs[iPDE].paPaePTsR3[iSub];
4495 }
4496 }
4497 }
4498 int rc2 = VERR_INVALID_PARAMETER;
4499 if (pPT)
4500 rc2 = pgmR3DumpHierarchyHCPaePT(pVM, pPT, u64AddressPT, fLongMode, cMaxDepth - 1, pHlp);
4501 else
4502 pHlp->pfnPrintf(pHlp, "%0*llx error! Page table at HCPhys=%RHp was not found in the page pool!\n",
4503 fLongMode ? 16 : 8, u64AddressPT, HCPhysPT);
4504 if (rc2 < rc && RT_SUCCESS(rc))
4505 rc = rc2;
4506 }
4507 }
4508 }
4509 }
4510 return rc;
4511}
4512
4513
4514/**
4515 * Dumps a PAE shadow page directory pointer table.
4516 *
4517 * @returns VBox status code (VINF_SUCCESS).
4518 * @param pVM The VM handle.
4519 * @param HCPhys The physical address of the page directory pointer table.
4520 * @param u64Address The virtual address of the page table starts.
4521 * @param cr4 The CR4, PSE is currently used.
4522 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
4523 * @param cMaxDepth The maxium depth.
4524 * @param pHlp Pointer to the output functions.
4525 */
4526static int pgmR3DumpHierarchyHCPaePDPT(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4527{
4528 PX86PDPT pPDPT = (PX86PDPT)MMPagePhys2Page(pVM, HCPhys);
4529 if (!pPDPT)
4530 {
4531 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory pointer table at HCPhys=%RHp was not found in the page pool!\n",
4532 fLongMode ? 16 : 8, u64Address, HCPhys);
4533 return VERR_INVALID_PARAMETER;
4534 }
4535
4536 int rc = VINF_SUCCESS;
4537 const unsigned c = fLongMode ? RT_ELEMENTS(pPDPT->a) : X86_PG_PAE_PDPE_ENTRIES;
4538 for (unsigned i = 0; i < c; i++)
4539 {
4540 X86PDPE Pdpe = pPDPT->a[i];
4541 if (Pdpe.n.u1Present)
4542 {
4543 if (fLongMode)
4544 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
4545 "%016llx 1 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
4546 u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
4547 Pdpe.lm.u1Write ? 'W' : 'R',
4548 Pdpe.lm.u1User ? 'U' : 'S',
4549 Pdpe.lm.u1Accessed ? 'A' : '-',
4550 Pdpe.lm.u3Reserved & 1? '?' : '.', /* ignored */
4551 Pdpe.lm.u3Reserved & 4? '!' : '.', /* mbz */
4552 Pdpe.lm.u1WriteThru ? "WT" : "--",
4553 Pdpe.lm.u1CacheDisable? "CD" : "--",
4554 Pdpe.lm.u3Reserved & 2? "!" : "..",/* mbz */
4555 Pdpe.lm.u1NoExecute ? "NX" : "--",
4556 Pdpe.u & RT_BIT(9) ? '1' : '0',
4557 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
4558 Pdpe.u & RT_BIT(11) ? '1' : '0',
4559 Pdpe.u & X86_PDPE_PG_MASK);
4560 else
4561 pHlp->pfnPrintf(pHlp, /*P G WT CD AT NX 4M a p ? */
4562 "%08x 0 | P %c %s %s %s %s .. %c%c%c %016llx\n",
4563 i << X86_PDPT_SHIFT,
4564 Pdpe.n.u4Reserved & 1? '!' : '.', /* mbz */
4565 Pdpe.n.u4Reserved & 4? '!' : '.', /* mbz */
4566 Pdpe.n.u1WriteThru ? "WT" : "--",
4567 Pdpe.n.u1CacheDisable? "CD" : "--",
4568 Pdpe.n.u4Reserved & 2? "!" : "..",/* mbz */
4569 Pdpe.u & RT_BIT(9) ? '1' : '0',
4570 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
4571 Pdpe.u & RT_BIT(11) ? '1' : '0',
4572 Pdpe.u & X86_PDPE_PG_MASK);
4573 if (cMaxDepth >= 1)
4574 {
4575 int rc2 = pgmR3DumpHierarchyHCPaePD(pVM, Pdpe.u & X86_PDPE_PG_MASK, u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
4576 cr4, fLongMode, cMaxDepth - 1, pHlp);
4577 if (rc2 < rc && RT_SUCCESS(rc))
4578 rc = rc2;
4579 }
4580 }
4581 }
4582 return rc;
4583}
4584
4585
4586/**
4587 * Dumps a 32-bit shadow page table.
4588 *
4589 * @returns VBox status code (VINF_SUCCESS).
4590 * @param pVM The VM handle.
4591 * @param HCPhys The physical address of the table.
4592 * @param cr4 The CR4, PSE is currently used.
4593 * @param cMaxDepth The maxium depth.
4594 * @param pHlp Pointer to the output functions.
4595 */
4596static int pgmR3DumpHierarchyHcPaePML4(PVM pVM, RTHCPHYS HCPhys, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4597{
4598 PX86PML4 pPML4 = (PX86PML4)MMPagePhys2Page(pVM, HCPhys);
4599 if (!pPML4)
4600 {
4601 pHlp->pfnPrintf(pHlp, "Page map level 4 at HCPhys=%RHp was not found in the page pool!\n", HCPhys);
4602 return VERR_INVALID_PARAMETER;
4603 }
4604
4605 int rc = VINF_SUCCESS;
4606 for (unsigned i = 0; i < RT_ELEMENTS(pPML4->a); i++)
4607 {
4608 X86PML4E Pml4e = pPML4->a[i];
4609 if (Pml4e.n.u1Present)
4610 {
4611 uint64_t u64Address = ((uint64_t)i << X86_PML4_SHIFT) | (((uint64_t)i >> (X86_PML4_SHIFT - X86_PDPT_SHIFT - 1)) * 0xffff000000000000ULL);
4612 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
4613 "%016llx 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
4614 u64Address,
4615 Pml4e.n.u1Write ? 'W' : 'R',
4616 Pml4e.n.u1User ? 'U' : 'S',
4617 Pml4e.n.u1Accessed ? 'A' : '-',
4618 Pml4e.n.u3Reserved & 1? '?' : '.', /* ignored */
4619 Pml4e.n.u3Reserved & 4? '!' : '.', /* mbz */
4620 Pml4e.n.u1WriteThru ? "WT" : "--",
4621 Pml4e.n.u1CacheDisable? "CD" : "--",
4622 Pml4e.n.u3Reserved & 2? "!" : "..",/* mbz */
4623 Pml4e.n.u1NoExecute ? "NX" : "--",
4624 Pml4e.u & RT_BIT(9) ? '1' : '0',
4625 Pml4e.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
4626 Pml4e.u & RT_BIT(11) ? '1' : '0',
4627 Pml4e.u & X86_PML4E_PG_MASK);
4628
4629 if (cMaxDepth >= 1)
4630 {
4631 int rc2 = pgmR3DumpHierarchyHCPaePDPT(pVM, Pml4e.u & X86_PML4E_PG_MASK, u64Address, cr4, true, cMaxDepth - 1, pHlp);
4632 if (rc2 < rc && RT_SUCCESS(rc))
4633 rc = rc2;
4634 }
4635 }
4636 }
4637 return rc;
4638}
4639
4640
4641/**
4642 * Dumps a 32-bit shadow page table.
4643 *
4644 * @returns VBox status code (VINF_SUCCESS).
4645 * @param pVM The VM handle.
4646 * @param pPT Pointer to the page table.
4647 * @param u32Address The virtual address this table starts at.
4648 * @param pHlp Pointer to the output functions.
4649 */
4650int pgmR3DumpHierarchyHC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, PCDBGFINFOHLP pHlp)
4651{
4652 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
4653 {
4654 X86PTE Pte = pPT->a[i];
4655 if (Pte.n.u1Present)
4656 {
4657 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
4658 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
4659 u32Address + (i << X86_PT_SHIFT),
4660 Pte.n.u1Write ? 'W' : 'R',
4661 Pte.n.u1User ? 'U' : 'S',
4662 Pte.n.u1Accessed ? 'A' : '-',
4663 Pte.n.u1Dirty ? 'D' : '-',
4664 Pte.n.u1Global ? 'G' : '-',
4665 Pte.n.u1WriteThru ? "WT" : "--",
4666 Pte.n.u1CacheDisable? "CD" : "--",
4667 Pte.n.u1PAT ? "AT" : "--",
4668 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
4669 Pte.u & RT_BIT(10) ? '1' : '0',
4670 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
4671 Pte.u & X86_PDE_PG_MASK);
4672 }
4673 }
4674 return VINF_SUCCESS;
4675}
4676
4677
4678/**
4679 * Dumps a 32-bit shadow page directory and page tables.
4680 *
4681 * @returns VBox status code (VINF_SUCCESS).
4682 * @param pVM The VM handle.
4683 * @param cr3 The root of the hierarchy.
4684 * @param cr4 The CR4, PSE is currently used.
4685 * @param cMaxDepth How deep into the hierarchy the dumper should go.
4686 * @param pHlp Pointer to the output functions.
4687 */
4688int pgmR3DumpHierarchyHC32BitPD(PVM pVM, uint32_t cr3, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4689{
4690 PX86PD pPD = (PX86PD)MMPagePhys2Page(pVM, cr3 & X86_CR3_PAGE_MASK);
4691 if (!pPD)
4692 {
4693 pHlp->pfnPrintf(pHlp, "Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK);
4694 return VERR_INVALID_PARAMETER;
4695 }
4696
4697 int rc = VINF_SUCCESS;
4698 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
4699 {
4700 X86PDE Pde = pPD->a[i];
4701 if (Pde.n.u1Present)
4702 {
4703 const uint32_t u32Address = i << X86_PD_SHIFT;
4704 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
4705 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
4706 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
4707 u32Address,
4708 Pde.b.u1Write ? 'W' : 'R',
4709 Pde.b.u1User ? 'U' : 'S',
4710 Pde.b.u1Accessed ? 'A' : '-',
4711 Pde.b.u1Dirty ? 'D' : '-',
4712 Pde.b.u1Global ? 'G' : '-',
4713 Pde.b.u1WriteThru ? "WT" : "--",
4714 Pde.b.u1CacheDisable? "CD" : "--",
4715 Pde.b.u1PAT ? "AT" : "--",
4716 Pde.u & RT_BIT_64(9) ? '1' : '0',
4717 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
4718 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
4719 Pde.u & X86_PDE4M_PG_MASK);
4720 else
4721 {
4722 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
4723 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
4724 u32Address,
4725 Pde.n.u1Write ? 'W' : 'R',
4726 Pde.n.u1User ? 'U' : 'S',
4727 Pde.n.u1Accessed ? 'A' : '-',
4728 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4729 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4730 Pde.n.u1WriteThru ? "WT" : "--",
4731 Pde.n.u1CacheDisable? "CD" : "--",
4732 Pde.u & RT_BIT_64(9) ? '1' : '0',
4733 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
4734 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
4735 Pde.u & X86_PDE_PG_MASK);
4736 if (cMaxDepth >= 1)
4737 {
4738 /** @todo what about using the page pool for mapping PTs? */
4739 RTHCPHYS HCPhys = Pde.u & X86_PDE_PG_MASK;
4740 PX86PT pPT = NULL;
4741 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
4742 pPT = (PX86PT)MMPagePhys2Page(pVM, HCPhys);
4743 else
4744 {
4745 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
4746 if (u32Address - pMap->GCPtr < pMap->cb)
4747 {
4748 int iPDE = (u32Address - pMap->GCPtr) >> X86_PD_SHIFT;
4749 if (pMap->aPTs[iPDE].HCPhysPT != HCPhys)
4750 pHlp->pfnPrintf(pHlp, "%08x error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
4751 u32Address, iPDE, pMap->aPTs[iPDE].HCPhysPT, HCPhys);
4752 pPT = pMap->aPTs[iPDE].pPTR3;
4753 }
4754 }
4755 int rc2 = VERR_INVALID_PARAMETER;
4756 if (pPT)
4757 rc2 = pgmR3DumpHierarchyHC32BitPT(pVM, pPT, u32Address, pHlp);
4758 else
4759 pHlp->pfnPrintf(pHlp, "%08x error! Page table at %#x was not found in the page pool!\n", u32Address, HCPhys);
4760 if (rc2 < rc && RT_SUCCESS(rc))
4761 rc = rc2;
4762 }
4763 }
4764 }
4765 }
4766
4767 return rc;
4768}
4769
4770
4771/**
4772 * Dumps a 32-bit shadow page table.
4773 *
4774 * @returns VBox status code (VINF_SUCCESS).
4775 * @param pVM The VM handle.
4776 * @param pPT Pointer to the page table.
4777 * @param u32Address The virtual address this table starts at.
4778 * @param PhysSearch Address to search for.
4779 */
4780int pgmR3DumpHierarchyGC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, RTGCPHYS PhysSearch)
4781{
4782 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
4783 {
4784 X86PTE Pte = pPT->a[i];
4785 if (Pte.n.u1Present)
4786 {
4787 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4788 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
4789 u32Address + (i << X86_PT_SHIFT),
4790 Pte.n.u1Write ? 'W' : 'R',
4791 Pte.n.u1User ? 'U' : 'S',
4792 Pte.n.u1Accessed ? 'A' : '-',
4793 Pte.n.u1Dirty ? 'D' : '-',
4794 Pte.n.u1Global ? 'G' : '-',
4795 Pte.n.u1WriteThru ? "WT" : "--",
4796 Pte.n.u1CacheDisable? "CD" : "--",
4797 Pte.n.u1PAT ? "AT" : "--",
4798 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
4799 Pte.u & RT_BIT(10) ? '1' : '0',
4800 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
4801 Pte.u & X86_PDE_PG_MASK));
4802
4803 if ((Pte.u & X86_PDE_PG_MASK) == PhysSearch)
4804 {
4805 uint64_t fPageShw = 0;
4806 RTHCPHYS pPhysHC = 0;
4807
4808 /** @todo SMP support!! */
4809 PGMShwGetPage(&pVM->aCpus[0], (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), &fPageShw, &pPhysHC);
4810 Log(("Found %RGp at %RGv -> flags=%llx\n", PhysSearch, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), fPageShw));
4811 }
4812 }
4813 }
4814 return VINF_SUCCESS;
4815}
4816
4817
4818/**
4819 * Dumps a 32-bit guest page directory and page tables.
4820 *
4821 * @returns VBox status code (VINF_SUCCESS).
4822 * @param pVM The VM handle.
4823 * @param cr3 The root of the hierarchy.
4824 * @param cr4 The CR4, PSE is currently used.
4825 * @param PhysSearch Address to search for.
4826 */
4827VMMR3DECL(int) PGMR3DumpHierarchyGC(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPHYS PhysSearch)
4828{
4829 bool fLongMode = false;
4830 const unsigned cch = fLongMode ? 16 : 8; NOREF(cch);
4831 PX86PD pPD = 0;
4832
4833 int rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAGE_MASK, &pPD);
4834 if (RT_FAILURE(rc) || !pPD)
4835 {
4836 Log(("Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK));
4837 return VERR_INVALID_PARAMETER;
4838 }
4839
4840 Log(("cr3=%08x cr4=%08x%s\n"
4841 "%-*s P - Present\n"
4842 "%-*s | R/W - Read (0) / Write (1)\n"
4843 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4844 "%-*s | | | A - Accessed\n"
4845 "%-*s | | | | D - Dirty\n"
4846 "%-*s | | | | | G - Global\n"
4847 "%-*s | | | | | | WT - Write thru\n"
4848 "%-*s | | | | | | | CD - Cache disable\n"
4849 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4850 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4851 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4852 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4853 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4854 "%-*s Level | | | | | | | | | | | | Page\n"
4855 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4856 - W U - - - -- -- -- -- -- 010 */
4857 , cr3, cr4, fLongMode ? " Long Mode" : "",
4858 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4859 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address"));
4860
4861 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
4862 {
4863 X86PDE Pde = pPD->a[i];
4864 if (Pde.n.u1Present)
4865 {
4866 const uint32_t u32Address = i << X86_PD_SHIFT;
4867
4868 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
4869 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4870 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
4871 u32Address,
4872 Pde.b.u1Write ? 'W' : 'R',
4873 Pde.b.u1User ? 'U' : 'S',
4874 Pde.b.u1Accessed ? 'A' : '-',
4875 Pde.b.u1Dirty ? 'D' : '-',
4876 Pde.b.u1Global ? 'G' : '-',
4877 Pde.b.u1WriteThru ? "WT" : "--",
4878 Pde.b.u1CacheDisable? "CD" : "--",
4879 Pde.b.u1PAT ? "AT" : "--",
4880 Pde.u & RT_BIT(9) ? '1' : '0',
4881 Pde.u & RT_BIT(10) ? '1' : '0',
4882 Pde.u & RT_BIT(11) ? '1' : '0',
4883 pgmGstGet4MBPhysPage(&pVM->pgm.s, Pde)));
4884 /** @todo PhysSearch */
4885 else
4886 {
4887 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4888 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
4889 u32Address,
4890 Pde.n.u1Write ? 'W' : 'R',
4891 Pde.n.u1User ? 'U' : 'S',
4892 Pde.n.u1Accessed ? 'A' : '-',
4893 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4894 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4895 Pde.n.u1WriteThru ? "WT" : "--",
4896 Pde.n.u1CacheDisable? "CD" : "--",
4897 Pde.u & RT_BIT(9) ? '1' : '0',
4898 Pde.u & RT_BIT(10) ? '1' : '0',
4899 Pde.u & RT_BIT(11) ? '1' : '0',
4900 Pde.u & X86_PDE_PG_MASK));
4901 ////if (cMaxDepth >= 1)
4902 {
4903 /** @todo what about using the page pool for mapping PTs? */
4904 RTGCPHYS GCPhys = Pde.u & X86_PDE_PG_MASK;
4905 PX86PT pPT = NULL;
4906
4907 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pPT);
4908
4909 int rc2 = VERR_INVALID_PARAMETER;
4910 if (pPT)
4911 rc2 = pgmR3DumpHierarchyGC32BitPT(pVM, pPT, u32Address, PhysSearch);
4912 else
4913 Log(("%08x error! Page table at %#x was not found in the page pool!\n", u32Address, GCPhys));
4914 if (rc2 < rc && RT_SUCCESS(rc))
4915 rc = rc2;
4916 }
4917 }
4918 }
4919 }
4920
4921 return rc;
4922}
4923
4924
4925/**
4926 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
4927 *
4928 * @returns VBox status code (VINF_SUCCESS).
4929 * @param pVM The VM handle.
4930 * @param cr3 The root of the hierarchy.
4931 * @param cr4 The cr4, only PAE and PSE is currently used.
4932 * @param fLongMode Set if long mode, false if not long mode.
4933 * @param cMaxDepth Number of levels to dump.
4934 * @param pHlp Pointer to the output functions.
4935 */
4936VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint64_t cr3, uint64_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4937{
4938 if (!pHlp)
4939 pHlp = DBGFR3InfoLogHlp();
4940 if (!cMaxDepth)
4941 return VINF_SUCCESS;
4942 const unsigned cch = fLongMode ? 16 : 8;
4943 pHlp->pfnPrintf(pHlp,
4944 "cr3=%08x cr4=%08x%s\n"
4945 "%-*s P - Present\n"
4946 "%-*s | R/W - Read (0) / Write (1)\n"
4947 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4948 "%-*s | | | A - Accessed\n"
4949 "%-*s | | | | D - Dirty\n"
4950 "%-*s | | | | | G - Global\n"
4951 "%-*s | | | | | | WT - Write thru\n"
4952 "%-*s | | | | | | | CD - Cache disable\n"
4953 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4954 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4955 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4956 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4957 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4958 "%-*s Level | | | | | | | | | | | | Page\n"
4959 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4960 - W U - - - -- -- -- -- -- 010 */
4961 , cr3, cr4, fLongMode ? " Long Mode" : "",
4962 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4963 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address");
4964 if (cr4 & X86_CR4_PAE)
4965 {
4966 if (fLongMode)
4967 return pgmR3DumpHierarchyHcPaePML4(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4968 return pgmR3DumpHierarchyHCPaePDPT(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, 0, cr4, false, cMaxDepth, pHlp);
4969 }
4970 return pgmR3DumpHierarchyHC32BitPD(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4971}
4972
4973#ifdef VBOX_WITH_DEBUGGER
4974
4975/**
4976 * The '.pgmram' command.
4977 *
4978 * @returns VBox status.
4979 * @param pCmd Pointer to the command descriptor (as registered).
4980 * @param pCmdHlp Pointer to command helper functions.
4981 * @param pVM Pointer to the current VM (if any).
4982 * @param paArgs Pointer to (readonly) array of arguments.
4983 * @param cArgs Number of arguments in the array.
4984 */
4985static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4986{
4987 /*
4988 * Validate input.
4989 */
4990 if (!pVM)
4991 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4992 if (!pVM->pgm.s.pRamRangesRC)
4993 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
4994
4995 /*
4996 * Dump the ranges.
4997 */
4998 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
4999 PPGMRAMRANGE pRam;
5000 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
5001 {
5002 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
5003 "%RGp - %RGp %p\n",
5004 pRam->GCPhys, pRam->GCPhysLast, pRam->pvR3);
5005 if (RT_FAILURE(rc))
5006 return rc;
5007 }
5008
5009 return VINF_SUCCESS;
5010}
5011
5012
5013/**
5014 * The '.pgmmap' command.
5015 *
5016 * @returns VBox status.
5017 * @param pCmd Pointer to the command descriptor (as registered).
5018 * @param pCmdHlp Pointer to command helper functions.
5019 * @param pVM Pointer to the current VM (if any).
5020 * @param paArgs Pointer to (readonly) array of arguments.
5021 * @param cArgs Number of arguments in the array.
5022 */
5023static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
5024{
5025 /*
5026 * Validate input.
5027 */
5028 if (!pVM)
5029 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
5030 if (!pVM->pgm.s.pMappingsR3)
5031 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no mappings are registered.\n");
5032
5033 /*
5034 * Print message about the fixedness of the mappings.
5035 */
5036 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, pVM->pgm.s.fMappingsFixed ? "The mappings are FIXED.\n" : "The mappings are FLOATING.\n");
5037 if (RT_FAILURE(rc))
5038 return rc;
5039
5040 /*
5041 * Dump the ranges.
5042 */
5043 PPGMMAPPING pCur;
5044 for (pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
5045 {
5046 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
5047 "%08x - %08x %s\n",
5048 pCur->GCPtr, pCur->GCPtrLast, pCur->pszDesc);
5049 if (RT_FAILURE(rc))
5050 return rc;
5051 }
5052
5053 return VINF_SUCCESS;
5054}
5055
5056
5057/**
5058 * The '.pgmerror' and '.pgmerroroff' commands.
5059 *
5060 * @returns VBox status.
5061 * @param pCmd Pointer to the command descriptor (as registered).
5062 * @param pCmdHlp Pointer to command helper functions.
5063 * @param pVM Pointer to the current VM (if any).
5064 * @param paArgs Pointer to (readonly) array of arguments.
5065 * @param cArgs Number of arguments in the array.
5066 */
5067static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
5068{
5069 /*
5070 * Validate input.
5071 */
5072 if (!pVM)
5073 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
5074 AssertReturn(cArgs == 0 || (cArgs == 1 && paArgs[0].enmType == DBGCVAR_TYPE_STRING),
5075 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Hit bug in the parser.\n"));
5076
5077 if (!cArgs)
5078 {
5079 /*
5080 * Print the list of error injection locations with status.
5081 */
5082 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "PGM error inject locations:\n");
5083 pCmdHlp->pfnPrintf(pCmdHlp, NULL, " handy - %RTbool\n", pVM->pgm.s.fErrInjHandyPages);
5084 }
5085 else
5086 {
5087
5088 /*
5089 * String switch on where to inject the error.
5090 */
5091 bool const fNewState = !strcmp(pCmd->pszCmd, "pgmerror");
5092 const char *pszWhere = paArgs[0].u.pszString;
5093 if (!strcmp(pszWhere, "handy"))
5094 ASMAtomicWriteBool(&pVM->pgm.s.fErrInjHandyPages, fNewState);
5095 else
5096 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid 'where' value: %s.\n", pszWhere);
5097 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "done\n");
5098 }
5099 return VINF_SUCCESS;
5100}
5101
5102
5103/**
5104 * The '.pgmsync' command.
5105 *
5106 * @returns VBox status.
5107 * @param pCmd Pointer to the command descriptor (as registered).
5108 * @param pCmdHlp Pointer to command helper functions.
5109 * @param pVM Pointer to the current VM (if any).
5110 * @param paArgs Pointer to (readonly) array of arguments.
5111 * @param cArgs Number of arguments in the array.
5112 */
5113static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
5114{
5115 /** @todo SMP support */
5116 PVMCPU pVCpu = &pVM->aCpus[0];
5117
5118 /*
5119 * Validate input.
5120 */
5121 if (!pVM)
5122 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
5123
5124 /*
5125 * Force page directory sync.
5126 */
5127 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
5128
5129 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
5130 if (RT_FAILURE(rc))
5131 return rc;
5132
5133 return VINF_SUCCESS;
5134}
5135
5136
5137#ifdef VBOX_STRICT
5138/**
5139 * The '.pgmassertcr3' command.
5140 *
5141 * @returns VBox status.
5142 * @param pCmd Pointer to the command descriptor (as registered).
5143 * @param pCmdHlp Pointer to command helper functions.
5144 * @param pVM Pointer to the current VM (if any).
5145 * @param paArgs Pointer to (readonly) array of arguments.
5146 * @param cArgs Number of arguments in the array.
5147 */
5148static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
5149{
5150 /** @todo SMP support!! */
5151 PVMCPU pVCpu = &pVM->aCpus[0];
5152
5153 /*
5154 * Validate input.
5155 */
5156 if (!pVM)
5157 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
5158
5159 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
5160 if (RT_FAILURE(rc))
5161 return rc;
5162
5163 PGMAssertCR3(pVM, pVCpu, CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu));
5164
5165 return VINF_SUCCESS;
5166}
5167#endif /* VBOX_STRICT */
5168
5169
5170/**
5171 * The '.pgmsyncalways' command.
5172 *
5173 * @returns VBox status.
5174 * @param pCmd Pointer to the command descriptor (as registered).
5175 * @param pCmdHlp Pointer to command helper functions.
5176 * @param pVM Pointer to the current VM (if any).
5177 * @param paArgs Pointer to (readonly) array of arguments.
5178 * @param cArgs Number of arguments in the array.
5179 */
5180static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
5181{
5182 /** @todo SMP support!! */
5183 PVMCPU pVCpu = &pVM->aCpus[0];
5184
5185 /*
5186 * Validate input.
5187 */
5188 if (!pVM)
5189 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
5190
5191 /*
5192 * Force page directory sync.
5193 */
5194 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
5195 {
5196 ASMAtomicAndU32(&pVCpu->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
5197 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
5198 }
5199 else
5200 {
5201 ASMAtomicOrU32(&pVCpu->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
5202 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
5203 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
5204 }
5205}
5206
5207
5208/**
5209 * The '.pgmsyncalways' command.
5210 *
5211 * @returns VBox status.
5212 * @param pCmd Pointer to the command descriptor (as registered).
5213 * @param pCmdHlp Pointer to command helper functions.
5214 * @param pVM Pointer to the current VM (if any).
5215 * @param paArgs Pointer to (readonly) array of arguments.
5216 * @param cArgs Number of arguments in the array.
5217 */
5218static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
5219{
5220 /*
5221 * Validate input.
5222 */
5223 if (!pVM)
5224 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
5225 if ( cArgs < 1
5226 || cArgs > 2
5227 || paArgs[0].enmType != DBGCVAR_TYPE_STRING
5228 || ( cArgs > 1
5229 && paArgs[1].enmType != DBGCVAR_TYPE_STRING))
5230 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: parser error, invalid arguments.\n");
5231 if ( cArgs >= 2
5232 && strcmp(paArgs[1].u.pszString, "nozero"))
5233 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid 2nd argument '%s', must be 'nozero'.\n", paArgs[1].u.pszString);
5234 bool fIncZeroPgs = cArgs < 2;
5235
5236 /*
5237 * Open the output file and get the ram parameters.
5238 */
5239 RTFILE hFile;
5240 int rc = RTFileOpen(&hFile, paArgs[0].u.pszString, RTFILE_O_WRITE | RTFILE_O_CREATE_REPLACE | RTFILE_O_DENY_WRITE);
5241 if (RT_FAILURE(rc))
5242 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileOpen(,'%s',) -> %Rrc.\n", paArgs[0].u.pszString, rc);
5243
5244 uint32_t cbRamHole = 0;
5245 CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
5246 uint64_t cbRam = 0;
5247 CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRam, 0);
5248 RTGCPHYS GCPhysEnd = cbRam + cbRamHole;
5249
5250 /*
5251 * Dump the physical memory, page by page.
5252 */
5253 RTGCPHYS GCPhys = 0;
5254 char abZeroPg[PAGE_SIZE];
5255 RT_ZERO(abZeroPg);
5256
5257 pgmLock(pVM);
5258 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
5259 pRam && pRam->GCPhys < GCPhysEnd && RT_SUCCESS(rc);
5260 pRam = pRam->pNextR3)
5261 {
5262 /* fill the gap */
5263 if (pRam->GCPhys > GCPhys && fIncZeroPgs)
5264 {
5265 while (pRam->GCPhys > GCPhys && RT_SUCCESS(rc))
5266 {
5267 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
5268 GCPhys += PAGE_SIZE;
5269 }
5270 }
5271
5272 PCPGMPAGE pPage = &pRam->aPages[0];
5273 while (GCPhys < pRam->GCPhysLast && RT_SUCCESS(rc))
5274 {
5275 if (PGM_PAGE_IS_ZERO(pPage))
5276 {
5277 if (fIncZeroPgs)
5278 {
5279 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
5280 if (RT_FAILURE(rc))
5281 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
5282 }
5283 }
5284 else
5285 {
5286 switch (PGM_PAGE_GET_TYPE(pPage))
5287 {
5288 case PGMPAGETYPE_RAM:
5289 case PGMPAGETYPE_ROM_SHADOW: /* trouble?? */
5290 case PGMPAGETYPE_ROM:
5291 case PGMPAGETYPE_MMIO2:
5292 {
5293 void const *pvPage;
5294 PGMPAGEMAPLOCK Lock;
5295 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvPage, &Lock);
5296 if (RT_SUCCESS(rc))
5297 {
5298 rc = RTFileWrite(hFile, pvPage, PAGE_SIZE, NULL);
5299 PGMPhysReleasePageMappingLock(pVM, &Lock);
5300 if (RT_FAILURE(rc))
5301 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
5302 }
5303 else
5304 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: PGMPhysGCPhys2CCPtrReadOnly -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
5305 break;
5306 }
5307
5308 default:
5309 AssertFailed();
5310 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
5311 case PGMPAGETYPE_MMIO:
5312 if (fIncZeroPgs)
5313 {
5314 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
5315 if (RT_FAILURE(rc))
5316 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
5317 }
5318 break;
5319 }
5320 }
5321
5322
5323 /* advance */
5324 GCPhys += PAGE_SIZE;
5325 pPage++;
5326 }
5327 }
5328 pgmUnlock(pVM);
5329
5330 RTFileClose(hFile);
5331 if (RT_SUCCESS(rc))
5332 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Successfully saved physical memory to '%s'.\n", paArgs[0].u.pszString);
5333 return VINF_SUCCESS;
5334}
5335
5336#endif /* VBOX_WITH_DEBUGGER */
5337
5338/**
5339 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
5340 */
5341typedef struct PGMCHECKINTARGS
5342{
5343 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
5344 PPGMPHYSHANDLER pPrevPhys;
5345 PPGMVIRTHANDLER pPrevVirt;
5346 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
5347 PVM pVM;
5348} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
5349
5350/**
5351 * Validate a node in the physical handler tree.
5352 *
5353 * @returns 0 on if ok, other wise 1.
5354 * @param pNode The handler node.
5355 * @param pvUser pVM.
5356 */
5357static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
5358{
5359 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
5360 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
5361 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
5362 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
5363 AssertReleaseMsg( !pArgs->pPrevPhys
5364 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
5365 ("pPrevPhys=%p %RGp-%RGp %s\n"
5366 " pCur=%p %RGp-%RGp %s\n",
5367 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
5368 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
5369 pArgs->pPrevPhys = pCur;
5370 return 0;
5371}
5372
5373
5374/**
5375 * Validate a node in the virtual handler tree.
5376 *
5377 * @returns 0 on if ok, other wise 1.
5378 * @param pNode The handler node.
5379 * @param pvUser pVM.
5380 */
5381static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
5382{
5383 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
5384 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
5385 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
5386 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
5387 AssertReleaseMsg( !pArgs->pPrevVirt
5388 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
5389 ("pPrevVirt=%p %RGv-%RGv %s\n"
5390 " pCur=%p %RGv-%RGv %s\n",
5391 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
5392 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
5393 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
5394 {
5395 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
5396 ("pCur=%p %RGv-%RGv %s\n"
5397 "iPage=%d offVirtHandle=%#x expected %#x\n",
5398 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
5399 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
5400 }
5401 pArgs->pPrevVirt = pCur;
5402 return 0;
5403}
5404
5405
5406/**
5407 * Validate a node in the virtual handler tree.
5408 *
5409 * @returns 0 on if ok, other wise 1.
5410 * @param pNode The handler node.
5411 * @param pvUser pVM.
5412 */
5413static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
5414{
5415 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
5416 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
5417 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
5418 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
5419 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
5420 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
5421 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
5422 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
5423 " pCur=%p %RGp-%RGp\n",
5424 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
5425 pCur, pCur->Core.Key, pCur->Core.KeyLast));
5426 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
5427 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
5428 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
5429 " pCur=%p %RGp-%RGp\n",
5430 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
5431 pCur, pCur->Core.Key, pCur->Core.KeyLast));
5432 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
5433 ("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
5434 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
5435 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
5436 {
5437 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
5438 for (;;)
5439 {
5440 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
5441 AssertReleaseMsg(pCur2 != pCur,
5442 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
5443 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
5444 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
5445 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
5446 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
5447 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
5448 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
5449 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
5450 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
5451 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
5452 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
5453 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
5454 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
5455 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
5456 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
5457 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
5458 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
5459 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
5460 break;
5461 }
5462 }
5463
5464 pArgs->pPrevPhys2Virt = pCur;
5465 return 0;
5466}
5467
5468
5469/**
5470 * Perform an integrity check on the PGM component.
5471 *
5472 * @returns VINF_SUCCESS if everything is fine.
5473 * @returns VBox error status after asserting on integrity breach.
5474 * @param pVM The VM handle.
5475 */
5476VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
5477{
5478 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
5479
5480 /*
5481 * Check the trees.
5482 */
5483 int cErrors = 0;
5484 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
5485 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
5486 PGMCHECKINTARGS Args = s_LeftToRight;
5487 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
5488 Args = s_RightToLeft;
5489 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
5490 Args = s_LeftToRight;
5491 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
5492 Args = s_RightToLeft;
5493 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
5494 Args = s_LeftToRight;
5495 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
5496 Args = s_RightToLeft;
5497 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
5498 Args = s_LeftToRight;
5499 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
5500 Args = s_RightToLeft;
5501 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
5502
5503 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
5504}
5505
5506
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette