VirtualBox

source: vbox/trunk/src/VBox/VMM/VMM.cpp@ 20864

Last change on this file since 20864 was 20864, checked in by vboxsync, 16 years ago

SUP,*: API cleanup.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 73.8 KB
Line 
1/* $Id: VMM.cpp 20864 2009-06-23 19:19:42Z vboxsync $ */
2/** @file
3 * VMM - The Virtual Machine Monitor Core.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.215389.xyz. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22//#define NO_SUPCALLR0VMM
23
24/** @page pg_vmm VMM - The Virtual Machine Monitor
25 *
26 * The VMM component is two things at the moment, it's a component doing a few
27 * management and routing tasks, and it's the whole virtual machine monitor
28 * thing. For hysterical reasons, it is not doing all the management that one
29 * would expect, this is instead done by @ref pg_vm. We'll address this
30 * misdesign eventually.
31 *
32 * @see grp_vmm, grp_vm
33 *
34 *
35 * @section sec_vmmstate VMM State
36 *
37 * @image html VM_Statechart_Diagram.gif
38 *
39 * To be written.
40 *
41 *
42 * @subsection subsec_vmm_init VMM Initialization
43 *
44 * To be written.
45 *
46 *
47 * @subsection subsec_vmm_term VMM Termination
48 *
49 * To be written.
50 *
51 */
52
53/*******************************************************************************
54* Header Files *
55*******************************************************************************/
56#define LOG_GROUP LOG_GROUP_VMM
57#include <VBox/vmm.h>
58#include <VBox/vmapi.h>
59#include <VBox/pgm.h>
60#include <VBox/cfgm.h>
61#include <VBox/pdmqueue.h>
62#include <VBox/pdmcritsect.h>
63#include <VBox/pdmapi.h>
64#include <VBox/cpum.h>
65#include <VBox/mm.h>
66#include <VBox/iom.h>
67#include <VBox/trpm.h>
68#include <VBox/selm.h>
69#include <VBox/em.h>
70#include <VBox/sup.h>
71#include <VBox/dbgf.h>
72#include <VBox/csam.h>
73#include <VBox/patm.h>
74#include <VBox/rem.h>
75#include <VBox/ssm.h>
76#include <VBox/tm.h>
77#include "VMMInternal.h"
78#include "VMMSwitcher/VMMSwitcher.h"
79#include <VBox/vm.h>
80
81#include <VBox/err.h>
82#include <VBox/param.h>
83#include <VBox/version.h>
84#include <VBox/x86.h>
85#include <VBox/hwaccm.h>
86#include <iprt/assert.h>
87#include <iprt/alloc.h>
88#include <iprt/asm.h>
89#include <iprt/time.h>
90#include <iprt/semaphore.h>
91#include <iprt/stream.h>
92#include <iprt/string.h>
93#include <iprt/stdarg.h>
94#include <iprt/ctype.h>
95
96
97
98/*******************************************************************************
99* Defined Constants And Macros *
100*******************************************************************************/
101/** The saved state version. */
102#define VMM_SAVED_STATE_VERSION 3
103
104
105/*******************************************************************************
106* Internal Functions *
107*******************************************************************************/
108static int vmmR3InitStacks(PVM pVM);
109static int vmmR3InitLoggers(PVM pVM);
110static void vmmR3InitRegisterStats(PVM pVM);
111static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM);
112static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
113static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser);
114static int vmmR3ServiceCallHostRequest(PVM pVM, PVMCPU pVCpu);
115static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
116
117
118/**
119 * Initializes the VMM.
120 *
121 * @returns VBox status code.
122 * @param pVM The VM to operate on.
123 */
124VMMR3DECL(int) VMMR3Init(PVM pVM)
125{
126 LogFlow(("VMMR3Init\n"));
127
128 /*
129 * Assert alignment, sizes and order.
130 */
131 AssertMsg(pVM->vmm.s.offVM == 0, ("Already initialized!\n"));
132 AssertCompile(sizeof(pVM->vmm.s) <= sizeof(pVM->vmm.padding));
133 AssertCompile(sizeof(pVM->aCpus[0].vmm.s) <= sizeof(pVM->aCpus[0].vmm.padding));
134
135 /*
136 * Init basic VM VMM members.
137 */
138 pVM->vmm.s.offVM = RT_OFFSETOF(VM, vmm);
139 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
140 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
141 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
142 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
143 int rc = CFGMR3QueryU32(CFGMR3GetRoot(pVM), "YieldEMTInterval", &pVM->vmm.s.cYieldEveryMillies);
144 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
145 pVM->vmm.s.cYieldEveryMillies = 23; /* Value arrived at after experimenting with the grub boot prompt. */
146 //pVM->vmm.s.cYieldEveryMillies = 8; //debugging
147 else
148 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"YieldEMTInterval\", rc=%Rrc\n", rc), rc);
149
150 /*
151 * Initialize the VMM sync critical section and semaphores.
152 */
153 rc = RTCritSectInit(&pVM->vmm.s.CritSectSync);
154 AssertRCReturn(rc, rc);
155 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousEnterOneByOne);
156 AssertRCReturn(rc, rc);
157 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
158 AssertRCReturn(rc, rc);
159 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousDone);
160 AssertRCReturn(rc, rc);
161 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousDoneCaller);
162 AssertRCReturn(rc, rc);
163
164 /* GC switchers are enabled by default. Turned off by HWACCM. */
165 pVM->vmm.s.fSwitcherDisabled = false;
166
167 /*
168 * Register the saved state data unit.
169 */
170 rc = SSMR3RegisterInternal(pVM, "vmm", 1, VMM_SAVED_STATE_VERSION, VMM_STACK_SIZE + sizeof(RTGCPTR),
171 NULL, vmmR3Save, NULL,
172 NULL, vmmR3Load, NULL);
173 if (RT_FAILURE(rc))
174 return rc;
175
176 /*
177 * Register the Ring-0 VM handle with the session for fast ioctl calls.
178 */
179 rc = SUPR3SetVMForFastIOCtl(pVM->pVMR0);
180 if (RT_FAILURE(rc))
181 return rc;
182
183 /*
184 * Init various sub-components.
185 */
186 rc = vmmR3SwitcherInit(pVM);
187 if (RT_SUCCESS(rc))
188 {
189 rc = vmmR3InitStacks(pVM);
190 if (RT_SUCCESS(rc))
191 {
192 rc = vmmR3InitLoggers(pVM);
193
194#ifdef VBOX_WITH_NMI
195 /*
196 * Allocate mapping for the host APIC.
197 */
198 if (RT_SUCCESS(rc))
199 {
200 rc = MMR3HyperReserve(pVM, PAGE_SIZE, "Host APIC", &pVM->vmm.s.GCPtrApicBase);
201 AssertRC(rc);
202 }
203#endif
204 if (RT_SUCCESS(rc))
205 {
206 /*
207 * Debug info and statistics.
208 */
209 DBGFR3InfoRegisterInternal(pVM, "ff", "Displays the current Forced actions Flags.", vmmR3InfoFF);
210 vmmR3InitRegisterStats(pVM);
211
212 return VINF_SUCCESS;
213 }
214 }
215 /** @todo: Need failure cleanup. */
216
217 //more todo in here?
218 //if (RT_SUCCESS(rc))
219 //{
220 //}
221 //int rc2 = vmmR3TermCoreCode(pVM);
222 //AssertRC(rc2));
223 }
224
225 return rc;
226}
227
228
229/**
230 * Allocate & setup the VMM RC stack(s) (for EMTs).
231 *
232 * The stacks are also used for long jumps in Ring-0.
233 *
234 * @returns VBox status code.
235 * @param pVM Pointer to the shared VM structure.
236 *
237 * @remarks The optional guard page gets it protection setup up during R3 init
238 * completion because of init order issues.
239 */
240static int vmmR3InitStacks(PVM pVM)
241{
242 int rc = VINF_SUCCESS;
243
244 for (VMCPUID idCpu = 0; idCpu < pVM->cCPUs; idCpu++)
245 {
246 PVMCPU pVCpu = &pVM->aCpus[idCpu];
247
248#ifdef VBOX_STRICT_VMM_STACK
249 rc = MMR3HyperAllocOnceNoRel(pVM, PAGE_SIZE + VMM_STACK_SIZE + PAGE_SIZE, PAGE_SIZE, MM_TAG_VMM, (void **)&pVCpu->vmm.s.pbEMTStackR3);
250#else
251 rc = MMR3HyperAllocOnceNoRel(pVM, VMM_STACK_SIZE, PAGE_SIZE, MM_TAG_VMM, (void **)&pVCpu->vmm.s.pbEMTStackR3);
252#endif
253 if (RT_SUCCESS(rc))
254 {
255#ifdef VBOX_STRICT_VMM_STACK
256 pVCpu->vmm.s.pbEMTStackR3 += PAGE_SIZE;
257#endif
258#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
259 /* MMHyperR3ToR0 returns R3 when not doing hardware assisted virtualization. */
260 if (!VMMIsHwVirtExtForced(pVM))
261 pVCpu->vmm.s.CallHostR0JmpBuf.pvSavedStack = NIL_RTR0PTR;
262 else
263#endif
264 pVCpu->vmm.s.CallHostR0JmpBuf.pvSavedStack = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
265 pVCpu->vmm.s.pbEMTStackRC = MMHyperR3ToRC(pVM, pVCpu->vmm.s.pbEMTStackR3);
266 pVCpu->vmm.s.pbEMTStackBottomRC = pVCpu->vmm.s.pbEMTStackRC + VMM_STACK_SIZE;
267 AssertRelease(pVCpu->vmm.s.pbEMTStackRC);
268
269 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC);
270 }
271 }
272
273 return rc;
274}
275
276
277/**
278 * Initialize the loggers.
279 *
280 * @returns VBox status code.
281 * @param pVM Pointer to the shared VM structure.
282 */
283static int vmmR3InitLoggers(PVM pVM)
284{
285 int rc;
286
287 /*
288 * Allocate RC & R0 Logger instances (they are finalized in the relocator).
289 */
290#ifdef LOG_ENABLED
291 PRTLOGGER pLogger = RTLogDefaultInstance();
292 if (pLogger)
293 {
294 pVM->vmm.s.cbRCLogger = RT_OFFSETOF(RTLOGGERRC, afGroups[pLogger->cGroups]);
295 rc = MMR3HyperAllocOnceNoRel(pVM, pVM->vmm.s.cbRCLogger, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pRCLoggerR3);
296 if (RT_FAILURE(rc))
297 return rc;
298 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
299
300# ifdef VBOX_WITH_R0_LOGGING
301 for (unsigned i = 0; i < pVM->cCPUs; i++)
302 {
303 PVMCPU pVCpu = &pVM->aCpus[i];
304
305 rc = MMR3HyperAllocOnceNoRel(pVM, RT_OFFSETOF(VMMR0LOGGER, Logger.afGroups[pLogger->cGroups]),
306 0, MM_TAG_VMM, (void **)&pVCpu->vmm.s.pR0LoggerR3);
307 if (RT_FAILURE(rc))
308 return rc;
309 pVCpu->vmm.s.pR0LoggerR3->pVM = pVM->pVMR0;
310 //pVCpu->vmm.s.pR0LoggerR3->fCreated = false;
311 pVCpu->vmm.s.pR0LoggerR3->cbLogger = RT_OFFSETOF(RTLOGGER, afGroups[pLogger->cGroups]);
312 pVCpu->vmm.s.pR0LoggerR0 = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pR0LoggerR3);
313 }
314# endif
315 }
316#endif /* LOG_ENABLED */
317
318#ifdef VBOX_WITH_RC_RELEASE_LOGGING
319 /*
320 * Allocate RC release logger instances (finalized in the relocator).
321 */
322 PRTLOGGER pRelLogger = RTLogRelDefaultInstance();
323 if (pRelLogger)
324 {
325 pVM->vmm.s.cbRCRelLogger = RT_OFFSETOF(RTLOGGERRC, afGroups[pRelLogger->cGroups]);
326 rc = MMR3HyperAllocOnceNoRel(pVM, pVM->vmm.s.cbRCRelLogger, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pRCRelLoggerR3);
327 if (RT_FAILURE(rc))
328 return rc;
329 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
330 }
331#endif /* VBOX_WITH_RC_RELEASE_LOGGING */
332 return VINF_SUCCESS;
333}
334
335
336/**
337 * VMMR3Init worker that register the statistics with STAM.
338 *
339 * @param pVM The shared VM structure.
340 */
341static void vmmR3InitRegisterStats(PVM pVM)
342{
343 /*
344 * Statistics.
345 */
346 STAM_REG(pVM, &pVM->vmm.s.StatRunRC, STAMTYPE_COUNTER, "/VMM/RunRC", STAMUNIT_OCCURENCES, "Number of context switches.");
347 STAM_REG(pVM, &pVM->vmm.s.StatRZRetNormal, STAMTYPE_COUNTER, "/VMM/RZRet/Normal", STAMUNIT_OCCURENCES, "Number of VINF_SUCCESS returns.");
348 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterrupt, STAMTYPE_COUNTER, "/VMM/RZRet/Interrupt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT returns.");
349 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptHyper, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptHyper", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_HYPER returns.");
350 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGuestTrap, STAMTYPE_COUNTER, "/VMM/RZRet/GuestTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_GUEST_TRAP returns.");
351 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitch, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitch", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH returns.");
352 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitchInt, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitchInt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH_INT returns.");
353 STAM_REG(pVM, &pVM->vmm.s.StatRZRetExceptionPrivilege, STAMTYPE_COUNTER, "/VMM/RZRet/ExceptionPrivilege", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_EXCEPTION_PRIVILEGED returns.");
354 STAM_REG(pVM, &pVM->vmm.s.StatRZRetStaleSelector, STAMTYPE_COUNTER, "/VMM/RZRet/StaleSelector", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_STALE_SELECTOR returns.");
355 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIRETTrap, STAMTYPE_COUNTER, "/VMM/RZRet/IRETTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_IRET_TRAP returns.");
356 STAM_REG(pVM, &pVM->vmm.s.StatRZRetEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/Emulate", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION returns.");
357 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOBlockEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/EmulateIOBlock", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_EMULATE_IO_BLOCK returns.");
358 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/PatchEmulate", STAMUNIT_OCCURENCES, "Number of VINF_PATCH_EMULATE_INSTR returns.");
359 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIORead, STAMTYPE_COUNTER, "/VMM/RZRet/IORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_IOPORT_READ returns.");
360 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_IOPORT_WRITE returns.");
361 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIORead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_READ returns.");
362 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_WRITE returns.");
363 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOReadWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOReadWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_READ_WRITE returns.");
364 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchRead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchRead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_READ returns.");
365 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_WRITE returns.");
366 STAM_REG(pVM, &pVM->vmm.s.StatRZRetLDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/LDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_GDT_FAULT returns.");
367 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/GDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_LDT_FAULT returns.");
368 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/IDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_IDT_FAULT returns.");
369 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTSSFault, STAMTYPE_COUNTER, "/VMM/RZRet/TSSFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_TSS_FAULT returns.");
370 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPDFault, STAMTYPE_COUNTER, "/VMM/RZRet/PDFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_PD_FAULT returns.");
371 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCSAMTask, STAMTYPE_COUNTER, "/VMM/RZRet/CSAMTask", STAMUNIT_OCCURENCES, "Number of VINF_CSAM_PENDING_ACTION returns.");
372 STAM_REG(pVM, &pVM->vmm.s.StatRZRetSyncCR3, STAMTYPE_COUNTER, "/VMM/RZRet/SyncCR", STAMUNIT_OCCURENCES, "Number of VINF_PGM_SYNC_CR3 returns.");
373 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMisc, STAMTYPE_COUNTER, "/VMM/RZRet/Misc", STAMUNIT_OCCURENCES, "Number of misc returns.");
374 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchInt3, STAMTYPE_COUNTER, "/VMM/RZRet/PatchInt3", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_INT3 returns.");
375 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchPF, STAMTYPE_COUNTER, "/VMM/RZRet/PatchPF", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_PF returns.");
376 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchGP, STAMTYPE_COUNTER, "/VMM/RZRet/PatchGP", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_GP returns.");
377 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchIretIRQ, STAMTYPE_COUNTER, "/VMM/RZRet/PatchIret", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PENDING_IRQ_AFTER_IRET returns.");
378 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRescheduleREM, STAMTYPE_COUNTER, "/VMM/RZRet/ScheduleREM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RESCHEDULE_REM returns.");
379 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
380 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTimerPending, STAMTYPE_COUNTER, "/VMM/RZRet/TimerPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TIMER_PENDING returns.");
381 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptPending, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_PENDING returns.");
382 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPATMDuplicateFn, STAMTYPE_COUNTER, "/VMM/RZRet/PATMDuplicateFn", STAMUNIT_OCCURENCES, "Number of VINF_PATM_DUPLICATE_FUNCTION returns.");
383 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMChangeMode, STAMTYPE_COUNTER, "/VMM/RZRet/PGMChangeMode", STAMUNIT_OCCURENCES, "Number of VINF_PGM_CHANGE_MODE returns.");
384 STAM_REG(pVM, &pVM->vmm.s.StatRZRetEmulHlt, STAMTYPE_COUNTER, "/VMM/RZRet/EmulHlt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_EMULATE_INSTR_HLT returns.");
385 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPendingRequest, STAMTYPE_COUNTER, "/VMM/RZRet/PendingRequest", STAMUNIT_OCCURENCES, "Number of VINF_EM_PENDING_REQUEST returns.");
386
387 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCallHost, STAMTYPE_COUNTER, "/VMM/RZCallR3/Misc", STAMUNIT_OCCURENCES, "Number of Other ring-3 calls.");
388 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLHOST_PDM_LOCK calls.");
389 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMQueueFlush, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMQueueFlush", STAMUNIT_OCCURENCES, "Number of VMMCALLHOST_PDM_QUEUE_FLUSH calls.");
390 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLHOST_PGM_LOCK calls.");
391 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMPoolGrow, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMPoolGrow", STAMUNIT_OCCURENCES, "Number of VMMCALLHOST_PGM_POOL_GROW calls.");
392 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMMapChunk, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMMapChunk", STAMUNIT_OCCURENCES, "Number of VMMCALLHOST_PGM_MAP_CHUNK calls.");
393 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMAllocHandy, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMAllocHandy", STAMUNIT_OCCURENCES, "Number of VMMCALLHOST_PGM_ALLOCATE_HANDY_PAGES calls.");
394 STAM_REG(pVM, &pVM->vmm.s.StatRZCallRemReplay, STAMTYPE_COUNTER, "/VMM/RZCallR3/REMReplay", STAMUNIT_OCCURENCES, "Number of VMMCALLHOST_REM_REPLAY_HANDLER_NOTIFICATIONS calls.");
395 STAM_REG(pVM, &pVM->vmm.s.StatRZCallLogFlush, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMMLogFlush", STAMUNIT_OCCURENCES, "Number of VMMCALLHOST_VMM_LOGGER_FLUSH calls.");
396 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMSetError", STAMUNIT_OCCURENCES, "Number of VMMCALLHOST_VM_SET_ERROR calls.");
397 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetRuntimeError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMRuntimeError", STAMUNIT_OCCURENCES, "Number of VMMCALLHOST_VM_SET_RUNTIME_ERROR calls.");
398
399#ifdef VBOX_WITH_STATISTICS
400 for (VMCPUID i = 0; i < pVM->cCPUs; i++)
401 {
402 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallHostR0JmpBuf.cbUsedMax, STAMTYPE_U32_RESET, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Max amount of stack used.", "/VMM/Stack/CPU%u/Max", i);
403 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallHostR0JmpBuf.cbUsedAvg, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Average stack usage.", "/VMM/Stack/CPU%u/Avg", i);
404 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallHostR0JmpBuf.cUsedTotal, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of stack usages.", "/VMM/Stack/CPU%u/Uses", i);
405 }
406#endif
407}
408
409
410/**
411 * Initializes the per-VCPU VMM.
412 *
413 * @returns VBox status code.
414 * @param pVM The VM to operate on.
415 */
416VMMR3DECL(int) VMMR3InitCPU(PVM pVM)
417{
418 LogFlow(("VMMR3InitCPU\n"));
419 return VINF_SUCCESS;
420}
421
422
423/**
424 * Ring-3 init finalizing.
425 *
426 * @returns VBox status code.
427 * @param pVM The VM handle.
428 */
429VMMR3DECL(int) VMMR3InitFinalize(PVM pVM)
430{
431 int rc = VINF_SUCCESS;
432
433 for (VMCPUID idCpu = 0; idCpu < pVM->cCPUs; idCpu++)
434 {
435 PVMCPU pVCpu = &pVM->aCpus[idCpu];
436
437#ifdef VBOX_STRICT_VMM_STACK
438 /*
439 * Two inaccessible pages at each sides of the stack to catch over/under-flows.
440 */
441 memset(pVCpu->vmm.s.pbEMTStackR3 - PAGE_SIZE, 0xcc, PAGE_SIZE);
442 MMR3HyperSetGuard(pVM, pVCpu->vmm.s.pbEMTStackR3 - PAGE_SIZE, PAGE_SIZE, true /*fSet*/);
443
444 memset(pVCpu->vmm.s.pbEMTStackR3 + VMM_STACK_SIZE, 0xcc, PAGE_SIZE);
445 MMR3HyperSetGuard(pVM, pVCpu->vmm.s.pbEMTStackR3 + VMM_STACK_SIZE, PAGE_SIZE, true /*fSet*/);
446#endif
447
448 /*
449 * Set page attributes to r/w for stack pages.
450 */
451 rc = PGMMapSetPage(pVM, pVCpu->vmm.s.pbEMTStackRC, VMM_STACK_SIZE, X86_PTE_P | X86_PTE_A | X86_PTE_D | X86_PTE_RW);
452 AssertRC(rc);
453 if (RT_FAILURE(rc))
454 break;
455 }
456 if (RT_SUCCESS(rc))
457 {
458 /*
459 * Create the EMT yield timer.
460 */
461 rc = TMR3TimerCreateInternal(pVM, TMCLOCK_REAL, vmmR3YieldEMT, NULL, "EMT Yielder", &pVM->vmm.s.pYieldTimer);
462 if (RT_SUCCESS(rc))
463 rc = TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldEveryMillies);
464 }
465
466#ifdef VBOX_WITH_NMI
467 /*
468 * Map the host APIC into GC - This is AMD/Intel + Host OS specific!
469 */
470 if (RT_SUCCESS(rc))
471 rc = PGMMap(pVM, pVM->vmm.s.GCPtrApicBase, 0xfee00000, PAGE_SIZE,
472 X86_PTE_P | X86_PTE_RW | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_A | X86_PTE_D);
473#endif
474 return rc;
475}
476
477
478/**
479 * Initializes the R0 VMM.
480 *
481 * @returns VBox status code.
482 * @param pVM The VM to operate on.
483 */
484VMMR3DECL(int) VMMR3InitR0(PVM pVM)
485{
486 int rc;
487 PVMCPU pVCpu = VMMGetCpu(pVM);
488 Assert(pVCpu && pVCpu->idCpu == 0);
489
490#ifdef LOG_ENABLED
491 /*
492 * Initialize the ring-0 logger if we haven't done so yet.
493 */
494 if ( pVCpu->vmm.s.pR0LoggerR3
495 && !pVCpu->vmm.s.pR0LoggerR3->fCreated)
496 {
497 rc = VMMR3UpdateLoggers(pVM);
498 if (RT_FAILURE(rc))
499 return rc;
500 }
501#endif
502
503 /*
504 * Call Ring-0 entry with init code.
505 */
506 for (;;)
507 {
508#ifdef NO_SUPCALLR0VMM
509 //rc = VERR_GENERAL_FAILURE;
510 rc = VINF_SUCCESS;
511#else
512 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_VMMR0_INIT, VMMGetSvnRev(), NULL);
513#endif
514 /*
515 * Flush the logs.
516 */
517#ifdef LOG_ENABLED
518 if ( pVCpu->vmm.s.pR0LoggerR3
519 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
520 RTLogFlushToLogger(&pVCpu->vmm.s.pR0LoggerR3->Logger, NULL);
521#endif
522 if (rc != VINF_VMM_CALL_HOST)
523 break;
524 rc = vmmR3ServiceCallHostRequest(pVM, pVCpu);
525 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
526 break;
527 /* Resume R0 */
528 }
529
530 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
531 {
532 LogRel(("R0 init failed, rc=%Rra\n", rc));
533 if (RT_SUCCESS(rc))
534 rc = VERR_INTERNAL_ERROR;
535 }
536 return rc;
537}
538
539
540/**
541 * Initializes the RC VMM.
542 *
543 * @returns VBox status code.
544 * @param pVM The VM to operate on.
545 */
546VMMR3DECL(int) VMMR3InitRC(PVM pVM)
547{
548 PVMCPU pVCpu = VMMGetCpu(pVM);
549 Assert(pVCpu && pVCpu->idCpu == 0);
550
551 /* In VMX mode, there's no need to init RC. */
552 if (pVM->vmm.s.fSwitcherDisabled)
553 return VINF_SUCCESS;
554
555 AssertReturn(pVM->cCPUs == 1, VERR_RAW_MODE_INVALID_SMP);
556
557 /*
558 * Call VMMGCInit():
559 * -# resolve the address.
560 * -# setup stackframe and EIP to use the trampoline.
561 * -# do a generic hypervisor call.
562 */
563 RTRCPTR RCPtrEP;
564 int rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "VMMGCEntry", &RCPtrEP);
565 if (RT_SUCCESS(rc))
566 {
567 CPUMHyperSetCtxCore(pVCpu, NULL);
568 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC); /* Clear the stack. */
569 uint64_t u64TS = RTTimeProgramStartNanoTS();
570 CPUMPushHyper(pVCpu, (uint32_t)(u64TS >> 32)); /* Param 3: The program startup TS - Hi. */
571 CPUMPushHyper(pVCpu, (uint32_t)u64TS); /* Param 3: The program startup TS - Lo. */
572 CPUMPushHyper(pVCpu, VMMGetSvnRev()); /* Param 2: Version argument. */
573 CPUMPushHyper(pVCpu, VMMGC_DO_VMMGC_INIT); /* Param 1: Operation. */
574 CPUMPushHyper(pVCpu, pVM->pVMRC); /* Param 0: pVM */
575 CPUMPushHyper(pVCpu, 5 * sizeof(RTRCPTR)); /* trampoline param: stacksize. */
576 CPUMPushHyper(pVCpu, RCPtrEP); /* Call EIP. */
577 CPUMSetHyperEIP(pVCpu, pVM->vmm.s.pfnCallTrampolineRC);
578 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
579
580 for (;;)
581 {
582#ifdef NO_SUPCALLR0VMM
583 //rc = VERR_GENERAL_FAILURE;
584 rc = VINF_SUCCESS;
585#else
586 rc = SUPR3CallVMMR0(pVM->pVMR0, 0 /* VCPU 0 */, VMMR0_DO_CALL_HYPERVISOR, NULL);
587#endif
588#ifdef LOG_ENABLED
589 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
590 if ( pLogger
591 && pLogger->offScratch > 0)
592 RTLogFlushRC(NULL, pLogger);
593#endif
594#ifdef VBOX_WITH_RC_RELEASE_LOGGING
595 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
596 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
597 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
598#endif
599 if (rc != VINF_VMM_CALL_HOST)
600 break;
601 rc = vmmR3ServiceCallHostRequest(pVM, pVCpu);
602 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
603 break;
604 }
605
606 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
607 {
608 VMMR3FatalDump(pVM, pVCpu, rc);
609 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
610 rc = VERR_INTERNAL_ERROR;
611 }
612 AssertRC(rc);
613 }
614 return rc;
615}
616
617
618/**
619 * Terminate the VMM bits.
620 *
621 * @returns VINF_SUCCESS.
622 * @param pVM The VM handle.
623 */
624VMMR3DECL(int) VMMR3Term(PVM pVM)
625{
626 PVMCPU pVCpu = VMMGetCpu(pVM);
627 Assert(pVCpu && pVCpu->idCpu == 0);
628
629 /*
630 * Call Ring-0 entry with termination code.
631 */
632 int rc;
633 for (;;)
634 {
635#ifdef NO_SUPCALLR0VMM
636 //rc = VERR_GENERAL_FAILURE;
637 rc = VINF_SUCCESS;
638#else
639 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_VMMR0_TERM, 0, NULL);
640#endif
641 /*
642 * Flush the logs.
643 */
644#ifdef LOG_ENABLED
645 if ( pVCpu->vmm.s.pR0LoggerR3
646 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
647 RTLogFlushToLogger(&pVCpu->vmm.s.pR0LoggerR3->Logger, NULL);
648#endif
649 if (rc != VINF_VMM_CALL_HOST)
650 break;
651 rc = vmmR3ServiceCallHostRequest(pVM, pVCpu);
652 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
653 break;
654 /* Resume R0 */
655 }
656 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
657 {
658 LogRel(("VMMR3Term: R0 term failed, rc=%Rra. (warning)\n", rc));
659 if (RT_SUCCESS(rc))
660 rc = VERR_INTERNAL_ERROR;
661 }
662
663 RTCritSectDelete(&pVM->vmm.s.CritSectSync);
664 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
665 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
666 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
667 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
668 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousDone);
669 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
670 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousDoneCaller);
671 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
672
673#ifdef VBOX_STRICT_VMM_STACK
674 /*
675 * Make the two stack guard pages present again.
676 */
677 for (VMCPUID i = 0; i < pVM->cCPUs; i++)
678 {
679 MMR3HyperSetGuard(pVM, pVM->aCpus[i].vmm.s.pbEMTStackR3 - PAGE_SIZE, PAGE_SIZE, false /*fSet*/);
680 MMR3HyperSetGuard(pVM, pVM->aCpus[i].vmm.s.pbEMTStackR3 + VMM_STACK_SIZE, PAGE_SIZE, false /*fSet*/);
681 }
682#endif
683 return rc;
684}
685
686
687/**
688 * Terminates the per-VCPU VMM.
689 *
690 * Termination means cleaning up and freeing all resources,
691 * the VM it self is at this point powered off or suspended.
692 *
693 * @returns VBox status code.
694 * @param pVM The VM to operate on.
695 */
696VMMR3DECL(int) VMMR3TermCPU(PVM pVM)
697{
698 return VINF_SUCCESS;
699}
700
701
702/**
703 * Applies relocations to data and code managed by this
704 * component. This function will be called at init and
705 * whenever the VMM need to relocate it self inside the GC.
706 *
707 * The VMM will need to apply relocations to the core code.
708 *
709 * @param pVM The VM handle.
710 * @param offDelta The relocation delta.
711 */
712VMMR3DECL(void) VMMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
713{
714 LogFlow(("VMMR3Relocate: offDelta=%RGv\n", offDelta));
715
716 /*
717 * Recalc the RC address.
718 */
719 pVM->vmm.s.pvCoreCodeRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pvCoreCodeR3);
720
721 /*
722 * The stack.
723 */
724 for (VMCPUID i = 0; i < pVM->cCPUs; i++)
725 {
726 PVMCPU pVCpu = &pVM->aCpus[i];
727
728 CPUMSetHyperESP(pVCpu, CPUMGetHyperESP(pVCpu) + offDelta);
729
730 pVCpu->vmm.s.pbEMTStackRC = MMHyperR3ToRC(pVM, pVCpu->vmm.s.pbEMTStackR3);
731 pVCpu->vmm.s.pbEMTStackBottomRC = pVCpu->vmm.s.pbEMTStackRC + VMM_STACK_SIZE;
732 }
733
734 /*
735 * All the switchers.
736 */
737 vmmR3SwitcherRelocate(pVM, offDelta);
738
739 /*
740 * Get other RC entry points.
741 */
742 int rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "CPUMGCResumeGuest", &pVM->vmm.s.pfnCPUMRCResumeGuest);
743 AssertReleaseMsgRC(rc, ("CPUMGCResumeGuest not found! rc=%Rra\n", rc));
744
745 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "CPUMGCResumeGuestV86", &pVM->vmm.s.pfnCPUMRCResumeGuestV86);
746 AssertReleaseMsgRC(rc, ("CPUMGCResumeGuestV86 not found! rc=%Rra\n", rc));
747
748 /*
749 * Update the logger.
750 */
751 VMMR3UpdateLoggers(pVM);
752}
753
754
755/**
756 * Updates the settings for the RC and R0 loggers.
757 *
758 * @returns VBox status code.
759 * @param pVM The VM handle.
760 */
761VMMR3DECL(int) VMMR3UpdateLoggers(PVM pVM)
762{
763 /*
764 * Simply clone the logger instance (for RC).
765 */
766 int rc = VINF_SUCCESS;
767 RTRCPTR RCPtrLoggerFlush = 0;
768
769 if (pVM->vmm.s.pRCLoggerR3
770#ifdef VBOX_WITH_RC_RELEASE_LOGGING
771 || pVM->vmm.s.pRCRelLoggerR3
772#endif
773 )
774 {
775 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCLoggerFlush", &RCPtrLoggerFlush);
776 AssertReleaseMsgRC(rc, ("vmmGCLoggerFlush not found! rc=%Rra\n", rc));
777 }
778
779 if (pVM->vmm.s.pRCLoggerR3)
780 {
781 RTRCPTR RCPtrLoggerWrapper = 0;
782 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCLoggerWrapper", &RCPtrLoggerWrapper);
783 AssertReleaseMsgRC(rc, ("vmmGCLoggerWrapper not found! rc=%Rra\n", rc));
784
785 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
786 rc = RTLogCloneRC(NULL /* default */, pVM->vmm.s.pRCLoggerR3, pVM->vmm.s.cbRCLogger,
787 RCPtrLoggerWrapper, RCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
788 AssertReleaseMsgRC(rc, ("RTLogCloneRC failed! rc=%Rra\n", rc));
789 }
790
791#ifdef VBOX_WITH_RC_RELEASE_LOGGING
792 if (pVM->vmm.s.pRCRelLoggerR3)
793 {
794 RTRCPTR RCPtrLoggerWrapper = 0;
795 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCRelLoggerWrapper", &RCPtrLoggerWrapper);
796 AssertReleaseMsgRC(rc, ("vmmGCRelLoggerWrapper not found! rc=%Rra\n", rc));
797
798 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
799 rc = RTLogCloneRC(RTLogRelDefaultInstance(), pVM->vmm.s.pRCRelLoggerR3, pVM->vmm.s.cbRCRelLogger,
800 RCPtrLoggerWrapper, RCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
801 AssertReleaseMsgRC(rc, ("RTLogCloneRC failed! rc=%Rra\n", rc));
802 }
803#endif /* VBOX_WITH_RC_RELEASE_LOGGING */
804
805#ifdef LOG_ENABLED
806 /*
807 * For the ring-0 EMT logger, we use a per-thread logger instance
808 * in ring-0. Only initialize it once.
809 */
810 for (VMCPUID i = 0; i < pVM->cCPUs; i++)
811 {
812 PVMCPU pVCpu = &pVM->aCpus[i];
813 PVMMR0LOGGER pR0LoggerR3 = pVCpu->vmm.s.pR0LoggerR3;
814 if (pR0LoggerR3)
815 {
816 if (!pR0LoggerR3->fCreated)
817 {
818 RTR0PTR pfnLoggerWrapper = NIL_RTR0PTR;
819 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerWrapper", &pfnLoggerWrapper);
820 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerWrapper not found! rc=%Rra\n", rc), rc);
821
822 RTR0PTR pfnLoggerFlush = NIL_RTR0PTR;
823 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerFlush", &pfnLoggerFlush);
824 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerFlush not found! rc=%Rra\n", rc), rc);
825
826 rc = RTLogCreateForR0(&pR0LoggerR3->Logger, pR0LoggerR3->cbLogger,
827 *(PFNRTLOGGER *)&pfnLoggerWrapper, *(PFNRTLOGFLUSH *)&pfnLoggerFlush,
828 RTLOGFLAGS_BUFFERED, RTLOGDEST_DUMMY);
829 AssertReleaseMsgRCReturn(rc, ("RTLogCreateForR0 failed! rc=%Rra\n", rc), rc);
830
831 RTR0PTR pfnLoggerPrefix = NIL_RTR0PTR;
832 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerPrefix", &pfnLoggerPrefix);
833 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerPrefix not found! rc=%Rra\n", rc), rc);
834 rc = RTLogSetCustomPrefixCallback(&pR0LoggerR3->Logger, *(PFNRTLOGPREFIX *)&pfnLoggerPrefix, NULL);
835 AssertReleaseMsgRCReturn(rc, ("RTLogSetCustomPrefixCallback failed! rc=%Rra\n", rc), rc);
836
837 pR0LoggerR3->idCpu = i;
838 pR0LoggerR3->fCreated = true;
839 pR0LoggerR3->fFlushingDisabled = false;
840
841 }
842
843 rc = RTLogCopyGroupsAndFlags(&pR0LoggerR3->Logger, NULL /* default */, pVM->vmm.s.pRCLoggerR3->fFlags, RTLOGFLAGS_BUFFERED);
844 AssertRC(rc);
845 }
846 }
847#endif
848 return rc;
849}
850
851
852/**
853 * Gets the pointer to a buffer containing the R0/RC AssertMsg1 output.
854 *
855 * @returns Pointer to the buffer.
856 * @param pVM The VM handle.
857 */
858VMMR3DECL(const char *) VMMR3GetRZAssertMsg1(PVM pVM)
859{
860 if (HWACCMIsEnabled(pVM))
861 return pVM->vmm.s.szRing0AssertMsg1;
862
863 RTRCPTR RCPtr;
864 int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "g_szRTAssertMsg1", &RCPtr);
865 if (RT_SUCCESS(rc))
866 return (const char *)MMHyperRCToR3(pVM, RCPtr);
867
868 return NULL;
869}
870
871
872/**
873 * Gets the pointer to a buffer containing the R0/RC AssertMsg2 output.
874 *
875 * @returns Pointer to the buffer.
876 * @param pVM The VM handle.
877 */
878VMMR3DECL(const char *) VMMR3GetRZAssertMsg2(PVM pVM)
879{
880 if (HWACCMIsEnabled(pVM))
881 return pVM->vmm.s.szRing0AssertMsg2;
882
883 RTRCPTR RCPtr;
884 int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "g_szRTAssertMsg2", &RCPtr);
885 if (RT_SUCCESS(rc))
886 return (const char *)MMHyperRCToR3(pVM, RCPtr);
887
888 return NULL;
889}
890
891
892/**
893 * Execute state save operation.
894 *
895 * @returns VBox status code.
896 * @param pVM VM Handle.
897 * @param pSSM SSM operation handle.
898 */
899static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM)
900{
901 LogFlow(("vmmR3Save:\n"));
902
903 /*
904 * The hypervisor stack.
905 * Note! See note in vmmR3Load (remove this on version change).
906 */
907 PVMCPU pVCpu0 = &pVM->aCpus[0];
908 SSMR3PutRCPtr(pSSM, pVCpu0->vmm.s.pbEMTStackBottomRC);
909 RTRCPTR RCPtrESP = CPUMGetHyperESP(pVCpu0);
910 AssertMsg(pVCpu0->vmm.s.pbEMTStackBottomRC - RCPtrESP <= VMM_STACK_SIZE, ("Bottom %RRv ESP=%RRv\n", pVCpu0->vmm.s.pbEMTStackBottomRC, RCPtrESP));
911 SSMR3PutRCPtr(pSSM, RCPtrESP);
912 SSMR3PutMem(pSSM, pVCpu0->vmm.s.pbEMTStackR3, VMM_STACK_SIZE);
913
914 /*
915 * Save the started/stopped state of all CPUs except 0 as it will always
916 * be running. This avoids breaking the saved state version. :-)
917 */
918 for (VMCPUID i = 1; i < pVM->cCPUs; i++)
919 SSMR3PutBool(pSSM, VMCPUSTATE_IS_STARTED(VMCPU_GET_STATE(&pVM->aCpus[i])));
920
921 return SSMR3PutU32(pSSM, ~0); /* terminator */
922}
923
924
925/**
926 * Execute state load operation.
927 *
928 * @returns VBox status code.
929 * @param pVM VM Handle.
930 * @param pSSM SSM operation handle.
931 * @param u32Version Data layout version.
932 */
933static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
934{
935 LogFlow(("vmmR3Load:\n"));
936
937 /*
938 * Validate version.
939 */
940 if (u32Version != VMM_SAVED_STATE_VERSION)
941 {
942 AssertMsgFailed(("vmmR3Load: Invalid version u32Version=%d!\n", u32Version));
943 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
944 }
945
946 /*
947 * Check that the stack is in the same place, or that it's fearly empty.
948 *
949 * Note! This can be skipped next time we update saved state as we will
950 * never be in a R0/RC -> ring-3 call when saving the state. The
951 * stack and the two associated pointers are not required.
952 */
953 RTRCPTR RCPtrStackBottom;
954 SSMR3GetRCPtr(pSSM, &RCPtrStackBottom);
955 RTRCPTR RCPtrESP;
956 int rc = SSMR3GetRCPtr(pSSM, &RCPtrESP);
957 if (RT_FAILURE(rc))
958 return rc;
959 SSMR3GetMem(pSSM, pVM->aCpus[0].vmm.s.pbEMTStackR3, VMM_STACK_SIZE);
960
961 /* Restore the VMCPU states. VCPU 0 is always started. */
962 VMCPU_SET_STATE(&pVM->aCpus[0], VMCPUSTATE_STARTED);
963 for (VMCPUID i = 1; i < pVM->cCPUs; i++)
964 {
965 bool fStarted;
966 rc = SSMR3GetBool(pSSM, &fStarted);
967 if (RT_FAILURE(rc))
968 return rc;
969 VMCPU_SET_STATE(&pVM->aCpus[i], fStarted ? VMCPUSTATE_STARTED : VMCPUSTATE_STOPPED);
970 }
971
972 /* terminator */
973 uint32_t u32;
974 rc = SSMR3GetU32(pSSM, &u32);
975 if (RT_FAILURE(rc))
976 return rc;
977 if (u32 != ~0U)
978 {
979 AssertMsgFailed(("u32=%#x\n", u32));
980 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
981 }
982 return VINF_SUCCESS;
983}
984
985
986/**
987 * Resolve a builtin RC symbol.
988 *
989 * Called by PDM when loading or relocating RC modules.
990 *
991 * @returns VBox status
992 * @param pVM VM Handle.
993 * @param pszSymbol Symbol to resolv
994 * @param pRCPtrValue Where to store the symbol value.
995 *
996 * @remark This has to work before VMMR3Relocate() is called.
997 */
998VMMR3DECL(int) VMMR3GetImportRC(PVM pVM, const char *pszSymbol, PRTRCPTR pRCPtrValue)
999{
1000 if (!strcmp(pszSymbol, "g_Logger"))
1001 {
1002 if (pVM->vmm.s.pRCLoggerR3)
1003 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
1004 *pRCPtrValue = pVM->vmm.s.pRCLoggerRC;
1005 }
1006 else if (!strcmp(pszSymbol, "g_RelLogger"))
1007 {
1008#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1009 if (pVM->vmm.s.pRCRelLoggerR3)
1010 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
1011 *pRCPtrValue = pVM->vmm.s.pRCRelLoggerRC;
1012#else
1013 *pRCPtrValue = NIL_RTRCPTR;
1014#endif
1015 }
1016 else
1017 return VERR_SYMBOL_NOT_FOUND;
1018 return VINF_SUCCESS;
1019}
1020
1021
1022/**
1023 * Suspends the CPU yielder.
1024 *
1025 * @param pVM The VM handle.
1026 */
1027VMMR3DECL(void) VMMR3YieldSuspend(PVM pVM)
1028{
1029 VMCPU_ASSERT_EMT(&pVM->aCpus[0]);
1030 if (!pVM->vmm.s.cYieldResumeMillies)
1031 {
1032 uint64_t u64Now = TMTimerGet(pVM->vmm.s.pYieldTimer);
1033 uint64_t u64Expire = TMTimerGetExpire(pVM->vmm.s.pYieldTimer);
1034 if (u64Now >= u64Expire || u64Expire == ~(uint64_t)0)
1035 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1036 else
1037 pVM->vmm.s.cYieldResumeMillies = TMTimerToMilli(pVM->vmm.s.pYieldTimer, u64Expire - u64Now);
1038 TMTimerStop(pVM->vmm.s.pYieldTimer);
1039 }
1040 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1041}
1042
1043
1044/**
1045 * Stops the CPU yielder.
1046 *
1047 * @param pVM The VM handle.
1048 */
1049VMMR3DECL(void) VMMR3YieldStop(PVM pVM)
1050{
1051 if (!pVM->vmm.s.cYieldResumeMillies)
1052 TMTimerStop(pVM->vmm.s.pYieldTimer);
1053 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1054 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1055}
1056
1057
1058/**
1059 * Resumes the CPU yielder when it has been a suspended or stopped.
1060 *
1061 * @param pVM The VM handle.
1062 */
1063VMMR3DECL(void) VMMR3YieldResume(PVM pVM)
1064{
1065 if (pVM->vmm.s.cYieldResumeMillies)
1066 {
1067 TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldResumeMillies);
1068 pVM->vmm.s.cYieldResumeMillies = 0;
1069 }
1070}
1071
1072
1073/**
1074 * Internal timer callback function.
1075 *
1076 * @param pVM The VM.
1077 * @param pTimer The timer handle.
1078 * @param pvUser User argument specified upon timer creation.
1079 */
1080static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser)
1081{
1082 /*
1083 * This really needs some careful tuning. While we shouldn't be too greedy since
1084 * that'll cause the rest of the system to stop up, we shouldn't be too nice either
1085 * because that'll cause us to stop up.
1086 *
1087 * The current logic is to use the default interval when there is no lag worth
1088 * mentioning, but when we start accumulating lag we don't bother yielding at all.
1089 *
1090 * (This depends on the TMCLOCK_VIRTUAL_SYNC to be scheduled before TMCLOCK_REAL
1091 * so the lag is up to date.)
1092 */
1093 const uint64_t u64Lag = TMVirtualSyncGetLag(pVM);
1094 if ( u64Lag < 50000000 /* 50ms */
1095 || ( u64Lag < 1000000000 /* 1s */
1096 && RTTimeNanoTS() - pVM->vmm.s.u64LastYield < 500000000 /* 500 ms */)
1097 )
1098 {
1099 uint64_t u64Elapsed = RTTimeNanoTS();
1100 pVM->vmm.s.u64LastYield = u64Elapsed;
1101
1102 RTThreadYield();
1103
1104#ifdef LOG_ENABLED
1105 u64Elapsed = RTTimeNanoTS() - u64Elapsed;
1106 Log(("vmmR3YieldEMT: %RI64 ns\n", u64Elapsed));
1107#endif
1108 }
1109 TMTimerSetMillies(pTimer, pVM->vmm.s.cYieldEveryMillies);
1110}
1111
1112
1113/**
1114 * Executes guest code in the raw-mode context.
1115 *
1116 * @param pVM VM handle.
1117 * @param pVCpu The VMCPU to operate on.
1118 */
1119VMMR3DECL(int) VMMR3RawRunGC(PVM pVM, PVMCPU pVCpu)
1120{
1121 Log2(("VMMR3RawRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1122
1123 AssertReturn(pVM->cCPUs == 1, VERR_RAW_MODE_INVALID_SMP);
1124
1125 /*
1126 * Set the EIP and ESP.
1127 */
1128 CPUMSetHyperEIP(pVCpu, CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM
1129 ? pVM->vmm.s.pfnCPUMRCResumeGuestV86
1130 : pVM->vmm.s.pfnCPUMRCResumeGuest);
1131 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC);
1132
1133 /*
1134 * We hide log flushes (outer) and hypervisor interrupts (inner).
1135 */
1136 for (;;)
1137 {
1138 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
1139#ifdef VBOX_STRICT
1140 PGMMapCheck(pVM);
1141#endif
1142 int rc;
1143 do
1144 {
1145#ifdef NO_SUPCALLR0VMM
1146 rc = VERR_GENERAL_FAILURE;
1147#else
1148 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
1149 if (RT_LIKELY(rc == VINF_SUCCESS))
1150 rc = pVCpu->vmm.s.iLastGZRc;
1151#endif
1152 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1153
1154 /*
1155 * Flush the logs.
1156 */
1157#ifdef LOG_ENABLED
1158 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
1159 if ( pLogger
1160 && pLogger->offScratch > 0)
1161 RTLogFlushRC(NULL, pLogger);
1162#endif
1163#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1164 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
1165 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
1166 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
1167#endif
1168 if (rc != VINF_VMM_CALL_HOST)
1169 {
1170 Log2(("VMMR3RawRunGC: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1171 return rc;
1172 }
1173 rc = vmmR3ServiceCallHostRequest(pVM, pVCpu);
1174 if (RT_FAILURE(rc))
1175 return rc;
1176 /* Resume GC */
1177 }
1178}
1179
1180
1181/**
1182 * Executes guest code (Intel VT-x and AMD-V).
1183 *
1184 * @param pVM VM handle.
1185 * @param pVCpu The VMCPU to operate on.
1186 */
1187VMMR3DECL(int) VMMR3HwAccRunGC(PVM pVM, PVMCPU pVCpu)
1188{
1189 Log2(("VMMR3HwAccRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1190
1191 for (;;)
1192 {
1193 int rc;
1194 do
1195 {
1196#ifdef NO_SUPCALLR0VMM
1197 rc = VERR_GENERAL_FAILURE;
1198#else
1199 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_HWACC_RUN, pVCpu->idCpu);
1200 if (RT_LIKELY(rc == VINF_SUCCESS))
1201 rc = pVCpu->vmm.s.iLastGZRc;
1202#endif
1203 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1204
1205#ifdef LOG_ENABLED
1206 /*
1207 * Flush the log
1208 */
1209 PVMMR0LOGGER pR0LoggerR3 = pVCpu->vmm.s.pR0LoggerR3;
1210 if ( pR0LoggerR3
1211 && pR0LoggerR3->Logger.offScratch > 0)
1212 RTLogFlushToLogger(&pR0LoggerR3->Logger, NULL);
1213#endif /* !LOG_ENABLED */
1214 if (rc != VINF_VMM_CALL_HOST)
1215 {
1216 Log2(("VMMR3HwAccRunGC: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1217 return rc;
1218 }
1219 rc = vmmR3ServiceCallHostRequest(pVM, pVCpu);
1220 if (RT_FAILURE(rc))
1221 return rc;
1222 /* Resume R0 */
1223 }
1224}
1225
1226/**
1227 * VCPU worker for VMMSendSipi.
1228 *
1229 * @param pVM The VM to operate on.
1230 * @param idCpu Virtual CPU to perform SIPI on
1231 * @param uVector SIPI vector
1232 */
1233DECLCALLBACK(int) vmmR3SendSipi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1234{
1235 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1236 VMCPU_ASSERT_EMT(pVCpu);
1237
1238 /** @todo what are we supposed to do if the processor is already running? */
1239 if (EMGetState(pVCpu) != EMSTATE_WAIT_SIPI)
1240 return VERR_ACCESS_DENIED;
1241
1242
1243 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1244
1245 pCtx->cs = uVector << 8;
1246 pCtx->csHid.u64Base = uVector << 12;
1247 pCtx->csHid.u32Limit = 0x0000ffff;
1248 pCtx->rip = 0;
1249
1250 Log(("vmmR3SendSipi for VCPU %d with vector %x\n", uVector));
1251
1252# if 1 /* If we keep the EMSTATE_WAIT_SIPI method, then move this to EM.cpp. */
1253 EMSetState(pVCpu, EMSTATE_HALTED);
1254 return VINF_EM_RESCHEDULE;
1255# else /* And if we go the VMCPU::enmState way it can stay here. */
1256 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STOPPED);
1257 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED);
1258 return VINF_SUCCESS;
1259# endif
1260}
1261
1262DECLCALLBACK(int) vmmR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1263{
1264 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1265 VMCPU_ASSERT_EMT(pVCpu);
1266
1267 Log(("vmmR3SendInitIpi for VCPU %d\n", idCpu));
1268 CPUMR3ResetCpu(pVCpu);
1269 return VINF_EM_WAIT_SIPI;
1270}
1271
1272/**
1273 * Sends SIPI to the virtual CPU by setting CS:EIP into vector-dependent state
1274 * and unhalting processor
1275 *
1276 * @param pVM The VM to operate on.
1277 * @param idCpu Virtual CPU to perform SIPI on
1278 * @param uVector SIPI vector
1279 */
1280VMMR3DECL(void) VMMR3SendSipi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1281{
1282 AssertReturnVoid(idCpu < pVM->cCPUs);
1283
1284 PVMREQ pReq;
1285 int rc = VMR3ReqCallU(pVM->pUVM, idCpu, &pReq, 0, VMREQFLAGS_NO_WAIT,
1286 (PFNRT)vmmR3SendSipi, 3, pVM, idCpu, uVector);
1287 AssertRC(rc);
1288}
1289
1290/**
1291 * Sends init IPI to the virtual CPU.
1292 *
1293 * @param pVM The VM to operate on.
1294 * @param idCpu Virtual CPU to perform int IPI on
1295 */
1296VMMR3DECL(void) VMMR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1297{
1298 AssertReturnVoid(idCpu < pVM->cCPUs);
1299
1300 PVMREQ pReq;
1301 int rc = VMR3ReqCallU(pVM->pUVM, idCpu, &pReq, 0, VMREQFLAGS_NO_WAIT,
1302 (PFNRT)vmmR3SendInitIpi, 2, pVM, idCpu);
1303 AssertRC(rc);
1304}
1305
1306
1307/**
1308 * VCPU worker for VMMR3SynchronizeAllVCpus.
1309 *
1310 * @param pVM The VM to operate on.
1311 * @param idCpu Virtual CPU to perform SIPI on
1312 * @param uVector SIPI vector
1313 */
1314DECLCALLBACK(int) vmmR3SyncVCpu(PVM pVM)
1315{
1316 /* Block until the job in the caller has finished. */
1317 RTCritSectEnter(&pVM->vmm.s.CritSectSync);
1318 RTCritSectLeave(&pVM->vmm.s.CritSectSync);
1319 return VINF_SUCCESS;
1320}
1321
1322
1323/**
1324 * Atomically execute a callback handler
1325 * Note: This is very expensive; avoid using it frequently!
1326 *
1327 * @param pVM The VM to operate on.
1328 * @param pfnHandler Callback handler
1329 * @param pvUser User specified parameter
1330 *
1331 * @thread EMT
1332 */
1333VMMR3DECL(int) VMMR3AtomicExecuteHandler(PVM pVM, PFNATOMICHANDLER pfnHandler, void *pvUser)
1334{
1335 int rc;
1336 PVMCPU pVCpu = VMMGetCpu(pVM);
1337 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
1338
1339 /* Shortcut for the uniprocessor case. */
1340 if (pVM->cCPUs == 1)
1341 return pfnHandler(pVM, pvUser);
1342
1343 RTCritSectEnter(&pVM->vmm.s.CritSectSync);
1344 for (VMCPUID idCpu = 0; idCpu < pVM->cCPUs; idCpu++)
1345 {
1346 if (idCpu != pVCpu->idCpu)
1347 {
1348 rc = VMR3ReqCallU(pVM->pUVM, idCpu, NULL, 0, VMREQFLAGS_NO_WAIT,
1349 (PFNRT)vmmR3SyncVCpu, 1, pVM);
1350 AssertRC(rc);
1351 }
1352 }
1353 /* Wait until all other VCPUs are waiting for us. */
1354 while (RTCritSectGetWaiters(&pVM->vmm.s.CritSectSync) != (int32_t)(pVM->cCPUs - 1))
1355 RTThreadSleep(1);
1356
1357 rc = pfnHandler(pVM, pvUser);
1358 RTCritSectLeave(&pVM->vmm.s.CritSectSync);
1359 return rc;
1360}
1361
1362
1363/**
1364 * Count returns and have the last non-caller EMT wake up the caller.
1365 *
1366 * @param pVM The VM handle.
1367 */
1368DECL_FORCE_INLINE(void) vmmR3EmtRendezvousNonCallerReturn(PVM pVM)
1369{
1370 uint32_t cReturned = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsReturned);
1371 if (cReturned == pVM->cCPUs - 1U)
1372 {
1373 int rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller);
1374 AssertLogRelRC(rc);
1375 }
1376}
1377
1378
1379/**
1380 * Common worker for VMMR3EmtRendezvous and VMMR3EmtRendezvousFF.
1381 *
1382 * @param pVM The VM handle.
1383 * @param pVCpu The VMCPU structure for the calling EMT.
1384 * @param fIsCaller Whether we're the VMMR3EmtRendezvous caller or
1385 * not.
1386 * @param fFlags The flags.
1387 * @param pfnRendezvous The callback.
1388 * @param pvUser The user argument for the callback.
1389 */
1390static void vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller,
1391 uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1392{
1393 int rc;
1394
1395 /*
1396 * Enter, the last EMT triggers the next callback phase.
1397 */
1398 uint32_t cEntered = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsEntered);
1399 if (cEntered != pVM->cCPUs)
1400 {
1401 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1402 {
1403 /* Wait for our turn. */
1404 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, RT_INDEFINITE_WAIT);
1405 AssertLogRelRC(rc);
1406 }
1407 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1408 {
1409 /* Wait for the last EMT to arrive and wake everyone up. */
1410 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce, RT_INDEFINITE_WAIT);
1411 AssertLogRelRC(rc);
1412 }
1413 else
1414 {
1415 Assert((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE);
1416
1417 /*
1418 * The execute once is handled specially to optimize the code flow.
1419 *
1420 * The last EMT to arrive will perform the callback and the other
1421 * EMTs will wait on the Done/DoneCaller semaphores (instead of
1422 * the EnterOneByOne/AllAtOnce) in the meanwhile. When the callback
1423 * returns, that EMT will initiate the normal return sequence.
1424 */
1425 if (!fIsCaller)
1426 {
1427 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1428 AssertLogRelRC(rc);
1429
1430 vmmR3EmtRendezvousNonCallerReturn(pVM);
1431 }
1432 return;
1433 }
1434 }
1435 else
1436 {
1437 /*
1438 * All EMTs are waiting, clear the FF and take action according to the
1439 * execution method.
1440 */
1441 VM_FF_CLEAR(pVM, VM_FF_EMT_RENDEZVOUS);
1442
1443 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1444 {
1445 /* Wake up everyone. */
1446 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
1447 AssertLogRelRC(rc);
1448 }
1449 /* else: execute the handler on the current EMT and wake up one or more threads afterwards. */
1450 }
1451
1452
1453 /*
1454 * Do the callback and update the status if necessary.
1455 */
1456 rc = pfnRendezvous(pVM, pVCpu, pvUser);
1457 if (rc != VINF_SUCCESS)
1458 {
1459 int32_t i32RendezvousStatus;
1460 do
1461 {
1462 i32RendezvousStatus = ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus);
1463 if ( RT_FAILURE(i32RendezvousStatus)
1464 || ( i32RendezvousStatus != VINF_SUCCESS
1465 && RT_SUCCESS(rc)))
1466 break;
1467 } while (!ASMAtomicCmpXchgS32(&pVM->vmm.s.i32RendezvousStatus, rc, i32RendezvousStatus));
1468 }
1469
1470 /*
1471 * Increment the done counter and take action depending on whether we're
1472 * the last to finish callback execution.
1473 */
1474 uint32_t cDone = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsDone);
1475 if ( cDone != pVM->cCPUs
1476 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE)
1477 {
1478 /* Signal the next EMT? */
1479 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1480 {
1481 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
1482 AssertLogRelRC(rc);
1483 }
1484
1485 /* Wait for the rest to finish (the caller waits on hEvtRendezvousDoneCaller). */
1486 if (!fIsCaller)
1487 {
1488 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1489 AssertLogRelRC(rc);
1490 }
1491 }
1492 else
1493 {
1494 /* Callback execution is all done, tell the rest to return. */
1495 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone);
1496 AssertLogRelRC(rc);
1497 }
1498
1499 if (!fIsCaller)
1500 vmmR3EmtRendezvousNonCallerReturn(pVM);
1501}
1502
1503
1504/**
1505 * Called in response to VM_FF_EMT_RENDEZVOUS.
1506 *
1507 * @param pVM The VM handle
1508 * @param pVCpu The handle of the calling EMT.
1509 *
1510 * @thread EMT
1511 */
1512VMMR3DECL(void) VMMR3EmtRendezvousFF(PVM pVM, PVMCPU pVCpu)
1513{
1514 vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags,
1515 pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser);
1516}
1517
1518
1519/**
1520 * EMT rendezvous.
1521 *
1522 * Gathers all the EMTs and execute some code on each of them, either in a one
1523 * by one fashion or all at once.
1524 *
1525 * @returns VBox status code. This will be the first error or, if all succeed,
1526 * the first informational status code.
1527 * @retval VERR_VM_THREAD_NOT_EMT if the caller is not an EMT.
1528 *
1529 * @param pVM The VM handle.
1530 * @param fFlags Flags indicating execution methods. See
1531 * grp_VMMR3EmtRendezvous_fFlags.
1532 * @param pfnRendezvous The callback.
1533 * @param pvUser User argument for the callback.
1534 *
1535 * @thread EMT
1536 */
1537VMMR3DECL(int) VMMR3EmtRendezvous(PVM pVM, uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1538{
1539 /*
1540 * Validate input.
1541 */
1542 PVMCPU pVCpu = VMMGetCpu(pVM);
1543 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
1544 AssertMsg( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_INVALID
1545 && !(fFlags & ~VMMEMTRENDEZVOUS_FLAGS_VALID_MASK), ("%#x\n", fFlags));
1546
1547 int rc;
1548 if (pVM->cCPUs == 1)
1549 /*
1550 * Shortcut for the single EMT case.
1551 */
1552 rc = pfnRendezvous(pVM, pVCpu, pvUser);
1553 else
1554 {
1555 /*
1556 * Spin lock. If busy, wait for the other EMT to finish while keeping a
1557 * lookout of the RENDEZVOUS FF.
1558 */
1559 while (!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0))
1560 {
1561 if (VM_FF_ISPENDING(pVM, VM_FF_EMT_RENDEZVOUS))
1562 VMMR3EmtRendezvousFF(pVM, pVCpu);
1563 }
1564 Assert(!VM_FF_ISPENDING(pVM, VM_FF_EMT_RENDEZVOUS));
1565
1566 /*
1567 * Clear the slate. This is a semaphore ping-pong orgy. :-)
1568 */
1569 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
1570 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
1571 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
1572 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
1573 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0);
1574 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0);
1575 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
1576 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS);
1577 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous);
1578 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser);
1579 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags);
1580
1581 /*
1582 * Set the FF and poke the other EMTs.
1583 */
1584 VM_FF_SET(pVM, VM_FF_EMT_RENDEZVOUS);
1585 VMR3NotifyGlobalFFU(pVM->pUVM, VMNOTIFYFF_FLAGS_POKE);
1586
1587 /*
1588 * Do the same ourselves.
1589 */
1590 vmmR3EmtRendezvousCommon(pVM, pVCpu, true /* fIsCaller */, fFlags, pfnRendezvous, pvUser);
1591
1592 /*
1593 * The caller waits for the other EMTs to be done and return before doing
1594 * the cleanup. This makes away with wakeup / reset races we would otherwise
1595 * risk in the multiple release event semaphore code (hEvtRendezvousDoneCaller).
1596 */
1597 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT);
1598 AssertLogRelRC(rc);
1599
1600 /*
1601 * Get the return code and clean up a little bit.
1602 */
1603 rc = pVM->vmm.s.i32RendezvousStatus;
1604 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, NULL);
1605
1606 ASMAtomicWriteU32(&pVM->vmm.s.u32RendezvousLock, 0);
1607 }
1608
1609 return rc;
1610}
1611
1612
1613/**
1614 * Read from the ring 0 jump buffer stack
1615 *
1616 * @returns VBox status code.
1617 *
1618 * @param pVM Pointer to the shared VM structure.
1619 * @param idCpu The ID of the source CPU context (for the address).
1620 * @param pAddress Where to start reading.
1621 * @param pvBuf Where to store the data we've read.
1622 * @param cbRead The number of bytes to read.
1623 */
1624VMMR3DECL(int) VMMR3ReadR0Stack(PVM pVM, VMCPUID idCpu, RTHCUINTPTR pAddress, void *pvBuf, size_t cbRead)
1625{
1626 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1627 AssertReturn(pVCpu, VERR_INVALID_PARAMETER);
1628
1629 RTHCUINTPTR offset = pVCpu->vmm.s.CallHostR0JmpBuf.SpCheck - pAddress;
1630 if (offset >= pVCpu->vmm.s.CallHostR0JmpBuf.cbSavedStack)
1631 return VERR_INVALID_POINTER;
1632
1633 memcpy(pvBuf, pVCpu->vmm.s.pbEMTStackR3 + pVCpu->vmm.s.CallHostR0JmpBuf.cbSavedStack - offset, cbRead);
1634 return VINF_SUCCESS;
1635}
1636
1637
1638/**
1639 * Calls a RC function.
1640 *
1641 * @param pVM The VM handle.
1642 * @param RCPtrEntry The address of the RC function.
1643 * @param cArgs The number of arguments in the ....
1644 * @param ... Arguments to the function.
1645 */
1646VMMR3DECL(int) VMMR3CallRC(PVM pVM, RTRCPTR RCPtrEntry, unsigned cArgs, ...)
1647{
1648 va_list args;
1649 va_start(args, cArgs);
1650 int rc = VMMR3CallRCV(pVM, RCPtrEntry, cArgs, args);
1651 va_end(args);
1652 return rc;
1653}
1654
1655
1656/**
1657 * Calls a RC function.
1658 *
1659 * @param pVM The VM handle.
1660 * @param RCPtrEntry The address of the RC function.
1661 * @param cArgs The number of arguments in the ....
1662 * @param args Arguments to the function.
1663 */
1664VMMR3DECL(int) VMMR3CallRCV(PVM pVM, RTRCPTR RCPtrEntry, unsigned cArgs, va_list args)
1665{
1666 /* Raw mode implies 1 VCPU. */
1667 AssertReturn(pVM->cCPUs == 1, VERR_RAW_MODE_INVALID_SMP);
1668 PVMCPU pVCpu = &pVM->aCpus[0];
1669
1670 Log2(("VMMR3CallGCV: RCPtrEntry=%RRv cArgs=%d\n", RCPtrEntry, cArgs));
1671
1672 /*
1673 * Setup the call frame using the trampoline.
1674 */
1675 CPUMHyperSetCtxCore(pVCpu, NULL);
1676 memset(pVCpu->vmm.s.pbEMTStackR3, 0xaa, VMM_STACK_SIZE); /* Clear the stack. */
1677 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC - cArgs * sizeof(RTGCUINTPTR32));
1678 PRTGCUINTPTR32 pFrame = (PRTGCUINTPTR32)(pVCpu->vmm.s.pbEMTStackR3 + VMM_STACK_SIZE) - cArgs;
1679 int i = cArgs;
1680 while (i-- > 0)
1681 *pFrame++ = va_arg(args, RTGCUINTPTR32);
1682
1683 CPUMPushHyper(pVCpu, cArgs * sizeof(RTGCUINTPTR32)); /* stack frame size */
1684 CPUMPushHyper(pVCpu, RCPtrEntry); /* what to call */
1685 CPUMSetHyperEIP(pVCpu, pVM->vmm.s.pfnCallTrampolineRC);
1686
1687 /*
1688 * We hide log flushes (outer) and hypervisor interrupts (inner).
1689 */
1690 for (;;)
1691 {
1692 int rc;
1693 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
1694 do
1695 {
1696#ifdef NO_SUPCALLR0VMM
1697 rc = VERR_GENERAL_FAILURE;
1698#else
1699 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
1700 if (RT_LIKELY(rc == VINF_SUCCESS))
1701 rc = pVCpu->vmm.s.iLastGZRc;
1702#endif
1703 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1704
1705 /*
1706 * Flush the logs.
1707 */
1708#ifdef LOG_ENABLED
1709 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
1710 if ( pLogger
1711 && pLogger->offScratch > 0)
1712 RTLogFlushRC(NULL, pLogger);
1713#endif
1714#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1715 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
1716 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
1717 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
1718#endif
1719 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
1720 VMMR3FatalDump(pVM, pVCpu, rc);
1721 if (rc != VINF_VMM_CALL_HOST)
1722 {
1723 Log2(("VMMR3CallGCV: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1724 return rc;
1725 }
1726 rc = vmmR3ServiceCallHostRequest(pVM, pVCpu);
1727 if (RT_FAILURE(rc))
1728 return rc;
1729 }
1730}
1731
1732
1733/**
1734 * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns.
1735 *
1736 * @returns VBox status code.
1737 * @param pVM The VM to operate on.
1738 * @param uOperation Operation to execute.
1739 * @param u64Arg Constant argument.
1740 * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for
1741 * details.
1742 */
1743VMMR3DECL(int) VMMR3CallR0(PVM pVM, uint32_t uOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr)
1744{
1745 PVMCPU pVCpu = VMMGetCpu(pVM);
1746 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
1747
1748 /*
1749 * Call Ring-0 entry with init code.
1750 */
1751 int rc;
1752 for (;;)
1753 {
1754#ifdef NO_SUPCALLR0VMM
1755 rc = VERR_GENERAL_FAILURE;
1756#else
1757 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, pVCpu->idCpu, uOperation, u64Arg, pReqHdr);
1758#endif
1759 /*
1760 * Flush the logs.
1761 */
1762#ifdef LOG_ENABLED
1763 if ( pVCpu->vmm.s.pR0LoggerR3
1764 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
1765 RTLogFlushToLogger(&pVCpu->vmm.s.pR0LoggerR3->Logger, NULL);
1766#endif
1767 if (rc != VINF_VMM_CALL_HOST)
1768 break;
1769 rc = vmmR3ServiceCallHostRequest(pVM, pVCpu);
1770 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
1771 break;
1772 /* Resume R0 */
1773 }
1774
1775 AssertLogRelMsgReturn(rc == VINF_SUCCESS || VBOX_FAILURE(rc),
1776 ("uOperation=%u rc=%Rrc\n", uOperation, rc),
1777 VERR_INTERNAL_ERROR);
1778 return rc;
1779}
1780
1781
1782/**
1783 * Resumes executing hypervisor code when interrupted by a queue flush or a
1784 * debug event.
1785 *
1786 * @returns VBox status code.
1787 * @param pVM VM handle.
1788 * @param pVCpu VMCPU handle.
1789 */
1790VMMR3DECL(int) VMMR3ResumeHyper(PVM pVM, PVMCPU pVCpu)
1791{
1792 Log(("VMMR3ResumeHyper: eip=%RRv esp=%RRv\n", CPUMGetHyperEIP(pVCpu), CPUMGetHyperESP(pVCpu)));
1793 AssertReturn(pVM->cCPUs == 1, VERR_RAW_MODE_INVALID_SMP);
1794
1795 /*
1796 * We hide log flushes (outer) and hypervisor interrupts (inner).
1797 */
1798 for (;;)
1799 {
1800 int rc;
1801 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
1802 do
1803 {
1804#ifdef NO_SUPCALLR0VMM
1805 rc = VERR_GENERAL_FAILURE;
1806#else
1807 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
1808 if (RT_LIKELY(rc == VINF_SUCCESS))
1809 rc = pVCpu->vmm.s.iLastGZRc;
1810#endif
1811 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1812
1813 /*
1814 * Flush the loggers,
1815 */
1816#ifdef LOG_ENABLED
1817 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
1818 if ( pLogger
1819 && pLogger->offScratch > 0)
1820 RTLogFlushRC(NULL, pLogger);
1821#endif
1822#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1823 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
1824 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
1825 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
1826#endif
1827 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
1828 VMMR3FatalDump(pVM, pVCpu, rc);
1829 if (rc != VINF_VMM_CALL_HOST)
1830 {
1831 Log(("VMMR3ResumeHyper: returns %Rrc\n", rc));
1832 return rc;
1833 }
1834 rc = vmmR3ServiceCallHostRequest(pVM, pVCpu);
1835 if (RT_FAILURE(rc))
1836 return rc;
1837 }
1838}
1839
1840
1841/**
1842 * Service a call to the ring-3 host code.
1843 *
1844 * @returns VBox status code.
1845 * @param pVM VM handle.
1846 * @param pVCpu VMCPU handle
1847 * @remark Careful with critsects.
1848 */
1849static int vmmR3ServiceCallHostRequest(PVM pVM, PVMCPU pVCpu)
1850{
1851 /*
1852 * We must also check for pending critsect exits or else we can deadlock
1853 * when entering other critsects here.
1854 */
1855 if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PDM_CRITSECT))
1856 PDMCritSectFF(pVCpu);
1857
1858 switch (pVCpu->vmm.s.enmCallHostOperation)
1859 {
1860 /*
1861 * Acquire the PDM lock.
1862 */
1863 case VMMCALLHOST_PDM_LOCK:
1864 {
1865 pVCpu->vmm.s.rcCallHost = PDMR3LockCall(pVM);
1866 break;
1867 }
1868
1869 /*
1870 * Flush a PDM queue.
1871 */
1872 case VMMCALLHOST_PDM_QUEUE_FLUSH:
1873 {
1874 PDMR3QueueFlushWorker(pVM, NULL);
1875 pVCpu->vmm.s.rcCallHost = VINF_SUCCESS;
1876 break;
1877 }
1878
1879 /*
1880 * Grow the PGM pool.
1881 */
1882 case VMMCALLHOST_PGM_POOL_GROW:
1883 {
1884 pVCpu->vmm.s.rcCallHost = PGMR3PoolGrow(pVM);
1885 break;
1886 }
1887
1888 /*
1889 * Maps an page allocation chunk into ring-3 so ring-0 can use it.
1890 */
1891 case VMMCALLHOST_PGM_MAP_CHUNK:
1892 {
1893 pVCpu->vmm.s.rcCallHost = PGMR3PhysChunkMap(pVM, pVCpu->vmm.s.u64CallHostArg);
1894 break;
1895 }
1896
1897 /*
1898 * Allocates more handy pages.
1899 */
1900 case VMMCALLHOST_PGM_ALLOCATE_HANDY_PAGES:
1901 {
1902 pVCpu->vmm.s.rcCallHost = PGMR3PhysAllocateHandyPages(pVM);
1903 break;
1904 }
1905
1906 /*
1907 * Acquire the PGM lock.
1908 */
1909 case VMMCALLHOST_PGM_LOCK:
1910 {
1911 pVCpu->vmm.s.rcCallHost = PGMR3LockCall(pVM);
1912 break;
1913 }
1914
1915 /*
1916 * Acquire the MM hypervisor heap lock.
1917 */
1918 case VMMCALLHOST_MMHYPER_LOCK:
1919 {
1920 pVCpu->vmm.s.rcCallHost = MMR3LockCall(pVM);
1921 break;
1922 }
1923
1924 /*
1925 * Flush REM handler notifications.
1926 */
1927 case VMMCALLHOST_REM_REPLAY_HANDLER_NOTIFICATIONS:
1928 {
1929 REMR3ReplayHandlerNotifications(pVM);
1930 pVCpu->vmm.s.rcCallHost = VINF_SUCCESS;
1931 break;
1932 }
1933
1934 /*
1935 * This is a noop. We just take this route to avoid unnecessary
1936 * tests in the loops.
1937 */
1938 case VMMCALLHOST_VMM_LOGGER_FLUSH:
1939 pVCpu->vmm.s.rcCallHost = VINF_SUCCESS;
1940 LogAlways(("*FLUSH*\n"));
1941 break;
1942
1943 /*
1944 * Set the VM error message.
1945 */
1946 case VMMCALLHOST_VM_SET_ERROR:
1947 VMR3SetErrorWorker(pVM);
1948 pVCpu->vmm.s.rcCallHost = VINF_SUCCESS;
1949 break;
1950
1951 /*
1952 * Set the VM runtime error message.
1953 */
1954 case VMMCALLHOST_VM_SET_RUNTIME_ERROR:
1955 pVCpu->vmm.s.rcCallHost = VMR3SetRuntimeErrorWorker(pVM);
1956 break;
1957
1958 /*
1959 * Signal a ring 0 hypervisor assertion.
1960 * Cancel the longjmp operation that's in progress.
1961 */
1962 case VMMCALLHOST_VM_R0_ASSERTION:
1963 pVCpu->vmm.s.enmCallHostOperation = VMMCALLHOST_INVALID;
1964 pVCpu->vmm.s.CallHostR0JmpBuf.fInRing3Call = false;
1965#ifdef RT_ARCH_X86
1966 pVCpu->vmm.s.CallHostR0JmpBuf.eip = 0;
1967#else
1968 pVCpu->vmm.s.CallHostR0JmpBuf.rip = 0;
1969#endif
1970 LogRel((pVM->vmm.s.szRing0AssertMsg1));
1971 LogRel((pVM->vmm.s.szRing0AssertMsg2));
1972 return VERR_VMM_RING0_ASSERTION;
1973
1974 /*
1975 * A forced switch to ring 0 for preemption purposes.
1976 */
1977 case VMMCALLHOST_VM_R0_PREEMPT:
1978 pVCpu->vmm.s.rcCallHost = VINF_SUCCESS;
1979 break;
1980
1981 default:
1982 AssertMsgFailed(("enmCallHostOperation=%d\n", pVCpu->vmm.s.enmCallHostOperation));
1983 return VERR_INTERNAL_ERROR;
1984 }
1985
1986 pVCpu->vmm.s.enmCallHostOperation = VMMCALLHOST_INVALID;
1987 return VINF_SUCCESS;
1988}
1989
1990
1991/**
1992 * Displays the Force action Flags.
1993 *
1994 * @param pVM The VM handle.
1995 * @param pHlp The output helpers.
1996 * @param pszArgs The additional arguments (ignored).
1997 */
1998static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
1999{
2000 int c;
2001 uint32_t f;
2002#define PRINT_FLAG(prf,flag) do { \
2003 if (f & (prf##flag)) \
2004 { \
2005 static const char *s_psz = #flag; \
2006 if (!(c % 6)) \
2007 pHlp->pfnPrintf(pHlp, "%s\n %s", c ? "," : "", s_psz); \
2008 else \
2009 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2010 c++; \
2011 f &= ~(prf##flag); \
2012 } \
2013 } while (0)
2014
2015#define PRINT_GROUP(prf,grp,sfx) do { \
2016 if (f & (prf##grp##sfx)) \
2017 { \
2018 static const char *s_psz = #grp; \
2019 if (!(c % 5)) \
2020 pHlp->pfnPrintf(pHlp, "%s %s", c ? ",\n" : " Groups:\n", s_psz); \
2021 else \
2022 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2023 c++; \
2024 } \
2025 } while (0)
2026
2027 /*
2028 * The global flags.
2029 */
2030 const uint32_t fGlobalForcedActions = pVM->fGlobalForcedActions;
2031 pHlp->pfnPrintf(pHlp, "Global FFs: %#RX32", fGlobalForcedActions);
2032
2033 /* show the flag mnemonics */
2034 c = 0;
2035 f = fGlobalForcedActions;
2036 PRINT_FLAG(VM_FF_,TM_VIRTUAL_SYNC);
2037 PRINT_FLAG(VM_FF_,PDM_QUEUES);
2038 PRINT_FLAG(VM_FF_,PDM_DMA);
2039 PRINT_FLAG(VM_FF_,DBGF);
2040 PRINT_FLAG(VM_FF_,REQUEST);
2041 PRINT_FLAG(VM_FF_,TERMINATE);
2042 PRINT_FLAG(VM_FF_,RESET);
2043 PRINT_FLAG(VM_FF_,EMT_RENDEZVOUS);
2044 PRINT_FLAG(VM_FF_,PGM_NEED_HANDY_PAGES);
2045 PRINT_FLAG(VM_FF_,PGM_NO_MEMORY);
2046 PRINT_FLAG(VM_FF_,REM_HANDLER_NOTIFY);
2047 PRINT_FLAG(VM_FF_,DEBUG_SUSPEND);
2048 if (f)
2049 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2050 else
2051 pHlp->pfnPrintf(pHlp, "\n");
2052
2053 /* the groups */
2054 c = 0;
2055 f = fGlobalForcedActions;
2056 PRINT_GROUP(VM_FF_,EXTERNAL_SUSPENDED,_MASK);
2057 PRINT_GROUP(VM_FF_,EXTERNAL_HALTED,_MASK);
2058 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE,_MASK);
2059 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2060 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_POST,_MASK);
2061 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY_POST,_MASK);
2062 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY,_MASK);
2063 PRINT_GROUP(VM_FF_,ALL_BUT_RAW,_MASK);
2064 if (c)
2065 pHlp->pfnPrintf(pHlp, "\n");
2066
2067 /*
2068 * Per CPU flags.
2069 */
2070 for (VMCPUID i = 0; i < pVM->cCPUs; i++)
2071 {
2072 const uint32_t fLocalForcedActions = pVM->aCpus[i].fLocalForcedActions;
2073 pHlp->pfnPrintf(pHlp, "CPU %u FFs: %#RX32", i, fLocalForcedActions);
2074
2075 /* show the flag mnemonics */
2076 c = 0;
2077 f = fLocalForcedActions;
2078 PRINT_FLAG(VMCPU_FF_,INTERRUPT_APIC);
2079 PRINT_FLAG(VMCPU_FF_,INTERRUPT_PIC);
2080 PRINT_FLAG(VMCPU_FF_,TIMER);
2081 PRINT_FLAG(VMCPU_FF_,PDM_CRITSECT);
2082 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3);
2083 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3_NON_GLOBAL);
2084 PRINT_FLAG(VMCPU_FF_,TRPM_SYNC_IDT);
2085 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_TSS);
2086 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_GDT);
2087 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_LDT);
2088 PRINT_FLAG(VMCPU_FF_,INHIBIT_INTERRUPTS);
2089 PRINT_FLAG(VMCPU_FF_,CSAM_SCAN_PAGE);
2090 PRINT_FLAG(VMCPU_FF_,CSAM_PENDING_ACTION);
2091 PRINT_FLAG(VMCPU_FF_,TO_R3);
2092 if (f)
2093 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2094 else
2095 pHlp->pfnPrintf(pHlp, "\n");
2096
2097 /* the groups */
2098 c = 0;
2099 f = fLocalForcedActions;
2100 PRINT_GROUP(VMCPU_FF_,EXTERNAL_SUSPENDED,_MASK);
2101 PRINT_GROUP(VMCPU_FF_,EXTERNAL_HALTED,_MASK);
2102 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE,_MASK);
2103 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2104 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_POST,_MASK);
2105 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY_POST,_MASK);
2106 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY,_MASK);
2107 PRINT_GROUP(VMCPU_FF_,RESUME_GUEST,_MASK);
2108 PRINT_GROUP(VMCPU_FF_,HWACCM_TO_R3,_MASK);
2109 PRINT_GROUP(VMCPU_FF_,ALL_BUT_RAW,_MASK);
2110 if (c)
2111 pHlp->pfnPrintf(pHlp, "\n");
2112 }
2113
2114#undef PRINT_FLAG
2115#undef PRINT_GROUP
2116}
2117
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette