VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/APICAll.cpp@ 61876

Last change on this file since 61876 was 61876, checked in by vboxsync, 9 years ago

APIC: comment.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 102.7 KB
Line 
1/* $Id: APICAll.cpp 61876 2016-06-24 08:49:05Z vboxsync $ */
2/** @file
3 * APIC - Advanced Programmable Interrupt Controller - All Contexts.
4 */
5
6/*
7 * Copyright (C) 2016 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.215389.xyz. This file is free software
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_DEV_APIC
23#include "APICInternal.h"
24#include <VBox/vmm/pdmdev.h>
25#include <VBox/vmm/vm.h>
26#include <VBox/vmm/vmcpuset.h>
27
28/*********************************************************************************************************************************
29* Global Variables *
30*********************************************************************************************************************************/
31#if XAPIC_HARDWARE_VERSION == XAPIC_HARDWARE_VERSION_P4
32/** An ordered array of valid LVT masks. */
33static const uint32_t g_au32LvtValidMasks[] =
34{
35 XAPIC_LVT_TIMER_VALID,
36 XAPIC_LVT_THERMAL_VALID,
37 XAPIC_LVT_PERF_VALID,
38 XAPIC_LVT_LINT_VALID, /* LINT0 */
39 XAPIC_LVT_LINT_VALID, /* LINT1 */
40 XAPIC_LVT_ERROR_VALID
41};
42#endif
43
44#if 0
45/** @todo CMCI */
46static const uint32_t g_au32LvtExtValidMask[] =
47{
48 XAPIC_LVT_CMCI_VALID
49};
50#endif
51
52
53/**
54 * Checks if a vector is set in an APIC 256-bit sparse register.
55 *
56 * @returns true if the specified vector is set, false otherwise.
57 * @param pApicReg The APIC 256-bit spare register.
58 * @param uVector The vector to check if set.
59 */
60DECLINLINE(bool) apicTestVectorInReg(const volatile XAPIC256BITREG *pApicReg, uint8_t uVector)
61{
62 const volatile uint8_t *pbBitmap = (const volatile uint8_t *)&pApicReg->u[0];
63 return ASMBitTest(pbBitmap + XAPIC_REG256_VECTOR_OFF(uVector), XAPIC_REG256_VECTOR_BIT(uVector));
64}
65
66
67/**
68 * Sets the vector in an APIC 256-bit sparse register.
69 *
70 * @param pApicReg The APIC 256-bit spare register.
71 * @param uVector The vector to set.
72 */
73DECLINLINE(void) apicSetVectorInReg(volatile XAPIC256BITREG *pApicReg, uint8_t uVector)
74{
75 volatile uint8_t *pbBitmap = (volatile uint8_t *)&pApicReg->u[0];
76 ASMAtomicBitSet(pbBitmap + XAPIC_REG256_VECTOR_OFF(uVector), XAPIC_REG256_VECTOR_BIT(uVector));
77}
78
79
80/**
81 * Clears the vector in an APIC 256-bit sparse register.
82 *
83 * @param pApicReg The APIC 256-bit spare register.
84 * @param uVector The vector to clear.
85 */
86DECLINLINE(void) apicClearVectorInReg(volatile XAPIC256BITREG *pApicReg, uint8_t uVector)
87{
88 volatile uint8_t *pbBitmap = (volatile uint8_t *)&pApicReg->u[0];
89 ASMAtomicBitClear(pbBitmap + XAPIC_REG256_VECTOR_OFF(uVector), XAPIC_REG256_VECTOR_BIT(uVector));
90}
91
92
93/**
94 * Checks if a vector is set in an APIC Pending-Interrupt Bitmap (PIB).
95 *
96 * @returns true if the specified vector is set, false otherwise.
97 * @param pvPib Opaque pointer to the PIB.
98 * @param uVector The vector to check if set.
99 */
100DECLINLINE(bool) apicTestVectorInPib(volatile void *pvPib, uint8_t uVector)
101{
102 return ASMBitTest(pvPib, uVector);
103}
104
105
106/**
107 * Atomically sets the PIB notification bit.
108 *
109 * @returns non-zero if the bit was already set, 0 otherwise.
110 * @param pApicPib Pointer to the PIB.
111 */
112DECLINLINE(uint32_t) apicSetNotificationBitInPib(PAPICPIB pApicPib)
113{
114 return ASMAtomicXchgU32(&pApicPib->fOutstandingNotification, RT_BIT_32(31));
115}
116
117
118/**
119 * Atomically tests and clears the PIB notification bit.
120 *
121 * @returns non-zero if the bit was already set, 0 otherwise.
122 * @param pApicPib Pointer to the PIB.
123 */
124DECLINLINE(uint32_t) apicClearNotificationBitInPib(PAPICPIB pApicPib)
125{
126 return ASMAtomicXchgU32(&pApicPib->fOutstandingNotification, UINT32_C(0));
127}
128
129
130/**
131 * Sets the vector in an APIC Pending-Interrupt Bitmap (PIB).
132 *
133 * @param pvPib Opaque pointer to the PIB.
134 * @param uVector The vector to set.
135 */
136DECLINLINE(void) apicSetVectorInPib(volatile void *pvPib, uint8_t uVector)
137{
138 ASMAtomicBitSet(pvPib, uVector);
139}
140
141
142/**
143 * Clears the vector in an APIC Pending-Interrupt Bitmap (PIB).
144 *
145 * @param pvPib Opaque pointer to the PIB.
146 * @param uVector The vector to clear.
147 */
148DECLINLINE(void) apicClearVectorInPib(volatile void *pvPib, uint8_t uVector)
149{
150 ASMAtomicBitClear(pvPib, uVector);
151}
152
153
154/**
155 * Atomically OR's a fragment (32 vectors) into an APIC 256-bit sparse
156 * register.
157 *
158 * @param pApicReg The APIC 256-bit spare register.
159 * @param idxFragment The index of the 32-bit fragment in @a
160 * pApicReg.
161 * @param u32Fragment The 32-bit vector fragment to OR.
162 */
163DECLINLINE(void) apicOrVectorsToReg(volatile XAPIC256BITREG *pApicReg, size_t idxFragment, uint32_t u32Fragment)
164{
165 Assert(idxFragment < RT_ELEMENTS(pApicReg->u));
166 ASMAtomicOrU32(&pApicReg->u[idxFragment].u32Reg, u32Fragment);
167}
168
169
170/**
171 * Atomically AND's a fragment (32 vectors) into an APIC
172 * 256-bit sparse register.
173 *
174 * @param pApicReg The APIC 256-bit spare register.
175 * @param idxFragment The index of the 32-bit fragment in @a
176 * pApicReg.
177 * @param u32Fragment The 32-bit vector fragment to AND.
178 */
179DECLINLINE(void) apicAndVectorsToReg(volatile XAPIC256BITREG *pApicReg, size_t idxFragment, uint32_t u32Fragment)
180{
181 Assert(idxFragment < RT_ELEMENTS(pApicReg->u));
182 ASMAtomicAndU32(&pApicReg->u[idxFragment].u32Reg, u32Fragment);
183}
184
185
186/**
187 * Reports and returns appropriate error code for invalid MSR accesses.
188 *
189 * @returns Strict VBox status code.
190 * @retval VINF_CPUM_R3_MSR_WRITE if the MSR write could not be serviced in the
191 * current context (raw-mode or ring-0).
192 * @retval VINF_CPUM_R3_MSR_READ if the MSR read could not be serviced in the
193 * current context (raw-mode or ring-0).
194 * @retval VERR_CPUM_RAISE_GP_0 on failure, the caller is expected to take the
195 * appropriate actions.
196 *
197 * @param pVCpu The cross context virtual CPU structure.
198 * @param u32Reg The MSR being accessed.
199 * @param enmAccess The invalid-access type.
200 */
201static VBOXSTRICTRC apicMsrAccessError(PVMCPU pVCpu, uint32_t u32Reg, APICMSRACCESS enmAccess)
202{
203 static struct
204 {
205 const char *pszBefore; /* The error message before printing the MSR index */
206 const char *pszAfter; /* The error message after printing the MSR index */
207 int rcRZ; /* The RZ error code */
208 } const s_aAccess[] =
209 {
210 { "read MSR", " while not in x2APIC mode", VINF_CPUM_R3_MSR_READ },
211 { "write MSR", " while not in x2APIC mode", VINF_CPUM_R3_MSR_WRITE },
212 { "read reserved/unknown MSR", "", VINF_CPUM_R3_MSR_READ },
213 { "write reserved/unknown MSR", "", VINF_CPUM_R3_MSR_WRITE },
214 { "read write-only MSR", "", VINF_CPUM_R3_MSR_READ },
215 { "write read-only MSR", "", VINF_CPUM_R3_MSR_WRITE },
216 { "read reserved bits of MSR", "", VINF_CPUM_R3_MSR_READ },
217 { "write reserved bits of MSR", "", VINF_CPUM_R3_MSR_WRITE },
218 { "write an invalid value to MSR", "", VINF_CPUM_R3_MSR_WRITE },
219 { "write MSR", "disallowed by configuration", VINF_CPUM_R3_MSR_WRITE }
220 };
221 AssertCompile(RT_ELEMENTS(s_aAccess) == APICMSRACCESS_COUNT);
222
223 size_t const i = enmAccess;
224 Assert(i < RT_ELEMENTS(s_aAccess));
225#ifdef IN_RING3
226 LogRelMax(5, ("APIC%u: Attempt to %s (%#x)%s -> #GP(0)\n", pVCpu->idCpu, s_aAccess[i].pszBefore, u32Reg,
227 s_aAccess[i].pszAfter));
228 return VERR_CPUM_RAISE_GP_0;
229#else
230 return s_aAccess[i].rcRZ;
231#endif
232}
233
234
235/**
236 * Gets the descriptive APIC mode.
237 *
238 * @returns The name.
239 * @param enmMode The xAPIC mode.
240 */
241const char *apicGetModeName(APICMODE enmMode)
242{
243 switch (enmMode)
244 {
245 case APICMODE_DISABLED: return "Disabled";
246 case APICMODE_XAPIC: return "xAPIC";
247 case APICMODE_X2APIC: return "x2APIC";
248 default: break;
249 }
250 return "Invalid";
251}
252
253
254/**
255 * Gets the descriptive destination format name.
256 *
257 * @returns The destination format name.
258 * @param enmDestFormat The destination format.
259 */
260const char *apicGetDestFormatName(XAPICDESTFORMAT enmDestFormat)
261{
262 switch (enmDestFormat)
263 {
264 case XAPICDESTFORMAT_FLAT: return "Flat";
265 case XAPICDESTFORMAT_CLUSTER: return "Cluster";
266 default: break;
267 }
268 return "Invalid";
269}
270
271
272/**
273 * Gets the descriptive delivery mode name.
274 *
275 * @returns The delivery mode name.
276 * @param enmDeliveryMode The delivery mode.
277 */
278const char *apicGetDeliveryModeName(XAPICDELIVERYMODE enmDeliveryMode)
279{
280 switch (enmDeliveryMode)
281 {
282 case XAPICDELIVERYMODE_FIXED: return "Fixed";
283 case XAPICDELIVERYMODE_LOWEST_PRIO: return "Lowest-priority";
284 case XAPICDELIVERYMODE_SMI: return "SMI";
285 case XAPICDELIVERYMODE_NMI: return "NMI";
286 case XAPICDELIVERYMODE_INIT: return "INIT";
287 case XAPICDELIVERYMODE_STARTUP: return "SIPI";
288 case XAPICDELIVERYMODE_EXTINT: return "ExtINT";
289 default: break;
290 }
291 return "Invalid";
292}
293
294
295/**
296 * Gets the descriptive destination mode name.
297 *
298 * @returns The destination mode name.
299 * @param enmDestMode The destination mode.
300 */
301const char *apicGetDestModeName(XAPICDESTMODE enmDestMode)
302{
303 switch (enmDestMode)
304 {
305 case XAPICDESTMODE_PHYSICAL: return "Physical";
306 case XAPICDESTMODE_LOGICAL: return "Logical";
307 default: break;
308 }
309 return "Invalid";
310}
311
312
313/**
314 * Gets the descriptive trigger mode name.
315 *
316 * @returns The trigger mode name.
317 * @param enmTriggerMode The trigger mode.
318 */
319const char *apicGetTriggerModeName(XAPICTRIGGERMODE enmTriggerMode)
320{
321 switch (enmTriggerMode)
322 {
323 case XAPICTRIGGERMODE_EDGE: return "Edge";
324 case XAPICTRIGGERMODE_LEVEL: return "Level";
325 default: break;
326 }
327 return "Invalid";
328}
329
330
331/**
332 * Gets the destination shorthand name.
333 *
334 * @returns The destination shorthand name.
335 * @param enmDestShorthand The destination shorthand.
336 */
337const char *apicGetDestShorthandName(XAPICDESTSHORTHAND enmDestShorthand)
338{
339 switch (enmDestShorthand)
340 {
341 case XAPICDESTSHORTHAND_NONE: return "None";
342 case XAPICDESTSHORTHAND_SELF: return "Self";
343 case XAPIDDESTSHORTHAND_ALL_INCL_SELF: return "All including self";
344 case XAPICDESTSHORTHAND_ALL_EXCL_SELF: return "All excluding self";
345 default: break;
346 }
347 return "Invalid";
348}
349
350
351/**
352 * Gets the timer mode name.
353 *
354 * @returns The timer mode name.
355 * @param enmTimerMode The timer mode.
356 */
357const char *apicGetTimerModeName(XAPICTIMERMODE enmTimerMode)
358{
359 switch (enmTimerMode)
360 {
361 case XAPICTIMERMODE_ONESHOT: return "One-shot";
362 case XAPICTIMERMODE_PERIODIC: return "Periodic";
363 case XAPICTIMERMODE_TSC_DEADLINE: return "TSC deadline";
364 default: break;
365 }
366 return "Invalid";
367}
368
369
370/**
371 * Gets the APIC mode given the base MSR value.
372 *
373 * @returns The APIC mode.
374 * @param uApicBaseMsr The APIC Base MSR value.
375 */
376APICMODE apicGetMode(uint64_t uApicBaseMsr)
377{
378 uint32_t const uMode = (uApicBaseMsr >> 10) & UINT64_C(3);
379 APICMODE const enmMode = (APICMODE)uMode;
380#ifdef VBOX_STRICT
381 /* Paranoia. */
382 switch (uMode)
383 {
384 case APICMODE_DISABLED:
385 case APICMODE_INVALID:
386 case APICMODE_XAPIC:
387 case APICMODE_X2APIC:
388 break;
389 default:
390 AssertMsgFailed(("Invalid mode"));
391 }
392#endif
393 return enmMode;
394}
395
396
397/**
398 * Returns whether the APIC is hardware enabled or not.
399 *
400 * @returns true if enabled, false otherwise.
401 */
402DECLINLINE(bool) apicIsEnabled(PVMCPU pVCpu)
403{
404 PCAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu);
405 return RT_BOOL(pApicCpu->uApicBaseMsr & MSR_IA32_APICBASE_EN);
406}
407
408
409/**
410 * Finds the most significant set bit in an APIC 256-bit sparse register.
411 *
412 * @returns @a rcNotFound if no bit was set, 0-255 otherwise.
413 * @param pReg The APIC 256-bit sparse register.
414 * @param rcNotFound What to return when no bit is set.
415 */
416static int apicGetHighestSetBitInReg(volatile const XAPIC256BITREG *pReg, int rcNotFound)
417{
418 ssize_t const cFragments = RT_ELEMENTS(pReg->u);
419 unsigned const uFragmentShift = 5;
420 AssertCompile(1 << uFragmentShift == sizeof(pReg->u[0].u32Reg) * 8);
421 for (ssize_t i = cFragments - 1; i >= 0; i--)
422 {
423 uint32_t const uFragment = pReg->u[i].u32Reg;
424 if (uFragment)
425 {
426 unsigned idxSetBit = ASMBitLastSetU32(uFragment);
427 --idxSetBit;
428 idxSetBit |= i << uFragmentShift;
429 return idxSetBit;
430 }
431 }
432 return rcNotFound;
433}
434
435
436/**
437 * Reads a 32-bit register at a specified offset.
438 *
439 * @returns The value at the specified offset.
440 * @param pXApicPage The xAPIC page.
441 * @param offReg The offset of the register being read.
442 */
443DECLINLINE(uint32_t) apicReadRaw32(PCXAPICPAGE pXApicPage, uint16_t offReg)
444{
445 Assert(offReg < sizeof(*pXApicPage) - sizeof(uint32_t));
446 uint8_t const *pbXApic = (const uint8_t *)pXApicPage;
447 uint32_t const uValue = *(const uint32_t *)(pbXApic + offReg);
448 return uValue;
449}
450
451
452/**
453 * Writes a 32-bit register at a specified offset.
454 *
455 * @param pXApicPage The xAPIC page.
456 * @param offReg The offset of the register being written.
457 * @param uReg The value of the register.
458 */
459DECLINLINE(void) apicWriteRaw32(PXAPICPAGE pXApicPage, uint16_t offReg, uint32_t uReg)
460{
461 Assert(offReg < sizeof(*pXApicPage) - sizeof(uint32_t));
462 uint8_t *pbXApic = (uint8_t *)pXApicPage;
463 *(uint32_t *)(pbXApic + offReg) = uReg;
464}
465
466
467/**
468 * Broadcasts the EOI to the I/O APICs.
469 *
470 * @param pVCpu The cross context virtual CPU structure.
471 * @param uVector The interrupt vector corresponding to the EOI.
472 */
473DECLINLINE(int) apicBusBroadcastEoi(PVMCPU pVCpu, uint8_t uVector)
474{
475 PVM pVM = pVCpu->CTX_SUFF(pVM);
476 PAPICDEV pApicDev = VM_TO_APICDEV(pVM);
477 return pApicDev->CTX_SUFF(pApicHlp)->pfnBusBroadcastEoi(pApicDev->CTX_SUFF(pDevIns), uVector);
478}
479
480
481/**
482 * Sets an error in the internal ESR of the specified APIC.
483 *
484 * @param pVCpu The cross context virtual CPU structure.
485 * @param uError The error.
486 * @thread Any.
487 */
488DECLINLINE(void) apicSetError(PVMCPU pVCpu, uint32_t uError)
489{
490 PAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu);
491 ASMAtomicOrU32(&pApicCpu->uEsrInternal, uError);
492}
493
494
495/**
496 * Clears all errors in the internal ESR.
497 *
498 * @returns The value of the internal ESR before clearing.
499 * @param pVCpu The cross context virtual CPU structure.
500 */
501DECLINLINE(uint32_t) apicClearAllErrors(PVMCPU pVCpu)
502{
503 VMCPU_ASSERT_EMT(pVCpu);
504 PAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu);
505 return ASMAtomicXchgU32(&pApicCpu->uEsrInternal, 0);
506}
507
508
509/**
510 * Signals the guest if a pending interrupt is ready to be serviced.
511 *
512 * @param pVCpu The cross context virtual CPU structure.
513 */
514static void apicSignalNextPendingIntr(PVMCPU pVCpu)
515{
516 VMCPU_ASSERT_EMT_OR_NOT_RUNNING(pVCpu);
517
518 PCXAPICPAGE pXApicPage = VMCPU_TO_CXAPICPAGE(pVCpu);
519 if (pXApicPage->svr.u.fApicSoftwareEnable)
520 {
521 int const irrv = apicGetHighestSetBitInReg(&pXApicPage->irr, -1 /* rcNotFound */);
522 if (irrv >= 0)
523 {
524 Assert(irrv <= (int)UINT8_MAX);
525 uint8_t const uVector = irrv;
526 uint8_t const uPpr = pXApicPage->ppr.u8Ppr;
527 if ( !uPpr
528 || XAPIC_PPR_GET_PP(uVector) > XAPIC_PPR_GET_PP(uPpr))
529 {
530 Log2(("APIC%u: apicSignalNextPendingIntr: Signaling pending interrupt. uVector=%#x\n", pVCpu->idCpu, uVector));
531 apicSetInterruptFF(pVCpu, PDMAPICIRQ_HARDWARE);
532 }
533 else
534 {
535 Log2(("APIC%u: apicSignalNextPendingIntr: Nothing to signal. uVector=%#x uPpr=%#x uTpr=%#x\n", pVCpu->idCpu,
536 uVector, uPpr, pXApicPage->tpr.u8Tpr));
537 }
538 }
539 }
540 else
541 {
542 Log2(("APIC%u: apicSignalNextPendingIntr: APIC software-disabled, clearing pending interrupt\n", pVCpu->idCpu));
543 apicClearInterruptFF(pVCpu, PDMAPICIRQ_HARDWARE);
544 }
545}
546
547
548/**
549 * Sets the Spurious-Interrupt Vector Register (SVR).
550 *
551 * @returns Strict VBox status code.
552 * @param pVCpu The cross context virtual CPU structure.
553 * @param uSvr The SVR value.
554 */
555static VBOXSTRICTRC apicSetSvr(PVMCPU pVCpu, uint32_t uSvr)
556{
557 VMCPU_ASSERT_EMT(pVCpu);
558
559 uint32_t uValidMask = XAPIC_SVR_VALID;
560 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
561 if (pXApicPage->version.u.fEoiBroadcastSupression)
562 uValidMask |= XAPIC_SVR_SUPRESS_EOI_BROADCAST;
563
564 if ( XAPIC_IN_X2APIC_MODE(pVCpu)
565 && (uSvr & ~uValidMask))
566 return apicMsrAccessError(pVCpu, MSR_IA32_X2APIC_SVR, APICMSRACCESS_WRITE_RSVD_BITS);
567
568 Log2(("APIC%u: apicSetSvr: uSvr=%#RX32\n", pVCpu->idCpu, uSvr));
569 apicWriteRaw32(pXApicPage, XAPIC_OFF_SVR, uSvr);
570 if (!pXApicPage->svr.u.fApicSoftwareEnable)
571 {
572 /** @todo CMCI. */
573 pXApicPage->lvt_timer.u.u1Mask = 1;
574#if XAPIC_HARDWARE_VERSION == XAPIC_HARDWARE_VERSION_P4
575 pXApicPage->lvt_thermal.u.u1Mask = 1;
576#endif
577 pXApicPage->lvt_perf.u.u1Mask = 1;
578 pXApicPage->lvt_lint0.u.u1Mask = 1;
579 pXApicPage->lvt_lint1.u.u1Mask = 1;
580 pXApicPage->lvt_error.u.u1Mask = 1;
581 }
582
583 apicSignalNextPendingIntr(pVCpu);
584 return VINF_SUCCESS;
585}
586
587
588/**
589 * Sends an interrupt to one or more APICs.
590 *
591 * @returns Strict VBox status code.
592 * @param pVM The cross context VM structure.
593 * @param pVCpu The cross context virtual CPU structure, can be
594 * NULL if the source of the interrupt is not an
595 * APIC (for e.g. a bus).
596 * @param uVector The interrupt vector.
597 * @param enmTriggerMode The trigger mode.
598 * @param enmDeliveryMode The delivery mode.
599 * @param pDestCpuSet The destination CPU set.
600 * @param pfIntrAccepted Where to store whether this interrupt was
601 * accepted by the target APIC(s) or not.
602 * Optional, can be NULL.
603 * @param rcRZ The return code if the operation cannot be
604 * performed in the current context.
605 */
606static VBOXSTRICTRC apicSendIntr(PVM pVM, PVMCPU pVCpu, uint8_t uVector, XAPICTRIGGERMODE enmTriggerMode,
607 XAPICDELIVERYMODE enmDeliveryMode, PCVMCPUSET pDestCpuSet, bool *pfIntrAccepted, int rcRZ)
608{
609 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
610 VMCPUID const cCpus = pVM->cCpus;
611 bool fAccepted = false;
612 switch (enmDeliveryMode)
613 {
614 case XAPICDELIVERYMODE_FIXED:
615 {
616 for (VMCPUID idCpu = 0; idCpu < cCpus; idCpu++)
617 {
618 if ( VMCPUSET_IS_PRESENT(pDestCpuSet, idCpu)
619 && apicIsEnabled(&pVM->aCpus[idCpu]))
620 fAccepted = apicPostInterrupt(&pVM->aCpus[idCpu], uVector, enmTriggerMode);
621 }
622 break;
623 }
624
625 case XAPICDELIVERYMODE_LOWEST_PRIO:
626 {
627 VMCPUID const idCpu = VMCPUSET_FIND_FIRST_PRESENT(pDestCpuSet);
628 if ( idCpu < pVM->cCpus
629 && apicIsEnabled(&pVM->aCpus[idCpu]))
630 fAccepted = apicPostInterrupt(&pVM->aCpus[idCpu], uVector, enmTriggerMode);
631 else
632 AssertMsgFailed(("APIC: apicSendIntr: No CPU found for lowest-priority delivery mode!\n"));
633 break;
634 }
635
636 case XAPICDELIVERYMODE_SMI:
637 {
638 for (VMCPUID idCpu = 0; idCpu < cCpus; idCpu++)
639 {
640 if (VMCPUSET_IS_PRESENT(pDestCpuSet, idCpu))
641 {
642 Log2(("APIC: apicSendIntr: Raising SMI on VCPU%u\n", idCpu));
643 apicSetInterruptFF(&pVM->aCpus[idCpu], PDMAPICIRQ_SMI);
644 fAccepted = true;
645 }
646 }
647 break;
648 }
649
650 case XAPICDELIVERYMODE_NMI:
651 {
652 for (VMCPUID idCpu = 0; idCpu < cCpus; idCpu++)
653 {
654 if ( VMCPUSET_IS_PRESENT(pDestCpuSet, idCpu)
655 && apicIsEnabled(&pVM->aCpus[idCpu]))
656 {
657 Log2(("APIC: apicSendIntr: Raising NMI on VCPU%u\n", idCpu));
658 apicSetInterruptFF(&pVM->aCpus[idCpu], PDMAPICIRQ_NMI);
659 fAccepted = true;
660 }
661 }
662 break;
663 }
664
665 case XAPICDELIVERYMODE_INIT:
666 {
667#ifdef IN_RING3
668 for (VMCPUID idCpu = 0; idCpu < cCpus; idCpu++)
669 if (VMCPUSET_IS_PRESENT(pDestCpuSet, idCpu))
670 {
671 Log2(("APIC: apicSendIntr: Issuing INIT to VCPU%u\n", idCpu));
672 VMMR3SendInitIpi(pVM, idCpu);
673 fAccepted = true;
674 }
675#else
676 /* We need to return to ring-3 to deliver the INIT. */
677 rcStrict = rcRZ;
678 fAccepted = true;
679#endif
680 break;
681 }
682
683 case XAPICDELIVERYMODE_STARTUP:
684 {
685#ifdef IN_RING3
686 for (VMCPUID idCpu = 0; idCpu < cCpus; idCpu++)
687 if (VMCPUSET_IS_PRESENT(pDestCpuSet, idCpu))
688 {
689 Log2(("APIC: apicSendIntr: Issuing SIPI to VCPU%u\n", idCpu));
690 VMMR3SendStartupIpi(pVM, idCpu, uVector);
691 fAccepted = true;
692 }
693#else
694 /* We need to return to ring-3 to deliver the SIPI. */
695 rcStrict = rcRZ;
696 fAccepted = true;
697 Log2(("APIC: apicSendIntr: SIPI issued, returning to RZ. rc=%Rrc\n", rcRZ));
698#endif
699 break;
700 }
701
702 case XAPICDELIVERYMODE_EXTINT:
703 {
704 for (VMCPUID idCpu = 0; idCpu < cCpus; idCpu++)
705 if (VMCPUSET_IS_PRESENT(pDestCpuSet, idCpu))
706 {
707 Log2(("APIC: apicSendIntr: Raising EXTINT on VCPU%u\n", idCpu));
708 apicSetInterruptFF(&pVM->aCpus[idCpu], PDMAPICIRQ_EXTINT);
709 fAccepted = true;
710 }
711 break;
712 }
713
714 default:
715 {
716 AssertMsgFailed(("APIC: apicSendIntr: Unsupported delivery mode %#x (%s)\n", enmDeliveryMode,
717 apicGetDeliveryModeName(enmDeliveryMode)));
718 break;
719 }
720 }
721
722 /*
723 * If an illegal vector is programmed, set the 'send illegal vector' error here if the
724 * interrupt is being sent by an APIC.
725 *
726 * The 'receive illegal vector' will be set on the target APIC when the interrupt
727 * gets generated, see APICPostInterrupt().
728 *
729 * See Intel spec. 10.5.3 "Error Handling".
730 */
731 if ( rcStrict != rcRZ
732 && pVCpu)
733 {
734 /*
735 * Flag only errors when the delivery mode is fixed and not others.
736 *
737 * Ubuntu 10.04-3 amd64 live CD with 2 VCPUs gets upset as it sends an SIPI to the
738 * 2nd VCPU with vector 6 and checks the ESR for no errors, see @bugref{8245#c86}.
739 */
740 /** @todo The spec says this for LVT, but not explcitly for ICR-lo
741 * but it probably is true. */
742 if (enmDeliveryMode == XAPICDELIVERYMODE_FIXED)
743 {
744 if (RT_UNLIKELY(uVector <= XAPIC_ILLEGAL_VECTOR_END))
745 apicSetError(pVCpu, XAPIC_ESR_SEND_ILLEGAL_VECTOR);
746 }
747 }
748
749 if (pfIntrAccepted)
750 *pfIntrAccepted = fAccepted;
751
752 return rcStrict;
753}
754
755
756/**
757 * Checks if this APIC belongs to a logical destination.
758 *
759 * @returns true if the APIC belongs to the logical
760 * destination, false otherwise.
761 * @param pVCpu The cross context virtual CPU structure.
762 * @param fDest The destination mask.
763 *
764 * @thread Any.
765 */
766static bool apicIsLogicalDest(PVMCPU pVCpu, uint32_t fDest)
767{
768 if (XAPIC_IN_X2APIC_MODE(pVCpu))
769 {
770 /*
771 * Flat logical mode is not supported in x2APIC mode.
772 * In clustered logical mode, the 32-bit logical ID in the LDR is interpreted as follows:
773 * - High 16 bits is the cluster ID.
774 * - Low 16 bits: each bit represents a unique APIC within the cluster.
775 */
776 PCX2APICPAGE pX2ApicPage = VMCPU_TO_CX2APICPAGE(pVCpu);
777 uint32_t const u32Ldr = pX2ApicPage->ldr.u32LogicalApicId;
778 if (X2APIC_LDR_GET_CLUSTER_ID(u32Ldr) == (fDest & X2APIC_LDR_CLUSTER_ID))
779 return RT_BOOL(u32Ldr & fDest & X2APIC_LDR_LOGICAL_ID);
780 return false;
781 }
782
783#if XAPIC_HARDWARE_VERSION == XAPIC_HARDWARE_VERSION_P4
784 /*
785 * In both flat and clustered logical mode, a destination mask of all set bits indicates a broadcast.
786 * See AMD spec. 16.6.1 "Receiving System and IPI Interrupts".
787 */
788 Assert(!XAPIC_IN_X2APIC_MODE(pVCpu));
789 if ((fDest & XAPIC_LDR_FLAT_LOGICAL_ID) == XAPIC_LDR_FLAT_LOGICAL_ID)
790 return true;
791
792 PCXAPICPAGE pXApicPage = VMCPU_TO_CXAPICPAGE(pVCpu);
793 XAPICDESTFORMAT enmDestFormat = (XAPICDESTFORMAT)pXApicPage->dfr.u.u4Model;
794 if (enmDestFormat == XAPICDESTFORMAT_FLAT)
795 {
796 /* The destination mask is interpreted as a bitmap of 8 unique logical APIC IDs. */
797 uint8_t const u8Ldr = pXApicPage->ldr.u.u8LogicalApicId;
798 return RT_BOOL(u8Ldr & fDest & XAPIC_LDR_FLAT_LOGICAL_ID);
799 }
800
801 /*
802 * In clustered logical mode, the 8-bit logical ID in the LDR is interpreted as follows:
803 * - High 4 bits is the cluster ID.
804 * - Low 4 bits: each bit represents a unique APIC within the cluster.
805 */
806 Assert(enmDestFormat == XAPICDESTFORMAT_CLUSTER);
807 uint8_t const u8Ldr = pXApicPage->ldr.u.u8LogicalApicId;
808 if (XAPIC_LDR_CLUSTERED_GET_CLUSTER_ID(u8Ldr) == (fDest & XAPIC_LDR_CLUSTERED_CLUSTER_ID))
809 return RT_BOOL(u8Ldr & fDest & XAPIC_LDR_CLUSTERED_LOGICAL_ID);
810 return false;
811#else
812# error "Implement Pentium and P6 family APIC architectures"
813#endif
814}
815
816
817/**
818 * Figures out the set of destination CPUs for a given destination mode, format
819 * and delivery mode setting.
820 *
821 * @param pVM The cross context VM structure.
822 * @param fDestMask The destination mask.
823 * @param fBroadcastMask The broadcast mask.
824 * @param enmDestMode The destination mode.
825 * @param enmDeliveryMode The delivery mode.
826 * @param pDestCpuSet The destination CPU set to update.
827 */
828static void apicGetDestCpuSet(PVM pVM, uint32_t fDestMask, uint32_t fBroadcastMask, XAPICDESTMODE enmDestMode,
829 XAPICDELIVERYMODE enmDeliveryMode, PVMCPUSET pDestCpuSet)
830{
831 VMCPUSET_EMPTY(pDestCpuSet);
832
833 /*
834 * Physical destination mode only supports either a broadcast or a single target.
835 * - Broadcast with lowest-priority delivery mode is not supported[1], we deliver it
836 * as a regular broadcast like in fixed delivery mode.
837 * - For a single target, lowest-priority delivery mode makes no sense. We deliver
838 * to the target like in fixed delivery mode.
839 *
840 * [1] See Intel spec. 10.6.2.1 "Physical Destination Mode".
841 */
842 if ( enmDestMode == XAPICDESTMODE_PHYSICAL
843 && enmDeliveryMode == XAPICDELIVERYMODE_LOWEST_PRIO)
844 {
845 AssertMsgFailed(("APIC: Lowest-priority delivery using physical destination mode!"));
846 enmDeliveryMode = XAPICDELIVERYMODE_FIXED;
847 }
848
849 uint32_t const cCpus = pVM->cCpus;
850 if (enmDeliveryMode == XAPICDELIVERYMODE_LOWEST_PRIO)
851 {
852 Assert(enmDestMode == XAPICDESTMODE_LOGICAL);
853#if XAPIC_HARDWARE_VERSION == XAPIC_HARDWARE_VERSION_P4
854 VMCPUID idCpuLowestTpr = NIL_VMCPUID;
855 uint8_t u8LowestTpr = UINT8_C(0xff);
856 for (VMCPUID idCpu = 0; idCpu < cCpus; idCpu++)
857 {
858 PVMCPU pVCpuDest = &pVM->aCpus[idCpu];
859 if (apicIsLogicalDest(pVCpuDest, fDestMask))
860 {
861 PCXAPICPAGE pXApicPage = VMCPU_TO_CXAPICPAGE(pVCpuDest);
862 uint8_t const u8Tpr = pXApicPage->tpr.u8Tpr; /* PAV */
863
864 /*
865 * If there is a tie for lowest priority, the local APIC with the highest ID is chosen.
866 * Hence the use of "<=" in the check below.
867 * See AMD spec. 16.6.2 "Lowest Priority Messages and Arbitration".
868 */
869 if (u8Tpr <= u8LowestTpr)
870 {
871 u8LowestTpr = u8Tpr;
872 idCpuLowestTpr = idCpu;
873 }
874 }
875 }
876 if (idCpuLowestTpr != NIL_VMCPUID)
877 VMCPUSET_ADD(pDestCpuSet, idCpuLowestTpr);
878#else
879# error "Implement Pentium and P6 family APIC architectures"
880#endif
881 return;
882 }
883
884 /*
885 * x2APIC:
886 * - In both physical and logical destination mode, a destination mask of 0xffffffff implies a broadcast[1].
887 * xAPIC:
888 * - In physical destination mode, a destination mask of 0xff implies a broadcast[2].
889 * - In both flat and clustered logical mode, a destination mask of 0xff implies a broadcast[3].
890 *
891 * [1] See Intel spec. 10.12.9 "ICR Operation in x2APIC Mode".
892 * [2] See Intel spec. 10.6.2.1 "Physical Destination Mode".
893 * [2] See AMD spec. 16.6.1 "Receiving System and IPI Interrupts".
894 */
895 if ((fDestMask & fBroadcastMask) == fBroadcastMask)
896 {
897 VMCPUSET_FILL(pDestCpuSet);
898 return;
899 }
900
901 if (enmDestMode == XAPICDESTMODE_PHYSICAL)
902 {
903 /* The destination mask is interpreted as the physical APIC ID of a single target. */
904#if 1
905 /* Since our physical APIC ID is read-only to software, set the corresponding bit in the CPU set. */
906 if (RT_LIKELY(fDestMask < cCpus))
907 VMCPUSET_ADD(pDestCpuSet, fDestMask);
908#else
909 /* The physical APIC ID may not match our VCPU ID, search through the list of targets. */
910 for (VMCPUID idCpu = 0; idCpu < cCpus; idCpu++)
911 {
912 PVMCPU pVCpuDest = &pVM->aCpus[idCpu];
913 if (XAPIC_IN_X2APIC_MODE(pVCpuDest))
914 {
915 PCX2APICPAGE pX2ApicPage = VMCPU_TO_CX2APICPAGE(pVCpuDest);
916 if (pX2ApicPage->id.u32ApicId == fDestMask)
917 VMCPUSET_ADD(pDestCpuSet, pVCpuDest->idCpu);
918 }
919 else
920 {
921 PCXAPICPAGE pXApicPage = VMCPU_TO_CXAPICPAGE(pVCpuDest);
922 if (pXApicPage->id.u8ApicId == (uint8_t)fDestMask)
923 VMCPUSET_ADD(pDestCpuSet, pVCpuDest->idCpu);
924 }
925 }
926#endif
927 }
928 else
929 {
930 Assert(enmDestMode == XAPICDESTMODE_LOGICAL);
931
932 /* A destination mask of all 0's implies no target APICs (since it's interpreted as a bitmap or partial bitmap). */
933 if (RT_UNLIKELY(!fDestMask))
934 return;
935
936 /* The destination mask is interpreted as a bitmap of software-programmable logical APIC ID of the target APICs. */
937 for (VMCPUID idCpu = 0; idCpu < cCpus; idCpu++)
938 {
939 PVMCPU pVCpuDest = &pVM->aCpus[idCpu];
940 if (apicIsLogicalDest(pVCpuDest, fDestMask))
941 VMCPUSET_ADD(pDestCpuSet, pVCpuDest->idCpu);
942 }
943 }
944}
945
946
947/**
948 * Sends an Interprocessor Interrupt (IPI) using values from the Interrupt
949 * Command Register (ICR).
950 *
951 * @returns VBox status code.
952 * @param pVCpu The cross context virtual CPU structure.
953 * @param rcRZ The return code if the operation cannot be
954 * performed in the current context.
955 */
956DECLINLINE(VBOXSTRICTRC) apicSendIpi(PVMCPU pVCpu, int rcRZ)
957{
958 VMCPU_ASSERT_EMT(pVCpu);
959
960 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
961 XAPICDELIVERYMODE const enmDeliveryMode = (XAPICDELIVERYMODE)pXApicPage->icr_lo.u.u3DeliveryMode;
962 XAPICDESTMODE const enmDestMode = (XAPICDESTMODE)pXApicPage->icr_lo.u.u1DestMode;
963 XAPICINITLEVEL const enmInitLevel = (XAPICINITLEVEL)pXApicPage->icr_lo.u.u1Level;
964 XAPICTRIGGERMODE const enmTriggerMode = (XAPICTRIGGERMODE)pXApicPage->icr_lo.u.u1TriggerMode;
965 XAPICDESTSHORTHAND const enmDestShorthand = (XAPICDESTSHORTHAND)pXApicPage->icr_lo.u.u2DestShorthand;
966 uint8_t const uVector = pXApicPage->icr_lo.u.u8Vector;
967
968 PX2APICPAGE pX2ApicPage = VMCPU_TO_X2APICPAGE(pVCpu);
969 uint32_t const fDest = XAPIC_IN_X2APIC_MODE(pVCpu) ? pX2ApicPage->icr_hi.u32IcrHi : pXApicPage->icr_hi.u.u8Dest;
970
971#if XAPIC_HARDWARE_VERSION == XAPIC_HARDWARE_VERSION_P4
972 /*
973 * INIT Level De-assert is not support on Pentium 4 and Xeon processors.
974 * See AMD spec. 16.5 "Interprocessor Interrupts (IPI)" for a table of valid ICR combinations.
975 */
976 if (RT_UNLIKELY( enmDeliveryMode == XAPICDELIVERYMODE_INIT_LEVEL_DEASSERT
977 && enmInitLevel == XAPICINITLEVEL_DEASSERT
978 && enmTriggerMode == XAPICTRIGGERMODE_LEVEL))
979 {
980 Log2(("APIC%u: INIT level de-assert unsupported, ignoring!\n", pVCpu->idCpu));
981 return VINF_SUCCESS;
982 }
983#else
984# error "Implement Pentium and P6 family APIC architectures"
985#endif
986
987 /*
988 * The destination and delivery modes are ignored/by-passed when a destination shorthand is specified.
989 * See Intel spec. 10.6.2.3 "Broadcast/Self Delivery Mode".
990 */
991 VMCPUSET DestCpuSet;
992 switch (enmDestShorthand)
993 {
994 case XAPICDESTSHORTHAND_NONE:
995 {
996 PVM pVM = pVCpu->CTX_SUFF(pVM);
997 uint32_t const fBroadcastMask = XAPIC_IN_X2APIC_MODE(pVCpu) ? X2APIC_ID_BROADCAST_MASK : XAPIC_ID_BROADCAST_MASK;
998 apicGetDestCpuSet(pVM, fDest, fBroadcastMask, enmDestMode, enmDeliveryMode, &DestCpuSet);
999 break;
1000 }
1001
1002 case XAPICDESTSHORTHAND_SELF:
1003 {
1004 VMCPUSET_EMPTY(&DestCpuSet);
1005 VMCPUSET_ADD(&DestCpuSet, pVCpu->idCpu);
1006 break;
1007 }
1008
1009 case XAPIDDESTSHORTHAND_ALL_INCL_SELF:
1010 {
1011 VMCPUSET_FILL(&DestCpuSet);
1012 break;
1013 }
1014
1015 case XAPICDESTSHORTHAND_ALL_EXCL_SELF:
1016 {
1017 VMCPUSET_FILL(&DestCpuSet);
1018 VMCPUSET_DEL(&DestCpuSet, pVCpu->idCpu);
1019 break;
1020 }
1021 }
1022
1023 return apicSendIntr(pVCpu->CTX_SUFF(pVM), pVCpu, uVector, enmTriggerMode, enmDeliveryMode, &DestCpuSet,
1024 NULL /* pfIntrAccepted */, rcRZ);
1025}
1026
1027
1028/**
1029 * Sets the Interrupt Command Register (ICR) high dword.
1030 *
1031 * @returns Strict VBox status code.
1032 * @param pVCpu The cross context virtual CPU structure.
1033 * @param uIcrHi The ICR high dword.
1034 */
1035static VBOXSTRICTRC apicSetIcrHi(PVMCPU pVCpu, uint32_t uIcrHi)
1036{
1037 VMCPU_ASSERT_EMT(pVCpu);
1038 Assert(!XAPIC_IN_X2APIC_MODE(pVCpu));
1039
1040 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
1041 pXApicPage->icr_hi.all.u32IcrHi = uIcrHi & XAPIC_ICR_HI_DEST;
1042 Log2(("APIC%u: apicSetIcrHi: uIcrHi=%#RX32\n", pVCpu->idCpu, pXApicPage->icr_hi.all.u32IcrHi));
1043
1044 return VINF_SUCCESS;
1045}
1046
1047
1048/**
1049 * Sets the Interrupt Command Register (ICR) low dword.
1050 *
1051 * @returns Strict VBox status code.
1052 * @param pVCpu The cross context virtual CPU structure.
1053 * @param uIcrLo The ICR low dword.
1054 * @param rcRZ The return code if the operation cannot be performed
1055 * in the current context.
1056 */
1057static VBOXSTRICTRC apicSetIcrLo(PVMCPU pVCpu, uint32_t uIcrLo, int rcRZ)
1058{
1059 VMCPU_ASSERT_EMT(pVCpu);
1060
1061 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
1062 pXApicPage->icr_lo.all.u32IcrLo = uIcrLo & XAPIC_ICR_LO_WR_VALID;
1063 Log2(("APIC%u: apicSetIcrLo: uIcrLo=%#RX32\n", pVCpu->idCpu, pXApicPage->icr_lo.all.u32IcrLo));
1064 STAM_COUNTER_INC(&pVCpu->apic.s.StatIcrLoWrite);
1065
1066 return apicSendIpi(pVCpu, rcRZ);
1067}
1068
1069
1070/**
1071 * Sets the Interrupt Command Register (ICR).
1072 *
1073 * @returns Strict VBox status code.
1074 * @param pVCpu The cross context virtual CPU structure.
1075 * @param u64Icr The ICR (High and Low combined).
1076 * @param rcRZ The return code if the operation cannot be performed
1077 * in the current context.
1078 */
1079static VBOXSTRICTRC apicSetIcr(PVMCPU pVCpu, uint64_t u64Icr, int rcRZ)
1080{
1081 VMCPU_ASSERT_EMT(pVCpu);
1082 Assert(XAPIC_IN_X2APIC_MODE(pVCpu));
1083
1084 /* Validate. */
1085 uint32_t const uLo = RT_LO_U32(u64Icr);
1086 if (RT_LIKELY(!(uLo & ~XAPIC_ICR_LO_WR_VALID)))
1087 {
1088 /* Update high dword first, then update the low dword which sends the IPI. */
1089 PX2APICPAGE pX2ApicPage = VMCPU_TO_X2APICPAGE(pVCpu);
1090 pX2ApicPage->icr_hi.u32IcrHi = RT_HI_U32(u64Icr);
1091 return apicSetIcrLo(pVCpu, uLo, rcRZ);
1092 }
1093 return apicMsrAccessError(pVCpu, MSR_IA32_X2APIC_ICR, APICMSRACCESS_WRITE_RSVD_BITS);
1094}
1095
1096
1097/**
1098 * Sets the Error Status Register (ESR).
1099 *
1100 * @returns Strict VBox status code.
1101 * @param pVCpu The cross context virtual CPU structure.
1102 * @param uEsr The ESR value.
1103 */
1104static VBOXSTRICTRC apicSetEsr(PVMCPU pVCpu, uint32_t uEsr)
1105{
1106 VMCPU_ASSERT_EMT(pVCpu);
1107
1108 Log2(("APIC%u: apicSetEsr: uEsr=%#RX32\n", pVCpu->idCpu, uEsr));
1109
1110 if ( XAPIC_IN_X2APIC_MODE(pVCpu)
1111 && (uEsr & ~XAPIC_ESR_WO_VALID))
1112 return apicMsrAccessError(pVCpu, MSR_IA32_X2APIC_ESR, APICMSRACCESS_WRITE_RSVD_BITS);
1113
1114 /*
1115 * Writes to the ESR causes the internal state to be updated in the register,
1116 * clearing the original state. See AMD spec. 16.4.6 "APIC Error Interrupts".
1117 */
1118 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
1119 pXApicPage->esr.all.u32Errors = apicClearAllErrors(pVCpu);
1120 return VINF_SUCCESS;
1121}
1122
1123
1124/**
1125 * Updates the Processor Priority Register (PPR).
1126 *
1127 * @param pVCpu The cross context virtual CPU structure.
1128 */
1129static void apicUpdatePpr(PVMCPU pVCpu)
1130{
1131 VMCPU_ASSERT_EMT(pVCpu);
1132
1133 /* See Intel spec 10.8.3.1 "Task and Processor Priorities". */
1134 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
1135 uint8_t const uIsrv = apicGetHighestSetBitInReg(&pXApicPage->isr, 0 /* rcNotFound */);
1136 uint8_t uPpr;
1137 if (XAPIC_TPR_GET_TP(pXApicPage->tpr.u8Tpr) >= XAPIC_PPR_GET_PP(uIsrv))
1138 uPpr = pXApicPage->tpr.u8Tpr;
1139 else
1140 uPpr = XAPIC_PPR_GET_PP(uIsrv);
1141 pXApicPage->ppr.u8Ppr = uPpr;
1142}
1143
1144
1145/**
1146 * Gets the Processor Priority Register (PPR).
1147 *
1148 * @returns The PPR value.
1149 * @param pVCpu The cross context virtual CPU structure.
1150 */
1151static uint8_t apicGetPpr(PVMCPU pVCpu)
1152{
1153 VMCPU_ASSERT_EMT(pVCpu);
1154 STAM_COUNTER_INC(&pVCpu->apic.s.StatTprRead);
1155
1156 /*
1157 * With virtualized APIC registers or with TPR virtualization, the hardware may
1158 * update ISR/TPR transparently. We thus re-calculate the PPR which may be out of sync.
1159 * See Intel spec. 29.2.2 "Virtual-Interrupt Delivery".
1160 *
1161 * In all other instances, whenever the TPR or ISR changes, we need to update the PPR
1162 * as well (e.g. like we do manually in apicR3InitIpi and by calling apicUpdatePpr).
1163 */
1164 PCAPIC pApic = VM_TO_APIC(pVCpu->CTX_SUFF(pVM));
1165 if (pApic->fVirtApicRegsEnabled) /** @todo re-think this */
1166 apicUpdatePpr(pVCpu);
1167 PCXAPICPAGE pXApicPage = VMCPU_TO_CXAPICPAGE(pVCpu);
1168 return pXApicPage->ppr.u8Ppr;
1169}
1170
1171
1172/**
1173 * Sets the Task Priority Register (TPR).
1174 *
1175 * @returns Strict VBox status code.
1176 * @param pVCpu The cross context virtual CPU structure.
1177 * @param uTpr The TPR value.
1178 */
1179static VBOXSTRICTRC apicSetTpr(PVMCPU pVCpu, uint32_t uTpr)
1180{
1181 VMCPU_ASSERT_EMT(pVCpu);
1182
1183 Log2(("APIC%u: apicSetTpr: uTpr=%#RX32\n", pVCpu->idCpu, uTpr));
1184 STAM_COUNTER_INC(&pVCpu->apic.s.StatTprWrite);
1185
1186 if ( XAPIC_IN_X2APIC_MODE(pVCpu)
1187 && (uTpr & ~XAPIC_TPR_VALID))
1188 return apicMsrAccessError(pVCpu, MSR_IA32_X2APIC_TPR, APICMSRACCESS_WRITE_RSVD_BITS);
1189
1190 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
1191 pXApicPage->tpr.u8Tpr = uTpr;
1192 apicUpdatePpr(pVCpu);
1193 apicSignalNextPendingIntr(pVCpu);
1194 return VINF_SUCCESS;
1195}
1196
1197
1198/**
1199 * Sets the End-Of-Interrupt (EOI) register.
1200 *
1201 * @returns Strict VBox status code.
1202 * @param pVCpu The cross context virtual CPU structure.
1203 * @param uEoi The EOI value.
1204 */
1205static VBOXSTRICTRC apicSetEoi(PVMCPU pVCpu, uint32_t uEoi)
1206{
1207 VMCPU_ASSERT_EMT(pVCpu);
1208
1209 Log2(("APIC%u: apicSetEoi: uEoi=%#RX32\n", pVCpu->idCpu, uEoi));
1210 STAM_COUNTER_INC(&pVCpu->apic.s.StatEoiWrite);
1211
1212 if ( XAPIC_IN_X2APIC_MODE(pVCpu)
1213 && (uEoi & ~XAPIC_EOI_WO_VALID))
1214 return apicMsrAccessError(pVCpu, MSR_IA32_X2APIC_EOI, APICMSRACCESS_WRITE_RSVD_BITS);
1215
1216 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
1217 int isrv = apicGetHighestSetBitInReg(&pXApicPage->isr, -1 /* rcNotFound */);
1218 if (isrv >= 0)
1219 {
1220 /*
1221 * Broadcast the EOI to the I/O APIC(s).
1222 *
1223 * We'll handle the EOI broadcast first as there is tiny chance we get rescheduled to
1224 * ring-3 due to contention on the I/O APIC lock. This way we don't mess with the rest
1225 * of the APIC state and simply restart the EOI write operation from ring-3.
1226 */
1227 Assert(isrv <= (int)UINT8_MAX);
1228 uint8_t const uVector = isrv;
1229 bool const fLevelTriggered = apicTestVectorInReg(&pXApicPage->tmr, uVector);
1230 if (fLevelTriggered)
1231 {
1232 int rc = apicBusBroadcastEoi(pVCpu, uVector);
1233 if (rc == VINF_SUCCESS)
1234 { /* likely */ }
1235 else
1236 return XAPIC_IN_X2APIC_MODE(pVCpu) ? VINF_CPUM_R3_MSR_WRITE : VINF_IOM_R3_MMIO_WRITE;
1237
1238 /*
1239 * Clear the vector from the TMR.
1240 *
1241 * The broadcast to I/O APIC can re-trigger new interrupts to arrive via the bus. However,
1242 * APICUpdatePendingInterrupts() which updates TMR can only be done from EMT which we
1243 * currently are on, so no possibility of concurrent updates.
1244 */
1245 apicClearVectorInReg(&pXApicPage->tmr, uVector);
1246
1247 /*
1248 * Clear the remote IRR bit for level-triggered, fixed mode LINT0 interrupt.
1249 * The LINT1 pin does not support level-triggered interrupts.
1250 * See Intel spec. 10.5.1 "Local Vector Table".
1251 */
1252 uint32_t const uLvtLint0 = pXApicPage->lvt_lint0.all.u32LvtLint0;
1253 if ( XAPIC_LVT_GET_REMOTE_IRR(uLvtLint0)
1254 && XAPIC_LVT_GET_VECTOR(uLvtLint0) == uVector
1255 && XAPIC_LVT_GET_DELIVERY_MODE(uLvtLint0) == XAPICDELIVERYMODE_FIXED)
1256 {
1257 ASMAtomicAndU32((volatile uint32_t *)&pXApicPage->lvt_lint0.all.u32LvtLint0, ~XAPIC_LVT_REMOTE_IRR);
1258 Log2(("APIC%u: apicSetEoi: Cleared remote-IRR for LINT0. uVector=%#x\n", pVCpu->idCpu, uVector));
1259 }
1260
1261 Log2(("APIC%u: apicSetEoi: Cleared level triggered interrupt from TMR. uVector=%#x\n", pVCpu->idCpu, uVector));
1262 }
1263
1264 /*
1265 * Mark interrupt as serviced, update the PPR and signal pending interrupts.
1266 */
1267 Log2(("APIC%u: apicSetEoi: Clearing interrupt from ISR. uVector=%#x\n", pVCpu->idCpu, uVector));
1268 apicClearVectorInReg(&pXApicPage->isr, uVector);
1269 apicUpdatePpr(pVCpu);
1270 apicSignalNextPendingIntr(pVCpu);
1271 }
1272 else
1273 {
1274#ifdef DEBUG_ramshankar
1275 /** @todo Figure out if this is done intentionally by guests or is a bug
1276 * in our emulation. Happened with Win10 SMP VM during reboot after
1277 * installation of guest additions with 3D support. */
1278 AssertMsgFailed(("APIC%u: apicSetEoi: Failed to find any ISR bit\n", pVCpu->idCpu));
1279#endif
1280 }
1281
1282 return VINF_SUCCESS;
1283}
1284
1285
1286/**
1287 * Sets the Logical Destination Register (LDR).
1288 *
1289 * @returns Strict VBox status code.
1290 * @param pVCpu The cross context virtual CPU structure.
1291 * @param uLdr The LDR value.
1292 *
1293 * @remarks LDR is read-only in x2APIC mode.
1294 */
1295static VBOXSTRICTRC apicSetLdr(PVMCPU pVCpu, uint32_t uLdr)
1296{
1297 VMCPU_ASSERT_EMT(pVCpu);
1298 Assert(!XAPIC_IN_X2APIC_MODE(pVCpu));
1299
1300 Log2(("APIC%u: apicSetLdr: uLdr=%#RX32\n", pVCpu->idCpu, uLdr));
1301
1302 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
1303 apicWriteRaw32(pXApicPage, XAPIC_OFF_LDR, uLdr & XAPIC_LDR_VALID);
1304 return VINF_SUCCESS;
1305}
1306
1307
1308/**
1309 * Sets the Destination Format Register (DFR).
1310 *
1311 * @returns Strict VBox status code.
1312 * @param pVCpu The cross context virtual CPU structure.
1313 * @param uDfr The DFR value.
1314 *
1315 * @remarks DFR is not available in x2APIC mode.
1316 */
1317static VBOXSTRICTRC apicSetDfr(PVMCPU pVCpu, uint32_t uDfr)
1318{
1319 VMCPU_ASSERT_EMT(pVCpu);
1320 Assert(!XAPIC_IN_X2APIC_MODE(pVCpu));
1321
1322 uDfr &= XAPIC_DFR_VALID;
1323 uDfr |= XAPIC_DFR_RSVD_MB1;
1324
1325 Log2(("APIC%u: apicSetDfr: uDfr=%#RX32\n", pVCpu->idCpu, uDfr));
1326
1327 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
1328 apicWriteRaw32(pXApicPage, XAPIC_OFF_DFR, uDfr);
1329 return VINF_SUCCESS;
1330}
1331
1332
1333/**
1334 * Sets the Timer Divide Configuration Register (DCR).
1335 *
1336 * @returns Strict VBox status code.
1337 * @param pVCpu The cross context virtual CPU structure.
1338 * @param uTimerDcr The timer DCR value.
1339 */
1340static VBOXSTRICTRC apicSetTimerDcr(PVMCPU pVCpu, uint32_t uTimerDcr)
1341{
1342 VMCPU_ASSERT_EMT(pVCpu);
1343 if ( XAPIC_IN_X2APIC_MODE(pVCpu)
1344 && (uTimerDcr & ~XAPIC_TIMER_DCR_VALID))
1345 return apicMsrAccessError(pVCpu, MSR_IA32_X2APIC_TIMER_DCR, APICMSRACCESS_WRITE_RSVD_BITS);
1346
1347 Log2(("APIC%u: apicSetTimerDcr: uTimerDcr=%#RX32\n", pVCpu->idCpu, uTimerDcr));
1348
1349 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
1350 apicWriteRaw32(pXApicPage, XAPIC_OFF_TIMER_DCR, uTimerDcr);
1351 return VINF_SUCCESS;
1352}
1353
1354
1355/**
1356 * Gets the timer's Current Count Register (CCR).
1357 *
1358 * @returns VBox status code.
1359 * @param pVCpu The cross context virtual CPU structure.
1360 * @param rcBusy The busy return code for the timer critical section.
1361 * @param puValue Where to store the LVT timer CCR.
1362 */
1363static VBOXSTRICTRC apicGetTimerCcr(PVMCPU pVCpu, int rcBusy, uint32_t *puValue)
1364{
1365 VMCPU_ASSERT_EMT(pVCpu);
1366 Assert(puValue);
1367
1368 PCXAPICPAGE pXApicPage = VMCPU_TO_CXAPICPAGE(pVCpu);
1369 *puValue = 0;
1370
1371 /* In TSC-deadline mode, CCR returns 0, see Intel spec. 10.5.4.1 "TSC-Deadline Mode". */
1372 if (pXApicPage->lvt_timer.u.u2TimerMode == XAPIC_TIMER_MODE_TSC_DEADLINE)
1373 return VINF_SUCCESS;
1374
1375 /* If the initial-count register is 0, CCR returns 0 as it cannot exceed the ICR. */
1376 uint32_t const uInitialCount = pXApicPage->timer_icr.u32InitialCount;
1377 if (!uInitialCount)
1378 return VINF_SUCCESS;
1379
1380 /*
1381 * Reading the virtual-sync clock requires locking its timer because it's not
1382 * a simple atomic operation, see tmVirtualSyncGetEx().
1383 *
1384 * We also need to lock before reading the timer CCR, see apicR3TimerCallback().
1385 */
1386 PCAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu);
1387 PTMTIMER pTimer = pApicCpu->CTX_SUFF(pTimer);
1388
1389 int rc = TMTimerLock(pTimer, rcBusy);
1390 if (rc == VINF_SUCCESS)
1391 {
1392 /* If the current-count register is 0, it implies the timer expired. */
1393 uint32_t const uCurrentCount = pXApicPage->timer_ccr.u32CurrentCount;
1394 if (uCurrentCount)
1395 {
1396 uint64_t const cTicksElapsed = TMTimerGet(pApicCpu->CTX_SUFF(pTimer)) - pApicCpu->u64TimerInitial;
1397 TMTimerUnlock(pTimer);
1398 uint8_t const uTimerShift = apicGetTimerShift(pXApicPage);
1399 uint64_t const uDelta = cTicksElapsed >> uTimerShift;
1400 if (uInitialCount > uDelta)
1401 *puValue = uInitialCount - uDelta;
1402 }
1403 else
1404 TMTimerUnlock(pTimer);
1405 }
1406 return rc;
1407}
1408
1409
1410/**
1411 * Sets the timer's Initial-Count Register (ICR).
1412 *
1413 * @returns Strict VBox status code.
1414 * @param pVCpu The cross context virtual CPU structure.
1415 * @param rcBusy The busy return code for the timer critical section.
1416 * @param uInitialCount The timer ICR.
1417 */
1418static VBOXSTRICTRC apicSetTimerIcr(PVMCPU pVCpu, int rcBusy, uint32_t uInitialCount)
1419{
1420 VMCPU_ASSERT_EMT(pVCpu);
1421
1422 PAPIC pApic = VM_TO_APIC(pVCpu->CTX_SUFF(pVM));
1423 PAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu);
1424 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
1425 PTMTIMER pTimer = pApicCpu->CTX_SUFF(pTimer);
1426
1427 Log2(("APIC%u: apicSetTimerIcr: uInitialCount=%#RX32\n", pVCpu->idCpu, uInitialCount));
1428 STAM_COUNTER_INC(&pApicCpu->StatTimerIcrWrite);
1429
1430 /* In TSC-deadline mode, timer ICR writes are ignored, see Intel spec. 10.5.4.1 "TSC-Deadline Mode". */
1431 if ( pApic->fSupportsTscDeadline
1432 && pXApicPage->lvt_timer.u.u2TimerMode == XAPIC_TIMER_MODE_TSC_DEADLINE)
1433 return VINF_SUCCESS;
1434
1435 /*
1436 * The timer CCR may be modified by apicR3TimerCallback() in parallel,
1437 * so obtain the lock -before- updating it here to be consistent with the
1438 * timer ICR. We rely on CCR being consistent in apicGetTimerCcr().
1439 */
1440 int rc = TMTimerLock(pTimer, rcBusy);
1441 if (rc == VINF_SUCCESS)
1442 {
1443 pXApicPage->timer_icr.u32InitialCount = uInitialCount;
1444 pXApicPage->timer_ccr.u32CurrentCount = uInitialCount;
1445 if (uInitialCount)
1446 apicStartTimer(pVCpu, uInitialCount);
1447 else
1448 apicStopTimer(pVCpu);
1449 TMTimerUnlock(pTimer);
1450 }
1451 return rc;
1452}
1453
1454
1455/**
1456 * Sets an LVT entry.
1457 *
1458 * @returns Strict VBox status code.
1459 * @param pVCpu The cross context virtual CPU structure.
1460 * @param offLvt The LVT entry offset in the xAPIC page.
1461 * @param uLvt The LVT value to set.
1462 */
1463static VBOXSTRICTRC apicSetLvtEntry(PVMCPU pVCpu, uint16_t offLvt, uint32_t uLvt)
1464{
1465 VMCPU_ASSERT_EMT(pVCpu);
1466
1467#if XAPIC_HARDWARE_VERSION == XAPIC_HARDWARE_VERSION_P4
1468 AssertMsg( offLvt == XAPIC_OFF_LVT_TIMER
1469 || offLvt == XAPIC_OFF_LVT_THERMAL
1470 || offLvt == XAPIC_OFF_LVT_PERF
1471 || offLvt == XAPIC_OFF_LVT_LINT0
1472 || offLvt == XAPIC_OFF_LVT_LINT1
1473 || offLvt == XAPIC_OFF_LVT_ERROR,
1474 ("APIC%u: apicSetLvtEntry: invalid offset, offLvt=%#RX16, uLvt=%#RX32\n", pVCpu->idCpu, offLvt, uLvt));
1475
1476 /*
1477 * If TSC-deadline mode isn't support, ignore the bit in xAPIC mode
1478 * and raise #GP(0) in x2APIC mode.
1479 */
1480 PCAPIC pApic = VM_TO_APIC(pVCpu->CTX_SUFF(pVM));
1481 if (offLvt == XAPIC_OFF_LVT_TIMER)
1482 {
1483 if ( !pApic->fSupportsTscDeadline
1484 && (uLvt & XAPIC_LVT_TIMER_TSCDEADLINE))
1485 {
1486 if (XAPIC_IN_X2APIC_MODE(pVCpu))
1487 return apicMsrAccessError(pVCpu, XAPIC_GET_X2APIC_MSR(offLvt), APICMSRACCESS_WRITE_RSVD_BITS);
1488 uLvt &= ~XAPIC_LVT_TIMER_TSCDEADLINE;
1489 /** @todo TSC-deadline timer mode transition */
1490 }
1491 }
1492
1493 /*
1494 * Validate rest of the LVT bits.
1495 */
1496 uint16_t const idxLvt = (offLvt - XAPIC_OFF_LVT_START) >> 4;
1497 AssertReturn(idxLvt < RT_ELEMENTS(g_au32LvtValidMasks), VERR_OUT_OF_RANGE);
1498
1499 /*
1500 * For x2APIC, disallow setting of invalid/reserved bits.
1501 * For xAPIC, mask out invalid/reserved bits (i.e. ignore them).
1502 */
1503 if ( XAPIC_IN_X2APIC_MODE(pVCpu)
1504 && (uLvt & ~g_au32LvtValidMasks[idxLvt]))
1505 return apicMsrAccessError(pVCpu, XAPIC_GET_X2APIC_MSR(offLvt), APICMSRACCESS_WRITE_RSVD_BITS);
1506
1507 uLvt &= g_au32LvtValidMasks[idxLvt];
1508
1509 /*
1510 * In the software-disabled state, LVT mask-bit must remain set and attempts to clear the mask
1511 * bit must be ignored. See Intel spec. 10.4.7.2 "Local APIC State After It Has Been Software Disabled".
1512 */
1513 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
1514 if (!pXApicPage->svr.u.fApicSoftwareEnable)
1515 uLvt |= XAPIC_LVT_MASK;
1516
1517 /*
1518 * It is unclear whether we should signal a 'send illegal vector' error here and ignore updating
1519 * the LVT entry when the delivery mode is 'fixed'[1] or update it in addition to signaling the
1520 * error or not signal the error at all. For now, we'll allow setting illegal vectors into the LVT
1521 * but set the 'send illegal vector' error here. The 'receive illegal vector' error will be set if
1522 * the interrupt for the vector happens to be generated, see APICPostInterrupt().
1523 *
1524 * [1] See Intel spec. 10.5.2 "Valid Interrupt Vectors".
1525 */
1526 if (RT_UNLIKELY( XAPIC_LVT_GET_VECTOR(uLvt) <= XAPIC_ILLEGAL_VECTOR_END
1527 && XAPIC_LVT_GET_DELIVERY_MODE(uLvt) == XAPICDELIVERYMODE_FIXED))
1528 apicSetError(pVCpu, XAPIC_ESR_SEND_ILLEGAL_VECTOR);
1529
1530 Log2(("APIC%u: apicSetLvtEntry: offLvt=%#RX16 uLvt=%#RX32\n", pVCpu->idCpu, offLvt, uLvt));
1531
1532 apicWriteRaw32(pXApicPage, offLvt, uLvt);
1533 return VINF_SUCCESS;
1534#else
1535# error "Implement Pentium and P6 family APIC architectures"
1536#endif /* XAPIC_HARDWARE_VERSION == XAPIC_HARDWARE_VERSION_P4 */
1537}
1538
1539
1540#if 0
1541/**
1542 * Sets an LVT entry in the extended LVT range.
1543 *
1544 * @returns VBox status code.
1545 * @param pVCpu The cross context virtual CPU structure.
1546 * @param offLvt The LVT entry offset in the xAPIC page.
1547 * @param uValue The LVT value to set.
1548 */
1549static int apicSetLvtExtEntry(PVMCPU pVCpu, uint16_t offLvt, uint32_t uLvt)
1550{
1551 VMCPU_ASSERT_EMT(pVCpu);
1552 AssertMsg(offLvt == XAPIC_OFF_CMCI, ("APIC%u: apicSetLvt1Entry: invalid offset %#RX16\n", pVCpu->idCpu, offLvt));
1553
1554 /** @todo support CMCI. */
1555 return VERR_NOT_IMPLEMENTED;
1556}
1557#endif
1558
1559
1560/**
1561 * Hints TM about the APIC timer frequency.
1562 *
1563 * @param pApicCpu The APIC CPU state.
1564 * @param uInitialCount The new initial count.
1565 * @param uTimerShift The new timer shift.
1566 * @thread Any.
1567 */
1568void apicHintTimerFreq(PAPICCPU pApicCpu, uint32_t uInitialCount, uint8_t uTimerShift)
1569{
1570 Assert(pApicCpu);
1571
1572 if ( pApicCpu->uHintedTimerInitialCount != uInitialCount
1573 || pApicCpu->uHintedTimerShift != uTimerShift)
1574 {
1575 uint32_t uHz;
1576 if (uInitialCount)
1577 {
1578 uint64_t cTicksPerPeriod = (uint64_t)uInitialCount << uTimerShift;
1579 uHz = TMTimerGetFreq(pApicCpu->CTX_SUFF(pTimer)) / cTicksPerPeriod;
1580 }
1581 else
1582 uHz = 0;
1583
1584 TMTimerSetFrequencyHint(pApicCpu->CTX_SUFF(pTimer), uHz);
1585 pApicCpu->uHintedTimerInitialCount = uInitialCount;
1586 pApicCpu->uHintedTimerShift = uTimerShift;
1587 }
1588}
1589
1590
1591/**
1592 * Reads an APIC register.
1593 *
1594 * @returns VBox status code.
1595 * @param pApicDev The APIC device instance.
1596 * @param pVCpu The cross context virtual CPU structure.
1597 * @param offReg The offset of the register being read.
1598 * @param puValue Where to store the register value.
1599 */
1600DECLINLINE(VBOXSTRICTRC) apicReadRegister(PAPICDEV pApicDev, PVMCPU pVCpu, uint16_t offReg, uint32_t *puValue)
1601{
1602 VMCPU_ASSERT_EMT(pVCpu);
1603 Assert(offReg <= XAPIC_OFF_MAX_VALID);
1604
1605 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
1606 uint32_t uValue = 0;
1607 VBOXSTRICTRC rc = VINF_SUCCESS;
1608 switch (offReg)
1609 {
1610 case XAPIC_OFF_ID:
1611 case XAPIC_OFF_VERSION:
1612 case XAPIC_OFF_TPR:
1613 case XAPIC_OFF_EOI:
1614 case XAPIC_OFF_RRD:
1615 case XAPIC_OFF_LDR:
1616 case XAPIC_OFF_DFR:
1617 case XAPIC_OFF_SVR:
1618 case XAPIC_OFF_ISR0: case XAPIC_OFF_ISR1: case XAPIC_OFF_ISR2: case XAPIC_OFF_ISR3:
1619 case XAPIC_OFF_ISR4: case XAPIC_OFF_ISR5: case XAPIC_OFF_ISR6: case XAPIC_OFF_ISR7:
1620 case XAPIC_OFF_TMR0: case XAPIC_OFF_TMR1: case XAPIC_OFF_TMR2: case XAPIC_OFF_TMR3:
1621 case XAPIC_OFF_TMR4: case XAPIC_OFF_TMR5: case XAPIC_OFF_TMR6: case XAPIC_OFF_TMR7:
1622 case XAPIC_OFF_IRR0: case XAPIC_OFF_IRR1: case XAPIC_OFF_IRR2: case XAPIC_OFF_IRR3:
1623 case XAPIC_OFF_IRR4: case XAPIC_OFF_IRR5: case XAPIC_OFF_IRR6: case XAPIC_OFF_IRR7:
1624 case XAPIC_OFF_ESR:
1625 case XAPIC_OFF_ICR_LO:
1626 case XAPIC_OFF_ICR_HI:
1627 case XAPIC_OFF_LVT_TIMER:
1628#if XAPIC_HARDWARE_VERSION == XAPIC_HARDWARE_VERSION_P4
1629 case XAPIC_OFF_LVT_THERMAL:
1630#endif
1631 case XAPIC_OFF_LVT_PERF:
1632 case XAPIC_OFF_LVT_LINT0:
1633 case XAPIC_OFF_LVT_LINT1:
1634 case XAPIC_OFF_LVT_ERROR:
1635 case XAPIC_OFF_TIMER_ICR:
1636 case XAPIC_OFF_TIMER_DCR:
1637 {
1638 Assert( !XAPIC_IN_X2APIC_MODE(pVCpu)
1639 || ( offReg != XAPIC_OFF_DFR
1640 && offReg != XAPIC_OFF_ICR_HI
1641 && offReg != XAPIC_OFF_EOI));
1642 uValue = apicReadRaw32(pXApicPage, offReg);
1643 Log2(("APIC%u: apicReadRegister: offReg=%#x uValue=%#x\n", pVCpu->idCpu, offReg, uValue));
1644 break;
1645 }
1646
1647 case XAPIC_OFF_PPR:
1648 {
1649 uValue = apicGetPpr(pVCpu);
1650 break;
1651 }
1652
1653 case XAPIC_OFF_TIMER_CCR:
1654 {
1655 Assert(!XAPIC_IN_X2APIC_MODE(pVCpu));
1656 rc = apicGetTimerCcr(pVCpu, VINF_IOM_R3_MMIO_READ, &uValue);
1657 break;
1658 }
1659
1660 case XAPIC_OFF_APR:
1661 {
1662#if XAPIC_HARDWARE_VERSION == XAPIC_HARDWARE_VERSION_P4
1663 /* Unsupported on Pentium 4 and Xeon CPUs, invalid in x2APIC mode. */
1664 Assert(!XAPIC_IN_X2APIC_MODE(pVCpu));
1665#else
1666# error "Implement Pentium and P6 family APIC architectures"
1667#endif
1668 break;
1669 }
1670
1671 default:
1672 {
1673 Assert(!XAPIC_IN_X2APIC_MODE(pVCpu));
1674 rc = PDMDevHlpDBGFStop(pApicDev->CTX_SUFF(pDevIns), RT_SRC_POS, "VCPU[%u]: offReg=%#RX16\n", pVCpu->idCpu,
1675 offReg);
1676 apicSetError(pVCpu, XAPIC_ESR_ILLEGAL_REG_ADDRESS);
1677 break;
1678 }
1679 }
1680
1681 *puValue = uValue;
1682 return rc;
1683}
1684
1685
1686/**
1687 * Writes an APIC register.
1688 *
1689 * @returns Strict VBox status code.
1690 * @param pApicDev The APIC device instance.
1691 * @param pVCpu The cross context virtual CPU structure.
1692 * @param offReg The offset of the register being written.
1693 * @param uValue The register value.
1694 */
1695DECLINLINE(VBOXSTRICTRC) apicWriteRegister(PAPICDEV pApicDev, PVMCPU pVCpu, uint16_t offReg, uint32_t uValue)
1696{
1697 VMCPU_ASSERT_EMT(pVCpu);
1698 Assert(offReg <= XAPIC_OFF_MAX_VALID);
1699 Assert(!XAPIC_IN_X2APIC_MODE(pVCpu));
1700
1701 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
1702 switch (offReg)
1703 {
1704 case XAPIC_OFF_TPR:
1705 {
1706 rcStrict = apicSetTpr(pVCpu, uValue);
1707 break;
1708 }
1709
1710 case XAPIC_OFF_LVT_TIMER:
1711#if XAPIC_HARDWARE_VERSION == XAPIC_HARDWARE_VERSION_P4
1712 case XAPIC_OFF_LVT_THERMAL:
1713#endif
1714 case XAPIC_OFF_LVT_PERF:
1715 case XAPIC_OFF_LVT_LINT0:
1716 case XAPIC_OFF_LVT_LINT1:
1717 case XAPIC_OFF_LVT_ERROR:
1718 {
1719 rcStrict = apicSetLvtEntry(pVCpu, offReg, uValue);
1720 break;
1721 }
1722
1723 case XAPIC_OFF_TIMER_ICR:
1724 {
1725 rcStrict = apicSetTimerIcr(pVCpu, VINF_IOM_R3_MMIO_WRITE, uValue);
1726 break;
1727 }
1728
1729 case XAPIC_OFF_EOI:
1730 {
1731 rcStrict = apicSetEoi(pVCpu, uValue);
1732 break;
1733 }
1734
1735 case XAPIC_OFF_LDR:
1736 {
1737 rcStrict = apicSetLdr(pVCpu, uValue);
1738 break;
1739 }
1740
1741 case XAPIC_OFF_DFR:
1742 {
1743 rcStrict = apicSetDfr(pVCpu, uValue);
1744 break;
1745 }
1746
1747 case XAPIC_OFF_SVR:
1748 {
1749 rcStrict = apicSetSvr(pVCpu, uValue);
1750 break;
1751 }
1752
1753 case XAPIC_OFF_ICR_LO:
1754 {
1755 rcStrict = apicSetIcrLo(pVCpu, uValue, VINF_IOM_R3_MMIO_WRITE);
1756 break;
1757 }
1758
1759 case XAPIC_OFF_ICR_HI:
1760 {
1761 rcStrict = apicSetIcrHi(pVCpu, uValue);
1762 break;
1763 }
1764
1765 case XAPIC_OFF_TIMER_DCR:
1766 {
1767 rcStrict = apicSetTimerDcr(pVCpu, uValue);
1768 break;
1769 }
1770
1771 case XAPIC_OFF_ESR:
1772 {
1773 rcStrict = apicSetEsr(pVCpu, uValue);
1774 break;
1775 }
1776
1777 case XAPIC_OFF_APR:
1778 case XAPIC_OFF_RRD:
1779 {
1780#if XAPIC_HARDWARE_VERSION == XAPIC_HARDWARE_VERSION_P4
1781 /* Unsupported on Pentium 4 and Xeon CPUs but writes do -not- set an illegal register access error. */
1782#else
1783# error "Implement Pentium and P6 family APIC architectures"
1784#endif
1785 break;
1786 }
1787
1788 /* Read-only, write ignored: */
1789 case XAPIC_OFF_VERSION:
1790 case XAPIC_OFF_ID:
1791 break;
1792
1793 /* Unavailable/reserved in xAPIC mode: */
1794 case X2APIC_OFF_SELF_IPI:
1795 /* Read-only registers: */
1796 case XAPIC_OFF_PPR:
1797 case XAPIC_OFF_ISR0: case XAPIC_OFF_ISR1: case XAPIC_OFF_ISR2: case XAPIC_OFF_ISR3:
1798 case XAPIC_OFF_ISR4: case XAPIC_OFF_ISR5: case XAPIC_OFF_ISR6: case XAPIC_OFF_ISR7:
1799 case XAPIC_OFF_TMR0: case XAPIC_OFF_TMR1: case XAPIC_OFF_TMR2: case XAPIC_OFF_TMR3:
1800 case XAPIC_OFF_TMR4: case XAPIC_OFF_TMR5: case XAPIC_OFF_TMR6: case XAPIC_OFF_TMR7:
1801 case XAPIC_OFF_IRR0: case XAPIC_OFF_IRR1: case XAPIC_OFF_IRR2: case XAPIC_OFF_IRR3:
1802 case XAPIC_OFF_IRR4: case XAPIC_OFF_IRR5: case XAPIC_OFF_IRR6: case XAPIC_OFF_IRR7:
1803 case XAPIC_OFF_TIMER_CCR:
1804 default:
1805 {
1806 rcStrict = PDMDevHlpDBGFStop(pApicDev->CTX_SUFF(pDevIns), RT_SRC_POS, "APIC%u: offReg=%#RX16\n", pVCpu->idCpu,
1807 offReg);
1808 apicSetError(pVCpu, XAPIC_ESR_ILLEGAL_REG_ADDRESS);
1809 break;
1810 }
1811 }
1812
1813 return rcStrict;
1814}
1815
1816
1817/**
1818 * @interface_method_impl{PDMAPICREG,pfnReadMsrR3}
1819 */
1820APICBOTHCBDECL(VBOXSTRICTRC) apicReadMsr(PPDMDEVINS pDevIns, PVMCPU pVCpu, uint32_t u32Reg, uint64_t *pu64Value)
1821{
1822 /*
1823 * Validate.
1824 */
1825 VMCPU_ASSERT_EMT(pVCpu);
1826 Assert(u32Reg >= MSR_IA32_X2APIC_ID && u32Reg <= MSR_IA32_X2APIC_SELF_IPI);
1827 Assert(pu64Value);
1828
1829#ifndef IN_RING3
1830 PCAPIC pApic = VM_TO_APIC(pVCpu->CTX_SUFF(pVM));
1831 if (pApic->fRZEnabled)
1832 { /* likely */}
1833 else
1834 {
1835 return VINF_CPUM_R3_MSR_READ;
1836 }
1837#endif
1838
1839 STAM_COUNTER_INC(&pVCpu->apic.s.CTX_SUFF_Z(StatMsrRead));
1840
1841 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
1842 if (RT_LIKELY(XAPIC_IN_X2APIC_MODE(pVCpu)))
1843 {
1844 switch (u32Reg)
1845 {
1846 /* Special handling for x2APIC: */
1847 case MSR_IA32_X2APIC_ICR:
1848 {
1849 PCX2APICPAGE pX2ApicPage = VMCPU_TO_CX2APICPAGE(pVCpu);
1850 uint64_t const uHi = pX2ApicPage->icr_hi.u32IcrHi;
1851 uint64_t const uLo = pX2ApicPage->icr_lo.all.u32IcrLo;
1852 *pu64Value = RT_MAKE_U64(uLo, uHi);
1853 break;
1854 }
1855
1856 /* Special handling, compatible with xAPIC: */
1857 case MSR_IA32_X2APIC_TIMER_CCR:
1858 {
1859 uint32_t uValue;
1860 rcStrict = apicGetTimerCcr(pVCpu, VINF_CPUM_R3_MSR_READ, &uValue);
1861 *pu64Value = uValue;
1862 break;
1863 }
1864
1865 /* Special handling, compatible with xAPIC: */
1866 case MSR_IA32_X2APIC_PPR:
1867 {
1868 *pu64Value = apicGetPpr(pVCpu);
1869 break;
1870 }
1871
1872 /* Raw read, compatible with xAPIC: */
1873 case MSR_IA32_X2APIC_ID:
1874 case MSR_IA32_X2APIC_VERSION:
1875 case MSR_IA32_X2APIC_TPR:
1876 case MSR_IA32_X2APIC_LDR:
1877 case MSR_IA32_X2APIC_SVR:
1878 case MSR_IA32_X2APIC_ISR0: case MSR_IA32_X2APIC_ISR1: case MSR_IA32_X2APIC_ISR2: case MSR_IA32_X2APIC_ISR3:
1879 case MSR_IA32_X2APIC_ISR4: case MSR_IA32_X2APIC_ISR5: case MSR_IA32_X2APIC_ISR6: case MSR_IA32_X2APIC_ISR7:
1880 case MSR_IA32_X2APIC_TMR0: case MSR_IA32_X2APIC_TMR1: case MSR_IA32_X2APIC_TMR2: case MSR_IA32_X2APIC_TMR3:
1881 case MSR_IA32_X2APIC_TMR4: case MSR_IA32_X2APIC_TMR5: case MSR_IA32_X2APIC_TMR6: case MSR_IA32_X2APIC_TMR7:
1882 case MSR_IA32_X2APIC_IRR0: case MSR_IA32_X2APIC_IRR1: case MSR_IA32_X2APIC_IRR2: case MSR_IA32_X2APIC_IRR3:
1883 case MSR_IA32_X2APIC_IRR4: case MSR_IA32_X2APIC_IRR5: case MSR_IA32_X2APIC_IRR6: case MSR_IA32_X2APIC_IRR7:
1884 case MSR_IA32_X2APIC_ESR:
1885 case MSR_IA32_X2APIC_LVT_TIMER:
1886 case MSR_IA32_X2APIC_LVT_THERMAL:
1887 case MSR_IA32_X2APIC_LVT_PERF:
1888 case MSR_IA32_X2APIC_LVT_LINT0:
1889 case MSR_IA32_X2APIC_LVT_LINT1:
1890 case MSR_IA32_X2APIC_LVT_ERROR:
1891 case MSR_IA32_X2APIC_TIMER_ICR:
1892 case MSR_IA32_X2APIC_TIMER_DCR:
1893 {
1894 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
1895 uint16_t const offReg = X2APIC_GET_XAPIC_OFF(u32Reg);
1896 *pu64Value = apicReadRaw32(pXApicPage, offReg);
1897 break;
1898 }
1899
1900 /* Write-only MSRs: */
1901 case MSR_IA32_X2APIC_SELF_IPI:
1902 case MSR_IA32_X2APIC_EOI:
1903 {
1904 rcStrict = apicMsrAccessError(pVCpu, u32Reg, APICMSRACCESS_READ_WRITE_ONLY);
1905 break;
1906 }
1907
1908 /* Reserved MSRs: */
1909 case MSR_IA32_X2APIC_LVT_CMCI:
1910 default:
1911 {
1912 rcStrict = apicMsrAccessError(pVCpu, u32Reg, APICMSRACCESS_READ_RSVD_OR_UNKNOWN);
1913 break;
1914 }
1915 }
1916 }
1917 else
1918 rcStrict = apicMsrAccessError(pVCpu, u32Reg, APICMSRACCESS_INVALID_READ_MODE);
1919
1920 return rcStrict;
1921}
1922
1923
1924/**
1925 * @interface_method_impl{PDMAPICREG,pfnWriteMsrR3}
1926 */
1927APICBOTHCBDECL(VBOXSTRICTRC) apicWriteMsr(PPDMDEVINS pDevIns, PVMCPU pVCpu, uint32_t u32Reg, uint64_t u64Value)
1928{
1929 /*
1930 * Validate.
1931 */
1932 VMCPU_ASSERT_EMT(pVCpu);
1933 Assert(u32Reg >= MSR_IA32_X2APIC_ID && u32Reg <= MSR_IA32_X2APIC_SELF_IPI);
1934
1935#ifndef IN_RING3
1936 PCAPIC pApic = VM_TO_APIC(pVCpu->CTX_SUFF(pVM));
1937 if (pApic->fRZEnabled)
1938 { /* likely */ }
1939 else
1940 {
1941 return VINF_CPUM_R3_MSR_WRITE;
1942 }
1943#endif
1944
1945 STAM_COUNTER_INC(&pVCpu->apic.s.CTX_SUFF_Z(StatMsrWrite));
1946
1947 /*
1948 * In x2APIC mode, we need to raise #GP(0) for writes to reserved bits, unlike MMIO
1949 * accesses where they are ignored. Hence, we need to validate each register before
1950 * invoking the generic/xAPIC write functions.
1951 *
1952 * Bits 63:32 of all registers except the ICR are reserved, we'll handle this common
1953 * case first and handle validating the remaining bits on a per-register basis.
1954 * See Intel spec. 10.12.1.2 "x2APIC Register Address Space".
1955 */
1956 if ( u32Reg != MSR_IA32_X2APIC_ICR
1957 && RT_HI_U32(u64Value))
1958 return apicMsrAccessError(pVCpu, u32Reg, APICMSRACCESS_WRITE_RSVD_BITS);
1959
1960 uint32_t u32Value = RT_LO_U32(u64Value);
1961 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
1962 if (RT_LIKELY(XAPIC_IN_X2APIC_MODE(pVCpu)))
1963 {
1964 switch (u32Reg)
1965 {
1966 case MSR_IA32_X2APIC_TPR:
1967 {
1968 rcStrict = apicSetTpr(pVCpu, u32Value);
1969 break;
1970 }
1971
1972 case MSR_IA32_X2APIC_ICR:
1973 {
1974 rcStrict = apicSetIcr(pVCpu, u64Value, VINF_CPUM_R3_MSR_WRITE);
1975 break;
1976 }
1977
1978 case MSR_IA32_X2APIC_SVR:
1979 {
1980 rcStrict = apicSetSvr(pVCpu, u32Value);
1981 break;
1982 }
1983
1984 case MSR_IA32_X2APIC_ESR:
1985 {
1986 rcStrict = apicSetEsr(pVCpu, u32Value);
1987 break;
1988 }
1989
1990 case MSR_IA32_X2APIC_TIMER_DCR:
1991 {
1992 rcStrict = apicSetTimerDcr(pVCpu, u32Value);
1993 break;
1994 }
1995
1996 case MSR_IA32_X2APIC_LVT_TIMER:
1997 case MSR_IA32_X2APIC_LVT_THERMAL:
1998 case MSR_IA32_X2APIC_LVT_PERF:
1999 case MSR_IA32_X2APIC_LVT_LINT0:
2000 case MSR_IA32_X2APIC_LVT_LINT1:
2001 case MSR_IA32_X2APIC_LVT_ERROR:
2002 {
2003 rcStrict = apicSetLvtEntry(pVCpu, X2APIC_GET_XAPIC_OFF(u32Reg), u32Value);
2004 break;
2005 }
2006
2007 case MSR_IA32_X2APIC_TIMER_ICR:
2008 {
2009 rcStrict = apicSetTimerIcr(pVCpu, VINF_CPUM_R3_MSR_WRITE, u32Value);
2010 break;
2011 }
2012
2013 /* Write-only MSRs: */
2014 case MSR_IA32_X2APIC_SELF_IPI:
2015 {
2016 uint8_t const uVector = XAPIC_SELF_IPI_GET_VECTOR(u32Value);
2017 apicPostInterrupt(pVCpu, uVector, XAPICTRIGGERMODE_EDGE);
2018 rcStrict = VINF_SUCCESS;
2019 break;
2020 }
2021
2022 case MSR_IA32_X2APIC_EOI:
2023 {
2024 rcStrict = apicSetEoi(pVCpu, u32Value);
2025 break;
2026 }
2027
2028 /* Read-only MSRs: */
2029 case MSR_IA32_X2APIC_ID:
2030 case MSR_IA32_X2APIC_VERSION:
2031 case MSR_IA32_X2APIC_PPR:
2032 case MSR_IA32_X2APIC_LDR:
2033 case MSR_IA32_X2APIC_ISR0: case MSR_IA32_X2APIC_ISR1: case MSR_IA32_X2APIC_ISR2: case MSR_IA32_X2APIC_ISR3:
2034 case MSR_IA32_X2APIC_ISR4: case MSR_IA32_X2APIC_ISR5: case MSR_IA32_X2APIC_ISR6: case MSR_IA32_X2APIC_ISR7:
2035 case MSR_IA32_X2APIC_TMR0: case MSR_IA32_X2APIC_TMR1: case MSR_IA32_X2APIC_TMR2: case MSR_IA32_X2APIC_TMR3:
2036 case MSR_IA32_X2APIC_TMR4: case MSR_IA32_X2APIC_TMR5: case MSR_IA32_X2APIC_TMR6: case MSR_IA32_X2APIC_TMR7:
2037 case MSR_IA32_X2APIC_IRR0: case MSR_IA32_X2APIC_IRR1: case MSR_IA32_X2APIC_IRR2: case MSR_IA32_X2APIC_IRR3:
2038 case MSR_IA32_X2APIC_IRR4: case MSR_IA32_X2APIC_IRR5: case MSR_IA32_X2APIC_IRR6: case MSR_IA32_X2APIC_IRR7:
2039 case MSR_IA32_X2APIC_TIMER_CCR:
2040 {
2041 rcStrict = apicMsrAccessError(pVCpu, u32Reg, APICMSRACCESS_WRITE_READ_ONLY);
2042 break;
2043 }
2044
2045 /* Reserved MSRs: */
2046 case MSR_IA32_X2APIC_LVT_CMCI:
2047 default:
2048 {
2049 rcStrict = apicMsrAccessError(pVCpu, u32Reg, APICMSRACCESS_WRITE_RSVD_OR_UNKNOWN);
2050 break;
2051 }
2052 }
2053 }
2054 else
2055 rcStrict = apicMsrAccessError(pVCpu, u32Reg, APICMSRACCESS_INVALID_WRITE_MODE);
2056
2057 return rcStrict;
2058}
2059
2060
2061/**
2062 * @interface_method_impl{PDMAPICREG,pfnSetBaseMsrR3}
2063 */
2064APICBOTHCBDECL(VBOXSTRICTRC) apicSetBaseMsr(PPDMDEVINS pDevIns, PVMCPU pVCpu, uint64_t u64BaseMsr)
2065{
2066 Assert(pVCpu);
2067 NOREF(pDevIns);
2068
2069#ifdef IN_RING3
2070 PAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu);
2071 PAPIC pApic = VM_TO_APIC(pVCpu->CTX_SUFF(pVM));
2072 APICMODE enmOldMode = apicGetMode(pApicCpu->uApicBaseMsr);
2073 APICMODE enmNewMode = apicGetMode(u64BaseMsr);
2074 uint64_t uBaseMsr = pApicCpu->uApicBaseMsr;
2075
2076 Log2(("APIC%u: ApicSetBaseMsr: u64BaseMsr=%#RX64 enmNewMode=%s enmOldMode=%s\n", pVCpu->idCpu, u64BaseMsr,
2077 apicGetModeName(enmNewMode), apicGetModeName(enmOldMode)));
2078
2079 /*
2080 * We do not support re-mapping the APIC base address because:
2081 * - We'll have to manage all the mappings ourselves in the APIC (reference counting based unmapping etc.)
2082 * i.e. we can only unmap the MMIO region if no other APIC is mapped on that location.
2083 * - It's unclear how/if IOM can fallback to handling regions as regular memory (if the MMIO
2084 * region remains mapped but doesn't belong to the called VCPU's APIC).
2085 */
2086 /** @todo Handle per-VCPU APIC base relocation. */
2087 if (MSR_IA32_APICBASE_GET_ADDR(uBaseMsr) != MSR_IA32_APICBASE_ADDR)
2088 {
2089 LogRelMax(5, ("APIC%u: Attempt to relocate base to %#RGp, unsupported -> #GP(0)\n", pVCpu->idCpu,
2090 MSR_IA32_APICBASE_GET_ADDR(uBaseMsr)));
2091 return VERR_CPUM_RAISE_GP_0;
2092 }
2093
2094 /* Don't allow enabling xAPIC/x2APIC if the VM is configured with the APIC disabled. */
2095 if (pApic->enmMaxMode == PDMAPICMODE_NONE)
2096 {
2097 LogRel(("APIC%u: Disallowing APIC base MSR write as the VM is configured with APIC disabled!\n",
2098 pVCpu->idCpu));
2099 return apicMsrAccessError(pVCpu, MSR_IA32_APICBASE, APICMSRACCESS_WRITE_DISALLOWED_CONFIG);
2100 }
2101
2102 /*
2103 * Act on state transition.
2104 */
2105 if (enmNewMode != enmOldMode)
2106 {
2107 switch (enmNewMode)
2108 {
2109 case APICMODE_DISABLED:
2110 {
2111 /*
2112 * The APIC state needs to be reset (especially the APIC ID as x2APIC APIC ID bit layout
2113 * is different). We can start with a clean slate identical to the state after a power-up/reset.
2114 *
2115 * See Intel spec. 10.4.3 "Enabling or Disabling the Local APIC".
2116 *
2117 * We'll also manually manage the APIC base MSR here. We want a single-point of commit
2118 * at the end of this function rather than updating it in apicR3ResetCpu. This means we also
2119 * need to update the CPUID leaf ourselves.
2120 */
2121 apicR3ResetCpu(pVCpu, false /* fResetApicBaseMsr */);
2122 uBaseMsr &= ~(MSR_IA32_APICBASE_EN | MSR_IA32_APICBASE_EXTD);
2123 CPUMSetGuestCpuIdPerCpuApicFeature(pVCpu, false /*fVisible*/);
2124 LogRel(("APIC%u: Switched mode to disabled\n", pVCpu->idCpu));
2125 break;
2126 }
2127
2128 case APICMODE_XAPIC:
2129 {
2130 if (enmOldMode != APICMODE_DISABLED)
2131 {
2132 LogRel(("APIC%u: Can only transition to xAPIC state from disabled state\n", pVCpu->idCpu));
2133 return apicMsrAccessError(pVCpu, MSR_IA32_APICBASE, APICMSRACCESS_WRITE_INVALID);
2134 }
2135
2136 uBaseMsr |= MSR_IA32_APICBASE_EN;
2137 CPUMSetGuestCpuIdPerCpuApicFeature(pVCpu, true /*fVisible*/);
2138 LogRel(("APIC%u: Switched mode to xAPIC\n", pVCpu->idCpu));
2139 break;
2140 }
2141
2142 case APICMODE_X2APIC:
2143 {
2144 if (pApic->enmMaxMode != PDMAPICMODE_X2APIC)
2145 {
2146 LogRel(("APIC%u: Disallowing transition to x2APIC mode as the VM is configured with the x2APIC disabled!\n",
2147 pVCpu->idCpu));
2148 return apicMsrAccessError(pVCpu, MSR_IA32_APICBASE, APICMSRACCESS_WRITE_INVALID);
2149 }
2150
2151 if (enmOldMode != APICMODE_XAPIC)
2152 {
2153 LogRel(("APIC%u: Can only transition to x2APIC state from xAPIC state\n", pVCpu->idCpu));
2154 return apicMsrAccessError(pVCpu, MSR_IA32_APICBASE, APICMSRACCESS_WRITE_INVALID);
2155 }
2156
2157 uBaseMsr |= MSR_IA32_APICBASE_EN | MSR_IA32_APICBASE_EXTD;
2158
2159 /*
2160 * The APIC ID needs updating when entering x2APIC mode.
2161 * Software written APIC ID in xAPIC mode isn't preserved.
2162 * The APIC ID becomes read-only to software in x2APIC mode.
2163 *
2164 * See Intel spec. 10.12.5.1 "x2APIC States".
2165 */
2166 PX2APICPAGE pX2ApicPage = VMCPU_TO_X2APICPAGE(pVCpu);
2167 ASMMemZero32(&pX2ApicPage->id, sizeof(pX2ApicPage->id));
2168 pX2ApicPage->id.u32ApicId = pVCpu->idCpu;
2169
2170 /*
2171 * LDR initialization occurs when entering x2APIC mode.
2172 * See Intel spec. 10.12.10.2 "Deriving Logical x2APIC ID from the Local x2APIC ID".
2173 */
2174 pX2ApicPage->ldr.u32LogicalApicId = ((pX2ApicPage->id.u32ApicId & UINT32_C(0xffff0)) << 16)
2175 | (UINT32_C(1) << pX2ApicPage->id.u32ApicId & UINT32_C(0xf));
2176
2177 LogRel(("APIC%u: Switched mode to x2APIC\n", pVCpu->idCpu));
2178 break;
2179 }
2180
2181 case APICMODE_INVALID:
2182 default:
2183 {
2184 Log(("APIC%u: Invalid state transition attempted\n", pVCpu->idCpu));
2185 return apicMsrAccessError(pVCpu, MSR_IA32_APICBASE, APICMSRACCESS_WRITE_INVALID);
2186 }
2187 }
2188 }
2189
2190 ASMAtomicWriteU64(&pApicCpu->uApicBaseMsr, uBaseMsr);
2191 return VINF_SUCCESS;
2192#else /* !IN_RING3 */
2193 return VINF_CPUM_R3_MSR_WRITE;
2194#endif /* IN_RING3 */
2195}
2196
2197
2198/**
2199 * @interface_method_impl{PDMAPICREG,pfnGetBaseMsrR3}
2200 */
2201APICBOTHCBDECL(uint64_t) apicGetBaseMsr(PPDMDEVINS pDevIns, PVMCPU pVCpu)
2202{
2203 VMCPU_ASSERT_EMT_OR_NOT_RUNNING(pVCpu);
2204
2205 PCAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu);
2206 return pApicCpu->uApicBaseMsr;
2207}
2208
2209
2210/**
2211 * @interface_method_impl{PDMAPICREG,pfnSetTprR3}
2212 */
2213APICBOTHCBDECL(void) apicSetTpr(PPDMDEVINS pDevIns, PVMCPU pVCpu, uint8_t u8Tpr)
2214{
2215 apicSetTpr(pVCpu, u8Tpr);
2216}
2217
2218
2219/**
2220 * Gets the highest priority pending interrupt.
2221 *
2222 * @returns true if any interrupt is pending, false otherwise.
2223 * @param pVCpu The cross context virtual CPU structure.
2224 * @param pu8PendingIntr Where to store the interrupt vector if the
2225 * interrupt is pending (optional, can be NULL).
2226 */
2227static bool apicGetHighestPendingInterrupt(PVMCPU pVCpu, uint8_t *pu8PendingIntr)
2228{
2229 PCXAPICPAGE pXApicPage = VMCPU_TO_CXAPICPAGE(pVCpu);
2230 int const irrv = apicGetHighestSetBitInReg(&pXApicPage->irr, -1);
2231 if (irrv >= 0)
2232 {
2233 Assert(irrv <= (int)UINT8_MAX);
2234 if (pu8PendingIntr)
2235 *pu8PendingIntr = (uint8_t)irrv;
2236 return true;
2237 }
2238 return false;
2239}
2240
2241
2242/**
2243 * @interface_method_impl{PDMAPICREG,pfnGetTprR3}
2244 */
2245APICBOTHCBDECL(uint8_t) apicGetTpr(PPDMDEVINS pDevIns, PVMCPU pVCpu, bool *pfPending, uint8_t *pu8PendingIntr)
2246{
2247 VMCPU_ASSERT_EMT(pVCpu);
2248 PCXAPICPAGE pXApicPage = VMCPU_TO_CXAPICPAGE(pVCpu);
2249
2250 if (pfPending)
2251 {
2252 /*
2253 * Just return whatever the highest pending interrupt is in the IRR.
2254 * The caller is responsible for figuring out if it's masked by the TPR etc.
2255 */
2256 *pfPending = apicGetHighestPendingInterrupt(pVCpu, pu8PendingIntr);
2257 }
2258
2259 return pXApicPage->tpr.u8Tpr;
2260}
2261
2262
2263/**
2264 * @interface_method_impl{PDMAPICREG,pfnGetTimerFreqR3}
2265 */
2266APICBOTHCBDECL(uint64_t) apicGetTimerFreq(PPDMDEVINS pDevIns)
2267{
2268 PVM pVM = PDMDevHlpGetVM(pDevIns);
2269 PVMCPU pVCpu = &pVM->aCpus[0];
2270 PAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu);
2271 uint64_t uTimer = TMTimerGetFreq(pApicCpu->CTX_SUFF(pTimer));
2272 return uTimer;
2273}
2274
2275
2276/**
2277 * @interface_method_impl{PDMAPICREG,pfnBusDeliverR3}
2278 * @remarks This is a private interface between the IOAPIC and the APIC.
2279 */
2280APICBOTHCBDECL(int) apicBusDeliver(PPDMDEVINS pDevIns, uint8_t uDest, uint8_t uDestMode, uint8_t uDeliveryMode, uint8_t uVector,
2281 uint8_t uPolarity, uint8_t uTriggerMode, uint32_t uTagSrc)
2282{
2283 NOREF(uPolarity);
2284 NOREF(uTagSrc);
2285 PVM pVM = PDMDevHlpGetVM(pDevIns);
2286
2287 /*
2288 * The destination field (mask) in the IO APIC redirectable table entry is 8-bits.
2289 * Hence, the broadcast mask is 0xff.
2290 * See IO APIC spec. 3.2.4. "IOREDTBL[23:0] - I/O Redirectable Table Registers".
2291 */
2292 XAPICTRIGGERMODE enmTriggerMode = (XAPICTRIGGERMODE)uTriggerMode;
2293 XAPICDELIVERYMODE enmDeliveryMode = (XAPICDELIVERYMODE)uDeliveryMode;
2294 XAPICDESTMODE enmDestMode = (XAPICDESTMODE)uDestMode;
2295 uint32_t fDestMask = uDest;
2296 uint32_t fBroadcastMask = UINT32_C(0xff);
2297
2298 Log2(("APIC: apicBusDeliver: fDestMask=%#x enmDestMode=%s enmTriggerMode=%s enmDeliveryMode=%s uVector=%#x\n", fDestMask,
2299 apicGetDestModeName(enmDestMode), apicGetTriggerModeName(enmTriggerMode), apicGetDeliveryModeName(enmDeliveryMode),
2300 uVector));
2301
2302 bool fIntrAccepted;
2303 VMCPUSET DestCpuSet;
2304 apicGetDestCpuSet(pVM, fDestMask, fBroadcastMask, enmDestMode, enmDeliveryMode, &DestCpuSet);
2305 VBOXSTRICTRC rcStrict = apicSendIntr(pVM, NULL /* pVCpu */, uVector, enmTriggerMode, enmDeliveryMode, &DestCpuSet,
2306 &fIntrAccepted, VINF_SUCCESS /* rcRZ */);
2307 if (fIntrAccepted)
2308 return VBOXSTRICTRC_VAL(rcStrict);
2309 return VERR_APIC_INTR_DISCARDED;
2310}
2311
2312
2313/**
2314 * @interface_method_impl{PDMAPICREG,pfnLocalInterruptR3}
2315 * @remarks This is a private interface between the PIC and the APIC.
2316 */
2317APICBOTHCBDECL(VBOXSTRICTRC) apicLocalInterrupt(PPDMDEVINS pDevIns, PVMCPU pVCpu, uint8_t u8Pin, uint8_t u8Level, int rcRZ)
2318{
2319 NOREF(pDevIns);
2320 AssertReturn(u8Pin <= 1, VERR_INVALID_PARAMETER);
2321 AssertReturn(u8Level <= 1, VERR_INVALID_PARAMETER);
2322
2323 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
2324
2325 /* If the APIC is enabled, the interrupt is subject to LVT programming. */
2326 if (apicIsEnabled(pVCpu))
2327 {
2328 PCXAPICPAGE pXApicPage = VMCPU_TO_CXAPICPAGE(pVCpu);
2329
2330 /* Pick the LVT entry corresponding to the interrupt pin. */
2331 static const uint16_t s_au16LvtOffsets[] =
2332 {
2333 XAPIC_OFF_LVT_LINT0,
2334 XAPIC_OFF_LVT_LINT1
2335 };
2336 Assert(u8Pin < RT_ELEMENTS(s_au16LvtOffsets));
2337 uint16_t const offLvt = s_au16LvtOffsets[u8Pin];
2338 uint32_t const uLvt = apicReadRaw32(pXApicPage, offLvt);
2339
2340 /* If software hasn't masked the interrupt in the LVT entry, proceed interrupt processing. */
2341 if (!XAPIC_LVT_IS_MASKED(uLvt))
2342 {
2343 XAPICDELIVERYMODE const enmDeliveryMode = XAPIC_LVT_GET_DELIVERY_MODE(uLvt);
2344 XAPICTRIGGERMODE enmTriggerMode = XAPIC_LVT_GET_TRIGGER_MODE(uLvt);
2345
2346 switch (enmDeliveryMode)
2347 {
2348 case XAPICDELIVERYMODE_INIT:
2349 {
2350 /** @todo won't work in R0/RC because callers don't care about rcRZ. */
2351 AssertMsgFailed(("INIT through LINT0/LINT1 is not yet supported\n"));
2352 /* fallthru */
2353 }
2354 case XAPICDELIVERYMODE_FIXED:
2355 {
2356 PAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu);
2357 uint8_t const uVector = XAPIC_LVT_GET_VECTOR(uLvt);
2358 bool fActive = RT_BOOL(u8Level & 1);
2359 bool volatile *pfActiveLine = u8Pin == 0 ? &pApicCpu->fActiveLint0 : &pApicCpu->fActiveLint1;
2360 /** @todo Polarity is busted elsewhere, we need to fix that
2361 * first. See @bugref{8386#c7}. */
2362#if 0
2363 uint8_t const u8Polarity = XAPIC_LVT_GET_POLARITY(uLvt);
2364 fActive ^= u8Polarity; */
2365#endif
2366 if (!fActive)
2367 {
2368 ASMAtomicCmpXchgBool(pfActiveLine, false, true);
2369 break;
2370 }
2371
2372 /* Level-sensitive interrupts are not supported for LINT1. See Intel spec. 10.5.1 "Local Vector Table". */
2373 if (offLvt == XAPIC_OFF_LVT_LINT1)
2374 enmTriggerMode = XAPICTRIGGERMODE_EDGE;
2375 /** @todo figure out what "If the local APIC is not used in conjunction with an I/O APIC and fixed
2376 delivery mode is selected; the Pentium 4, Intel Xeon, and P6 family processors will always
2377 use level-sensitive triggering, regardless if edge-sensitive triggering is selected."
2378 means. */
2379
2380 bool fSendIntr;
2381 if (enmTriggerMode == XAPICTRIGGERMODE_EDGE)
2382 {
2383 /* Recognize and send the interrupt only on an edge transition. */
2384 fSendIntr = ASMAtomicCmpXchgBool(pfActiveLine, true, false);
2385 }
2386 else
2387 {
2388 /* For level-triggered interrupts, redundant interrupts are not a problem. */
2389 Assert(enmTriggerMode == XAPICTRIGGERMODE_LEVEL);
2390 ASMAtomicCmpXchgBool(pfActiveLine, true, false);
2391
2392 /* Only when the remote IRR isn't set, set it and send the interrupt. */
2393 if (!(pXApicPage->lvt_lint0.all.u32LvtLint0 & XAPIC_LVT_REMOTE_IRR))
2394 {
2395 Assert(offLvt == XAPIC_OFF_LVT_LINT0);
2396 ASMAtomicOrU32((volatile uint32_t *)&pXApicPage->lvt_lint0.all.u32LvtLint0, XAPIC_LVT_REMOTE_IRR);
2397 fSendIntr = true;
2398 }
2399 else
2400 fSendIntr = false;
2401 }
2402
2403 if (fSendIntr)
2404 {
2405 VMCPUSET DestCpuSet;
2406 VMCPUSET_EMPTY(&DestCpuSet);
2407 VMCPUSET_ADD(&DestCpuSet, pVCpu->idCpu);
2408 rcStrict = apicSendIntr(pVCpu->CTX_SUFF(pVM), pVCpu, uVector, enmTriggerMode, enmDeliveryMode,
2409 &DestCpuSet, NULL /* pfIntrAccepted */, rcRZ);
2410 }
2411 break;
2412 }
2413
2414 case XAPICDELIVERYMODE_SMI:
2415 case XAPICDELIVERYMODE_NMI:
2416 {
2417 VMCPUSET DestCpuSet;
2418 VMCPUSET_EMPTY(&DestCpuSet);
2419 VMCPUSET_ADD(&DestCpuSet, pVCpu->idCpu);
2420 uint8_t const uVector = XAPIC_LVT_GET_VECTOR(uLvt);
2421 rcStrict = apicSendIntr(pVCpu->CTX_SUFF(pVM), pVCpu, uVector, enmTriggerMode, enmDeliveryMode, &DestCpuSet,
2422 NULL /* pfIntrAccepted */, rcRZ);
2423 break;
2424 }
2425
2426 case XAPICDELIVERYMODE_EXTINT:
2427 {
2428 Log2(("APIC%u: apicLocalInterrupt: %s ExtINT through LINT%u\n", pVCpu->idCpu,
2429 u8Level ? "Raising" : "Lowering", u8Pin));
2430 if (u8Level)
2431 apicSetInterruptFF(pVCpu, PDMAPICIRQ_EXTINT);
2432 else
2433 apicClearInterruptFF(pVCpu, PDMAPICIRQ_EXTINT);
2434 break;
2435 }
2436
2437 /* Reserved/unknown delivery modes: */
2438 case XAPICDELIVERYMODE_LOWEST_PRIO:
2439 case XAPICDELIVERYMODE_STARTUP:
2440 default:
2441 {
2442 rcStrict = VERR_INTERNAL_ERROR_3;
2443 AssertMsgFailed(("APIC%u: LocalInterrupt: Invalid delivery mode %#x (%s) on LINT%d\n", pVCpu->idCpu,
2444 enmDeliveryMode, apicGetDeliveryModeName(enmDeliveryMode), u8Pin));
2445 break;
2446 }
2447 }
2448 }
2449 }
2450 else
2451 {
2452 /* The APIC is hardware disabled. The CPU behaves as though there is no on-chip APIC. */
2453 if (u8Pin == 0)
2454 {
2455 /* LINT0 behaves as an external interrupt pin. */
2456 Log2(("APIC%u: apicLocalInterrupt: APIC hardware-disabled, %s INTR\n", pVCpu->idCpu,
2457 u8Level ? "raising" : "lowering"));
2458 if (u8Level)
2459 apicSetInterruptFF(pVCpu, PDMAPICIRQ_EXTINT);
2460 else
2461 apicClearInterruptFF(pVCpu, PDMAPICIRQ_EXTINT);
2462 }
2463 else
2464 {
2465 /* LINT1 behaves as NMI. */
2466 Log2(("APIC%u: apicLocalInterrupt: APIC hardware-disabled, raising NMI\n", pVCpu->idCpu));
2467 apicSetInterruptFF(pVCpu, PDMAPICIRQ_NMI);
2468 }
2469 }
2470
2471 return rcStrict;
2472}
2473
2474
2475/**
2476 * @interface_method_impl{PDMAPICREG,pfnGetInterruptR3}
2477 */
2478APICBOTHCBDECL(int) apicGetInterrupt(PPDMDEVINS pDevIns, PVMCPU pVCpu, uint8_t *pu8Vector, uint32_t *pu32TagSrc)
2479{
2480 VMCPU_ASSERT_EMT(pVCpu);
2481 Assert(pu8Vector);
2482 NOREF(pu32TagSrc);
2483
2484 LogFlow(("APIC%u: apicGetInterrupt:\n", pVCpu->idCpu));
2485
2486 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
2487 bool const fApicHwEnabled = apicIsEnabled(pVCpu);
2488 if ( fApicHwEnabled
2489 && pXApicPage->svr.u.fApicSoftwareEnable)
2490 {
2491 int const irrv = apicGetHighestSetBitInReg(&pXApicPage->irr, -1);
2492 if (RT_LIKELY(irrv >= 0))
2493 {
2494 Assert(irrv <= (int)UINT8_MAX);
2495 uint8_t const uVector = irrv;
2496
2497 /*
2498 * This can happen if the APIC receives an interrupt when the CPU has interrupts
2499 * disabled but the TPR is raised by the guest before re-enabling interrupts.
2500 */
2501 uint8_t const uTpr = pXApicPage->tpr.u8Tpr;
2502 if ( uTpr > 0
2503 && XAPIC_TPR_GET_TP(uVector) <= XAPIC_TPR_GET_TP(uTpr))
2504 {
2505 Log2(("APIC%u: apicGetInterrupt: Interrupt masked. uVector=%#x uTpr=%#x SpuriousVector=%#x\n", pVCpu->idCpu,
2506 uVector, uTpr, pXApicPage->svr.u.u8SpuriousVector));
2507 *pu8Vector = uVector;
2508 STAM_COUNTER_INC(&pVCpu->apic.s.StatMaskedByTpr);
2509 return VERR_APIC_INTR_MASKED_BY_TPR;
2510 }
2511
2512 /*
2513 * The PPR should be up-to-date at this point through apicSetEoi().
2514 * We're on EMT so no parallel updates possible.
2515 * Subject the pending vector to PPR prioritization.
2516 */
2517 uint8_t const uPpr = pXApicPage->ppr.u8Ppr;
2518 if ( !uPpr
2519 || XAPIC_PPR_GET_PP(uVector) > XAPIC_PPR_GET_PP(uPpr))
2520 {
2521 apicClearVectorInReg(&pXApicPage->irr, uVector);
2522 apicSetVectorInReg(&pXApicPage->isr, uVector);
2523 apicUpdatePpr(pVCpu);
2524 apicSignalNextPendingIntr(pVCpu);
2525
2526 Log2(("APIC%u: apicGetInterrupt: Valid Interrupt. uVector=%#x\n", pVCpu->idCpu, uVector));
2527 *pu8Vector = uVector;
2528 return VINF_SUCCESS;
2529 }
2530 else
2531 {
2532 STAM_COUNTER_INC(&pVCpu->apic.s.StatMaskedByPpr);
2533 Log2(("APIC%u: apicGetInterrupt: Interrupt's priority is not higher than the PPR. uVector=%#x PPR=%#x\n",
2534 pVCpu->idCpu, uVector, uPpr));
2535 }
2536 }
2537 else
2538 Log2(("APIC%u: apicGetInterrupt: No pending bits in IRR\n", pVCpu->idCpu));
2539 }
2540 else
2541 Log2(("APIC%u: apicGetInterrupt: APIC %s disabled\n", pVCpu->idCpu, !fApicHwEnabled ? "hardware" : "software"));
2542
2543 return VERR_APIC_INTR_NOT_PENDING;
2544}
2545
2546
2547/**
2548 * @callback_method_impl{FNIOMMMIOREAD}
2549 */
2550APICBOTHCBDECL(int) apicReadMmio(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS GCPhysAddr, void *pv, unsigned cb)
2551{
2552 NOREF(pvUser);
2553 Assert(!(GCPhysAddr & 0xf));
2554 Assert(cb == 4);
2555
2556 PAPICDEV pApicDev = PDMINS_2_DATA(pDevIns, PAPICDEV);
2557 PVMCPU pVCpu = PDMDevHlpGetVMCPU(pDevIns);
2558 uint16_t offReg = GCPhysAddr & 0xff0;
2559 uint32_t uValue = 0;
2560
2561 STAM_COUNTER_INC(&pVCpu->apic.s.CTX_SUFF_Z(StatMmioRead));
2562
2563 int rc = VBOXSTRICTRC_VAL(apicReadRegister(pApicDev, pVCpu, offReg, &uValue));
2564 *(uint32_t *)pv = uValue;
2565
2566 Log2(("APIC%u: apicReadMmio: offReg=%#RX16 uValue=%#RX32\n", pVCpu->idCpu, offReg, uValue));
2567 return rc;
2568}
2569
2570
2571/**
2572 * @callback_method_impl{FNIOMMMIOWRITE}
2573 */
2574APICBOTHCBDECL(int) apicWriteMmio(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS GCPhysAddr, void const *pv, unsigned cb)
2575{
2576 NOREF(pvUser);
2577 Assert(!(GCPhysAddr & 0xf));
2578 Assert(cb == 4);
2579
2580 PAPICDEV pApicDev = PDMINS_2_DATA(pDevIns, PAPICDEV);
2581 PVMCPU pVCpu = PDMDevHlpGetVMCPU(pDevIns);
2582 uint16_t offReg = GCPhysAddr & 0xff0;
2583 uint32_t uValue = *(uint32_t *)pv;
2584
2585 STAM_COUNTER_INC(&pVCpu->apic.s.CTX_SUFF_Z(StatMmioWrite));
2586
2587 Log2(("APIC%u: apicWriteMmio: offReg=%#RX16 uValue=%#RX32\n", pVCpu->idCpu, offReg, uValue));
2588
2589 int rc = VBOXSTRICTRC_VAL(apicWriteRegister(pApicDev, pVCpu, offReg, uValue));
2590 return rc;
2591}
2592
2593
2594/**
2595 * Sets the interrupt pending force-flag and pokes the EMT if required.
2596 *
2597 * @param pVCpu The cross context virtual CPU structure.
2598 * @param enmType The IRQ type.
2599 */
2600VMM_INT_DECL(void) apicSetInterruptFF(PVMCPU pVCpu, PDMAPICIRQ enmType)
2601{
2602 PVM pVM = pVCpu->CTX_SUFF(pVM);
2603 PAPICDEV pApicDev = VM_TO_APICDEV(pVM);
2604 CTX_SUFF(pApicDev->pApicHlp)->pfnSetInterruptFF(pApicDev->CTX_SUFF(pDevIns), enmType, pVCpu->idCpu);
2605}
2606
2607
2608/**
2609 * Clears the interrupt pending force-flag.
2610 *
2611 * @param pVCpu The cross context virtual CPU structure.
2612 * @param enmType The IRQ type.
2613 */
2614VMM_INT_DECL(void) apicClearInterruptFF(PVMCPU pVCpu, PDMAPICIRQ enmType)
2615{
2616 PVM pVM = pVCpu->CTX_SUFF(pVM);
2617 PAPICDEV pApicDev = VM_TO_APICDEV(pVM);
2618 pApicDev->CTX_SUFF(pApicHlp)->pfnClearInterruptFF(pApicDev->CTX_SUFF(pDevIns), enmType, pVCpu->idCpu);
2619}
2620
2621
2622/**
2623 * Posts an interrupt to a target APIC.
2624 *
2625 * This function handles interrupts received from the system bus or
2626 * interrupts generated locally from the LVT or via a self IPI.
2627 *
2628 * Don't use this function to try and deliver ExtINT style interrupts.
2629 *
2630 * @returns true if the interrupt was accepted, false otherwise.
2631 * @param pVCpu The cross context virtual CPU structure.
2632 * @param uVector The vector of the interrupt to be posted.
2633 * @param enmTriggerMode The trigger mode of the interrupt.
2634 *
2635 * @thread Any.
2636 */
2637VMM_INT_DECL(bool) apicPostInterrupt(PVMCPU pVCpu, uint8_t uVector, XAPICTRIGGERMODE enmTriggerMode)
2638{
2639 Assert(pVCpu);
2640 Assert(uVector > XAPIC_ILLEGAL_VECTOR_END);
2641
2642 PVM pVM = pVCpu->CTX_SUFF(pVM);
2643 PCAPIC pApic = VM_TO_APIC(pVM);
2644 PAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu);
2645 bool fAccepted = true;
2646
2647 STAM_PROFILE_START(&pApicCpu->StatPostIntr, a);
2648
2649 /*
2650 * Only post valid interrupt vectors.
2651 * See Intel spec. 10.5.2 "Valid Interrupt Vectors".
2652 */
2653 if (RT_LIKELY(uVector > XAPIC_ILLEGAL_VECTOR_END))
2654 {
2655 /*
2656 * If the interrupt is already pending in the IRR we can skip the
2657 * potential expensive operation of poking the guest EMT out of execution.
2658 */
2659 PCXAPICPAGE pXApicPage = VMCPU_TO_CXAPICPAGE(pVCpu);
2660 if (!apicTestVectorInReg(&pXApicPage->irr, uVector)) /* PAV */
2661 {
2662 Log2(("APIC: apicPostInterrupt: SrcCpu=%u TargetCpu=%u uVector=%#x\n", VMMGetCpuId(pVM), pVCpu->idCpu, uVector));
2663 if (enmTriggerMode == XAPICTRIGGERMODE_EDGE)
2664 {
2665 if (pApic->fPostedIntrsEnabled)
2666 { /** @todo posted-interrupt call to hardware */ }
2667 else
2668 {
2669 apicSetVectorInPib(pApicCpu->CTX_SUFF(pvApicPib), uVector);
2670 uint32_t const fAlreadySet = apicSetNotificationBitInPib((PAPICPIB)pApicCpu->CTX_SUFF(pvApicPib));
2671 if (!fAlreadySet)
2672 {
2673 Log2(("APIC: apicPostInterrupt: Setting UPDATE_APIC FF for edge-triggered intr. uVector=%#x\n", uVector));
2674 apicSetInterruptFF(pVCpu, PDMAPICIRQ_UPDATE_PENDING);
2675 }
2676 }
2677 }
2678 else
2679 {
2680 /*
2681 * Level-triggered interrupts requires updating of the TMR and thus cannot be
2682 * delivered asynchronously.
2683 */
2684 apicSetVectorInPib(&pApicCpu->ApicPibLevel, uVector);
2685 uint32_t const fAlreadySet = apicSetNotificationBitInPib(&pApicCpu->ApicPibLevel);
2686 if (!fAlreadySet)
2687 {
2688 Log2(("APIC: apicPostInterrupt: Setting UPDATE_APIC FF for level-triggered intr. uVector=%#x\n", uVector));
2689 apicSetInterruptFF(pVCpu, PDMAPICIRQ_UPDATE_PENDING);
2690 }
2691 }
2692 }
2693 else
2694 {
2695 Log2(("APIC: apicPostInterrupt: SrcCpu=%u TargetCpu=%u. Vector %#x Already in IRR, skipping\n", VMMGetCpuId(pVM),
2696 pVCpu->idCpu, uVector));
2697 STAM_COUNTER_INC(&pApicCpu->StatPostIntrAlreadyPending);
2698 }
2699 }
2700 else
2701 {
2702 fAccepted = false;
2703 apicSetError(pVCpu, XAPIC_ESR_RECV_ILLEGAL_VECTOR);
2704 }
2705
2706 STAM_PROFILE_STOP(&pApicCpu->StatPostIntr, a);
2707 return fAccepted;
2708}
2709
2710
2711/**
2712 * Starts the APIC timer.
2713 *
2714 * @param pVCpu The cross context virtual CPU structure.
2715 * @param uInitialCount The timer's Initial-Count Register (ICR), must be >
2716 * 0.
2717 * @thread Any.
2718 */
2719VMM_INT_DECL(void) apicStartTimer(PVMCPU pVCpu, uint32_t uInitialCount)
2720{
2721 Assert(pVCpu);
2722 PAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu);
2723 Assert(TMTimerIsLockOwner(pApicCpu->CTX_SUFF(pTimer)));
2724 Assert(uInitialCount > 0);
2725
2726 PCXAPICPAGE pXApicPage = APICCPU_TO_CXAPICPAGE(pApicCpu);
2727 uint8_t const uTimerShift = apicGetTimerShift(pXApicPage);
2728 uint64_t const cTicksToNext = (uint64_t)uInitialCount << uTimerShift;
2729
2730 Log2(("APIC%u: apicStartTimer: uInitialCount=%#RX32 uTimerShift=%u cTicksToNext=%RU64\n", pVCpu->idCpu, uInitialCount,
2731 uTimerShift, cTicksToNext));
2732
2733 /*
2734 * The assumption here is that the timer doesn't tick during this call
2735 * and thus setting a relative time to fire next is accurate. The advantage
2736 * however is updating u64TimerInitial 'atomically' while setting the next
2737 * tick.
2738 */
2739 PTMTIMER pTimer = pApicCpu->CTX_SUFF(pTimer);
2740 TMTimerSetRelative(pTimer, cTicksToNext, &pApicCpu->u64TimerInitial);
2741 apicHintTimerFreq(pApicCpu, uInitialCount, uTimerShift);
2742}
2743
2744
2745/**
2746 * Stops the APIC timer.
2747 *
2748 * @param pVCpu The cross context virtual CPU structure.
2749 * @thread Any.
2750 */
2751VMM_INT_DECL(void) apicStopTimer(PVMCPU pVCpu)
2752{
2753 Assert(pVCpu);
2754 PAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu);
2755 Assert(TMTimerIsLockOwner(pApicCpu->CTX_SUFF(pTimer)));
2756
2757 Log2(("APIC%u: apicStopTimer\n", pVCpu->idCpu));
2758
2759 PTMTIMER pTimer = pApicCpu->CTX_SUFF(pTimer);
2760 TMTimerStop(pTimer); /* This will reset the hint, no need to explicitly call TMTimerSetFrequencyHint(). */
2761 pApicCpu->uHintedTimerInitialCount = 0;
2762 pApicCpu->uHintedTimerShift = 0;
2763}
2764
2765
2766/**
2767 * Queues a pending interrupt as in-service.
2768 *
2769 * This function should only be needed without virtualized APIC
2770 * registers. With virtualized APIC registers, it's sufficient to keep
2771 * the interrupts pending in the IRR as the hardware takes care of
2772 * virtual interrupt delivery.
2773 *
2774 * @returns true if the interrupt was queued to in-service interrupts,
2775 * false otherwise.
2776 * @param pVCpu The cross context virtual CPU structure.
2777 * @param u8PendingIntr The pending interrupt to queue as
2778 * in-service.
2779 *
2780 * @remarks This assumes the caller has done the necessary checks and
2781 * is ready to take actually service the interrupt (TPR,
2782 * interrupt shadow etc.)
2783 */
2784VMMDECL(bool) APICQueueInterruptToService(PVMCPU pVCpu, uint8_t u8PendingIntr)
2785{
2786 VMCPU_ASSERT_EMT(pVCpu);
2787
2788 PVM pVM = pVCpu->CTX_SUFF(pVM);
2789 PAPIC pApic = VM_TO_APIC(pVM);
2790 Assert(!pApic->fVirtApicRegsEnabled);
2791 NOREF(pApic);
2792
2793 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
2794 bool const fIsPending = apicTestVectorInReg(&pXApicPage->irr, u8PendingIntr);
2795 if (fIsPending)
2796 {
2797 apicClearVectorInReg(&pXApicPage->irr, u8PendingIntr);
2798 apicSetVectorInReg(&pXApicPage->isr, u8PendingIntr);
2799 apicUpdatePpr(pVCpu);
2800 return true;
2801 }
2802 return false;
2803}
2804
2805
2806/**
2807 * De-queues a pending interrupt from in-service.
2808 *
2809 * This undoes APICQueueInterruptToService() for premature VM-exits before event
2810 * injection.
2811 *
2812 * @param pVCpu The cross context virtual CPU structure.
2813 * @param u8PendingIntr The pending interrupt to de-queue from
2814 * in-service.
2815 */
2816VMMDECL(void) APICDequeueInterruptFromService(PVMCPU pVCpu, uint8_t u8PendingIntr)
2817{
2818 VMCPU_ASSERT_EMT(pVCpu);
2819
2820 PVM pVM = pVCpu->CTX_SUFF(pVM);
2821 PAPIC pApic = VM_TO_APIC(pVM);
2822 Assert(!pApic->fVirtApicRegsEnabled);
2823 NOREF(pApic);
2824
2825 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
2826 bool const fInService = apicTestVectorInReg(&pXApicPage->isr, u8PendingIntr);
2827 if (fInService)
2828 {
2829 apicClearVectorInReg(&pXApicPage->isr, u8PendingIntr);
2830 apicSetVectorInReg(&pXApicPage->irr, u8PendingIntr);
2831 apicUpdatePpr(pVCpu);
2832 }
2833}
2834
2835
2836/**
2837 * Updates pending interrupts from the pending-interrupt bitmaps to the IRR.
2838 *
2839 * @param pVCpu The cross context virtual CPU structure.
2840 */
2841VMMDECL(void) APICUpdatePendingInterrupts(PVMCPU pVCpu)
2842{
2843 VMCPU_ASSERT_EMT_OR_NOT_RUNNING(pVCpu);
2844
2845 PAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu);
2846 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
2847 bool fHasPendingIntrs = false;
2848
2849 Log3(("APIC%u: APICUpdatePendingInterrupts:\n", pVCpu->idCpu));
2850 STAM_PROFILE_START(&pApicCpu->StatUpdatePendingIntrs, a);
2851
2852 /* Update edge-triggered pending interrupts. */
2853 PAPICPIB pPib = (PAPICPIB)pApicCpu->CTX_SUFF(pvApicPib);
2854 for (;;)
2855 {
2856 uint32_t const fAlreadySet = apicClearNotificationBitInPib((PAPICPIB)pApicCpu->CTX_SUFF(pvApicPib));
2857 if (!fAlreadySet)
2858 break;
2859
2860 AssertCompile(RT_ELEMENTS(pXApicPage->irr.u) == 2 * RT_ELEMENTS(pPib->aVectorBitmap));
2861 for (size_t idxPib = 0, idxReg = 0; idxPib < RT_ELEMENTS(pPib->aVectorBitmap); idxPib++, idxReg += 2)
2862 {
2863 uint64_t const u64Fragment = ASMAtomicXchgU64(&pPib->aVectorBitmap[idxPib], 0);
2864 if (u64Fragment)
2865 {
2866 uint32_t const u32FragmentLo = RT_LO_U32(u64Fragment);
2867 uint32_t const u32FragmentHi = RT_HI_U32(u64Fragment);
2868
2869 pXApicPage->irr.u[idxReg].u32Reg |= u32FragmentLo;
2870 pXApicPage->irr.u[idxReg + 1].u32Reg |= u32FragmentHi;
2871
2872 pXApicPage->tmr.u[idxReg].u32Reg &= ~u32FragmentLo;
2873 pXApicPage->tmr.u[idxReg + 1].u32Reg &= ~u32FragmentHi;
2874 fHasPendingIntrs = true;
2875 }
2876 }
2877 }
2878
2879 /* Update level-triggered pending interrupts. */
2880 pPib = (PAPICPIB)&pApicCpu->ApicPibLevel;
2881 for (;;)
2882 {
2883 uint32_t const fAlreadySet = apicClearNotificationBitInPib((PAPICPIB)&pApicCpu->ApicPibLevel);
2884 if (!fAlreadySet)
2885 break;
2886
2887 AssertCompile(RT_ELEMENTS(pXApicPage->irr.u) == 2 * RT_ELEMENTS(pPib->aVectorBitmap));
2888 for (size_t idxPib = 0, idxReg = 0; idxPib < RT_ELEMENTS(pPib->aVectorBitmap); idxPib++, idxReg += 2)
2889 {
2890 uint64_t const u64Fragment = ASMAtomicXchgU64(&pPib->aVectorBitmap[idxPib], 0);
2891 if (u64Fragment)
2892 {
2893 uint32_t const u32FragmentLo = RT_LO_U32(u64Fragment);
2894 uint32_t const u32FragmentHi = RT_HI_U32(u64Fragment);
2895
2896 pXApicPage->irr.u[idxReg].u32Reg |= u32FragmentLo;
2897 pXApicPage->irr.u[idxReg + 1].u32Reg |= u32FragmentHi;
2898
2899 pXApicPage->tmr.u[idxReg].u32Reg |= u32FragmentLo;
2900 pXApicPage->tmr.u[idxReg + 1].u32Reg |= u32FragmentHi;
2901 fHasPendingIntrs = true;
2902 }
2903 }
2904 }
2905
2906 STAM_PROFILE_STOP(&pApicCpu->StatUpdatePendingIntrs, a);
2907 Log3(("APIC%u: APICUpdatePendingInterrupts: fHasPendingIntrs=%RTbool\n", pVCpu->idCpu, fHasPendingIntrs));
2908
2909 if ( fHasPendingIntrs
2910 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC))
2911 apicSignalNextPendingIntr(pVCpu);
2912}
2913
2914
2915/**
2916 * Gets the highest priority pending interrupt.
2917 *
2918 * @returns true if any interrupt is pending, false otherwise.
2919 * @param pVCpu The cross context virtual CPU structure.
2920 * @param pu8PendingIntr Where to store the interrupt vector if the
2921 * interrupt is pending.
2922 */
2923VMMDECL(bool) APICGetHighestPendingInterrupt(PVMCPU pVCpu, uint8_t *pu8PendingIntr)
2924{
2925 VMCPU_ASSERT_EMT(pVCpu);
2926 return apicGetHighestPendingInterrupt(pVCpu, pu8PendingIntr);
2927}
2928
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette