VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/IEMAllInstructionsOneByte.cpp.h@ 66462

Last change on this file since 66462 was 66462, checked in by vboxsync, 8 years ago

IEM,bs3-cpu-generated-1: Made the current testcases pass on AMD.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 391.9 KB
Line 
1/* $Id: IEMAllInstructionsOneByte.cpp.h 66462 2017-04-06 13:38:13Z vboxsync $ */
2/** @file
3 * IEM - Instruction Decoding and Emulation.
4 */
5
6/*
7 * Copyright (C) 2011-2016 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.215389.xyz. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*******************************************************************************
20* Global Variables *
21*******************************************************************************/
22extern const PFNIEMOP g_apfnOneByteMap[256]; /* not static since we need to forward declare it. */
23
24/* Instruction group definitions: */
25
26/** @defgroup og_gen General
27 * @{ */
28 /** @defgroup og_gen_arith Arithmetic
29 * @{ */
30 /** @defgroup og_gen_arith_bin Binary numbers */
31 /** @defgroup og_gen_arith_dec Decimal numbers */
32 /** @} */
33/** @} */
34
35/** @defgroup og_stack Stack
36 * @{ */
37 /** @defgroup og_stack_sreg Segment registers */
38/** @} */
39
40/** @defgroup og_prefix Prefixes */
41/** @defgroup og_escapes Escape bytes */
42
43
44
45/** @name One byte opcodes.
46 * @{
47 */
48
49/* Instruction specification format - work in progress: */
50
51/**
52 * @opcode 0x00
53 * @opmnemonic add
54 * @op1 rm:Eb
55 * @op2 reg:Gb
56 * @opmaps one
57 * @openc ModR/M
58 * @opflmodify cf,pf,af,zf,sf,of
59 * @ophints harmless ignores_op_size
60 * @opstats add_Eb_Gb
61 * @opgroup og_gen_arith_bin
62 * @optest op1=1 op2=1 -> op1=2 efl&|=nc,pe,na,nz,pl,nv
63 * @optest efl|=cf op1=1 op2=2 -> op1=3 efl&|=nc,po,na,nz,pl,nv
64 * @optest op1=254 op2=1 -> op1=255 efl&|=nc,po,na,nz,ng,nv
65 * @optest op1=128 op2=128 -> op1=0 efl&|=ov,pl,zf,na,po,cf
66 */
67FNIEMOP_DEF(iemOp_add_Eb_Gb)
68{
69 IEMOP_MNEMONIC2(MR, ADD, add, Eb, Gb, DISOPTYPE_HARMLESS, IEMOPHINT_IGNORES_OP_SIZE | IEMOPHINT_LOCK_ALLOWED);
70 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rm_r8, &g_iemAImpl_add);
71}
72
73
74/**
75 * @opcode 0x01
76 * @opgroup og_gen_arith_bin
77 * @opflmodify cf,pf,af,zf,sf,of
78 * @optest op1=1 op2=1 -> op1=2 efl&|=nc,pe,na,nz,pl,nv
79 * @optest efl|=cf op1=2 op2=2 -> op1=4 efl&|=nc,pe,na,nz,pl,nv
80 * @optest efl&~=cf op1=-1 op2=1 -> op1=0 efl&|=cf,po,af,zf,pl,nv
81 * @optest op1=-1 op2=-1 -> op1=-2 efl&|=cf,pe,af,nz,ng,nv
82 */
83FNIEMOP_DEF(iemOp_add_Ev_Gv)
84{
85 IEMOP_MNEMONIC2(MR, ADD, add, Ev, Gv, DISOPTYPE_HARMLESS, IEMOPHINT_LOCK_ALLOWED);
86 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rm_rv, &g_iemAImpl_add);
87}
88
89
90/**
91 * @opcode 0x02
92 * @opgroup og_gen_arith_bin
93 * @opflmodify cf,pf,af,zf,sf,of
94 * @opcopytests iemOp_add_Eb_Gb
95 */
96FNIEMOP_DEF(iemOp_add_Gb_Eb)
97{
98 IEMOP_MNEMONIC2(RM, ADD, add, Gb, Eb, DISOPTYPE_HARMLESS, IEMOPHINT_IGNORES_OP_SIZE);
99 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_r8_rm, &g_iemAImpl_add);
100}
101
102
103/**
104 * @opcode 0x03
105 * @opgroup og_gen_arith_bin
106 * @opflmodify cf,pf,af,zf,sf,of
107 * @opcopytests iemOp_add_Ev_Gv
108 */
109FNIEMOP_DEF(iemOp_add_Gv_Ev)
110{
111 IEMOP_MNEMONIC2(RM, ADD, add, Gv, Ev, DISOPTYPE_HARMLESS, 0);
112 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rv_rm, &g_iemAImpl_add);
113}
114
115
116/**
117 * @opcode 0x04
118 * @opgroup og_gen_arith_bin
119 * @opflmodify cf,pf,af,zf,sf,of
120 * @opcopytests iemOp_add_Eb_Gb
121 */
122FNIEMOP_DEF(iemOp_add_Al_Ib)
123{
124 IEMOP_MNEMONIC2(FIXED, ADD, add, AL, Ib, DISOPTYPE_HARMLESS, IEMOPHINT_IGNORES_OP_SIZE);
125 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_AL_Ib, &g_iemAImpl_add);
126}
127
128
129/**
130 * @opcode 0x05
131 * @opgroup og_gen_arith_bin
132 * @opflmodify cf,pf,af,zf,sf,of
133 * @optest op1=1 op2=1 -> op1=2 efl&|=nv,pl,nz,na,pe
134 * @optest efl|=cf op1=2 op2=2 -> op1=4 efl&|=nc,pe,na,nz,pl,nv
135 * @optest efl&~=cf op1=-1 op2=1 -> op1=0 efl&|=cf,po,af,zf,pl,nv
136 * @optest op1=-1 op2=-1 -> op1=-2 efl&|=cf,pe,af,nz,ng,nv
137 */
138FNIEMOP_DEF(iemOp_add_eAX_Iz)
139{
140 IEMOP_MNEMONIC2(FIXED, ADD, add, rAX, Iz, DISOPTYPE_HARMLESS, 0);
141 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rAX_Iz, &g_iemAImpl_add);
142}
143
144
145/**
146 * @opcode 0x06
147 * @opgroup og_stack_sreg
148 */
149FNIEMOP_DEF(iemOp_push_ES)
150{
151 IEMOP_MNEMONIC1(FIXED, PUSH, push, ES, DISOPTYPE_HARMLESS | DISOPTYPE_INVALID_64, 0);
152 IEMOP_HLP_NO_64BIT();
153 return FNIEMOP_CALL_1(iemOpCommonPushSReg, X86_SREG_ES);
154}
155
156
157/**
158 * @opcode 0x07
159 * @opgroup og_stack_sreg
160 */
161FNIEMOP_DEF(iemOp_pop_ES)
162{
163 IEMOP_MNEMONIC1(FIXED, POP, pop, ES, DISOPTYPE_HARMLESS | DISOPTYPE_INVALID_64, 0);
164 IEMOP_HLP_NO_64BIT();
165 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
166 return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_pop_Sreg, X86_SREG_ES, pVCpu->iem.s.enmEffOpSize);
167}
168
169
170/**
171 * @opcode 0x08
172 * @opgroup og_gen_arith_bin
173 * @opflmodify cf,pf,af,zf,sf,of
174 * @opflundef af
175 * @opflclear of,cf
176 * @optest op1=7 op2=12 -> op1=15 efl&|=nc,po,na,nz,pl,nv
177 * @optest efl|=of,cf op1=0 op2=0 -> op1=0 efl&|=nc,po,na,zf,pl,nv
178 * @optest op1=0xee op2=0x11 -> op1=0xff efl&|=nc,po,na,nz,ng,nv
179 * @optest op1=0xff op2=0xff -> op1=0xff efl&|=nc,po,na,nz,ng,nv
180 */
181FNIEMOP_DEF(iemOp_or_Eb_Gb)
182{
183 IEMOP_MNEMONIC2(MR, OR, or, Eb, Gb, DISOPTYPE_HARMLESS, IEMOPHINT_IGNORES_OP_SIZE | IEMOPHINT_LOCK_ALLOWED);
184 IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF);
185 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rm_r8, &g_iemAImpl_or);
186}
187
188
189/*
190 * @opcode 0x09
191 * @opgroup og_gen_arith_bin
192 * @opflmodify cf,pf,af,zf,sf,of
193 * @opflundef af
194 * @opflclear of,cf
195 * @optest efl|=of,cf op1=12 op2=7 -> op1=15 efl&|=nc,po,na,nz,pl,nv
196 * @optest efl|=of,cf op1=0 op2=0 -> op1=0 efl&|=nc,po,na,zf,pl,nv
197 * @optest op1=-2 op2=1 -> op1=-1 efl&|=nc,po,na,nz,ng,nv
198 * @optest o16 / op1=0x5a5a op2=0xa5a5 -> op1=-1 efl&|=nc,po,na,nz,ng,nv
199 * @optest o32 / op1=0x5a5a5a5a op2=0xa5a5a5a5 -> op1=-1 efl&|=nc,po,na,nz,ng,nv
200 * @optest o64 / op1=0x5a5a5a5a5a5a5a5a op2=0xa5a5a5a5a5a5a5a5 -> op1=-1 efl&|=nc,po,na,nz,ng,nv
201 */
202FNIEMOP_DEF(iemOp_or_Ev_Gv)
203{
204 IEMOP_MNEMONIC2(MR, OR, or, Ev, Gv, DISOPTYPE_HARMLESS, IEMOPHINT_LOCK_ALLOWED);
205 IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF);
206 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rm_rv, &g_iemAImpl_or);
207}
208
209
210/**
211 * @opcode 0x0a
212 * @opgroup og_gen_arith_bin
213 * @opflmodify cf,pf,af,zf,sf,of
214 * @opflundef af
215 * @opflclear of,cf
216 * @opcopytests iemOp_or_Eb_Gb
217 */
218FNIEMOP_DEF(iemOp_or_Gb_Eb)
219{
220 IEMOP_MNEMONIC2(RM, OR, or, Gb, Eb, DISOPTYPE_HARMLESS, IEMOPHINT_IGNORES_OP_SIZE | IEMOPHINT_LOCK_ALLOWED);
221 IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF);
222 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_r8_rm, &g_iemAImpl_or);
223}
224
225
226/**
227 * @opcode 0x0b
228 * @opgroup og_gen_arith_bin
229 * @opflmodify cf,pf,af,zf,sf,of
230 * @opflundef af
231 * @opflclear of,cf
232 * @opcopytests iemOp_or_Ev_Gv
233 */
234FNIEMOP_DEF(iemOp_or_Gv_Ev)
235{
236 IEMOP_MNEMONIC2(RM, OR, or, Gv, Ev, DISOPTYPE_HARMLESS, 0);
237 IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF);
238 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rv_rm, &g_iemAImpl_or);
239}
240
241
242/**
243 * @opcode 0x0c
244 * @opgroup og_gen_arith_bin
245 * @opflmodify cf,pf,af,zf,sf,of
246 * @opflundef af
247 * @opflclear of,cf
248 * @opcopytests iemOp_or_Eb_Gb
249 */
250FNIEMOP_DEF(iemOp_or_Al_Ib)
251{
252 IEMOP_MNEMONIC2(FIXED, OR, or, AL, Ib, DISOPTYPE_HARMLESS, IEMOPHINT_IGNORES_OP_SIZE);
253 IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF);
254 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_AL_Ib, &g_iemAImpl_or);
255}
256
257
258/**
259 * @opcode 0x0d
260 * @opgroup og_gen_arith_bin
261 * @opflmodify cf,pf,af,zf,sf,of
262 * @opflundef af
263 * @opflclear of,cf
264 * @optest efl|=of,cf op1=12 op2=7 -> op1=15 efl&|=nc,po,na,nz,pl,nv
265 * @optest efl|=of,cf op1=0 op2=0 -> op1=0 efl&|=nc,po,na,zf,pl,nv
266 * @optest op1=-2 op2=1 -> op1=-1 efl&|=nc,po,na,nz,ng,nv
267 * @optest o16 / op1=0x5a5a op2=0xa5a5 -> op1=-1 efl&|=nc,po,na,nz,ng,nv
268 * @optest o32 / op1=0x5a5a5a5a op2=0xa5a5a5a5 -> op1=-1 efl&|=nc,po,na,nz,ng,nv
269 * @optest o64 / op1=0x5a5a5a5a5a5a5a5a op2=0xa5a5a5a5 -> op1=-1 efl&|=nc,po,na,nz,ng,nv
270 * @optest o64 / op1=0x5a5a5a5aa5a5a5a5 op2=0x5a5a5a5a -> op1=0x5a5a5a5affffffff efl&|=nc,po,na,nz,pl,nv
271 */
272FNIEMOP_DEF(iemOp_or_eAX_Iz)
273{
274 IEMOP_MNEMONIC2(FIXED, OR, or, rAX, Iz, DISOPTYPE_HARMLESS, 0);
275 IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF);
276 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rAX_Iz, &g_iemAImpl_or);
277}
278
279
280/**
281 * @opcode 0x0e
282 * @opgroup og_stack_sreg
283 */
284FNIEMOP_DEF(iemOp_push_CS)
285{
286 IEMOP_MNEMONIC1(FIXED, PUSH, push, CS, DISOPTYPE_HARMLESS | DISOPTYPE_POTENTIALLY_DANGEROUS | DISOPTYPE_INVALID_64, 0);
287 IEMOP_HLP_NO_64BIT();
288 return FNIEMOP_CALL_1(iemOpCommonPushSReg, X86_SREG_CS);
289}
290
291
292/**
293 * @opcode 0x0f
294 * @opmnemonic EscTwo0f
295 * @openc two0f
296 * @opdisenum OP_2B_ESC
297 * @ophints harmless
298 * @opgroup og_escapes
299 */
300FNIEMOP_DEF(iemOp_2byteEscape)
301{
302#ifdef VBOX_STRICT
303 /* Sanity check the table the first time around. */
304 static bool s_fTested = false;
305 if (RT_LIKELY(s_fTested)) { /* likely */ }
306 else
307 {
308 s_fTested = true;
309 Assert(g_apfnTwoByteMap[0xbc * 4 + 0] == iemOp_bsf_Gv_Ev);
310 Assert(g_apfnTwoByteMap[0xbc * 4 + 1] == iemOp_bsf_Gv_Ev);
311 Assert(g_apfnTwoByteMap[0xbc * 4 + 2] == iemOp_tzcnt_Gv_Ev);
312 Assert(g_apfnTwoByteMap[0xbc * 4 + 3] == iemOp_bsf_Gv_Ev);
313 }
314#endif
315
316 if (RT_LIKELY(IEM_GET_TARGET_CPU(pVCpu) >= IEMTARGETCPU_286))
317 {
318 uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b);
319 IEMOP_HLP_MIN_286();
320 return FNIEMOP_CALL(g_apfnTwoByteMap[(uintptr_t)b * 4 + pVCpu->iem.s.idxPrefix]);
321 }
322 /* @opdone */
323
324 /*
325 * On the 8086 this is a POP CS instruction.
326 * For the time being we don't specify this this.
327 */
328 IEMOP_MNEMONIC1(FIXED, POP, pop, CS, DISOPTYPE_HARMLESS | DISOPTYPE_POTENTIALLY_DANGEROUS | DISOPTYPE_INVALID_64, IEMOPHINT_SKIP_PYTHON);
329 IEMOP_HLP_NO_64BIT();
330 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
331 return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_pop_Sreg, X86_SREG_ES, pVCpu->iem.s.enmEffOpSize);
332}
333
334/**
335 * @opcode 0x10
336 * @opgroup og_gen_arith_bin
337 * @opfltest cf
338 * @opflmodify cf,pf,af,zf,sf,of
339 * @optest op1=1 op2=1 efl&~=cf -> op1=2 efl&|=nc,pe,na,nz,pl,nv
340 * @optest op1=1 op2=1 efl|=cf -> op1=3 efl&|=nc,po,na,nz,pl,nv
341 * @optest op1=0xff op2=0 efl|=cf -> op1=0 efl&|=cf,po,af,zf,pl,nv
342 * @optest op1=0 op2=0 efl|=cf -> op1=1 efl&|=nc,pe,na,nz,pl,nv
343 * @optest op1=0 op2=0 efl&~=cf -> op1=0 efl&|=nc,po,na,zf,pl,nv
344 */
345FNIEMOP_DEF(iemOp_adc_Eb_Gb)
346{
347 IEMOP_MNEMONIC2(MR, ADC, adc, Eb, Gb, DISOPTYPE_HARMLESS, IEMOPHINT_IGNORES_OP_SIZE | IEMOPHINT_LOCK_ALLOWED);
348 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rm_r8, &g_iemAImpl_adc);
349}
350
351
352/**
353 * @opcode 0x11
354 * @opgroup og_gen_arith_bin
355 * @opfltest cf
356 * @opflmodify cf,pf,af,zf,sf,of
357 * @optest op1=1 op2=1 efl&~=cf -> op1=2 efl&|=nc,pe,na,nz,pl,nv
358 * @optest op1=1 op2=1 efl|=cf -> op1=3 efl&|=nc,po,na,nz,pl,nv
359 * @optest op1=-1 op2=0 efl|=cf -> op1=0 efl&|=cf,po,af,zf,pl,nv
360 * @optest op1=0 op2=0 efl|=cf -> op1=1 efl&|=nc,pe,na,nz,pl,nv
361 * @optest op1=0 op2=0 efl&~=cf -> op1=0 efl&|=nc,po,na,zf,pl,nv
362 */
363FNIEMOP_DEF(iemOp_adc_Ev_Gv)
364{
365 IEMOP_MNEMONIC2(MR, ADC, adc, Ev, Gv, DISOPTYPE_HARMLESS, IEMOPHINT_LOCK_ALLOWED);
366 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rm_rv, &g_iemAImpl_adc);
367}
368
369
370/**
371 * @opcode 0x12
372 * @opgroup og_gen_arith_bin
373 * @opfltest cf
374 * @opflmodify cf,pf,af,zf,sf,of
375 * @opcopytests iemOp_adc_Eb_Gb
376 */
377FNIEMOP_DEF(iemOp_adc_Gb_Eb)
378{
379 IEMOP_MNEMONIC2(RM, ADC, adc, Gb, Eb, DISOPTYPE_HARMLESS, IEMOPHINT_IGNORES_OP_SIZE);
380 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_r8_rm, &g_iemAImpl_adc);
381}
382
383
384/**
385 * @opcode 0x13
386 * @opgroup og_gen_arith_bin
387 * @opfltest cf
388 * @opflmodify cf,pf,af,zf,sf,of
389 * @opcopytests iemOp_adc_Ev_Gv
390 */
391FNIEMOP_DEF(iemOp_adc_Gv_Ev)
392{
393 IEMOP_MNEMONIC2(RM, ADC, adc, Gv, Ev, DISOPTYPE_HARMLESS, 0);
394 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rv_rm, &g_iemAImpl_adc);
395}
396
397
398/**
399 * @opcode 0x14
400 * @opgroup og_gen_arith_bin
401 * @opfltest cf
402 * @opflmodify cf,pf,af,zf,sf,of
403 * @opcopytests iemOp_adc_Eb_Gb
404 */
405FNIEMOP_DEF(iemOp_adc_Al_Ib)
406{
407 IEMOP_MNEMONIC2(FIXED, ADC, adc, AL, Ib, DISOPTYPE_HARMLESS, IEMOPHINT_IGNORES_OP_SIZE);
408 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_AL_Ib, &g_iemAImpl_adc);
409}
410
411
412/**
413 * @opcode 0x15
414 * @opgroup og_gen_arith_bin
415 * @opfltest cf
416 * @opflmodify cf,pf,af,zf,sf,of
417 * @opcopytests iemOp_adc_Ev_Gv
418 */
419FNIEMOP_DEF(iemOp_adc_eAX_Iz)
420{
421 IEMOP_MNEMONIC2(FIXED, ADC, adc, rAX, Iz, DISOPTYPE_HARMLESS, 0);
422 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rAX_Iz, &g_iemAImpl_adc);
423}
424
425
426/**
427 * @opcode 0x16
428 */
429FNIEMOP_DEF(iemOp_push_SS)
430{
431 IEMOP_MNEMONIC1(FIXED, PUSH, push, SS, DISOPTYPE_HARMLESS | DISOPTYPE_INVALID_64 | DISOPTYPE_RRM_DANGEROUS, 0);
432 IEMOP_HLP_NO_64BIT();
433 return FNIEMOP_CALL_1(iemOpCommonPushSReg, X86_SREG_SS);
434}
435
436
437/**
438 * @opcode 0x17
439 * @opgroup og_gen_arith_bin
440 * @opfltest cf
441 * @opflmodify cf,pf,af,zf,sf,of
442 */
443FNIEMOP_DEF(iemOp_pop_SS)
444{
445 IEMOP_MNEMONIC1(FIXED, POP, pop, SS, DISOPTYPE_HARMLESS | DISOPTYPE_INHIBIT_IRQS | DISOPTYPE_INVALID_64 | DISOPTYPE_RRM_DANGEROUS , 0);
446 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
447 IEMOP_HLP_NO_64BIT();
448 return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_pop_Sreg, X86_SREG_SS, pVCpu->iem.s.enmEffOpSize);
449}
450
451
452/**
453 * @opcode 0x18
454 * @opgroup og_gen_arith_bin
455 * @opfltest cf
456 * @opflmodify cf,pf,af,zf,sf,of
457 */
458FNIEMOP_DEF(iemOp_sbb_Eb_Gb)
459{
460 IEMOP_MNEMONIC2(MR, SBB, sbb, Eb, Gb, DISOPTYPE_HARMLESS, IEMOPHINT_IGNORES_OP_SIZE | IEMOPHINT_LOCK_ALLOWED);
461 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rm_r8, &g_iemAImpl_sbb);
462}
463
464
465/**
466 * @opcode 0x19
467 * @opgroup og_gen_arith_bin
468 * @opfltest cf
469 * @opflmodify cf,pf,af,zf,sf,of
470 */
471FNIEMOP_DEF(iemOp_sbb_Ev_Gv)
472{
473 IEMOP_MNEMONIC2(MR, SBB, sbb, Ev, Gv, DISOPTYPE_HARMLESS, IEMOPHINT_LOCK_ALLOWED);
474 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rm_rv, &g_iemAImpl_sbb);
475}
476
477
478/**
479 * @opcode 0x1a
480 * @opgroup og_gen_arith_bin
481 * @opfltest cf
482 * @opflmodify cf,pf,af,zf,sf,of
483 */
484FNIEMOP_DEF(iemOp_sbb_Gb_Eb)
485{
486 IEMOP_MNEMONIC2(RM, SBB, sbb, Gb, Eb, DISOPTYPE_HARMLESS, IEMOPHINT_IGNORES_OP_SIZE);
487 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_r8_rm, &g_iemAImpl_sbb);
488}
489
490
491/**
492 * @opcode 0x1b
493 * @opgroup og_gen_arith_bin
494 * @opfltest cf
495 * @opflmodify cf,pf,af,zf,sf,of
496 */
497FNIEMOP_DEF(iemOp_sbb_Gv_Ev)
498{
499 IEMOP_MNEMONIC2(RM, SBB, sbb, Gv, Ev, DISOPTYPE_HARMLESS, 0);
500 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rv_rm, &g_iemAImpl_sbb);
501}
502
503
504/**
505 * @opcode 0x1c
506 * @opgroup og_gen_arith_bin
507 * @opfltest cf
508 * @opflmodify cf,pf,af,zf,sf,of
509 */
510FNIEMOP_DEF(iemOp_sbb_Al_Ib)
511{
512 IEMOP_MNEMONIC2(FIXED, SBB, sbb, AL, Ib, DISOPTYPE_HARMLESS, IEMOPHINT_IGNORES_OP_SIZE);
513 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_AL_Ib, &g_iemAImpl_sbb);
514}
515
516
517/**
518 * @opcode 0x1d
519 * @opgroup og_gen_arith_bin
520 * @opfltest cf
521 * @opflmodify cf,pf,af,zf,sf,of
522 */
523FNIEMOP_DEF(iemOp_sbb_eAX_Iz)
524{
525 IEMOP_MNEMONIC2(FIXED, SBB, sbb, rAX, Iz, DISOPTYPE_HARMLESS, 0);
526 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rAX_Iz, &g_iemAImpl_sbb);
527}
528
529
530/**
531 * @opcode 0x1e
532 * @opgroup og_stack_sreg
533 */
534FNIEMOP_DEF(iemOp_push_DS)
535{
536 IEMOP_MNEMONIC1(FIXED, PUSH, push, DS, DISOPTYPE_HARMLESS | DISOPTYPE_INVALID_64, 0);
537 IEMOP_HLP_NO_64BIT();
538 return FNIEMOP_CALL_1(iemOpCommonPushSReg, X86_SREG_DS);
539}
540
541
542/**
543 * @opcode 0x1f
544 * @opgroup og_stack_sreg
545 */
546FNIEMOP_DEF(iemOp_pop_DS)
547{
548 IEMOP_MNEMONIC1(FIXED, POP, pop, DS, DISOPTYPE_HARMLESS | DISOPTYPE_INVALID_64 | DISOPTYPE_RRM_DANGEROUS, 0);
549 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
550 IEMOP_HLP_NO_64BIT();
551 return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_pop_Sreg, X86_SREG_DS, pVCpu->iem.s.enmEffOpSize);
552}
553
554
555/**
556 * @opcode 0x20
557 * @opgroup og_gen_arith_bin
558 * @opflmodify cf,pf,af,zf,sf,of
559 * @opflundef af
560 * @opflclear of,cf
561 */
562FNIEMOP_DEF(iemOp_and_Eb_Gb)
563{
564 IEMOP_MNEMONIC2(MR, AND, and, Eb, Gb, DISOPTYPE_HARMLESS, IEMOPHINT_IGNORES_OP_SIZE | IEMOPHINT_LOCK_ALLOWED);
565 IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF);
566 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rm_r8, &g_iemAImpl_and);
567}
568
569
570/**
571 * @opcode 0x21
572 * @opgroup og_gen_arith_bin
573 * @opflmodify cf,pf,af,zf,sf,of
574 * @opflundef af
575 * @opflclear of,cf
576 */
577FNIEMOP_DEF(iemOp_and_Ev_Gv)
578{
579 IEMOP_MNEMONIC2(MR, AND, and, Ev, Gv, DISOPTYPE_HARMLESS, IEMOPHINT_LOCK_ALLOWED);
580 IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF);
581 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rm_rv, &g_iemAImpl_and);
582}
583
584
585/**
586 * @opcode 0x22
587 * @opgroup og_gen_arith_bin
588 * @opflmodify cf,pf,af,zf,sf,of
589 * @opflundef af
590 * @opflclear of,cf
591 */
592FNIEMOP_DEF(iemOp_and_Gb_Eb)
593{
594 IEMOP_MNEMONIC2(RM, AND, and, Gb, Eb, DISOPTYPE_HARMLESS, IEMOPHINT_IGNORES_OP_SIZE);
595 IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF);
596 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_r8_rm, &g_iemAImpl_and);
597}
598
599
600/**
601 * @opcode 0x23
602 * @opgroup og_gen_arith_bin
603 * @opflmodify cf,pf,af,zf,sf,of
604 * @opflundef af
605 * @opflclear of,cf
606 */
607FNIEMOP_DEF(iemOp_and_Gv_Ev)
608{
609 IEMOP_MNEMONIC2(RM, AND, and, Gv, Ev, DISOPTYPE_HARMLESS, 0);
610 IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF);
611 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rv_rm, &g_iemAImpl_and);
612}
613
614
615/**
616 * @opcode 0x24
617 * @opgroup og_gen_arith_bin
618 * @opflmodify cf,pf,af,zf,sf,of
619 * @opflundef af
620 * @opflclear of,cf
621 */
622FNIEMOP_DEF(iemOp_and_Al_Ib)
623{
624 IEMOP_MNEMONIC2(FIXED, AND, and, AL, Ib, DISOPTYPE_HARMLESS, 0);
625 IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF);
626 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_AL_Ib, &g_iemAImpl_and);
627}
628
629
630/**
631 * @opcode 0x25
632 * @opgroup og_gen_arith_bin
633 * @opflmodify cf,pf,af,zf,sf,of
634 * @opflundef af
635 * @opflclear of,cf
636 */
637FNIEMOP_DEF(iemOp_and_eAX_Iz)
638{
639 IEMOP_MNEMONIC2(FIXED, AND, and, rAX, Iz, DISOPTYPE_HARMLESS, 0);
640 IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF);
641 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rAX_Iz, &g_iemAImpl_and);
642}
643
644
645/**
646 * @opcode 0x26
647 * @opmnemonic SEG
648 * @op1 ES
649 * @opgroup og_prefix
650 * @openc prefix
651 * @opdisenum OP_SEG
652 * @ophints harmless
653 */
654FNIEMOP_DEF(iemOp_seg_ES)
655{
656 IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("seg es");
657 pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_SEG_ES;
658 pVCpu->iem.s.iEffSeg = X86_SREG_ES;
659
660 uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b);
661 return FNIEMOP_CALL(g_apfnOneByteMap[b]);
662}
663
664
665/**
666 * @opcode 0x27
667 * @opfltest af,cf
668 * @opflmodify cf,pf,af,zf,sf,of
669 * @opflundef of
670 */
671FNIEMOP_DEF(iemOp_daa)
672{
673 IEMOP_MNEMONIC0(FIXED, DAA, daa, DISOPTYPE_HARMLESS | DISOPTYPE_INVALID_64, 0); /* express implicit AL register use */
674 IEMOP_HLP_NO_64BIT();
675 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
676 IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_OF);
677 return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_daa);
678}
679
680
681/**
682 * @opcode 0x28
683 * @opgroup og_gen_arith_bin
684 * @opflmodify cf,pf,af,zf,sf,of
685 */
686FNIEMOP_DEF(iemOp_sub_Eb_Gb)
687{
688 IEMOP_MNEMONIC2(MR, SUB, sub, Eb, Gb, DISOPTYPE_HARMLESS, IEMOPHINT_IGNORES_OP_SIZE | IEMOPHINT_LOCK_ALLOWED);
689 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rm_r8, &g_iemAImpl_sub);
690}
691
692
693/**
694 * @opcode 0x29
695 * @opgroup og_gen_arith_bin
696 * @opflmodify cf,pf,af,zf,sf,of
697 */
698FNIEMOP_DEF(iemOp_sub_Ev_Gv)
699{
700 IEMOP_MNEMONIC2(MR, SUB, sub, Ev, Gv, DISOPTYPE_HARMLESS, IEMOPHINT_LOCK_ALLOWED);
701 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rm_rv, &g_iemAImpl_sub);
702}
703
704
705/**
706 * @opcode 0x2a
707 * @opgroup og_gen_arith_bin
708 * @opflmodify cf,pf,af,zf,sf,of
709 */
710FNIEMOP_DEF(iemOp_sub_Gb_Eb)
711{
712 IEMOP_MNEMONIC2(RM, SUB, sub, Gb, Eb, DISOPTYPE_HARMLESS, IEMOPHINT_IGNORES_OP_SIZE);
713 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_r8_rm, &g_iemAImpl_sub);
714}
715
716
717/**
718 * @opcode 0x2b
719 * @opgroup og_gen_arith_bin
720 * @opflmodify cf,pf,af,zf,sf,of
721 */
722FNIEMOP_DEF(iemOp_sub_Gv_Ev)
723{
724 IEMOP_MNEMONIC2(RM, SUB, sub, Gv, Ev, DISOPTYPE_HARMLESS, 0);
725 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rv_rm, &g_iemAImpl_sub);
726}
727
728
729/**
730 * @opcode 0x2c
731 * @opgroup og_gen_arith_bin
732 * @opflmodify cf,pf,af,zf,sf,of
733 */
734FNIEMOP_DEF(iemOp_sub_Al_Ib)
735{
736 IEMOP_MNEMONIC2(FIXED, SUB, sub, AL, Ib, DISOPTYPE_HARMLESS, IEMOPHINT_IGNORES_OP_SIZE);
737 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_AL_Ib, &g_iemAImpl_sub);
738}
739
740
741/**
742 * @opcode 0x2d
743 * @opgroup og_gen_arith_bin
744 * @opflmodify cf,pf,af,zf,sf,of
745 */
746FNIEMOP_DEF(iemOp_sub_eAX_Iz)
747{
748 IEMOP_MNEMONIC2(FIXED, SUB, sub, rAX, Iz, DISOPTYPE_HARMLESS, 0);
749 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rAX_Iz, &g_iemAImpl_sub);
750}
751
752
753/**
754 * @opcode 0x2e
755 * @opmnemonic SEG
756 * @op1 CS
757 * @opgroup og_prefix
758 * @openc prefix
759 * @opdisenum OP_SEG
760 * @ophints harmless
761 */
762FNIEMOP_DEF(iemOp_seg_CS)
763{
764 IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("seg cs");
765 pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_SEG_CS;
766 pVCpu->iem.s.iEffSeg = X86_SREG_CS;
767
768 uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b);
769 return FNIEMOP_CALL(g_apfnOneByteMap[b]);
770}
771
772
773/**
774 * @opcode 0x2f
775 * @opfltest af,cf
776 * @opflmodify cf,pf,af,zf,sf,of
777 * @opflundef of
778 */
779FNIEMOP_DEF(iemOp_das)
780{
781 IEMOP_MNEMONIC0(FIXED, DAS, das, DISOPTYPE_HARMLESS | DISOPTYPE_INVALID_64, 0); /* express implicit AL register use */
782 IEMOP_HLP_NO_64BIT();
783 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
784 IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_OF);
785 return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_das);
786}
787
788
789/**
790 * @opcode 0x30
791 * @opgroup og_gen_arith_bin
792 * @opflmodify cf,pf,af,zf,sf,of
793 * @opflundef af
794 * @opflclear of,cf
795 */
796FNIEMOP_DEF(iemOp_xor_Eb_Gb)
797{
798 IEMOP_MNEMONIC2(MR, XOR, xor, Eb, Gb, DISOPTYPE_HARMLESS, IEMOPHINT_IGNORES_OP_SIZE | IEMOPHINT_LOCK_ALLOWED);
799 IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF);
800 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rm_r8, &g_iemAImpl_xor);
801}
802
803
804/**
805 * @opcode 0x31
806 * @opgroup og_gen_arith_bin
807 * @opflmodify cf,pf,af,zf,sf,of
808 * @opflundef af
809 * @opflclear of,cf
810 */
811FNIEMOP_DEF(iemOp_xor_Ev_Gv)
812{
813 IEMOP_MNEMONIC2(MR, XOR, xor, Ev, Gv, DISOPTYPE_HARMLESS, IEMOPHINT_LOCK_ALLOWED);
814 IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF);
815 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rm_rv, &g_iemAImpl_xor);
816}
817
818
819/**
820 * @opcode 0x32
821 * @opgroup og_gen_arith_bin
822 * @opflmodify cf,pf,af,zf,sf,of
823 * @opflundef af
824 * @opflclear of,cf
825 */
826FNIEMOP_DEF(iemOp_xor_Gb_Eb)
827{
828 IEMOP_MNEMONIC2(RM, XOR, xor, Gb, Eb, DISOPTYPE_HARMLESS, IEMOPHINT_IGNORES_OP_SIZE);
829 IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF);
830 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_r8_rm, &g_iemAImpl_xor);
831}
832
833
834/**
835 * @opcode 0x33
836 * @opgroup og_gen_arith_bin
837 * @opflmodify cf,pf,af,zf,sf,of
838 * @opflundef af
839 * @opflclear of,cf
840 */
841FNIEMOP_DEF(iemOp_xor_Gv_Ev)
842{
843 IEMOP_MNEMONIC2(RM, XOR, xor, Gv, Ev, DISOPTYPE_HARMLESS, 0);
844 IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF);
845 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rv_rm, &g_iemAImpl_xor);
846}
847
848
849/**
850 * @opcode 0x34
851 * @opgroup og_gen_arith_bin
852 * @opflmodify cf,pf,af,zf,sf,of
853 * @opflundef af
854 * @opflclear of,cf
855 */
856FNIEMOP_DEF(iemOp_xor_Al_Ib)
857{
858 IEMOP_MNEMONIC2(FIXED, XOR, xor, AL, Ib, DISOPTYPE_HARMLESS, IEMOPHINT_IGNORES_OP_SIZE);
859 IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF);
860 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_AL_Ib, &g_iemAImpl_xor);
861}
862
863
864/**
865 * @opcode 0x35
866 * @opgroup og_gen_arith_bin
867 * @opflmodify cf,pf,af,zf,sf,of
868 * @opflundef af
869 * @opflclear of,cf
870 */
871FNIEMOP_DEF(iemOp_xor_eAX_Iz)
872{
873 IEMOP_MNEMONIC2(FIXED, XOR, xor, rAX, Iz, DISOPTYPE_HARMLESS, IEMOPHINT_IGNORES_OP_SIZE);
874 IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF);
875 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rAX_Iz, &g_iemAImpl_xor);
876}
877
878
879/**
880 * @opcode 0x36
881 * @opmnemonic SEG
882 * @op1 SS
883 * @opgroup og_prefix
884 * @openc prefix
885 * @opdisenum OP_SEG
886 * @ophints harmless
887 */
888FNIEMOP_DEF(iemOp_seg_SS)
889{
890 IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("seg ss");
891 pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_SEG_SS;
892 pVCpu->iem.s.iEffSeg = X86_SREG_SS;
893
894 uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b);
895 return FNIEMOP_CALL(g_apfnOneByteMap[b]);
896}
897
898
899/**
900 * @opcode 0x37
901 * @opfltest af,cf
902 * @opflmodify cf,pf,af,zf,sf,of
903 * @opflundef pf,zf,sf,of
904 * @opgroup og_gen_arith_dec
905 * @optest efl&~=af ax=9 -> efl&|=nc,po,na,nz,pl,nv
906 * @optest efl&~=af ax=0 -> efl&|=nc,po,na,zf,pl,nv
907 * @optest intel / efl&~=af ax=0x00f0 -> ax=0x0000 efl&|=nc,po,na,zf,pl,nv
908 * @optest amd / efl&~=af ax=0x00f0 -> ax=0x0000 efl&|=nc,po,na,nz,pl,nv
909 * @optest efl&~=af ax=0x00f9 -> ax=0x0009 efl&|=nc,po,na,nz,pl,nv
910 * @optest efl|=af ax=0 -> ax=0x0106 efl&|=cf,po,af,nz,pl,nv
911 * @optest efl|=af ax=0x0100 -> ax=0x0206 efl&|=cf,po,af,nz,pl,nv
912 * @optest intel / efl|=af ax=0x000a -> ax=0x0100 efl&|=cf,po,af,zf,pl,nv
913 * @optest amd / efl|=af ax=0x000a -> ax=0x0100 efl&|=cf,pe,af,nz,pl,nv
914 * @optest intel / efl|=af ax=0x010a -> ax=0x0200 efl&|=cf,po,af,zf,pl,nv
915 * @optest amd / efl|=af ax=0x010a -> ax=0x0200 efl&|=cf,pe,af,nz,pl,nv
916 * @optest intel / efl|=af ax=0x0f0a -> ax=0x1000 efl&|=cf,po,af,zf,pl,nv
917 * @optest amd / efl|=af ax=0x0f0a -> ax=0x1000 efl&|=cf,pe,af,nz,pl,nv
918 * @optest intel / efl|=af ax=0x7f0a -> ax=0x8000 efl&|=cf,po,af,zf,pl,nv
919 * @optest amd / efl|=af ax=0x7f0a -> ax=0x8000 efl&|=cf,pe,af,nz,ng,ov
920 * @optest intel / efl|=af ax=0xff0a -> ax=0x0000 efl&|=cf,po,af,zf,pl,nv
921 * @optest amd / efl|=af ax=0xff0a -> ax=0x0000 efl&|=cf,pe,af,nz,pl,nv
922 * @optest intel / efl&~=af ax=0xff0a -> ax=0x0000 efl&|=cf,po,af,zf,pl,nv
923 * @optest amd / efl&~=af ax=0xff0a -> ax=0x0000 efl&|=cf,pe,af,nz,pl,nv
924 * @optest intel / efl&~=af ax=0x000b -> ax=0x0101 efl&|=cf,pe,af,nz,pl,nv
925 * @optest amd / efl&~=af ax=0x000b -> ax=0x0101 efl&|=cf,po,af,nz,pl,nv
926 * @optest intel / efl&~=af ax=0x000c -> ax=0x0102 efl&|=cf,pe,af,nz,pl,nv
927 * @optest amd / efl&~=af ax=0x000c -> ax=0x0102 efl&|=cf,po,af,nz,pl,nv
928 * @optest intel / efl&~=af ax=0x000d -> ax=0x0103 efl&|=cf,po,af,nz,pl,nv
929 * @optest amd / efl&~=af ax=0x000d -> ax=0x0103 efl&|=cf,pe,af,nz,pl,nv
930 * @optest intel / efl&~=af ax=0x000e -> ax=0x0104 efl&|=cf,pe,af,nz,pl,nv
931 * @optest amd / efl&~=af ax=0x000e -> ax=0x0104 efl&|=cf,po,af,nz,pl,nv
932 * @optest intel / efl&~=af ax=0x000f -> ax=0x0105 efl&|=cf,po,af,nz,pl,nv
933 * @optest amd / efl&~=af ax=0x000f -> ax=0x0105 efl&|=cf,pe,af,nz,pl,nv
934 * @optest intel / efl&~=af ax=0x020f -> ax=0x0305 efl&|=cf,po,af,nz,pl,nv
935 * @optest amd / efl&~=af ax=0x020f -> ax=0x0305 efl&|=cf,pe,af,nz,pl,nv
936 */
937FNIEMOP_DEF(iemOp_aaa)
938{
939 IEMOP_MNEMONIC0(FIXED, AAA, aaa, DISOPTYPE_HARMLESS | DISOPTYPE_INVALID_64, 0); /* express implicit AL/AX register use */
940 IEMOP_HLP_NO_64BIT();
941 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
942 IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_OF);
943
944 return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_aaa);
945}
946
947
948/**
949 * @opcode 0x38
950 */
951FNIEMOP_DEF(iemOp_cmp_Eb_Gb)
952{
953 IEMOP_MNEMONIC(cmp_Eb_Gb, "cmp Eb,Gb");
954 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rm_r8, &g_iemAImpl_cmp);
955}
956
957
958/**
959 * @opcode 0x39
960 */
961FNIEMOP_DEF(iemOp_cmp_Ev_Gv)
962{
963 IEMOP_MNEMONIC(cmp_Ev_Gv, "cmp Ev,Gv");
964 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rm_rv, &g_iemAImpl_cmp);
965}
966
967
968/**
969 * @opcode 0x3a
970 */
971FNIEMOP_DEF(iemOp_cmp_Gb_Eb)
972{
973 IEMOP_MNEMONIC(cmp_Gb_Eb, "cmp Gb,Eb");
974 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_r8_rm, &g_iemAImpl_cmp);
975}
976
977
978/**
979 * @opcode 0x3b
980 */
981FNIEMOP_DEF(iemOp_cmp_Gv_Ev)
982{
983 IEMOP_MNEMONIC(cmp_Gv_Ev, "cmp Gv,Ev");
984 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rv_rm, &g_iemAImpl_cmp);
985}
986
987
988/**
989 * @opcode 0x3c
990 */
991FNIEMOP_DEF(iemOp_cmp_Al_Ib)
992{
993 IEMOP_MNEMONIC(cmp_al_Ib, "cmp al,Ib");
994 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_AL_Ib, &g_iemAImpl_cmp);
995}
996
997
998/**
999 * @opcode 0x3d
1000 */
1001FNIEMOP_DEF(iemOp_cmp_eAX_Iz)
1002{
1003 IEMOP_MNEMONIC(cmp_rAX_Iz, "cmp rAX,Iz");
1004 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rAX_Iz, &g_iemAImpl_cmp);
1005}
1006
1007
1008/**
1009 * @opcode 0x3e
1010 */
1011FNIEMOP_DEF(iemOp_seg_DS)
1012{
1013 IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("seg ds");
1014 pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_SEG_DS;
1015 pVCpu->iem.s.iEffSeg = X86_SREG_DS;
1016
1017 uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b);
1018 return FNIEMOP_CALL(g_apfnOneByteMap[b]);
1019}
1020
1021
1022/**
1023 * @opcode 0x3f
1024 * @opfltest af,cf
1025 * @opflmodify cf,pf,af,zf,sf,of
1026 * @opflundef pf,zf,sf,of
1027 * @opgroup og_gen_arith_dec
1028 * @optest / efl&~=af ax=0x0009 -> efl&|=nc,po,na,nz,pl,nv
1029 * @optest / efl&~=af ax=0x0000 -> efl&|=nc,po,na,zf,pl,nv
1030 * @optest intel / efl&~=af ax=0x00f0 -> ax=0x0000 efl&|=nc,po,na,zf,pl,nv
1031 * @optest amd / efl&~=af ax=0x00f0 -> ax=0x0000 efl&|=nc,po,na,nz,pl,nv
1032 * @optest / efl&~=af ax=0x00f9 -> ax=0x0009 efl&|=nc,po,na,nz,pl,nv
1033 * @optest intel / efl|=af ax=0x0000 -> ax=0xfe0a efl&|=cf,po,af,nz,pl,nv
1034 * @optest amd / efl|=af ax=0x0000 -> ax=0xfe0a efl&|=cf,po,af,nz,ng,nv
1035 * @optest intel / efl|=af ax=0x0100 -> ax=0xff0a efl&|=cf,po,af,nz,pl,nv
1036 * @optest8 amd / efl|=af ax=0x0100 -> ax=0xff0a efl&|=cf,po,af,nz,ng,nv
1037 * @optest intel / efl|=af ax=0x000a -> ax=0xff04 efl&|=cf,pe,af,nz,pl,nv
1038 * @optest10 amd / efl|=af ax=0x000a -> ax=0xff04 efl&|=cf,pe,af,nz,ng,nv
1039 * @optest / efl|=af ax=0x010a -> ax=0x0004 efl&|=cf,pe,af,nz,pl,nv
1040 * @optest / efl|=af ax=0x020a -> ax=0x0104 efl&|=cf,pe,af,nz,pl,nv
1041 * @optest / efl|=af ax=0x0f0a -> ax=0x0e04 efl&|=cf,pe,af,nz,pl,nv
1042 * @optest / efl|=af ax=0x7f0a -> ax=0x7e04 efl&|=cf,pe,af,nz,pl,nv
1043 * @optest intel / efl|=af ax=0xff0a -> ax=0xfe04 efl&|=cf,pe,af,nz,pl,nv
1044 * @optest amd / efl|=af ax=0xff0a -> ax=0xfe04 efl&|=cf,pe,af,nz,ng,nv
1045 * @optest intel / efl&~=af ax=0xff0a -> ax=0xfe04 efl&|=cf,pe,af,nz,pl,nv
1046 * @optest amd / efl&~=af ax=0xff0a -> ax=0xfe04 efl&|=cf,pe,af,nz,ng,nv
1047 * @optest intel / efl&~=af ax=0xff09 -> ax=0xff09 efl&|=nc,po,na,nz,pl,nv
1048 * @optest amd / efl&~=af ax=0xff09 -> ax=0xff09 efl&|=nc,po,na,nz,ng,nv
1049 * @optest intel / efl&~=af ax=0x000b -> ax=0xff05 efl&|=cf,po,af,nz,pl,nv
1050 * @optest22 amd / efl&~=af ax=0x000b -> ax=0xff05 efl&|=cf,po,af,nz,ng,nv
1051 * @optest intel / efl&~=af ax=0x000c -> ax=0xff06 efl&|=cf,po,af,nz,pl,nv
1052 * @optest24 amd / efl&~=af ax=0x000c -> ax=0xff06 efl&|=cf,po,af,nz,ng,nv
1053 * @optest intel / efl&~=af ax=0x000d -> ax=0xff07 efl&|=cf,pe,af,nz,pl,nv
1054 * @optest26 amd / efl&~=af ax=0x000d -> ax=0xff07 efl&|=cf,pe,af,nz,ng,nv
1055 * @optest intel / efl&~=af ax=0x000e -> ax=0xff08 efl&|=cf,pe,af,nz,pl,nv
1056 * @optest28 amd / efl&~=af ax=0x000e -> ax=0xff08 efl&|=cf,pe,af,nz,ng,nv
1057 * @optest intel / efl&~=af ax=0x000f -> ax=0xff09 efl&|=cf,po,af,nz,pl,nv
1058 * @optest30 amd / efl&~=af ax=0x000f -> ax=0xff09 efl&|=cf,po,af,nz,ng,nv
1059 * @optest31 intel / efl&~=af ax=0x00fa -> ax=0xff04 efl&|=cf,pe,af,nz,pl,nv
1060 * @optest32 amd / efl&~=af ax=0x00fa -> ax=0xff04 efl&|=cf,pe,af,nz,ng,nv
1061 * @optest33 intel / efl&~=af ax=0xfffa -> ax=0xfe04 efl&|=cf,pe,af,nz,pl,nv
1062 * @optest34 amd / efl&~=af ax=0xfffa -> ax=0xfe04 efl&|=cf,pe,af,nz,ng,nv
1063 */
1064FNIEMOP_DEF(iemOp_aas)
1065{
1066 IEMOP_MNEMONIC0(FIXED, AAS, aas, DISOPTYPE_HARMLESS | DISOPTYPE_INVALID_64, 0); /* express implicit AL/AX register use */
1067 IEMOP_HLP_NO_64BIT();
1068 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
1069 IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_OF | X86_EFL_OF);
1070
1071 return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_aas);
1072}
1073
1074
1075/**
1076 * Common 'inc/dec/not/neg register' helper.
1077 */
1078FNIEMOP_DEF_2(iemOpCommonUnaryGReg, PCIEMOPUNARYSIZES, pImpl, uint8_t, iReg)
1079{
1080 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
1081 switch (pVCpu->iem.s.enmEffOpSize)
1082 {
1083 case IEMMODE_16BIT:
1084 IEM_MC_BEGIN(2, 0);
1085 IEM_MC_ARG(uint16_t *, pu16Dst, 0);
1086 IEM_MC_ARG(uint32_t *, pEFlags, 1);
1087 IEM_MC_REF_GREG_U16(pu16Dst, iReg);
1088 IEM_MC_REF_EFLAGS(pEFlags);
1089 IEM_MC_CALL_VOID_AIMPL_2(pImpl->pfnNormalU16, pu16Dst, pEFlags);
1090 IEM_MC_ADVANCE_RIP();
1091 IEM_MC_END();
1092 return VINF_SUCCESS;
1093
1094 case IEMMODE_32BIT:
1095 IEM_MC_BEGIN(2, 0);
1096 IEM_MC_ARG(uint32_t *, pu32Dst, 0);
1097 IEM_MC_ARG(uint32_t *, pEFlags, 1);
1098 IEM_MC_REF_GREG_U32(pu32Dst, iReg);
1099 IEM_MC_REF_EFLAGS(pEFlags);
1100 IEM_MC_CALL_VOID_AIMPL_2(pImpl->pfnNormalU32, pu32Dst, pEFlags);
1101 IEM_MC_CLEAR_HIGH_GREG_U64_BY_REF(pu32Dst);
1102 IEM_MC_ADVANCE_RIP();
1103 IEM_MC_END();
1104 return VINF_SUCCESS;
1105
1106 case IEMMODE_64BIT:
1107 IEM_MC_BEGIN(2, 0);
1108 IEM_MC_ARG(uint64_t *, pu64Dst, 0);
1109 IEM_MC_ARG(uint32_t *, pEFlags, 1);
1110 IEM_MC_REF_GREG_U64(pu64Dst, iReg);
1111 IEM_MC_REF_EFLAGS(pEFlags);
1112 IEM_MC_CALL_VOID_AIMPL_2(pImpl->pfnNormalU64, pu64Dst, pEFlags);
1113 IEM_MC_ADVANCE_RIP();
1114 IEM_MC_END();
1115 return VINF_SUCCESS;
1116 }
1117 return VINF_SUCCESS;
1118}
1119
1120
1121/**
1122 * @opcode 0x40
1123 */
1124FNIEMOP_DEF(iemOp_inc_eAX)
1125{
1126 /*
1127 * This is a REX prefix in 64-bit mode.
1128 */
1129 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
1130 {
1131 IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("rex");
1132 pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_REX;
1133
1134 uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b);
1135 return FNIEMOP_CALL(g_apfnOneByteMap[b]);
1136 }
1137
1138 IEMOP_MNEMONIC(inc_eAX, "inc eAX");
1139 return FNIEMOP_CALL_2(iemOpCommonUnaryGReg, &g_iemAImpl_inc, X86_GREG_xAX);
1140}
1141
1142
1143/**
1144 * @opcode 0x41
1145 */
1146FNIEMOP_DEF(iemOp_inc_eCX)
1147{
1148 /*
1149 * This is a REX prefix in 64-bit mode.
1150 */
1151 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
1152 {
1153 IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("rex.b");
1154 pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_REX | IEM_OP_PRF_REX_B;
1155 pVCpu->iem.s.uRexB = 1 << 3;
1156
1157 uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b);
1158 return FNIEMOP_CALL(g_apfnOneByteMap[b]);
1159 }
1160
1161 IEMOP_MNEMONIC(inc_eCX, "inc eCX");
1162 return FNIEMOP_CALL_2(iemOpCommonUnaryGReg, &g_iemAImpl_inc, X86_GREG_xCX);
1163}
1164
1165
1166/**
1167 * @opcode 0x42
1168 */
1169FNIEMOP_DEF(iemOp_inc_eDX)
1170{
1171 /*
1172 * This is a REX prefix in 64-bit mode.
1173 */
1174 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
1175 {
1176 IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("rex.x");
1177 pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_REX | IEM_OP_PRF_REX_X;
1178 pVCpu->iem.s.uRexIndex = 1 << 3;
1179
1180 uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b);
1181 return FNIEMOP_CALL(g_apfnOneByteMap[b]);
1182 }
1183
1184 IEMOP_MNEMONIC(inc_eDX, "inc eDX");
1185 return FNIEMOP_CALL_2(iemOpCommonUnaryGReg, &g_iemAImpl_inc, X86_GREG_xDX);
1186}
1187
1188
1189
1190/**
1191 * @opcode 0x43
1192 */
1193FNIEMOP_DEF(iemOp_inc_eBX)
1194{
1195 /*
1196 * This is a REX prefix in 64-bit mode.
1197 */
1198 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
1199 {
1200 IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("rex.bx");
1201 pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_REX | IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X;
1202 pVCpu->iem.s.uRexB = 1 << 3;
1203 pVCpu->iem.s.uRexIndex = 1 << 3;
1204
1205 uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b);
1206 return FNIEMOP_CALL(g_apfnOneByteMap[b]);
1207 }
1208
1209 IEMOP_MNEMONIC(inc_eBX, "inc eBX");
1210 return FNIEMOP_CALL_2(iemOpCommonUnaryGReg, &g_iemAImpl_inc, X86_GREG_xBX);
1211}
1212
1213
1214/**
1215 * @opcode 0x44
1216 */
1217FNIEMOP_DEF(iemOp_inc_eSP)
1218{
1219 /*
1220 * This is a REX prefix in 64-bit mode.
1221 */
1222 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
1223 {
1224 IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("rex.r");
1225 pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_REX | IEM_OP_PRF_REX_R;
1226 pVCpu->iem.s.uRexReg = 1 << 3;
1227
1228 uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b);
1229 return FNIEMOP_CALL(g_apfnOneByteMap[b]);
1230 }
1231
1232 IEMOP_MNEMONIC(inc_eSP, "inc eSP");
1233 return FNIEMOP_CALL_2(iemOpCommonUnaryGReg, &g_iemAImpl_inc, X86_GREG_xSP);
1234}
1235
1236
1237/**
1238 * @opcode 0x45
1239 */
1240FNIEMOP_DEF(iemOp_inc_eBP)
1241{
1242 /*
1243 * This is a REX prefix in 64-bit mode.
1244 */
1245 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
1246 {
1247 IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("rex.rb");
1248 pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_REX | IEM_OP_PRF_REX_R | IEM_OP_PRF_REX_B;
1249 pVCpu->iem.s.uRexReg = 1 << 3;
1250 pVCpu->iem.s.uRexB = 1 << 3;
1251
1252 uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b);
1253 return FNIEMOP_CALL(g_apfnOneByteMap[b]);
1254 }
1255
1256 IEMOP_MNEMONIC(inc_eBP, "inc eBP");
1257 return FNIEMOP_CALL_2(iemOpCommonUnaryGReg, &g_iemAImpl_inc, X86_GREG_xBP);
1258}
1259
1260
1261/**
1262 * @opcode 0x46
1263 */
1264FNIEMOP_DEF(iemOp_inc_eSI)
1265{
1266 /*
1267 * This is a REX prefix in 64-bit mode.
1268 */
1269 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
1270 {
1271 IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("rex.rx");
1272 pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_REX | IEM_OP_PRF_REX_R | IEM_OP_PRF_REX_X;
1273 pVCpu->iem.s.uRexReg = 1 << 3;
1274 pVCpu->iem.s.uRexIndex = 1 << 3;
1275
1276 uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b);
1277 return FNIEMOP_CALL(g_apfnOneByteMap[b]);
1278 }
1279
1280 IEMOP_MNEMONIC(inc_eSI, "inc eSI");
1281 return FNIEMOP_CALL_2(iemOpCommonUnaryGReg, &g_iemAImpl_inc, X86_GREG_xSI);
1282}
1283
1284
1285/**
1286 * @opcode 0x47
1287 */
1288FNIEMOP_DEF(iemOp_inc_eDI)
1289{
1290 /*
1291 * This is a REX prefix in 64-bit mode.
1292 */
1293 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
1294 {
1295 IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("rex.rbx");
1296 pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_REX | IEM_OP_PRF_REX_R | IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X;
1297 pVCpu->iem.s.uRexReg = 1 << 3;
1298 pVCpu->iem.s.uRexB = 1 << 3;
1299 pVCpu->iem.s.uRexIndex = 1 << 3;
1300
1301 uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b);
1302 return FNIEMOP_CALL(g_apfnOneByteMap[b]);
1303 }
1304
1305 IEMOP_MNEMONIC(inc_eDI, "inc eDI");
1306 return FNIEMOP_CALL_2(iemOpCommonUnaryGReg, &g_iemAImpl_inc, X86_GREG_xDI);
1307}
1308
1309
1310/**
1311 * @opcode 0x48
1312 */
1313FNIEMOP_DEF(iemOp_dec_eAX)
1314{
1315 /*
1316 * This is a REX prefix in 64-bit mode.
1317 */
1318 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
1319 {
1320 IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("rex.w");
1321 pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_REX | IEM_OP_PRF_SIZE_REX_W;
1322 iemRecalEffOpSize(pVCpu);
1323
1324 uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b);
1325 return FNIEMOP_CALL(g_apfnOneByteMap[b]);
1326 }
1327
1328 IEMOP_MNEMONIC(dec_eAX, "dec eAX");
1329 return FNIEMOP_CALL_2(iemOpCommonUnaryGReg, &g_iemAImpl_dec, X86_GREG_xAX);
1330}
1331
1332
1333/**
1334 * @opcode 0x49
1335 */
1336FNIEMOP_DEF(iemOp_dec_eCX)
1337{
1338 /*
1339 * This is a REX prefix in 64-bit mode.
1340 */
1341 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
1342 {
1343 IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("rex.bw");
1344 pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_REX | IEM_OP_PRF_REX_B | IEM_OP_PRF_SIZE_REX_W;
1345 pVCpu->iem.s.uRexB = 1 << 3;
1346 iemRecalEffOpSize(pVCpu);
1347
1348 uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b);
1349 return FNIEMOP_CALL(g_apfnOneByteMap[b]);
1350 }
1351
1352 IEMOP_MNEMONIC(dec_eCX, "dec eCX");
1353 return FNIEMOP_CALL_2(iemOpCommonUnaryGReg, &g_iemAImpl_dec, X86_GREG_xCX);
1354}
1355
1356
1357/**
1358 * @opcode 0x4a
1359 */
1360FNIEMOP_DEF(iemOp_dec_eDX)
1361{
1362 /*
1363 * This is a REX prefix in 64-bit mode.
1364 */
1365 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
1366 {
1367 IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("rex.xw");
1368 pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_REX | IEM_OP_PRF_REX_X | IEM_OP_PRF_SIZE_REX_W;
1369 pVCpu->iem.s.uRexIndex = 1 << 3;
1370 iemRecalEffOpSize(pVCpu);
1371
1372 uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b);
1373 return FNIEMOP_CALL(g_apfnOneByteMap[b]);
1374 }
1375
1376 IEMOP_MNEMONIC(dec_eDX, "dec eDX");
1377 return FNIEMOP_CALL_2(iemOpCommonUnaryGReg, &g_iemAImpl_dec, X86_GREG_xDX);
1378}
1379
1380
1381/**
1382 * @opcode 0x4b
1383 */
1384FNIEMOP_DEF(iemOp_dec_eBX)
1385{
1386 /*
1387 * This is a REX prefix in 64-bit mode.
1388 */
1389 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
1390 {
1391 IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("rex.bxw");
1392 pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_REX | IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X | IEM_OP_PRF_SIZE_REX_W;
1393 pVCpu->iem.s.uRexB = 1 << 3;
1394 pVCpu->iem.s.uRexIndex = 1 << 3;
1395 iemRecalEffOpSize(pVCpu);
1396
1397 uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b);
1398 return FNIEMOP_CALL(g_apfnOneByteMap[b]);
1399 }
1400
1401 IEMOP_MNEMONIC(dec_eBX, "dec eBX");
1402 return FNIEMOP_CALL_2(iemOpCommonUnaryGReg, &g_iemAImpl_dec, X86_GREG_xBX);
1403}
1404
1405
1406/**
1407 * @opcode 0x4c
1408 */
1409FNIEMOP_DEF(iemOp_dec_eSP)
1410{
1411 /*
1412 * This is a REX prefix in 64-bit mode.
1413 */
1414 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
1415 {
1416 IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("rex.rw");
1417 pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_REX | IEM_OP_PRF_REX_R | IEM_OP_PRF_SIZE_REX_W;
1418 pVCpu->iem.s.uRexReg = 1 << 3;
1419 iemRecalEffOpSize(pVCpu);
1420
1421 uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b);
1422 return FNIEMOP_CALL(g_apfnOneByteMap[b]);
1423 }
1424
1425 IEMOP_MNEMONIC(dec_eSP, "dec eSP");
1426 return FNIEMOP_CALL_2(iemOpCommonUnaryGReg, &g_iemAImpl_dec, X86_GREG_xSP);
1427}
1428
1429
1430/**
1431 * @opcode 0x4d
1432 */
1433FNIEMOP_DEF(iemOp_dec_eBP)
1434{
1435 /*
1436 * This is a REX prefix in 64-bit mode.
1437 */
1438 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
1439 {
1440 IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("rex.rbw");
1441 pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_REX | IEM_OP_PRF_REX_R | IEM_OP_PRF_REX_B | IEM_OP_PRF_SIZE_REX_W;
1442 pVCpu->iem.s.uRexReg = 1 << 3;
1443 pVCpu->iem.s.uRexB = 1 << 3;
1444 iemRecalEffOpSize(pVCpu);
1445
1446 uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b);
1447 return FNIEMOP_CALL(g_apfnOneByteMap[b]);
1448 }
1449
1450 IEMOP_MNEMONIC(dec_eBP, "dec eBP");
1451 return FNIEMOP_CALL_2(iemOpCommonUnaryGReg, &g_iemAImpl_dec, X86_GREG_xBP);
1452}
1453
1454
1455/**
1456 * @opcode 0x4e
1457 */
1458FNIEMOP_DEF(iemOp_dec_eSI)
1459{
1460 /*
1461 * This is a REX prefix in 64-bit mode.
1462 */
1463 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
1464 {
1465 IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("rex.rxw");
1466 pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_REX | IEM_OP_PRF_REX_R | IEM_OP_PRF_REX_X | IEM_OP_PRF_SIZE_REX_W;
1467 pVCpu->iem.s.uRexReg = 1 << 3;
1468 pVCpu->iem.s.uRexIndex = 1 << 3;
1469 iemRecalEffOpSize(pVCpu);
1470
1471 uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b);
1472 return FNIEMOP_CALL(g_apfnOneByteMap[b]);
1473 }
1474
1475 IEMOP_MNEMONIC(dec_eSI, "dec eSI");
1476 return FNIEMOP_CALL_2(iemOpCommonUnaryGReg, &g_iemAImpl_dec, X86_GREG_xSI);
1477}
1478
1479
1480/**
1481 * @opcode 0x4f
1482 */
1483FNIEMOP_DEF(iemOp_dec_eDI)
1484{
1485 /*
1486 * This is a REX prefix in 64-bit mode.
1487 */
1488 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
1489 {
1490 IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("rex.rbxw");
1491 pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_REX | IEM_OP_PRF_REX_R | IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X | IEM_OP_PRF_SIZE_REX_W;
1492 pVCpu->iem.s.uRexReg = 1 << 3;
1493 pVCpu->iem.s.uRexB = 1 << 3;
1494 pVCpu->iem.s.uRexIndex = 1 << 3;
1495 iemRecalEffOpSize(pVCpu);
1496
1497 uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b);
1498 return FNIEMOP_CALL(g_apfnOneByteMap[b]);
1499 }
1500
1501 IEMOP_MNEMONIC(dec_eDI, "dec eDI");
1502 return FNIEMOP_CALL_2(iemOpCommonUnaryGReg, &g_iemAImpl_dec, X86_GREG_xDI);
1503}
1504
1505
1506/**
1507 * Common 'push register' helper.
1508 */
1509FNIEMOP_DEF_1(iemOpCommonPushGReg, uint8_t, iReg)
1510{
1511 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
1512 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
1513 {
1514 iReg |= pVCpu->iem.s.uRexB;
1515 pVCpu->iem.s.enmDefOpSize = IEMMODE_64BIT;
1516 pVCpu->iem.s.enmEffOpSize = !(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_SIZE_OP) ? IEMMODE_64BIT : IEMMODE_16BIT;
1517 }
1518
1519 switch (pVCpu->iem.s.enmEffOpSize)
1520 {
1521 case IEMMODE_16BIT:
1522 IEM_MC_BEGIN(0, 1);
1523 IEM_MC_LOCAL(uint16_t, u16Value);
1524 IEM_MC_FETCH_GREG_U16(u16Value, iReg);
1525 IEM_MC_PUSH_U16(u16Value);
1526 IEM_MC_ADVANCE_RIP();
1527 IEM_MC_END();
1528 break;
1529
1530 case IEMMODE_32BIT:
1531 IEM_MC_BEGIN(0, 1);
1532 IEM_MC_LOCAL(uint32_t, u32Value);
1533 IEM_MC_FETCH_GREG_U32(u32Value, iReg);
1534 IEM_MC_PUSH_U32(u32Value);
1535 IEM_MC_ADVANCE_RIP();
1536 IEM_MC_END();
1537 break;
1538
1539 case IEMMODE_64BIT:
1540 IEM_MC_BEGIN(0, 1);
1541 IEM_MC_LOCAL(uint64_t, u64Value);
1542 IEM_MC_FETCH_GREG_U64(u64Value, iReg);
1543 IEM_MC_PUSH_U64(u64Value);
1544 IEM_MC_ADVANCE_RIP();
1545 IEM_MC_END();
1546 break;
1547 }
1548
1549 return VINF_SUCCESS;
1550}
1551
1552
1553/**
1554 * @opcode 0x50
1555 */
1556FNIEMOP_DEF(iemOp_push_eAX)
1557{
1558 IEMOP_MNEMONIC(push_rAX, "push rAX");
1559 return FNIEMOP_CALL_1(iemOpCommonPushGReg, X86_GREG_xAX);
1560}
1561
1562
1563/**
1564 * @opcode 0x51
1565 */
1566FNIEMOP_DEF(iemOp_push_eCX)
1567{
1568 IEMOP_MNEMONIC(push_rCX, "push rCX");
1569 return FNIEMOP_CALL_1(iemOpCommonPushGReg, X86_GREG_xCX);
1570}
1571
1572
1573/**
1574 * @opcode 0x52
1575 */
1576FNIEMOP_DEF(iemOp_push_eDX)
1577{
1578 IEMOP_MNEMONIC(push_rDX, "push rDX");
1579 return FNIEMOP_CALL_1(iemOpCommonPushGReg, X86_GREG_xDX);
1580}
1581
1582
1583/**
1584 * @opcode 0x53
1585 */
1586FNIEMOP_DEF(iemOp_push_eBX)
1587{
1588 IEMOP_MNEMONIC(push_rBX, "push rBX");
1589 return FNIEMOP_CALL_1(iemOpCommonPushGReg, X86_GREG_xBX);
1590}
1591
1592
1593/**
1594 * @opcode 0x54
1595 */
1596FNIEMOP_DEF(iemOp_push_eSP)
1597{
1598 IEMOP_MNEMONIC(push_rSP, "push rSP");
1599 if (IEM_GET_TARGET_CPU(pVCpu) == IEMTARGETCPU_8086)
1600 {
1601 IEM_MC_BEGIN(0, 1);
1602 IEM_MC_LOCAL(uint16_t, u16Value);
1603 IEM_MC_FETCH_GREG_U16(u16Value, X86_GREG_xSP);
1604 IEM_MC_SUB_LOCAL_U16(u16Value, 2);
1605 IEM_MC_PUSH_U16(u16Value);
1606 IEM_MC_ADVANCE_RIP();
1607 IEM_MC_END();
1608 }
1609 return FNIEMOP_CALL_1(iemOpCommonPushGReg, X86_GREG_xSP);
1610}
1611
1612
1613/**
1614 * @opcode 0x55
1615 */
1616FNIEMOP_DEF(iemOp_push_eBP)
1617{
1618 IEMOP_MNEMONIC(push_rBP, "push rBP");
1619 return FNIEMOP_CALL_1(iemOpCommonPushGReg, X86_GREG_xBP);
1620}
1621
1622
1623/**
1624 * @opcode 0x56
1625 */
1626FNIEMOP_DEF(iemOp_push_eSI)
1627{
1628 IEMOP_MNEMONIC(push_rSI, "push rSI");
1629 return FNIEMOP_CALL_1(iemOpCommonPushGReg, X86_GREG_xSI);
1630}
1631
1632
1633/**
1634 * @opcode 0x57
1635 */
1636FNIEMOP_DEF(iemOp_push_eDI)
1637{
1638 IEMOP_MNEMONIC(push_rDI, "push rDI");
1639 return FNIEMOP_CALL_1(iemOpCommonPushGReg, X86_GREG_xDI);
1640}
1641
1642
1643/**
1644 * Common 'pop register' helper.
1645 */
1646FNIEMOP_DEF_1(iemOpCommonPopGReg, uint8_t, iReg)
1647{
1648 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
1649 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
1650 {
1651 iReg |= pVCpu->iem.s.uRexB;
1652 pVCpu->iem.s.enmDefOpSize = IEMMODE_64BIT;
1653 pVCpu->iem.s.enmEffOpSize = !(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_SIZE_OP) ? IEMMODE_64BIT : IEMMODE_16BIT;
1654 }
1655
1656 switch (pVCpu->iem.s.enmEffOpSize)
1657 {
1658 case IEMMODE_16BIT:
1659 IEM_MC_BEGIN(0, 1);
1660 IEM_MC_LOCAL(uint16_t *, pu16Dst);
1661 IEM_MC_REF_GREG_U16(pu16Dst, iReg);
1662 IEM_MC_POP_U16(pu16Dst);
1663 IEM_MC_ADVANCE_RIP();
1664 IEM_MC_END();
1665 break;
1666
1667 case IEMMODE_32BIT:
1668 IEM_MC_BEGIN(0, 1);
1669 IEM_MC_LOCAL(uint32_t *, pu32Dst);
1670 IEM_MC_REF_GREG_U32(pu32Dst, iReg);
1671 IEM_MC_POP_U32(pu32Dst);
1672 IEM_MC_CLEAR_HIGH_GREG_U64_BY_REF(pu32Dst); /** @todo testcase*/
1673 IEM_MC_ADVANCE_RIP();
1674 IEM_MC_END();
1675 break;
1676
1677 case IEMMODE_64BIT:
1678 IEM_MC_BEGIN(0, 1);
1679 IEM_MC_LOCAL(uint64_t *, pu64Dst);
1680 IEM_MC_REF_GREG_U64(pu64Dst, iReg);
1681 IEM_MC_POP_U64(pu64Dst);
1682 IEM_MC_ADVANCE_RIP();
1683 IEM_MC_END();
1684 break;
1685 }
1686
1687 return VINF_SUCCESS;
1688}
1689
1690
1691/**
1692 * @opcode 0x58
1693 */
1694FNIEMOP_DEF(iemOp_pop_eAX)
1695{
1696 IEMOP_MNEMONIC(pop_rAX, "pop rAX");
1697 return FNIEMOP_CALL_1(iemOpCommonPopGReg, X86_GREG_xAX);
1698}
1699
1700
1701/**
1702 * @opcode 0x59
1703 */
1704FNIEMOP_DEF(iemOp_pop_eCX)
1705{
1706 IEMOP_MNEMONIC(pop_rCX, "pop rCX");
1707 return FNIEMOP_CALL_1(iemOpCommonPopGReg, X86_GREG_xCX);
1708}
1709
1710
1711/**
1712 * @opcode 0x5a
1713 */
1714FNIEMOP_DEF(iemOp_pop_eDX)
1715{
1716 IEMOP_MNEMONIC(pop_rDX, "pop rDX");
1717 return FNIEMOP_CALL_1(iemOpCommonPopGReg, X86_GREG_xDX);
1718}
1719
1720
1721/**
1722 * @opcode 0x5b
1723 */
1724FNIEMOP_DEF(iemOp_pop_eBX)
1725{
1726 IEMOP_MNEMONIC(pop_rBX, "pop rBX");
1727 return FNIEMOP_CALL_1(iemOpCommonPopGReg, X86_GREG_xBX);
1728}
1729
1730
1731/**
1732 * @opcode 0x5c
1733 */
1734FNIEMOP_DEF(iemOp_pop_eSP)
1735{
1736 IEMOP_MNEMONIC(pop_rSP, "pop rSP");
1737 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
1738 {
1739 if (pVCpu->iem.s.uRexB)
1740 return FNIEMOP_CALL_1(iemOpCommonPopGReg, X86_GREG_xSP);
1741 pVCpu->iem.s.enmDefOpSize = IEMMODE_64BIT;
1742 pVCpu->iem.s.enmEffOpSize = !(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_SIZE_OP) ? IEMMODE_64BIT : IEMMODE_16BIT;
1743 }
1744
1745 IEMOP_HLP_DECODED_NL_1(OP_POP, IEMOPFORM_FIXED, OP_PARM_REG_ESP,
1746 DISOPTYPE_HARMLESS | DISOPTYPE_DEFAULT_64_OP_SIZE | DISOPTYPE_REXB_EXTENDS_OPREG);
1747 /** @todo add testcase for this instruction. */
1748 switch (pVCpu->iem.s.enmEffOpSize)
1749 {
1750 case IEMMODE_16BIT:
1751 IEM_MC_BEGIN(0, 1);
1752 IEM_MC_LOCAL(uint16_t, u16Dst);
1753 IEM_MC_POP_U16(&u16Dst); /** @todo not correct MC, fix later. */
1754 IEM_MC_STORE_GREG_U16(X86_GREG_xSP, u16Dst);
1755 IEM_MC_ADVANCE_RIP();
1756 IEM_MC_END();
1757 break;
1758
1759 case IEMMODE_32BIT:
1760 IEM_MC_BEGIN(0, 1);
1761 IEM_MC_LOCAL(uint32_t, u32Dst);
1762 IEM_MC_POP_U32(&u32Dst);
1763 IEM_MC_STORE_GREG_U32(X86_GREG_xSP, u32Dst);
1764 IEM_MC_ADVANCE_RIP();
1765 IEM_MC_END();
1766 break;
1767
1768 case IEMMODE_64BIT:
1769 IEM_MC_BEGIN(0, 1);
1770 IEM_MC_LOCAL(uint64_t, u64Dst);
1771 IEM_MC_POP_U64(&u64Dst);
1772 IEM_MC_STORE_GREG_U64(X86_GREG_xSP, u64Dst);
1773 IEM_MC_ADVANCE_RIP();
1774 IEM_MC_END();
1775 break;
1776 }
1777
1778 return VINF_SUCCESS;
1779}
1780
1781
1782/**
1783 * @opcode 0x5d
1784 */
1785FNIEMOP_DEF(iemOp_pop_eBP)
1786{
1787 IEMOP_MNEMONIC(pop_rBP, "pop rBP");
1788 return FNIEMOP_CALL_1(iemOpCommonPopGReg, X86_GREG_xBP);
1789}
1790
1791
1792/**
1793 * @opcode 0x5e
1794 */
1795FNIEMOP_DEF(iemOp_pop_eSI)
1796{
1797 IEMOP_MNEMONIC(pop_rSI, "pop rSI");
1798 return FNIEMOP_CALL_1(iemOpCommonPopGReg, X86_GREG_xSI);
1799}
1800
1801
1802/**
1803 * @opcode 0x5f
1804 */
1805FNIEMOP_DEF(iemOp_pop_eDI)
1806{
1807 IEMOP_MNEMONIC(pop_rDI, "pop rDI");
1808 return FNIEMOP_CALL_1(iemOpCommonPopGReg, X86_GREG_xDI);
1809}
1810
1811
1812/**
1813 * @opcode 0x60
1814 */
1815FNIEMOP_DEF(iemOp_pusha)
1816{
1817 IEMOP_MNEMONIC(pusha, "pusha");
1818 IEMOP_HLP_MIN_186();
1819 IEMOP_HLP_NO_64BIT();
1820 if (pVCpu->iem.s.enmEffOpSize == IEMMODE_16BIT)
1821 return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_pusha_16);
1822 Assert(pVCpu->iem.s.enmEffOpSize == IEMMODE_32BIT);
1823 return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_pusha_32);
1824}
1825
1826
1827/**
1828 * @opcode 0x61
1829 */
1830FNIEMOP_DEF(iemOp_popa__mvex)
1831{
1832 if (pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT)
1833 {
1834 IEMOP_MNEMONIC(popa, "popa");
1835 IEMOP_HLP_MIN_186();
1836 IEMOP_HLP_NO_64BIT();
1837 if (pVCpu->iem.s.enmEffOpSize == IEMMODE_16BIT)
1838 return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_popa_16);
1839 Assert(pVCpu->iem.s.enmEffOpSize == IEMMODE_32BIT);
1840 return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_popa_32);
1841 }
1842 IEMOP_MNEMONIC(mvex, "mvex");
1843 Log(("mvex prefix is not supported!\n"));
1844 return IEMOP_RAISE_INVALID_OPCODE();
1845}
1846
1847
1848/**
1849 * @opcode 0x62
1850 * @opmnemonic bound
1851 * @op1 Gv
1852 * @op2 Ma
1853 * @opmincpu 80186
1854 * @ophints harmless invalid_64
1855 * @optest op1=0 op2=0 ->
1856 * @optest op1=1 op2=0 -> value.xcpt=5
1857 * @optest o16 / op1=0xffff op2=0x0000fffe ->
1858 * @optest o16 / op1=0xfffe op2=0x0000fffe ->
1859 * @optest o16 / op1=0x7fff op2=0x0000fffe -> value.xcpt=5
1860 * @optest o16 / op1=0x7fff op2=0x7ffffffe ->
1861 * @optest o16 / op1=0x7fff op2=0xfffe8000 -> value.xcpt=5
1862 * @optest o16 / op1=0x8000 op2=0xfffe8000 ->
1863 * @optest o16 / op1=0xffff op2=0xfffe8000 -> value.xcpt=5
1864 * @optest o16 / op1=0xfffe op2=0xfffe8000 ->
1865 * @optest o16 / op1=0xfffe op2=0x8000fffe -> value.xcpt=5
1866 * @optest o16 / op1=0x8000 op2=0x8000fffe -> value.xcpt=5
1867 * @optest o16 / op1=0x0000 op2=0x8000fffe -> value.xcpt=5
1868 * @optest o16 / op1=0x0001 op2=0x8000fffe -> value.xcpt=5
1869 * @optest o16 / op1=0xffff op2=0x0001000f -> value.xcpt=5
1870 * @optest o16 / op1=0x0000 op2=0x0001000f -> value.xcpt=5
1871 * @optest o16 / op1=0x0001 op2=0x0001000f -> value.xcpt=5
1872 * @optest o16 / op1=0x0002 op2=0x0001000f -> value.xcpt=5
1873 * @optest o16 / op1=0x0003 op2=0x0001000f -> value.xcpt=5
1874 * @optest o16 / op1=0x0004 op2=0x0001000f -> value.xcpt=5
1875 * @optest o16 / op1=0x000e op2=0x0001000f -> value.xcpt=5
1876 * @optest o16 / op1=0x000f op2=0x0001000f -> value.xcpt=5
1877 * @optest o16 / op1=0x0010 op2=0x0001000f -> value.xcpt=5
1878 * @optest o16 / op1=0x0011 op2=0x0001000f -> value.xcpt=5
1879 * @optest o32 / op1=0xffffffff op2=0x00000000fffffffe ->
1880 * @optest o32 / op1=0xfffffffe op2=0x00000000fffffffe ->
1881 * @optest o32 / op1=0x7fffffff op2=0x00000000fffffffe -> value.xcpt=5
1882 * @optest o32 / op1=0x7fffffff op2=0x7ffffffffffffffe ->
1883 * @optest o32 / op1=0x7fffffff op2=0xfffffffe80000000 -> value.xcpt=5
1884 * @optest o32 / op1=0x80000000 op2=0xfffffffe80000000 ->
1885 * @optest o32 / op1=0xffffffff op2=0xfffffffe80000000 -> value.xcpt=5
1886 * @optest o32 / op1=0xfffffffe op2=0xfffffffe80000000 ->
1887 * @optest o32 / op1=0xfffffffe op2=0x80000000fffffffe -> value.xcpt=5
1888 * @optest o32 / op1=0x80000000 op2=0x80000000fffffffe -> value.xcpt=5
1889 * @optest o32 / op1=0x00000000 op2=0x80000000fffffffe -> value.xcpt=5
1890 * @optest o32 / op1=0x00000002 op2=0x80000000fffffffe -> value.xcpt=5
1891 * @optest o32 / op1=0x00000001 op2=0x0000000100000003 -> value.xcpt=5
1892 * @optest o32 / op1=0x00000002 op2=0x0000000100000003 -> value.xcpt=5
1893 * @optest o32 / op1=0x00000003 op2=0x0000000100000003 -> value.xcpt=5
1894 * @optest o32 / op1=0x00000004 op2=0x0000000100000003 -> value.xcpt=5
1895 * @optest o32 / op1=0x00000005 op2=0x0000000100000003 -> value.xcpt=5
1896 * @optest o32 / op1=0x0000000e op2=0x0000000100000003 -> value.xcpt=5
1897 * @optest o32 / op1=0x0000000f op2=0x0000000100000003 -> value.xcpt=5
1898 * @optest o32 / op1=0x00000010 op2=0x0000000100000003 -> value.xcpt=5
1899 */
1900FNIEMOP_DEF(iemOp_bound_Gv_Ma__evex)
1901{
1902 /* The BOUND instruction is invalid 64-bit mode. In legacy and
1903 compatability mode it is invalid with MOD=3.
1904
1905 In 32-bit mode, the EVEX prefix works by having the top two bits (MOD)
1906 both be set. In the Intel EVEX documentation (sdm vol 2) these are simply
1907 given as R and X without an exact description, so we assume it builds on
1908 the VEX one and means they are inverted wrt REX.R and REX.X. Thus, just
1909 like with the 3-byte VEX, 32-bit code is restrict wrt addressable registers. */
1910 uint8_t bRm;
1911 if (pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT)
1912 {
1913 IEMOP_MNEMONIC2(RM_MEM, BOUND, bound, Gv, Ma, DISOPTYPE_HARMLESS, IEMOPHINT_IGNORES_OP_SIZE);
1914 IEMOP_HLP_MIN_186();
1915 IEM_OPCODE_GET_NEXT_U8(&bRm);
1916 if ((bRm & X86_MODRM_MOD_MASK) != (3 << X86_MODRM_MOD_SHIFT))
1917 {
1918 /** @todo testcase: check that there are two memory accesses involved. Check
1919 * whether they're both read before the \#BR triggers. */
1920 if (pVCpu->iem.s.enmEffOpSize == IEMMODE_16BIT)
1921 {
1922 IEM_MC_BEGIN(3, 1);
1923 IEM_MC_ARG(uint16_t, u16Index, 0); /* Note! All operands are actually signed. Lazy unsigned bird. */
1924 IEM_MC_ARG(uint16_t, u16LowerBounds, 1);
1925 IEM_MC_ARG(uint16_t, u16UpperBounds, 2);
1926 IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc);
1927
1928 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0);
1929 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
1930
1931 IEM_MC_FETCH_GREG_U16(u16Index, (bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK);
1932 IEM_MC_FETCH_MEM_U16(u16LowerBounds, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
1933 IEM_MC_FETCH_MEM_U16_DISP(u16UpperBounds, pVCpu->iem.s.iEffSeg, GCPtrEffSrc, 2);
1934
1935 IEM_MC_CALL_CIMPL_3(iemCImpl_bound_16, u16Index, u16LowerBounds, u16UpperBounds); /* returns */
1936 IEM_MC_END();
1937 }
1938 else /* 32-bit operands */
1939 {
1940 IEM_MC_BEGIN(3, 1);
1941 IEM_MC_ARG(uint32_t, u32Index, 0); /* Note! All operands are actually signed. Lazy unsigned bird. */
1942 IEM_MC_ARG(uint32_t, u32LowerBounds, 1);
1943 IEM_MC_ARG(uint32_t, u32UpperBounds, 2);
1944 IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc);
1945
1946 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0);
1947 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
1948
1949 IEM_MC_FETCH_GREG_U32(u32Index, (bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK);
1950 IEM_MC_FETCH_MEM_U32(u32LowerBounds, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
1951 IEM_MC_FETCH_MEM_U32_DISP(u32UpperBounds, pVCpu->iem.s.iEffSeg, GCPtrEffSrc, 4);
1952
1953 IEM_MC_CALL_CIMPL_3(iemCImpl_bound_32, u32Index, u32LowerBounds, u32UpperBounds); /* returns */
1954 IEM_MC_END();
1955 }
1956 }
1957
1958 /*
1959 * @opdone
1960 */
1961 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fAvx512Foundation)
1962 {
1963 /* Note that there is no need for the CPU to fetch further bytes
1964 here because MODRM.MOD == 3. */
1965 Log(("evex not supported by the guest CPU!\n"));
1966 return IEMOP_RAISE_INVALID_OPCODE();
1967 }
1968 }
1969 else
1970 {
1971 /** @todo check how this is decoded in 64-bit mode w/o EVEX. Intel probably
1972 * does modr/m read, whereas AMD probably doesn't... */
1973 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fAvx512Foundation)
1974 {
1975 Log(("evex not supported by the guest CPU!\n"));
1976 return FNIEMOP_CALL(iemOp_InvalidNeedRM);
1977 }
1978 IEM_OPCODE_GET_NEXT_U8(&bRm);
1979 }
1980
1981 IEMOP_MNEMONIC(evex, "evex");
1982 uint8_t bP2; IEM_OPCODE_GET_NEXT_U8(&bP2);
1983 uint8_t bP3; IEM_OPCODE_GET_NEXT_U8(&bP3);
1984 Log(("evex prefix is not implemented!\n"));
1985 return VERR_IEM_INSTR_NOT_IMPLEMENTED;
1986}
1987
1988
1989/** Opcode 0x63 - non-64-bit modes. */
1990FNIEMOP_DEF(iemOp_arpl_Ew_Gw)
1991{
1992 IEMOP_MNEMONIC(arpl_Ew_Gw, "arpl Ew,Gw");
1993 IEMOP_HLP_MIN_286();
1994 IEMOP_HLP_NO_REAL_OR_V86_MODE();
1995 uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm);
1996
1997 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
1998 {
1999 /* Register */
2000 IEMOP_HLP_DECODED_NL_2(OP_ARPL, IEMOPFORM_MR_REG, OP_PARM_Ew, OP_PARM_Gw, DISOPTYPE_HARMLESS);
2001 IEM_MC_BEGIN(3, 0);
2002 IEM_MC_ARG(uint16_t *, pu16Dst, 0);
2003 IEM_MC_ARG(uint16_t, u16Src, 1);
2004 IEM_MC_ARG(uint32_t *, pEFlags, 2);
2005
2006 IEM_MC_FETCH_GREG_U16(u16Src, (bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK);
2007 IEM_MC_REF_GREG_U16(pu16Dst, (bRm & X86_MODRM_RM_MASK));
2008 IEM_MC_REF_EFLAGS(pEFlags);
2009 IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_arpl, pu16Dst, u16Src, pEFlags);
2010
2011 IEM_MC_ADVANCE_RIP();
2012 IEM_MC_END();
2013 }
2014 else
2015 {
2016 /* Memory */
2017 IEM_MC_BEGIN(3, 2);
2018 IEM_MC_ARG(uint16_t *, pu16Dst, 0);
2019 IEM_MC_ARG(uint16_t, u16Src, 1);
2020 IEM_MC_ARG_LOCAL_EFLAGS(pEFlags, EFlags, 2);
2021 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
2022
2023 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
2024 IEMOP_HLP_DECODED_NL_2(OP_ARPL, IEMOPFORM_MR_REG, OP_PARM_Ew, OP_PARM_Gw, DISOPTYPE_HARMLESS);
2025 IEM_MC_MEM_MAP(pu16Dst, IEM_ACCESS_DATA_RW, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/);
2026 IEM_MC_FETCH_GREG_U16(u16Src, (bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK);
2027 IEM_MC_FETCH_EFLAGS(EFlags);
2028 IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_arpl, pu16Dst, u16Src, pEFlags);
2029
2030 IEM_MC_MEM_COMMIT_AND_UNMAP(pu16Dst, IEM_ACCESS_DATA_RW);
2031 IEM_MC_COMMIT_EFLAGS(EFlags);
2032 IEM_MC_ADVANCE_RIP();
2033 IEM_MC_END();
2034 }
2035 return VINF_SUCCESS;
2036
2037}
2038
2039
2040/**
2041 * @opcode 0x63
2042 *
2043 * @note This is a weird one. It works like a regular move instruction if
2044 * REX.W isn't set, at least according to AMD docs (rev 3.15, 2009-11).
2045 * @todo This definitely needs a testcase to verify the odd cases. */
2046FNIEMOP_DEF(iemOp_movsxd_Gv_Ev)
2047{
2048 Assert(pVCpu->iem.s.enmEffOpSize == IEMMODE_64BIT); /* Caller branched already . */
2049
2050 IEMOP_MNEMONIC(movsxd_Gv_Ev, "movsxd Gv,Ev");
2051 uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm);
2052
2053 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
2054 {
2055 /*
2056 * Register to register.
2057 */
2058 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
2059 IEM_MC_BEGIN(0, 1);
2060 IEM_MC_LOCAL(uint64_t, u64Value);
2061 IEM_MC_FETCH_GREG_U32_SX_U64(u64Value, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
2062 IEM_MC_STORE_GREG_U64(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u64Value);
2063 IEM_MC_ADVANCE_RIP();
2064 IEM_MC_END();
2065 }
2066 else
2067 {
2068 /*
2069 * We're loading a register from memory.
2070 */
2071 IEM_MC_BEGIN(0, 2);
2072 IEM_MC_LOCAL(uint64_t, u64Value);
2073 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
2074 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
2075 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
2076 IEM_MC_FETCH_MEM_U32_SX_U64(u64Value, pVCpu->iem.s.iEffSeg, GCPtrEffDst);
2077 IEM_MC_STORE_GREG_U64(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u64Value);
2078 IEM_MC_ADVANCE_RIP();
2079 IEM_MC_END();
2080 }
2081 return VINF_SUCCESS;
2082}
2083
2084
2085/**
2086 * @opcode 0x64
2087 * @opmnemonic segfs
2088 * @opmincpu 80386
2089 * @opgroup og_prefixes
2090 */
2091FNIEMOP_DEF(iemOp_seg_FS)
2092{
2093 IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("seg fs");
2094 IEMOP_HLP_MIN_386();
2095
2096 pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_SEG_FS;
2097 pVCpu->iem.s.iEffSeg = X86_SREG_FS;
2098
2099 uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b);
2100 return FNIEMOP_CALL(g_apfnOneByteMap[b]);
2101}
2102
2103
2104/**
2105 * @opcode 0x65
2106 * @opmnemonic seggs
2107 * @opmincpu 80386
2108 * @opgroup og_prefixes
2109 */
2110FNIEMOP_DEF(iemOp_seg_GS)
2111{
2112 IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("seg gs");
2113 IEMOP_HLP_MIN_386();
2114
2115 pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_SEG_GS;
2116 pVCpu->iem.s.iEffSeg = X86_SREG_GS;
2117
2118 uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b);
2119 return FNIEMOP_CALL(g_apfnOneByteMap[b]);
2120}
2121
2122
2123/**
2124 * @opcode 0x66
2125 * @opmnemonic opsize
2126 * @openc prefix
2127 * @opmincpu 80386
2128 * @ophints harmless
2129 * @opgroup og_prefixes
2130 */
2131FNIEMOP_DEF(iemOp_op_size)
2132{
2133 IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("op size");
2134 IEMOP_HLP_MIN_386();
2135
2136 pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_SIZE_OP;
2137 iemRecalEffOpSize(pVCpu);
2138
2139 /* For the 4 entry opcode tables, the operand prefix doesn't not count
2140 when REPZ or REPNZ are present. */
2141 if (pVCpu->iem.s.idxPrefix == 0)
2142 pVCpu->iem.s.idxPrefix = 1;
2143
2144 uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b);
2145 return FNIEMOP_CALL(g_apfnOneByteMap[b]);
2146}
2147
2148
2149/**
2150 * @opcode 0x67
2151 * @opmnemonic addrsize
2152 * @openc prefix
2153 * @opmincpu 80386
2154 * @ophints harmless
2155 * @opgroup og_prefixes
2156 */
2157FNIEMOP_DEF(iemOp_addr_size)
2158{
2159 IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("addr size");
2160 IEMOP_HLP_MIN_386();
2161
2162 pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_SIZE_ADDR;
2163 switch (pVCpu->iem.s.enmDefAddrMode)
2164 {
2165 case IEMMODE_16BIT: pVCpu->iem.s.enmEffAddrMode = IEMMODE_32BIT; break;
2166 case IEMMODE_32BIT: pVCpu->iem.s.enmEffAddrMode = IEMMODE_16BIT; break;
2167 case IEMMODE_64BIT: pVCpu->iem.s.enmEffAddrMode = IEMMODE_32BIT; break;
2168 default: AssertFailed();
2169 }
2170
2171 uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b);
2172 return FNIEMOP_CALL(g_apfnOneByteMap[b]);
2173}
2174
2175
2176/**
2177 * @opcode 0x68
2178 */
2179FNIEMOP_DEF(iemOp_push_Iz)
2180{
2181 IEMOP_MNEMONIC(push_Iz, "push Iz");
2182 IEMOP_HLP_MIN_186();
2183 IEMOP_HLP_DEFAULT_64BIT_OP_SIZE();
2184 switch (pVCpu->iem.s.enmEffOpSize)
2185 {
2186 case IEMMODE_16BIT:
2187 {
2188 uint16_t u16Imm; IEM_OPCODE_GET_NEXT_U16(&u16Imm);
2189 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
2190 IEM_MC_BEGIN(0,0);
2191 IEM_MC_PUSH_U16(u16Imm);
2192 IEM_MC_ADVANCE_RIP();
2193 IEM_MC_END();
2194 return VINF_SUCCESS;
2195 }
2196
2197 case IEMMODE_32BIT:
2198 {
2199 uint32_t u32Imm; IEM_OPCODE_GET_NEXT_U32(&u32Imm);
2200 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
2201 IEM_MC_BEGIN(0,0);
2202 IEM_MC_PUSH_U32(u32Imm);
2203 IEM_MC_ADVANCE_RIP();
2204 IEM_MC_END();
2205 return VINF_SUCCESS;
2206 }
2207
2208 case IEMMODE_64BIT:
2209 {
2210 uint64_t u64Imm; IEM_OPCODE_GET_NEXT_S32_SX_U64(&u64Imm);
2211 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
2212 IEM_MC_BEGIN(0,0);
2213 IEM_MC_PUSH_U64(u64Imm);
2214 IEM_MC_ADVANCE_RIP();
2215 IEM_MC_END();
2216 return VINF_SUCCESS;
2217 }
2218
2219 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2220 }
2221}
2222
2223
2224/**
2225 * @opcode 0x69
2226 */
2227FNIEMOP_DEF(iemOp_imul_Gv_Ev_Iz)
2228{
2229 IEMOP_MNEMONIC(imul_Gv_Ev_Iz, "imul Gv,Ev,Iz"); /* Gv = Ev * Iz; */
2230 IEMOP_HLP_MIN_186();
2231 uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm);
2232 IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF);
2233
2234 switch (pVCpu->iem.s.enmEffOpSize)
2235 {
2236 case IEMMODE_16BIT:
2237 {
2238 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
2239 {
2240 /* register operand */
2241 uint16_t u16Imm; IEM_OPCODE_GET_NEXT_U16(&u16Imm);
2242 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
2243
2244 IEM_MC_BEGIN(3, 1);
2245 IEM_MC_ARG(uint16_t *, pu16Dst, 0);
2246 IEM_MC_ARG_CONST(uint16_t, u16Src,/*=*/ u16Imm,1);
2247 IEM_MC_ARG(uint32_t *, pEFlags, 2);
2248 IEM_MC_LOCAL(uint16_t, u16Tmp);
2249
2250 IEM_MC_FETCH_GREG_U16(u16Tmp, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
2251 IEM_MC_REF_LOCAL(pu16Dst, u16Tmp);
2252 IEM_MC_REF_EFLAGS(pEFlags);
2253 IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_imul_two_u16, pu16Dst, u16Src, pEFlags);
2254 IEM_MC_STORE_GREG_U16(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u16Tmp);
2255
2256 IEM_MC_ADVANCE_RIP();
2257 IEM_MC_END();
2258 }
2259 else
2260 {
2261 /* memory operand */
2262 IEM_MC_BEGIN(3, 2);
2263 IEM_MC_ARG(uint16_t *, pu16Dst, 0);
2264 IEM_MC_ARG(uint16_t, u16Src, 1);
2265 IEM_MC_ARG(uint32_t *, pEFlags, 2);
2266 IEM_MC_LOCAL(uint16_t, u16Tmp);
2267 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
2268
2269 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 2);
2270 uint16_t u16Imm; IEM_OPCODE_GET_NEXT_U16(&u16Imm);
2271 IEM_MC_ASSIGN(u16Src, u16Imm);
2272 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
2273 IEM_MC_FETCH_MEM_U16(u16Tmp, pVCpu->iem.s.iEffSeg, GCPtrEffDst);
2274 IEM_MC_REF_LOCAL(pu16Dst, u16Tmp);
2275 IEM_MC_REF_EFLAGS(pEFlags);
2276 IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_imul_two_u16, pu16Dst, u16Src, pEFlags);
2277 IEM_MC_STORE_GREG_U16(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u16Tmp);
2278
2279 IEM_MC_ADVANCE_RIP();
2280 IEM_MC_END();
2281 }
2282 return VINF_SUCCESS;
2283 }
2284
2285 case IEMMODE_32BIT:
2286 {
2287 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
2288 {
2289 /* register operand */
2290 uint32_t u32Imm; IEM_OPCODE_GET_NEXT_U32(&u32Imm);
2291 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
2292
2293 IEM_MC_BEGIN(3, 1);
2294 IEM_MC_ARG(uint32_t *, pu32Dst, 0);
2295 IEM_MC_ARG_CONST(uint32_t, u32Src,/*=*/ u32Imm,1);
2296 IEM_MC_ARG(uint32_t *, pEFlags, 2);
2297 IEM_MC_LOCAL(uint32_t, u32Tmp);
2298
2299 IEM_MC_FETCH_GREG_U32(u32Tmp, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
2300 IEM_MC_REF_LOCAL(pu32Dst, u32Tmp);
2301 IEM_MC_REF_EFLAGS(pEFlags);
2302 IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_imul_two_u32, pu32Dst, u32Src, pEFlags);
2303 IEM_MC_STORE_GREG_U32(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u32Tmp);
2304
2305 IEM_MC_ADVANCE_RIP();
2306 IEM_MC_END();
2307 }
2308 else
2309 {
2310 /* memory operand */
2311 IEM_MC_BEGIN(3, 2);
2312 IEM_MC_ARG(uint32_t *, pu32Dst, 0);
2313 IEM_MC_ARG(uint32_t, u32Src, 1);
2314 IEM_MC_ARG(uint32_t *, pEFlags, 2);
2315 IEM_MC_LOCAL(uint32_t, u32Tmp);
2316 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
2317
2318 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 4);
2319 uint32_t u32Imm; IEM_OPCODE_GET_NEXT_U32(&u32Imm);
2320 IEM_MC_ASSIGN(u32Src, u32Imm);
2321 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
2322 IEM_MC_FETCH_MEM_U32(u32Tmp, pVCpu->iem.s.iEffSeg, GCPtrEffDst);
2323 IEM_MC_REF_LOCAL(pu32Dst, u32Tmp);
2324 IEM_MC_REF_EFLAGS(pEFlags);
2325 IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_imul_two_u32, pu32Dst, u32Src, pEFlags);
2326 IEM_MC_STORE_GREG_U32(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u32Tmp);
2327
2328 IEM_MC_ADVANCE_RIP();
2329 IEM_MC_END();
2330 }
2331 return VINF_SUCCESS;
2332 }
2333
2334 case IEMMODE_64BIT:
2335 {
2336 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
2337 {
2338 /* register operand */
2339 uint64_t u64Imm; IEM_OPCODE_GET_NEXT_S32_SX_U64(&u64Imm);
2340 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
2341
2342 IEM_MC_BEGIN(3, 1);
2343 IEM_MC_ARG(uint64_t *, pu64Dst, 0);
2344 IEM_MC_ARG_CONST(uint64_t, u64Src,/*=*/ u64Imm,1);
2345 IEM_MC_ARG(uint32_t *, pEFlags, 2);
2346 IEM_MC_LOCAL(uint64_t, u64Tmp);
2347
2348 IEM_MC_FETCH_GREG_U64(u64Tmp, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
2349 IEM_MC_REF_LOCAL(pu64Dst, u64Tmp);
2350 IEM_MC_REF_EFLAGS(pEFlags);
2351 IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_imul_two_u64, pu64Dst, u64Src, pEFlags);
2352 IEM_MC_STORE_GREG_U64(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u64Tmp);
2353
2354 IEM_MC_ADVANCE_RIP();
2355 IEM_MC_END();
2356 }
2357 else
2358 {
2359 /* memory operand */
2360 IEM_MC_BEGIN(3, 2);
2361 IEM_MC_ARG(uint64_t *, pu64Dst, 0);
2362 IEM_MC_ARG(uint64_t, u64Src, 1);
2363 IEM_MC_ARG(uint32_t *, pEFlags, 2);
2364 IEM_MC_LOCAL(uint64_t, u64Tmp);
2365 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
2366
2367 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 4);
2368 uint64_t u64Imm; IEM_OPCODE_GET_NEXT_S32_SX_U64(&u64Imm);
2369 IEM_MC_ASSIGN(u64Src, u64Imm);
2370 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
2371 IEM_MC_FETCH_MEM_U64(u64Tmp, pVCpu->iem.s.iEffSeg, GCPtrEffDst);
2372 IEM_MC_REF_LOCAL(pu64Dst, u64Tmp);
2373 IEM_MC_REF_EFLAGS(pEFlags);
2374 IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_imul_two_u64, pu64Dst, u64Src, pEFlags);
2375 IEM_MC_STORE_GREG_U64(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u64Tmp);
2376
2377 IEM_MC_ADVANCE_RIP();
2378 IEM_MC_END();
2379 }
2380 return VINF_SUCCESS;
2381 }
2382 }
2383 AssertFailedReturn(VERR_IEM_IPE_9);
2384}
2385
2386
2387/**
2388 * @opcode 0x6a
2389 */
2390FNIEMOP_DEF(iemOp_push_Ib)
2391{
2392 IEMOP_MNEMONIC(push_Ib, "push Ib");
2393 IEMOP_HLP_MIN_186();
2394 int8_t i8Imm; IEM_OPCODE_GET_NEXT_S8(&i8Imm);
2395 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
2396 IEMOP_HLP_DEFAULT_64BIT_OP_SIZE();
2397
2398 IEM_MC_BEGIN(0,0);
2399 switch (pVCpu->iem.s.enmEffOpSize)
2400 {
2401 case IEMMODE_16BIT:
2402 IEM_MC_PUSH_U16(i8Imm);
2403 break;
2404 case IEMMODE_32BIT:
2405 IEM_MC_PUSH_U32(i8Imm);
2406 break;
2407 case IEMMODE_64BIT:
2408 IEM_MC_PUSH_U64(i8Imm);
2409 break;
2410 }
2411 IEM_MC_ADVANCE_RIP();
2412 IEM_MC_END();
2413 return VINF_SUCCESS;
2414}
2415
2416
2417/**
2418 * @opcode 0x6b
2419 */
2420FNIEMOP_DEF(iemOp_imul_Gv_Ev_Ib)
2421{
2422 IEMOP_MNEMONIC(imul_Gv_Ev_Ib, "imul Gv,Ev,Ib"); /* Gv = Ev * Iz; */
2423 IEMOP_HLP_MIN_186();
2424 uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm);
2425 IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF);
2426
2427 switch (pVCpu->iem.s.enmEffOpSize)
2428 {
2429 case IEMMODE_16BIT:
2430 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
2431 {
2432 /* register operand */
2433 uint8_t u8Imm; IEM_OPCODE_GET_NEXT_U8(&u8Imm);
2434 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
2435
2436 IEM_MC_BEGIN(3, 1);
2437 IEM_MC_ARG(uint16_t *, pu16Dst, 0);
2438 IEM_MC_ARG_CONST(uint16_t, u16Src,/*=*/ (int8_t)u8Imm, 1);
2439 IEM_MC_ARG(uint32_t *, pEFlags, 2);
2440 IEM_MC_LOCAL(uint16_t, u16Tmp);
2441
2442 IEM_MC_FETCH_GREG_U16(u16Tmp, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
2443 IEM_MC_REF_LOCAL(pu16Dst, u16Tmp);
2444 IEM_MC_REF_EFLAGS(pEFlags);
2445 IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_imul_two_u16, pu16Dst, u16Src, pEFlags);
2446 IEM_MC_STORE_GREG_U16(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u16Tmp);
2447
2448 IEM_MC_ADVANCE_RIP();
2449 IEM_MC_END();
2450 }
2451 else
2452 {
2453 /* memory operand */
2454 IEM_MC_BEGIN(3, 2);
2455 IEM_MC_ARG(uint16_t *, pu16Dst, 0);
2456 IEM_MC_ARG(uint16_t, u16Src, 1);
2457 IEM_MC_ARG(uint32_t *, pEFlags, 2);
2458 IEM_MC_LOCAL(uint16_t, u16Tmp);
2459 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
2460
2461 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 1);
2462 uint16_t u16Imm; IEM_OPCODE_GET_NEXT_S8_SX_U16(&u16Imm);
2463 IEM_MC_ASSIGN(u16Src, u16Imm);
2464 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
2465 IEM_MC_FETCH_MEM_U16(u16Tmp, pVCpu->iem.s.iEffSeg, GCPtrEffDst);
2466 IEM_MC_REF_LOCAL(pu16Dst, u16Tmp);
2467 IEM_MC_REF_EFLAGS(pEFlags);
2468 IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_imul_two_u16, pu16Dst, u16Src, pEFlags);
2469 IEM_MC_STORE_GREG_U16(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u16Tmp);
2470
2471 IEM_MC_ADVANCE_RIP();
2472 IEM_MC_END();
2473 }
2474 return VINF_SUCCESS;
2475
2476 case IEMMODE_32BIT:
2477 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
2478 {
2479 /* register operand */
2480 uint8_t u8Imm; IEM_OPCODE_GET_NEXT_U8(&u8Imm);
2481 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
2482
2483 IEM_MC_BEGIN(3, 1);
2484 IEM_MC_ARG(uint32_t *, pu32Dst, 0);
2485 IEM_MC_ARG_CONST(uint32_t, u32Src,/*=*/ (int8_t)u8Imm, 1);
2486 IEM_MC_ARG(uint32_t *, pEFlags, 2);
2487 IEM_MC_LOCAL(uint32_t, u32Tmp);
2488
2489 IEM_MC_FETCH_GREG_U32(u32Tmp, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
2490 IEM_MC_REF_LOCAL(pu32Dst, u32Tmp);
2491 IEM_MC_REF_EFLAGS(pEFlags);
2492 IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_imul_two_u32, pu32Dst, u32Src, pEFlags);
2493 IEM_MC_STORE_GREG_U32(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u32Tmp);
2494
2495 IEM_MC_ADVANCE_RIP();
2496 IEM_MC_END();
2497 }
2498 else
2499 {
2500 /* memory operand */
2501 IEM_MC_BEGIN(3, 2);
2502 IEM_MC_ARG(uint32_t *, pu32Dst, 0);
2503 IEM_MC_ARG(uint32_t, u32Src, 1);
2504 IEM_MC_ARG(uint32_t *, pEFlags, 2);
2505 IEM_MC_LOCAL(uint32_t, u32Tmp);
2506 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
2507
2508 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 1);
2509 uint32_t u32Imm; IEM_OPCODE_GET_NEXT_S8_SX_U32(&u32Imm);
2510 IEM_MC_ASSIGN(u32Src, u32Imm);
2511 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
2512 IEM_MC_FETCH_MEM_U32(u32Tmp, pVCpu->iem.s.iEffSeg, GCPtrEffDst);
2513 IEM_MC_REF_LOCAL(pu32Dst, u32Tmp);
2514 IEM_MC_REF_EFLAGS(pEFlags);
2515 IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_imul_two_u32, pu32Dst, u32Src, pEFlags);
2516 IEM_MC_STORE_GREG_U32(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u32Tmp);
2517
2518 IEM_MC_ADVANCE_RIP();
2519 IEM_MC_END();
2520 }
2521 return VINF_SUCCESS;
2522
2523 case IEMMODE_64BIT:
2524 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
2525 {
2526 /* register operand */
2527 uint8_t u8Imm; IEM_OPCODE_GET_NEXT_U8(&u8Imm);
2528 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
2529
2530 IEM_MC_BEGIN(3, 1);
2531 IEM_MC_ARG(uint64_t *, pu64Dst, 0);
2532 IEM_MC_ARG_CONST(uint64_t, u64Src,/*=*/ (int8_t)u8Imm, 1);
2533 IEM_MC_ARG(uint32_t *, pEFlags, 2);
2534 IEM_MC_LOCAL(uint64_t, u64Tmp);
2535
2536 IEM_MC_FETCH_GREG_U64(u64Tmp, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
2537 IEM_MC_REF_LOCAL(pu64Dst, u64Tmp);
2538 IEM_MC_REF_EFLAGS(pEFlags);
2539 IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_imul_two_u64, pu64Dst, u64Src, pEFlags);
2540 IEM_MC_STORE_GREG_U64(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u64Tmp);
2541
2542 IEM_MC_ADVANCE_RIP();
2543 IEM_MC_END();
2544 }
2545 else
2546 {
2547 /* memory operand */
2548 IEM_MC_BEGIN(3, 2);
2549 IEM_MC_ARG(uint64_t *, pu64Dst, 0);
2550 IEM_MC_ARG(uint64_t, u64Src, 1);
2551 IEM_MC_ARG(uint32_t *, pEFlags, 2);
2552 IEM_MC_LOCAL(uint64_t, u64Tmp);
2553 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
2554
2555 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 1);
2556 uint64_t u64Imm; IEM_OPCODE_GET_NEXT_S8_SX_U64(&u64Imm);
2557 IEM_MC_ASSIGN(u64Src, u64Imm);
2558 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
2559 IEM_MC_FETCH_MEM_U64(u64Tmp, pVCpu->iem.s.iEffSeg, GCPtrEffDst);
2560 IEM_MC_REF_LOCAL(pu64Dst, u64Tmp);
2561 IEM_MC_REF_EFLAGS(pEFlags);
2562 IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_imul_two_u64, pu64Dst, u64Src, pEFlags);
2563 IEM_MC_STORE_GREG_U64(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u64Tmp);
2564
2565 IEM_MC_ADVANCE_RIP();
2566 IEM_MC_END();
2567 }
2568 return VINF_SUCCESS;
2569 }
2570 AssertFailedReturn(VERR_IEM_IPE_8);
2571}
2572
2573
2574/**
2575 * @opcode 0x6c
2576 */
2577FNIEMOP_DEF(iemOp_insb_Yb_DX)
2578{
2579 IEMOP_HLP_MIN_186();
2580 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
2581 if (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_REPNZ | IEM_OP_PRF_REPZ))
2582 {
2583 IEMOP_MNEMONIC(rep_insb_Yb_DX, "rep ins Yb,DX");
2584 switch (pVCpu->iem.s.enmEffAddrMode)
2585 {
2586 case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_rep_ins_op8_addr16, false);
2587 case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_rep_ins_op8_addr32, false);
2588 case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_rep_ins_op8_addr64, false);
2589 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2590 }
2591 }
2592 else
2593 {
2594 IEMOP_MNEMONIC(ins_Yb_DX, "ins Yb,DX");
2595 switch (pVCpu->iem.s.enmEffAddrMode)
2596 {
2597 case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_ins_op8_addr16, false);
2598 case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_ins_op8_addr32, false);
2599 case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_ins_op8_addr64, false);
2600 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2601 }
2602 }
2603}
2604
2605
2606/**
2607 * @opcode 0x6d
2608 */
2609FNIEMOP_DEF(iemOp_inswd_Yv_DX)
2610{
2611 IEMOP_HLP_MIN_186();
2612 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
2613 if (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_REPZ | IEM_OP_PRF_REPNZ))
2614 {
2615 IEMOP_MNEMONIC(rep_ins_Yv_DX, "rep ins Yv,DX");
2616 switch (pVCpu->iem.s.enmEffOpSize)
2617 {
2618 case IEMMODE_16BIT:
2619 switch (pVCpu->iem.s.enmEffAddrMode)
2620 {
2621 case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_rep_ins_op16_addr16, false);
2622 case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_rep_ins_op16_addr32, false);
2623 case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_rep_ins_op16_addr64, false);
2624 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2625 }
2626 break;
2627 case IEMMODE_64BIT:
2628 case IEMMODE_32BIT:
2629 switch (pVCpu->iem.s.enmEffAddrMode)
2630 {
2631 case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_rep_ins_op32_addr16, false);
2632 case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_rep_ins_op32_addr32, false);
2633 case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_rep_ins_op32_addr64, false);
2634 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2635 }
2636 break;
2637 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2638 }
2639 }
2640 else
2641 {
2642 IEMOP_MNEMONIC(ins_Yv_DX, "ins Yv,DX");
2643 switch (pVCpu->iem.s.enmEffOpSize)
2644 {
2645 case IEMMODE_16BIT:
2646 switch (pVCpu->iem.s.enmEffAddrMode)
2647 {
2648 case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_ins_op16_addr16, false);
2649 case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_ins_op16_addr32, false);
2650 case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_ins_op16_addr64, false);
2651 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2652 }
2653 break;
2654 case IEMMODE_64BIT:
2655 case IEMMODE_32BIT:
2656 switch (pVCpu->iem.s.enmEffAddrMode)
2657 {
2658 case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_ins_op32_addr16, false);
2659 case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_ins_op32_addr32, false);
2660 case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_ins_op32_addr64, false);
2661 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2662 }
2663 break;
2664 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2665 }
2666 }
2667}
2668
2669
2670/**
2671 * @opcode 0x6e
2672 */
2673FNIEMOP_DEF(iemOp_outsb_Yb_DX)
2674{
2675 IEMOP_HLP_MIN_186();
2676 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
2677 if (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_REPNZ | IEM_OP_PRF_REPZ))
2678 {
2679 IEMOP_MNEMONIC(rep_outsb_DX_Yb, "rep outs DX,Yb");
2680 switch (pVCpu->iem.s.enmEffAddrMode)
2681 {
2682 case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_rep_outs_op8_addr16, pVCpu->iem.s.iEffSeg, false);
2683 case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_rep_outs_op8_addr32, pVCpu->iem.s.iEffSeg, false);
2684 case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_rep_outs_op8_addr64, pVCpu->iem.s.iEffSeg, false);
2685 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2686 }
2687 }
2688 else
2689 {
2690 IEMOP_MNEMONIC(outs_DX_Yb, "outs DX,Yb");
2691 switch (pVCpu->iem.s.enmEffAddrMode)
2692 {
2693 case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_outs_op8_addr16, pVCpu->iem.s.iEffSeg, false);
2694 case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_outs_op8_addr32, pVCpu->iem.s.iEffSeg, false);
2695 case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_outs_op8_addr64, pVCpu->iem.s.iEffSeg, false);
2696 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2697 }
2698 }
2699}
2700
2701
2702/**
2703 * @opcode 0x6f
2704 */
2705FNIEMOP_DEF(iemOp_outswd_Yv_DX)
2706{
2707 IEMOP_HLP_MIN_186();
2708 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
2709 if (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_REPZ | IEM_OP_PRF_REPNZ))
2710 {
2711 IEMOP_MNEMONIC(rep_outs_DX_Yv, "rep outs DX,Yv");
2712 switch (pVCpu->iem.s.enmEffOpSize)
2713 {
2714 case IEMMODE_16BIT:
2715 switch (pVCpu->iem.s.enmEffAddrMode)
2716 {
2717 case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_rep_outs_op16_addr16, pVCpu->iem.s.iEffSeg, false);
2718 case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_rep_outs_op16_addr32, pVCpu->iem.s.iEffSeg, false);
2719 case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_rep_outs_op16_addr64, pVCpu->iem.s.iEffSeg, false);
2720 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2721 }
2722 break;
2723 case IEMMODE_64BIT:
2724 case IEMMODE_32BIT:
2725 switch (pVCpu->iem.s.enmEffAddrMode)
2726 {
2727 case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_rep_outs_op32_addr16, pVCpu->iem.s.iEffSeg, false);
2728 case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_rep_outs_op32_addr32, pVCpu->iem.s.iEffSeg, false);
2729 case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_rep_outs_op32_addr64, pVCpu->iem.s.iEffSeg, false);
2730 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2731 }
2732 break;
2733 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2734 }
2735 }
2736 else
2737 {
2738 IEMOP_MNEMONIC(outs_DX_Yv, "outs DX,Yv");
2739 switch (pVCpu->iem.s.enmEffOpSize)
2740 {
2741 case IEMMODE_16BIT:
2742 switch (pVCpu->iem.s.enmEffAddrMode)
2743 {
2744 case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_outs_op16_addr16, pVCpu->iem.s.iEffSeg, false);
2745 case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_outs_op16_addr32, pVCpu->iem.s.iEffSeg, false);
2746 case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_outs_op16_addr64, pVCpu->iem.s.iEffSeg, false);
2747 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2748 }
2749 break;
2750 case IEMMODE_64BIT:
2751 case IEMMODE_32BIT:
2752 switch (pVCpu->iem.s.enmEffAddrMode)
2753 {
2754 case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_outs_op32_addr16, pVCpu->iem.s.iEffSeg, false);
2755 case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_outs_op32_addr32, pVCpu->iem.s.iEffSeg, false);
2756 case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_outs_op32_addr64, pVCpu->iem.s.iEffSeg, false);
2757 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2758 }
2759 break;
2760 IEM_NOT_REACHED_DEFAULT_CASE_RET();
2761 }
2762 }
2763}
2764
2765
2766/**
2767 * @opcode 0x70
2768 */
2769FNIEMOP_DEF(iemOp_jo_Jb)
2770{
2771 IEMOP_MNEMONIC(jo_Jb, "jo Jb");
2772 int8_t i8Imm; IEM_OPCODE_GET_NEXT_S8(&i8Imm);
2773 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
2774 IEMOP_HLP_DEFAULT_64BIT_OP_SIZE();
2775
2776 IEM_MC_BEGIN(0, 0);
2777 IEM_MC_IF_EFL_BIT_SET(X86_EFL_OF) {
2778 IEM_MC_REL_JMP_S8(i8Imm);
2779 } IEM_MC_ELSE() {
2780 IEM_MC_ADVANCE_RIP();
2781 } IEM_MC_ENDIF();
2782 IEM_MC_END();
2783 return VINF_SUCCESS;
2784}
2785
2786
2787/**
2788 * @opcode 0x71
2789 */
2790FNIEMOP_DEF(iemOp_jno_Jb)
2791{
2792 IEMOP_MNEMONIC(jno_Jb, "jno Jb");
2793 int8_t i8Imm; IEM_OPCODE_GET_NEXT_S8(&i8Imm);
2794 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
2795 IEMOP_HLP_DEFAULT_64BIT_OP_SIZE();
2796
2797 IEM_MC_BEGIN(0, 0);
2798 IEM_MC_IF_EFL_BIT_SET(X86_EFL_OF) {
2799 IEM_MC_ADVANCE_RIP();
2800 } IEM_MC_ELSE() {
2801 IEM_MC_REL_JMP_S8(i8Imm);
2802 } IEM_MC_ENDIF();
2803 IEM_MC_END();
2804 return VINF_SUCCESS;
2805}
2806
2807/**
2808 * @opcode 0x72
2809 */
2810FNIEMOP_DEF(iemOp_jc_Jb)
2811{
2812 IEMOP_MNEMONIC(jc_Jb, "jc/jnae Jb");
2813 int8_t i8Imm; IEM_OPCODE_GET_NEXT_S8(&i8Imm);
2814 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
2815 IEMOP_HLP_DEFAULT_64BIT_OP_SIZE();
2816
2817 IEM_MC_BEGIN(0, 0);
2818 IEM_MC_IF_EFL_BIT_SET(X86_EFL_CF) {
2819 IEM_MC_REL_JMP_S8(i8Imm);
2820 } IEM_MC_ELSE() {
2821 IEM_MC_ADVANCE_RIP();
2822 } IEM_MC_ENDIF();
2823 IEM_MC_END();
2824 return VINF_SUCCESS;
2825}
2826
2827
2828/**
2829 * @opcode 0x73
2830 */
2831FNIEMOP_DEF(iemOp_jnc_Jb)
2832{
2833 IEMOP_MNEMONIC(jnc_Jb, "jnc/jnb Jb");
2834 int8_t i8Imm; IEM_OPCODE_GET_NEXT_S8(&i8Imm);
2835 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
2836 IEMOP_HLP_DEFAULT_64BIT_OP_SIZE();
2837
2838 IEM_MC_BEGIN(0, 0);
2839 IEM_MC_IF_EFL_BIT_SET(X86_EFL_CF) {
2840 IEM_MC_ADVANCE_RIP();
2841 } IEM_MC_ELSE() {
2842 IEM_MC_REL_JMP_S8(i8Imm);
2843 } IEM_MC_ENDIF();
2844 IEM_MC_END();
2845 return VINF_SUCCESS;
2846}
2847
2848
2849/**
2850 * @opcode 0x74
2851 */
2852FNIEMOP_DEF(iemOp_je_Jb)
2853{
2854 IEMOP_MNEMONIC(je_Jb, "je/jz Jb");
2855 int8_t i8Imm; IEM_OPCODE_GET_NEXT_S8(&i8Imm);
2856 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
2857 IEMOP_HLP_DEFAULT_64BIT_OP_SIZE();
2858
2859 IEM_MC_BEGIN(0, 0);
2860 IEM_MC_IF_EFL_BIT_SET(X86_EFL_ZF) {
2861 IEM_MC_REL_JMP_S8(i8Imm);
2862 } IEM_MC_ELSE() {
2863 IEM_MC_ADVANCE_RIP();
2864 } IEM_MC_ENDIF();
2865 IEM_MC_END();
2866 return VINF_SUCCESS;
2867}
2868
2869
2870/**
2871 * @opcode 0x75
2872 */
2873FNIEMOP_DEF(iemOp_jne_Jb)
2874{
2875 IEMOP_MNEMONIC(jne_Jb, "jne/jnz Jb");
2876 int8_t i8Imm; IEM_OPCODE_GET_NEXT_S8(&i8Imm);
2877 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
2878 IEMOP_HLP_DEFAULT_64BIT_OP_SIZE();
2879
2880 IEM_MC_BEGIN(0, 0);
2881 IEM_MC_IF_EFL_BIT_SET(X86_EFL_ZF) {
2882 IEM_MC_ADVANCE_RIP();
2883 } IEM_MC_ELSE() {
2884 IEM_MC_REL_JMP_S8(i8Imm);
2885 } IEM_MC_ENDIF();
2886 IEM_MC_END();
2887 return VINF_SUCCESS;
2888}
2889
2890
2891/**
2892 * @opcode 0x76
2893 */
2894FNIEMOP_DEF(iemOp_jbe_Jb)
2895{
2896 IEMOP_MNEMONIC(jbe_Jb, "jbe/jna Jb");
2897 int8_t i8Imm; IEM_OPCODE_GET_NEXT_S8(&i8Imm);
2898 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
2899 IEMOP_HLP_DEFAULT_64BIT_OP_SIZE();
2900
2901 IEM_MC_BEGIN(0, 0);
2902 IEM_MC_IF_EFL_ANY_BITS_SET(X86_EFL_CF | X86_EFL_ZF) {
2903 IEM_MC_REL_JMP_S8(i8Imm);
2904 } IEM_MC_ELSE() {
2905 IEM_MC_ADVANCE_RIP();
2906 } IEM_MC_ENDIF();
2907 IEM_MC_END();
2908 return VINF_SUCCESS;
2909}
2910
2911
2912/**
2913 * @opcode 0x77
2914 */
2915FNIEMOP_DEF(iemOp_jnbe_Jb)
2916{
2917 IEMOP_MNEMONIC(ja_Jb, "ja/jnbe Jb");
2918 int8_t i8Imm; IEM_OPCODE_GET_NEXT_S8(&i8Imm);
2919 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
2920 IEMOP_HLP_DEFAULT_64BIT_OP_SIZE();
2921
2922 IEM_MC_BEGIN(0, 0);
2923 IEM_MC_IF_EFL_ANY_BITS_SET(X86_EFL_CF | X86_EFL_ZF) {
2924 IEM_MC_ADVANCE_RIP();
2925 } IEM_MC_ELSE() {
2926 IEM_MC_REL_JMP_S8(i8Imm);
2927 } IEM_MC_ENDIF();
2928 IEM_MC_END();
2929 return VINF_SUCCESS;
2930}
2931
2932
2933/**
2934 * @opcode 0x78
2935 */
2936FNIEMOP_DEF(iemOp_js_Jb)
2937{
2938 IEMOP_MNEMONIC(js_Jb, "js Jb");
2939 int8_t i8Imm; IEM_OPCODE_GET_NEXT_S8(&i8Imm);
2940 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
2941 IEMOP_HLP_DEFAULT_64BIT_OP_SIZE();
2942
2943 IEM_MC_BEGIN(0, 0);
2944 IEM_MC_IF_EFL_BIT_SET(X86_EFL_SF) {
2945 IEM_MC_REL_JMP_S8(i8Imm);
2946 } IEM_MC_ELSE() {
2947 IEM_MC_ADVANCE_RIP();
2948 } IEM_MC_ENDIF();
2949 IEM_MC_END();
2950 return VINF_SUCCESS;
2951}
2952
2953
2954/**
2955 * @opcode 0x79
2956 */
2957FNIEMOP_DEF(iemOp_jns_Jb)
2958{
2959 IEMOP_MNEMONIC(jns_Jb, "jns Jb");
2960 int8_t i8Imm; IEM_OPCODE_GET_NEXT_S8(&i8Imm);
2961 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
2962 IEMOP_HLP_DEFAULT_64BIT_OP_SIZE();
2963
2964 IEM_MC_BEGIN(0, 0);
2965 IEM_MC_IF_EFL_BIT_SET(X86_EFL_SF) {
2966 IEM_MC_ADVANCE_RIP();
2967 } IEM_MC_ELSE() {
2968 IEM_MC_REL_JMP_S8(i8Imm);
2969 } IEM_MC_ENDIF();
2970 IEM_MC_END();
2971 return VINF_SUCCESS;
2972}
2973
2974
2975/**
2976 * @opcode 0x7a
2977 */
2978FNIEMOP_DEF(iemOp_jp_Jb)
2979{
2980 IEMOP_MNEMONIC(jp_Jb, "jp Jb");
2981 int8_t i8Imm; IEM_OPCODE_GET_NEXT_S8(&i8Imm);
2982 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
2983 IEMOP_HLP_DEFAULT_64BIT_OP_SIZE();
2984
2985 IEM_MC_BEGIN(0, 0);
2986 IEM_MC_IF_EFL_BIT_SET(X86_EFL_PF) {
2987 IEM_MC_REL_JMP_S8(i8Imm);
2988 } IEM_MC_ELSE() {
2989 IEM_MC_ADVANCE_RIP();
2990 } IEM_MC_ENDIF();
2991 IEM_MC_END();
2992 return VINF_SUCCESS;
2993}
2994
2995
2996/**
2997 * @opcode 0x7b
2998 */
2999FNIEMOP_DEF(iemOp_jnp_Jb)
3000{
3001 IEMOP_MNEMONIC(jnp_Jb, "jnp Jb");
3002 int8_t i8Imm; IEM_OPCODE_GET_NEXT_S8(&i8Imm);
3003 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
3004 IEMOP_HLP_DEFAULT_64BIT_OP_SIZE();
3005
3006 IEM_MC_BEGIN(0, 0);
3007 IEM_MC_IF_EFL_BIT_SET(X86_EFL_PF) {
3008 IEM_MC_ADVANCE_RIP();
3009 } IEM_MC_ELSE() {
3010 IEM_MC_REL_JMP_S8(i8Imm);
3011 } IEM_MC_ENDIF();
3012 IEM_MC_END();
3013 return VINF_SUCCESS;
3014}
3015
3016
3017/**
3018 * @opcode 0x7c
3019 */
3020FNIEMOP_DEF(iemOp_jl_Jb)
3021{
3022 IEMOP_MNEMONIC(jl_Jb, "jl/jnge Jb");
3023 int8_t i8Imm; IEM_OPCODE_GET_NEXT_S8(&i8Imm);
3024 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
3025 IEMOP_HLP_DEFAULT_64BIT_OP_SIZE();
3026
3027 IEM_MC_BEGIN(0, 0);
3028 IEM_MC_IF_EFL_BITS_NE(X86_EFL_SF, X86_EFL_OF) {
3029 IEM_MC_REL_JMP_S8(i8Imm);
3030 } IEM_MC_ELSE() {
3031 IEM_MC_ADVANCE_RIP();
3032 } IEM_MC_ENDIF();
3033 IEM_MC_END();
3034 return VINF_SUCCESS;
3035}
3036
3037
3038/**
3039 * @opcode 0x7d
3040 */
3041FNIEMOP_DEF(iemOp_jnl_Jb)
3042{
3043 IEMOP_MNEMONIC(jge_Jb, "jnl/jge Jb");
3044 int8_t i8Imm; IEM_OPCODE_GET_NEXT_S8(&i8Imm);
3045 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
3046 IEMOP_HLP_DEFAULT_64BIT_OP_SIZE();
3047
3048 IEM_MC_BEGIN(0, 0);
3049 IEM_MC_IF_EFL_BITS_NE(X86_EFL_SF, X86_EFL_OF) {
3050 IEM_MC_ADVANCE_RIP();
3051 } IEM_MC_ELSE() {
3052 IEM_MC_REL_JMP_S8(i8Imm);
3053 } IEM_MC_ENDIF();
3054 IEM_MC_END();
3055 return VINF_SUCCESS;
3056}
3057
3058
3059/**
3060 * @opcode 0x7e
3061 */
3062FNIEMOP_DEF(iemOp_jle_Jb)
3063{
3064 IEMOP_MNEMONIC(jle_Jb, "jle/jng Jb");
3065 int8_t i8Imm; IEM_OPCODE_GET_NEXT_S8(&i8Imm);
3066 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
3067 IEMOP_HLP_DEFAULT_64BIT_OP_SIZE();
3068
3069 IEM_MC_BEGIN(0, 0);
3070 IEM_MC_IF_EFL_BIT_SET_OR_BITS_NE(X86_EFL_ZF, X86_EFL_SF, X86_EFL_OF) {
3071 IEM_MC_REL_JMP_S8(i8Imm);
3072 } IEM_MC_ELSE() {
3073 IEM_MC_ADVANCE_RIP();
3074 } IEM_MC_ENDIF();
3075 IEM_MC_END();
3076 return VINF_SUCCESS;
3077}
3078
3079
3080/**
3081 * @opcode 0x7f
3082 */
3083FNIEMOP_DEF(iemOp_jnle_Jb)
3084{
3085 IEMOP_MNEMONIC(jg_Jb, "jnle/jg Jb");
3086 int8_t i8Imm; IEM_OPCODE_GET_NEXT_S8(&i8Imm);
3087 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
3088 IEMOP_HLP_DEFAULT_64BIT_OP_SIZE();
3089
3090 IEM_MC_BEGIN(0, 0);
3091 IEM_MC_IF_EFL_BIT_SET_OR_BITS_NE(X86_EFL_ZF, X86_EFL_SF, X86_EFL_OF) {
3092 IEM_MC_ADVANCE_RIP();
3093 } IEM_MC_ELSE() {
3094 IEM_MC_REL_JMP_S8(i8Imm);
3095 } IEM_MC_ENDIF();
3096 IEM_MC_END();
3097 return VINF_SUCCESS;
3098}
3099
3100
3101/**
3102 * @opcode 0x80
3103 */
3104FNIEMOP_DEF(iemOp_Grp1_Eb_Ib_80)
3105{
3106 uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm);
3107 switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK)
3108 {
3109 case 0: IEMOP_MNEMONIC(add_Eb_Ib, "add Eb,Ib"); break;
3110 case 1: IEMOP_MNEMONIC(or_Eb_Ib, "or Eb,Ib"); break;
3111 case 2: IEMOP_MNEMONIC(adc_Eb_Ib, "adc Eb,Ib"); break;
3112 case 3: IEMOP_MNEMONIC(sbb_Eb_Ib, "sbb Eb,Ib"); break;
3113 case 4: IEMOP_MNEMONIC(and_Eb_Ib, "and Eb,Ib"); break;
3114 case 5: IEMOP_MNEMONIC(sub_Eb_Ib, "sub Eb,Ib"); break;
3115 case 6: IEMOP_MNEMONIC(xor_Eb_Ib, "xor Eb,Ib"); break;
3116 case 7: IEMOP_MNEMONIC(cmp_Eb_Ib, "cmp Eb,Ib"); break;
3117 }
3118 PCIEMOPBINSIZES pImpl = g_apIemImplGrp1[(bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK];
3119
3120 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
3121 {
3122 /* register target */
3123 uint8_t u8Imm; IEM_OPCODE_GET_NEXT_U8(&u8Imm);
3124 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
3125 IEM_MC_BEGIN(3, 0);
3126 IEM_MC_ARG(uint8_t *, pu8Dst, 0);
3127 IEM_MC_ARG_CONST(uint8_t, u8Src, /*=*/ u8Imm, 1);
3128 IEM_MC_ARG(uint32_t *, pEFlags, 2);
3129
3130 IEM_MC_REF_GREG_U8(pu8Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
3131 IEM_MC_REF_EFLAGS(pEFlags);
3132 IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU8, pu8Dst, u8Src, pEFlags);
3133
3134 IEM_MC_ADVANCE_RIP();
3135 IEM_MC_END();
3136 }
3137 else
3138 {
3139 /* memory target */
3140 uint32_t fAccess;
3141 if (pImpl->pfnLockedU8)
3142 fAccess = IEM_ACCESS_DATA_RW;
3143 else /* CMP */
3144 fAccess = IEM_ACCESS_DATA_R;
3145 IEM_MC_BEGIN(3, 2);
3146 IEM_MC_ARG(uint8_t *, pu8Dst, 0);
3147 IEM_MC_ARG_LOCAL_EFLAGS( pEFlags, EFlags, 2);
3148 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
3149
3150 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 1);
3151 uint8_t u8Imm; IEM_OPCODE_GET_NEXT_U8(&u8Imm);
3152 IEM_MC_ARG_CONST(uint8_t, u8Src, /*=*/ u8Imm, 1);
3153 if (pImpl->pfnLockedU8)
3154 IEMOP_HLP_DONE_DECODING();
3155 else
3156 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
3157
3158 IEM_MC_MEM_MAP(pu8Dst, fAccess, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/);
3159 IEM_MC_FETCH_EFLAGS(EFlags);
3160 if (!(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_LOCK))
3161 IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU8, pu8Dst, u8Src, pEFlags);
3162 else
3163 IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnLockedU8, pu8Dst, u8Src, pEFlags);
3164
3165 IEM_MC_MEM_COMMIT_AND_UNMAP(pu8Dst, fAccess);
3166 IEM_MC_COMMIT_EFLAGS(EFlags);
3167 IEM_MC_ADVANCE_RIP();
3168 IEM_MC_END();
3169 }
3170 return VINF_SUCCESS;
3171}
3172
3173
3174/**
3175 * @opcode 0x81
3176 */
3177FNIEMOP_DEF(iemOp_Grp1_Ev_Iz)
3178{
3179 uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm);
3180 switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK)
3181 {
3182 case 0: IEMOP_MNEMONIC(add_Ev_Iz, "add Ev,Iz"); break;
3183 case 1: IEMOP_MNEMONIC(or_Ev_Iz, "or Ev,Iz"); break;
3184 case 2: IEMOP_MNEMONIC(adc_Ev_Iz, "adc Ev,Iz"); break;
3185 case 3: IEMOP_MNEMONIC(sbb_Ev_Iz, "sbb Ev,Iz"); break;
3186 case 4: IEMOP_MNEMONIC(and_Ev_Iz, "and Ev,Iz"); break;
3187 case 5: IEMOP_MNEMONIC(sub_Ev_Iz, "sub Ev,Iz"); break;
3188 case 6: IEMOP_MNEMONIC(xor_Ev_Iz, "xor Ev,Iz"); break;
3189 case 7: IEMOP_MNEMONIC(cmp_Ev_Iz, "cmp Ev,Iz"); break;
3190 }
3191 PCIEMOPBINSIZES pImpl = g_apIemImplGrp1[(bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK];
3192
3193 switch (pVCpu->iem.s.enmEffOpSize)
3194 {
3195 case IEMMODE_16BIT:
3196 {
3197 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
3198 {
3199 /* register target */
3200 uint16_t u16Imm; IEM_OPCODE_GET_NEXT_U16(&u16Imm);
3201 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
3202 IEM_MC_BEGIN(3, 0);
3203 IEM_MC_ARG(uint16_t *, pu16Dst, 0);
3204 IEM_MC_ARG_CONST(uint16_t, u16Src, /*=*/ u16Imm, 1);
3205 IEM_MC_ARG(uint32_t *, pEFlags, 2);
3206
3207 IEM_MC_REF_GREG_U16(pu16Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
3208 IEM_MC_REF_EFLAGS(pEFlags);
3209 IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU16, pu16Dst, u16Src, pEFlags);
3210
3211 IEM_MC_ADVANCE_RIP();
3212 IEM_MC_END();
3213 }
3214 else
3215 {
3216 /* memory target */
3217 uint32_t fAccess;
3218 if (pImpl->pfnLockedU16)
3219 fAccess = IEM_ACCESS_DATA_RW;
3220 else /* CMP, TEST */
3221 fAccess = IEM_ACCESS_DATA_R;
3222 IEM_MC_BEGIN(3, 2);
3223 IEM_MC_ARG(uint16_t *, pu16Dst, 0);
3224 IEM_MC_ARG(uint16_t, u16Src, 1);
3225 IEM_MC_ARG_LOCAL_EFLAGS( pEFlags, EFlags, 2);
3226 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
3227
3228 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 2);
3229 uint16_t u16Imm; IEM_OPCODE_GET_NEXT_U16(&u16Imm);
3230 IEM_MC_ASSIGN(u16Src, u16Imm);
3231 if (pImpl->pfnLockedU16)
3232 IEMOP_HLP_DONE_DECODING();
3233 else
3234 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
3235 IEM_MC_MEM_MAP(pu16Dst, fAccess, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/);
3236 IEM_MC_FETCH_EFLAGS(EFlags);
3237 if (!(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_LOCK))
3238 IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU16, pu16Dst, u16Src, pEFlags);
3239 else
3240 IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnLockedU16, pu16Dst, u16Src, pEFlags);
3241
3242 IEM_MC_MEM_COMMIT_AND_UNMAP(pu16Dst, fAccess);
3243 IEM_MC_COMMIT_EFLAGS(EFlags);
3244 IEM_MC_ADVANCE_RIP();
3245 IEM_MC_END();
3246 }
3247 break;
3248 }
3249
3250 case IEMMODE_32BIT:
3251 {
3252 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
3253 {
3254 /* register target */
3255 uint32_t u32Imm; IEM_OPCODE_GET_NEXT_U32(&u32Imm);
3256 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
3257 IEM_MC_BEGIN(3, 0);
3258 IEM_MC_ARG(uint32_t *, pu32Dst, 0);
3259 IEM_MC_ARG_CONST(uint32_t, u32Src, /*=*/ u32Imm, 1);
3260 IEM_MC_ARG(uint32_t *, pEFlags, 2);
3261
3262 IEM_MC_REF_GREG_U32(pu32Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
3263 IEM_MC_REF_EFLAGS(pEFlags);
3264 IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU32, pu32Dst, u32Src, pEFlags);
3265 IEM_MC_CLEAR_HIGH_GREG_U64_BY_REF(pu32Dst);
3266
3267 IEM_MC_ADVANCE_RIP();
3268 IEM_MC_END();
3269 }
3270 else
3271 {
3272 /* memory target */
3273 uint32_t fAccess;
3274 if (pImpl->pfnLockedU32)
3275 fAccess = IEM_ACCESS_DATA_RW;
3276 else /* CMP, TEST */
3277 fAccess = IEM_ACCESS_DATA_R;
3278 IEM_MC_BEGIN(3, 2);
3279 IEM_MC_ARG(uint32_t *, pu32Dst, 0);
3280 IEM_MC_ARG(uint32_t, u32Src, 1);
3281 IEM_MC_ARG_LOCAL_EFLAGS( pEFlags, EFlags, 2);
3282 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
3283
3284 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 4);
3285 uint32_t u32Imm; IEM_OPCODE_GET_NEXT_U32(&u32Imm);
3286 IEM_MC_ASSIGN(u32Src, u32Imm);
3287 if (pImpl->pfnLockedU32)
3288 IEMOP_HLP_DONE_DECODING();
3289 else
3290 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
3291 IEM_MC_MEM_MAP(pu32Dst, fAccess, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/);
3292 IEM_MC_FETCH_EFLAGS(EFlags);
3293 if (!(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_LOCK))
3294 IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU32, pu32Dst, u32Src, pEFlags);
3295 else
3296 IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnLockedU32, pu32Dst, u32Src, pEFlags);
3297
3298 IEM_MC_MEM_COMMIT_AND_UNMAP(pu32Dst, fAccess);
3299 IEM_MC_COMMIT_EFLAGS(EFlags);
3300 IEM_MC_ADVANCE_RIP();
3301 IEM_MC_END();
3302 }
3303 break;
3304 }
3305
3306 case IEMMODE_64BIT:
3307 {
3308 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
3309 {
3310 /* register target */
3311 uint64_t u64Imm; IEM_OPCODE_GET_NEXT_S32_SX_U64(&u64Imm);
3312 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
3313 IEM_MC_BEGIN(3, 0);
3314 IEM_MC_ARG(uint64_t *, pu64Dst, 0);
3315 IEM_MC_ARG_CONST(uint64_t, u64Src, /*=*/ u64Imm, 1);
3316 IEM_MC_ARG(uint32_t *, pEFlags, 2);
3317
3318 IEM_MC_REF_GREG_U64(pu64Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
3319 IEM_MC_REF_EFLAGS(pEFlags);
3320 IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU64, pu64Dst, u64Src, pEFlags);
3321
3322 IEM_MC_ADVANCE_RIP();
3323 IEM_MC_END();
3324 }
3325 else
3326 {
3327 /* memory target */
3328 uint32_t fAccess;
3329 if (pImpl->pfnLockedU64)
3330 fAccess = IEM_ACCESS_DATA_RW;
3331 else /* CMP */
3332 fAccess = IEM_ACCESS_DATA_R;
3333 IEM_MC_BEGIN(3, 2);
3334 IEM_MC_ARG(uint64_t *, pu64Dst, 0);
3335 IEM_MC_ARG(uint64_t, u64Src, 1);
3336 IEM_MC_ARG_LOCAL_EFLAGS( pEFlags, EFlags, 2);
3337 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
3338
3339 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 4);
3340 uint64_t u64Imm; IEM_OPCODE_GET_NEXT_S32_SX_U64(&u64Imm);
3341 if (pImpl->pfnLockedU64)
3342 IEMOP_HLP_DONE_DECODING();
3343 else
3344 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
3345 IEM_MC_ASSIGN(u64Src, u64Imm);
3346 IEM_MC_MEM_MAP(pu64Dst, fAccess, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/);
3347 IEM_MC_FETCH_EFLAGS(EFlags);
3348 if (!(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_LOCK))
3349 IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU64, pu64Dst, u64Src, pEFlags);
3350 else
3351 IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnLockedU64, pu64Dst, u64Src, pEFlags);
3352
3353 IEM_MC_MEM_COMMIT_AND_UNMAP(pu64Dst, fAccess);
3354 IEM_MC_COMMIT_EFLAGS(EFlags);
3355 IEM_MC_ADVANCE_RIP();
3356 IEM_MC_END();
3357 }
3358 break;
3359 }
3360 }
3361 return VINF_SUCCESS;
3362}
3363
3364
3365/**
3366 * @opcode 0x82
3367 * @opmnemonic grp1_82
3368 * @opgroup og_groups
3369 */
3370FNIEMOP_DEF(iemOp_Grp1_Eb_Ib_82)
3371{
3372 IEMOP_HLP_NO_64BIT(); /** @todo do we need to decode the whole instruction or is this ok? */
3373 return FNIEMOP_CALL(iemOp_Grp1_Eb_Ib_80);
3374}
3375
3376
3377/**
3378 * @opcode 0x83
3379 */
3380FNIEMOP_DEF(iemOp_Grp1_Ev_Ib)
3381{
3382 uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm);
3383 switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK)
3384 {
3385 case 0: IEMOP_MNEMONIC(add_Ev_Ib, "add Ev,Ib"); break;
3386 case 1: IEMOP_MNEMONIC(or_Ev_Ib, "or Ev,Ib"); break;
3387 case 2: IEMOP_MNEMONIC(adc_Ev_Ib, "adc Ev,Ib"); break;
3388 case 3: IEMOP_MNEMONIC(sbb_Ev_Ib, "sbb Ev,Ib"); break;
3389 case 4: IEMOP_MNEMONIC(and_Ev_Ib, "and Ev,Ib"); break;
3390 case 5: IEMOP_MNEMONIC(sub_Ev_Ib, "sub Ev,Ib"); break;
3391 case 6: IEMOP_MNEMONIC(xor_Ev_Ib, "xor Ev,Ib"); break;
3392 case 7: IEMOP_MNEMONIC(cmp_Ev_Ib, "cmp Ev,Ib"); break;
3393 }
3394 /* Note! Seems the OR, AND, and XOR instructions are present on CPUs prior
3395 to the 386 even if absent in the intel reference manuals and some
3396 3rd party opcode listings. */
3397 PCIEMOPBINSIZES pImpl = g_apIemImplGrp1[(bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK];
3398
3399 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
3400 {
3401 /*
3402 * Register target
3403 */
3404 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
3405 uint8_t u8Imm; IEM_OPCODE_GET_NEXT_U8(&u8Imm);
3406 switch (pVCpu->iem.s.enmEffOpSize)
3407 {
3408 case IEMMODE_16BIT:
3409 {
3410 IEM_MC_BEGIN(3, 0);
3411 IEM_MC_ARG(uint16_t *, pu16Dst, 0);
3412 IEM_MC_ARG_CONST(uint16_t, u16Src, /*=*/ (int8_t)u8Imm,1);
3413 IEM_MC_ARG(uint32_t *, pEFlags, 2);
3414
3415 IEM_MC_REF_GREG_U16(pu16Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
3416 IEM_MC_REF_EFLAGS(pEFlags);
3417 IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU16, pu16Dst, u16Src, pEFlags);
3418
3419 IEM_MC_ADVANCE_RIP();
3420 IEM_MC_END();
3421 break;
3422 }
3423
3424 case IEMMODE_32BIT:
3425 {
3426 IEM_MC_BEGIN(3, 0);
3427 IEM_MC_ARG(uint32_t *, pu32Dst, 0);
3428 IEM_MC_ARG_CONST(uint32_t, u32Src, /*=*/ (int8_t)u8Imm,1);
3429 IEM_MC_ARG(uint32_t *, pEFlags, 2);
3430
3431 IEM_MC_REF_GREG_U32(pu32Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
3432 IEM_MC_REF_EFLAGS(pEFlags);
3433 IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU32, pu32Dst, u32Src, pEFlags);
3434 IEM_MC_CLEAR_HIGH_GREG_U64_BY_REF(pu32Dst);
3435
3436 IEM_MC_ADVANCE_RIP();
3437 IEM_MC_END();
3438 break;
3439 }
3440
3441 case IEMMODE_64BIT:
3442 {
3443 IEM_MC_BEGIN(3, 0);
3444 IEM_MC_ARG(uint64_t *, pu64Dst, 0);
3445 IEM_MC_ARG_CONST(uint64_t, u64Src, /*=*/ (int8_t)u8Imm,1);
3446 IEM_MC_ARG(uint32_t *, pEFlags, 2);
3447
3448 IEM_MC_REF_GREG_U64(pu64Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
3449 IEM_MC_REF_EFLAGS(pEFlags);
3450 IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU64, pu64Dst, u64Src, pEFlags);
3451
3452 IEM_MC_ADVANCE_RIP();
3453 IEM_MC_END();
3454 break;
3455 }
3456 }
3457 }
3458 else
3459 {
3460 /*
3461 * Memory target.
3462 */
3463 uint32_t fAccess;
3464 if (pImpl->pfnLockedU16)
3465 fAccess = IEM_ACCESS_DATA_RW;
3466 else /* CMP */
3467 fAccess = IEM_ACCESS_DATA_R;
3468
3469 switch (pVCpu->iem.s.enmEffOpSize)
3470 {
3471 case IEMMODE_16BIT:
3472 {
3473 IEM_MC_BEGIN(3, 2);
3474 IEM_MC_ARG(uint16_t *, pu16Dst, 0);
3475 IEM_MC_ARG(uint16_t, u16Src, 1);
3476 IEM_MC_ARG_LOCAL_EFLAGS( pEFlags, EFlags, 2);
3477 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
3478
3479 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 1);
3480 uint8_t u8Imm; IEM_OPCODE_GET_NEXT_U8(&u8Imm);
3481 IEM_MC_ASSIGN(u16Src, (int8_t)u8Imm);
3482 if (pImpl->pfnLockedU16)
3483 IEMOP_HLP_DONE_DECODING();
3484 else
3485 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
3486 IEM_MC_MEM_MAP(pu16Dst, fAccess, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/);
3487 IEM_MC_FETCH_EFLAGS(EFlags);
3488 if (!(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_LOCK))
3489 IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU16, pu16Dst, u16Src, pEFlags);
3490 else
3491 IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnLockedU16, pu16Dst, u16Src, pEFlags);
3492
3493 IEM_MC_MEM_COMMIT_AND_UNMAP(pu16Dst, fAccess);
3494 IEM_MC_COMMIT_EFLAGS(EFlags);
3495 IEM_MC_ADVANCE_RIP();
3496 IEM_MC_END();
3497 break;
3498 }
3499
3500 case IEMMODE_32BIT:
3501 {
3502 IEM_MC_BEGIN(3, 2);
3503 IEM_MC_ARG(uint32_t *, pu32Dst, 0);
3504 IEM_MC_ARG(uint32_t, u32Src, 1);
3505 IEM_MC_ARG_LOCAL_EFLAGS( pEFlags, EFlags, 2);
3506 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
3507
3508 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 1);
3509 uint8_t u8Imm; IEM_OPCODE_GET_NEXT_U8(&u8Imm);
3510 IEM_MC_ASSIGN(u32Src, (int8_t)u8Imm);
3511 if (pImpl->pfnLockedU32)
3512 IEMOP_HLP_DONE_DECODING();
3513 else
3514 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
3515 IEM_MC_MEM_MAP(pu32Dst, fAccess, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/);
3516 IEM_MC_FETCH_EFLAGS(EFlags);
3517 if (!(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_LOCK))
3518 IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU32, pu32Dst, u32Src, pEFlags);
3519 else
3520 IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnLockedU32, pu32Dst, u32Src, pEFlags);
3521
3522 IEM_MC_MEM_COMMIT_AND_UNMAP(pu32Dst, fAccess);
3523 IEM_MC_COMMIT_EFLAGS(EFlags);
3524 IEM_MC_ADVANCE_RIP();
3525 IEM_MC_END();
3526 break;
3527 }
3528
3529 case IEMMODE_64BIT:
3530 {
3531 IEM_MC_BEGIN(3, 2);
3532 IEM_MC_ARG(uint64_t *, pu64Dst, 0);
3533 IEM_MC_ARG(uint64_t, u64Src, 1);
3534 IEM_MC_ARG_LOCAL_EFLAGS( pEFlags, EFlags, 2);
3535 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
3536
3537 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 1);
3538 uint8_t u8Imm; IEM_OPCODE_GET_NEXT_U8(&u8Imm);
3539 IEM_MC_ASSIGN(u64Src, (int8_t)u8Imm);
3540 if (pImpl->pfnLockedU64)
3541 IEMOP_HLP_DONE_DECODING();
3542 else
3543 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
3544 IEM_MC_MEM_MAP(pu64Dst, fAccess, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/);
3545 IEM_MC_FETCH_EFLAGS(EFlags);
3546 if (!(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_LOCK))
3547 IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU64, pu64Dst, u64Src, pEFlags);
3548 else
3549 IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnLockedU64, pu64Dst, u64Src, pEFlags);
3550
3551 IEM_MC_MEM_COMMIT_AND_UNMAP(pu64Dst, fAccess);
3552 IEM_MC_COMMIT_EFLAGS(EFlags);
3553 IEM_MC_ADVANCE_RIP();
3554 IEM_MC_END();
3555 break;
3556 }
3557 }
3558 }
3559 return VINF_SUCCESS;
3560}
3561
3562
3563/**
3564 * @opcode 0x84
3565 */
3566FNIEMOP_DEF(iemOp_test_Eb_Gb)
3567{
3568 IEMOP_MNEMONIC(test_Eb_Gb, "test Eb,Gb");
3569 IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF);
3570 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rm_r8, &g_iemAImpl_test);
3571}
3572
3573
3574/**
3575 * @opcode 0x85
3576 */
3577FNIEMOP_DEF(iemOp_test_Ev_Gv)
3578{
3579 IEMOP_MNEMONIC(test_Ev_Gv, "test Ev,Gv");
3580 IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF);
3581 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rm_rv, &g_iemAImpl_test);
3582}
3583
3584
3585/**
3586 * @opcode 0x86
3587 */
3588FNIEMOP_DEF(iemOp_xchg_Eb_Gb)
3589{
3590 uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm);
3591 IEMOP_MNEMONIC(xchg_Eb_Gb, "xchg Eb,Gb");
3592
3593 /*
3594 * If rm is denoting a register, no more instruction bytes.
3595 */
3596 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
3597 {
3598 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
3599
3600 IEM_MC_BEGIN(0, 2);
3601 IEM_MC_LOCAL(uint8_t, uTmp1);
3602 IEM_MC_LOCAL(uint8_t, uTmp2);
3603
3604 IEM_MC_FETCH_GREG_U8(uTmp1, ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg);
3605 IEM_MC_FETCH_GREG_U8(uTmp2, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
3606 IEM_MC_STORE_GREG_U8((bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB, uTmp1);
3607 IEM_MC_STORE_GREG_U8(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, uTmp2);
3608
3609 IEM_MC_ADVANCE_RIP();
3610 IEM_MC_END();
3611 }
3612 else
3613 {
3614 /*
3615 * We're accessing memory.
3616 */
3617/** @todo the register must be committed separately! */
3618 IEM_MC_BEGIN(2, 2);
3619 IEM_MC_ARG(uint8_t *, pu8Mem, 0);
3620 IEM_MC_ARG(uint8_t *, pu8Reg, 1);
3621 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
3622
3623 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
3624 IEM_MC_MEM_MAP(pu8Mem, IEM_ACCESS_DATA_RW, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/);
3625 IEM_MC_REF_GREG_U8(pu8Reg, ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg);
3626 IEM_MC_CALL_VOID_AIMPL_2(iemAImpl_xchg_u8, pu8Mem, pu8Reg);
3627 IEM_MC_MEM_COMMIT_AND_UNMAP(pu8Mem, IEM_ACCESS_DATA_RW);
3628
3629 IEM_MC_ADVANCE_RIP();
3630 IEM_MC_END();
3631 }
3632 return VINF_SUCCESS;
3633}
3634
3635
3636/**
3637 * @opcode 0x87
3638 */
3639FNIEMOP_DEF(iemOp_xchg_Ev_Gv)
3640{
3641 IEMOP_MNEMONIC(xchg_Ev_Gv, "xchg Ev,Gv");
3642 uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm);
3643
3644 /*
3645 * If rm is denoting a register, no more instruction bytes.
3646 */
3647 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
3648 {
3649 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
3650
3651 switch (pVCpu->iem.s.enmEffOpSize)
3652 {
3653 case IEMMODE_16BIT:
3654 IEM_MC_BEGIN(0, 2);
3655 IEM_MC_LOCAL(uint16_t, uTmp1);
3656 IEM_MC_LOCAL(uint16_t, uTmp2);
3657
3658 IEM_MC_FETCH_GREG_U16(uTmp1, ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg);
3659 IEM_MC_FETCH_GREG_U16(uTmp2, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
3660 IEM_MC_STORE_GREG_U16((bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB, uTmp1);
3661 IEM_MC_STORE_GREG_U16(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, uTmp2);
3662
3663 IEM_MC_ADVANCE_RIP();
3664 IEM_MC_END();
3665 return VINF_SUCCESS;
3666
3667 case IEMMODE_32BIT:
3668 IEM_MC_BEGIN(0, 2);
3669 IEM_MC_LOCAL(uint32_t, uTmp1);
3670 IEM_MC_LOCAL(uint32_t, uTmp2);
3671
3672 IEM_MC_FETCH_GREG_U32(uTmp1, ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg);
3673 IEM_MC_FETCH_GREG_U32(uTmp2, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
3674 IEM_MC_STORE_GREG_U32((bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB, uTmp1);
3675 IEM_MC_STORE_GREG_U32(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, uTmp2);
3676
3677 IEM_MC_ADVANCE_RIP();
3678 IEM_MC_END();
3679 return VINF_SUCCESS;
3680
3681 case IEMMODE_64BIT:
3682 IEM_MC_BEGIN(0, 2);
3683 IEM_MC_LOCAL(uint64_t, uTmp1);
3684 IEM_MC_LOCAL(uint64_t, uTmp2);
3685
3686 IEM_MC_FETCH_GREG_U64(uTmp1, ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg);
3687 IEM_MC_FETCH_GREG_U64(uTmp2, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
3688 IEM_MC_STORE_GREG_U64((bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB, uTmp1);
3689 IEM_MC_STORE_GREG_U64(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, uTmp2);
3690
3691 IEM_MC_ADVANCE_RIP();
3692 IEM_MC_END();
3693 return VINF_SUCCESS;
3694
3695 IEM_NOT_REACHED_DEFAULT_CASE_RET();
3696 }
3697 }
3698 else
3699 {
3700 /*
3701 * We're accessing memory.
3702 */
3703 switch (pVCpu->iem.s.enmEffOpSize)
3704 {
3705/** @todo the register must be committed separately! */
3706 case IEMMODE_16BIT:
3707 IEM_MC_BEGIN(2, 2);
3708 IEM_MC_ARG(uint16_t *, pu16Mem, 0);
3709 IEM_MC_ARG(uint16_t *, pu16Reg, 1);
3710 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
3711
3712 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
3713 IEM_MC_MEM_MAP(pu16Mem, IEM_ACCESS_DATA_RW, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/);
3714 IEM_MC_REF_GREG_U16(pu16Reg, ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg);
3715 IEM_MC_CALL_VOID_AIMPL_2(iemAImpl_xchg_u16, pu16Mem, pu16Reg);
3716 IEM_MC_MEM_COMMIT_AND_UNMAP(pu16Mem, IEM_ACCESS_DATA_RW);
3717
3718 IEM_MC_ADVANCE_RIP();
3719 IEM_MC_END();
3720 return VINF_SUCCESS;
3721
3722 case IEMMODE_32BIT:
3723 IEM_MC_BEGIN(2, 2);
3724 IEM_MC_ARG(uint32_t *, pu32Mem, 0);
3725 IEM_MC_ARG(uint32_t *, pu32Reg, 1);
3726 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
3727
3728 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
3729 IEM_MC_MEM_MAP(pu32Mem, IEM_ACCESS_DATA_RW, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/);
3730 IEM_MC_REF_GREG_U32(pu32Reg, ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg);
3731 IEM_MC_CALL_VOID_AIMPL_2(iemAImpl_xchg_u32, pu32Mem, pu32Reg);
3732 IEM_MC_MEM_COMMIT_AND_UNMAP(pu32Mem, IEM_ACCESS_DATA_RW);
3733
3734 IEM_MC_CLEAR_HIGH_GREG_U64_BY_REF(pu32Reg);
3735 IEM_MC_ADVANCE_RIP();
3736 IEM_MC_END();
3737 return VINF_SUCCESS;
3738
3739 case IEMMODE_64BIT:
3740 IEM_MC_BEGIN(2, 2);
3741 IEM_MC_ARG(uint64_t *, pu64Mem, 0);
3742 IEM_MC_ARG(uint64_t *, pu64Reg, 1);
3743 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
3744
3745 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
3746 IEM_MC_MEM_MAP(pu64Mem, IEM_ACCESS_DATA_RW, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/);
3747 IEM_MC_REF_GREG_U64(pu64Reg, ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg);
3748 IEM_MC_CALL_VOID_AIMPL_2(iemAImpl_xchg_u64, pu64Mem, pu64Reg);
3749 IEM_MC_MEM_COMMIT_AND_UNMAP(pu64Mem, IEM_ACCESS_DATA_RW);
3750
3751 IEM_MC_ADVANCE_RIP();
3752 IEM_MC_END();
3753 return VINF_SUCCESS;
3754
3755 IEM_NOT_REACHED_DEFAULT_CASE_RET();
3756 }
3757 }
3758}
3759
3760
3761/**
3762 * @opcode 0x88
3763 */
3764FNIEMOP_DEF(iemOp_mov_Eb_Gb)
3765{
3766 IEMOP_MNEMONIC(mov_Eb_Gb, "mov Eb,Gb");
3767
3768 uint8_t bRm;
3769 IEM_OPCODE_GET_NEXT_U8(&bRm);
3770
3771 /*
3772 * If rm is denoting a register, no more instruction bytes.
3773 */
3774 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
3775 {
3776 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
3777 IEM_MC_BEGIN(0, 1);
3778 IEM_MC_LOCAL(uint8_t, u8Value);
3779 IEM_MC_FETCH_GREG_U8(u8Value, ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg);
3780 IEM_MC_STORE_GREG_U8((bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB, u8Value);
3781 IEM_MC_ADVANCE_RIP();
3782 IEM_MC_END();
3783 }
3784 else
3785 {
3786 /*
3787 * We're writing a register to memory.
3788 */
3789 IEM_MC_BEGIN(0, 2);
3790 IEM_MC_LOCAL(uint8_t, u8Value);
3791 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
3792 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
3793 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
3794 IEM_MC_FETCH_GREG_U8(u8Value, ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg);
3795 IEM_MC_STORE_MEM_U8(pVCpu->iem.s.iEffSeg, GCPtrEffDst, u8Value);
3796 IEM_MC_ADVANCE_RIP();
3797 IEM_MC_END();
3798 }
3799 return VINF_SUCCESS;
3800
3801}
3802
3803
3804/**
3805 * @opcode 0x89
3806 */
3807FNIEMOP_DEF(iemOp_mov_Ev_Gv)
3808{
3809 IEMOP_MNEMONIC(mov_Ev_Gv, "mov Ev,Gv");
3810
3811 uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm);
3812
3813 /*
3814 * If rm is denoting a register, no more instruction bytes.
3815 */
3816 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
3817 {
3818 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
3819 switch (pVCpu->iem.s.enmEffOpSize)
3820 {
3821 case IEMMODE_16BIT:
3822 IEM_MC_BEGIN(0, 1);
3823 IEM_MC_LOCAL(uint16_t, u16Value);
3824 IEM_MC_FETCH_GREG_U16(u16Value, ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg);
3825 IEM_MC_STORE_GREG_U16((bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB, u16Value);
3826 IEM_MC_ADVANCE_RIP();
3827 IEM_MC_END();
3828 break;
3829
3830 case IEMMODE_32BIT:
3831 IEM_MC_BEGIN(0, 1);
3832 IEM_MC_LOCAL(uint32_t, u32Value);
3833 IEM_MC_FETCH_GREG_U32(u32Value, ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg);
3834 IEM_MC_STORE_GREG_U32((bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB, u32Value);
3835 IEM_MC_ADVANCE_RIP();
3836 IEM_MC_END();
3837 break;
3838
3839 case IEMMODE_64BIT:
3840 IEM_MC_BEGIN(0, 1);
3841 IEM_MC_LOCAL(uint64_t, u64Value);
3842 IEM_MC_FETCH_GREG_U64(u64Value, ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg);
3843 IEM_MC_STORE_GREG_U64((bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB, u64Value);
3844 IEM_MC_ADVANCE_RIP();
3845 IEM_MC_END();
3846 break;
3847 }
3848 }
3849 else
3850 {
3851 /*
3852 * We're writing a register to memory.
3853 */
3854 switch (pVCpu->iem.s.enmEffOpSize)
3855 {
3856 case IEMMODE_16BIT:
3857 IEM_MC_BEGIN(0, 2);
3858 IEM_MC_LOCAL(uint16_t, u16Value);
3859 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
3860 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
3861 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
3862 IEM_MC_FETCH_GREG_U16(u16Value, ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg);
3863 IEM_MC_STORE_MEM_U16(pVCpu->iem.s.iEffSeg, GCPtrEffDst, u16Value);
3864 IEM_MC_ADVANCE_RIP();
3865 IEM_MC_END();
3866 break;
3867
3868 case IEMMODE_32BIT:
3869 IEM_MC_BEGIN(0, 2);
3870 IEM_MC_LOCAL(uint32_t, u32Value);
3871 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
3872 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
3873 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
3874 IEM_MC_FETCH_GREG_U32(u32Value, ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg);
3875 IEM_MC_STORE_MEM_U32(pVCpu->iem.s.iEffSeg, GCPtrEffDst, u32Value);
3876 IEM_MC_ADVANCE_RIP();
3877 IEM_MC_END();
3878 break;
3879
3880 case IEMMODE_64BIT:
3881 IEM_MC_BEGIN(0, 2);
3882 IEM_MC_LOCAL(uint64_t, u64Value);
3883 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
3884 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
3885 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
3886 IEM_MC_FETCH_GREG_U64(u64Value, ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg);
3887 IEM_MC_STORE_MEM_U64(pVCpu->iem.s.iEffSeg, GCPtrEffDst, u64Value);
3888 IEM_MC_ADVANCE_RIP();
3889 IEM_MC_END();
3890 break;
3891 }
3892 }
3893 return VINF_SUCCESS;
3894}
3895
3896
3897/**
3898 * @opcode 0x8a
3899 */
3900FNIEMOP_DEF(iemOp_mov_Gb_Eb)
3901{
3902 IEMOP_MNEMONIC(mov_Gb_Eb, "mov Gb,Eb");
3903
3904 uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm);
3905
3906 /*
3907 * If rm is denoting a register, no more instruction bytes.
3908 */
3909 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
3910 {
3911 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
3912 IEM_MC_BEGIN(0, 1);
3913 IEM_MC_LOCAL(uint8_t, u8Value);
3914 IEM_MC_FETCH_GREG_U8(u8Value, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
3915 IEM_MC_STORE_GREG_U8(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u8Value);
3916 IEM_MC_ADVANCE_RIP();
3917 IEM_MC_END();
3918 }
3919 else
3920 {
3921 /*
3922 * We're loading a register from memory.
3923 */
3924 IEM_MC_BEGIN(0, 2);
3925 IEM_MC_LOCAL(uint8_t, u8Value);
3926 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
3927 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
3928 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
3929 IEM_MC_FETCH_MEM_U8(u8Value, pVCpu->iem.s.iEffSeg, GCPtrEffDst);
3930 IEM_MC_STORE_GREG_U8(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u8Value);
3931 IEM_MC_ADVANCE_RIP();
3932 IEM_MC_END();
3933 }
3934 return VINF_SUCCESS;
3935}
3936
3937
3938/**
3939 * @opcode 0x8b
3940 */
3941FNIEMOP_DEF(iemOp_mov_Gv_Ev)
3942{
3943 IEMOP_MNEMONIC(mov_Gv_Ev, "mov Gv,Ev");
3944
3945 uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm);
3946
3947 /*
3948 * If rm is denoting a register, no more instruction bytes.
3949 */
3950 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
3951 {
3952 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
3953 switch (pVCpu->iem.s.enmEffOpSize)
3954 {
3955 case IEMMODE_16BIT:
3956 IEM_MC_BEGIN(0, 1);
3957 IEM_MC_LOCAL(uint16_t, u16Value);
3958 IEM_MC_FETCH_GREG_U16(u16Value, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
3959 IEM_MC_STORE_GREG_U16(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u16Value);
3960 IEM_MC_ADVANCE_RIP();
3961 IEM_MC_END();
3962 break;
3963
3964 case IEMMODE_32BIT:
3965 IEM_MC_BEGIN(0, 1);
3966 IEM_MC_LOCAL(uint32_t, u32Value);
3967 IEM_MC_FETCH_GREG_U32(u32Value, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
3968 IEM_MC_STORE_GREG_U32(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u32Value);
3969 IEM_MC_ADVANCE_RIP();
3970 IEM_MC_END();
3971 break;
3972
3973 case IEMMODE_64BIT:
3974 IEM_MC_BEGIN(0, 1);
3975 IEM_MC_LOCAL(uint64_t, u64Value);
3976 IEM_MC_FETCH_GREG_U64(u64Value, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
3977 IEM_MC_STORE_GREG_U64(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u64Value);
3978 IEM_MC_ADVANCE_RIP();
3979 IEM_MC_END();
3980 break;
3981 }
3982 }
3983 else
3984 {
3985 /*
3986 * We're loading a register from memory.
3987 */
3988 switch (pVCpu->iem.s.enmEffOpSize)
3989 {
3990 case IEMMODE_16BIT:
3991 IEM_MC_BEGIN(0, 2);
3992 IEM_MC_LOCAL(uint16_t, u16Value);
3993 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
3994 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
3995 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
3996 IEM_MC_FETCH_MEM_U16(u16Value, pVCpu->iem.s.iEffSeg, GCPtrEffDst);
3997 IEM_MC_STORE_GREG_U16(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u16Value);
3998 IEM_MC_ADVANCE_RIP();
3999 IEM_MC_END();
4000 break;
4001
4002 case IEMMODE_32BIT:
4003 IEM_MC_BEGIN(0, 2);
4004 IEM_MC_LOCAL(uint32_t, u32Value);
4005 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
4006 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
4007 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
4008 IEM_MC_FETCH_MEM_U32(u32Value, pVCpu->iem.s.iEffSeg, GCPtrEffDst);
4009 IEM_MC_STORE_GREG_U32(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u32Value);
4010 IEM_MC_ADVANCE_RIP();
4011 IEM_MC_END();
4012 break;
4013
4014 case IEMMODE_64BIT:
4015 IEM_MC_BEGIN(0, 2);
4016 IEM_MC_LOCAL(uint64_t, u64Value);
4017 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
4018 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
4019 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
4020 IEM_MC_FETCH_MEM_U64(u64Value, pVCpu->iem.s.iEffSeg, GCPtrEffDst);
4021 IEM_MC_STORE_GREG_U64(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u64Value);
4022 IEM_MC_ADVANCE_RIP();
4023 IEM_MC_END();
4024 break;
4025 }
4026 }
4027 return VINF_SUCCESS;
4028}
4029
4030
4031/**
4032 * opcode 0x63
4033 * @todo Table fixme
4034 */
4035FNIEMOP_DEF(iemOp_arpl_Ew_Gw_movsx_Gv_Ev)
4036{
4037 if (pVCpu->iem.s.enmCpuMode != IEMMODE_64BIT)
4038 return FNIEMOP_CALL(iemOp_arpl_Ew_Gw);
4039 if (pVCpu->iem.s.enmEffOpSize != IEMMODE_64BIT)
4040 return FNIEMOP_CALL(iemOp_mov_Gv_Ev);
4041 return FNIEMOP_CALL(iemOp_movsxd_Gv_Ev);
4042}
4043
4044
4045/**
4046 * @opcode 0x8c
4047 */
4048FNIEMOP_DEF(iemOp_mov_Ev_Sw)
4049{
4050 IEMOP_MNEMONIC(mov_Ev_Sw, "mov Ev,Sw");
4051
4052 uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm);
4053
4054 /*
4055 * Check that the destination register exists. The REX.R prefix is ignored.
4056 */
4057 uint8_t const iSegReg = ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK);
4058 if ( iSegReg > X86_SREG_GS)
4059 return IEMOP_RAISE_INVALID_OPCODE(); /** @todo should probably not be raised until we've fetched all the opcode bytes? */
4060
4061 /*
4062 * If rm is denoting a register, no more instruction bytes.
4063 * In that case, the operand size is respected and the upper bits are
4064 * cleared (starting with some pentium).
4065 */
4066 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
4067 {
4068 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
4069 switch (pVCpu->iem.s.enmEffOpSize)
4070 {
4071 case IEMMODE_16BIT:
4072 IEM_MC_BEGIN(0, 1);
4073 IEM_MC_LOCAL(uint16_t, u16Value);
4074 IEM_MC_FETCH_SREG_U16(u16Value, iSegReg);
4075 IEM_MC_STORE_GREG_U16((bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB, u16Value);
4076 IEM_MC_ADVANCE_RIP();
4077 IEM_MC_END();
4078 break;
4079
4080 case IEMMODE_32BIT:
4081 IEM_MC_BEGIN(0, 1);
4082 IEM_MC_LOCAL(uint32_t, u32Value);
4083 IEM_MC_FETCH_SREG_ZX_U32(u32Value, iSegReg);
4084 IEM_MC_STORE_GREG_U32((bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB, u32Value);
4085 IEM_MC_ADVANCE_RIP();
4086 IEM_MC_END();
4087 break;
4088
4089 case IEMMODE_64BIT:
4090 IEM_MC_BEGIN(0, 1);
4091 IEM_MC_LOCAL(uint64_t, u64Value);
4092 IEM_MC_FETCH_SREG_ZX_U64(u64Value, iSegReg);
4093 IEM_MC_STORE_GREG_U64((bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB, u64Value);
4094 IEM_MC_ADVANCE_RIP();
4095 IEM_MC_END();
4096 break;
4097 }
4098 }
4099 else
4100 {
4101 /*
4102 * We're saving the register to memory. The access is word sized
4103 * regardless of operand size prefixes.
4104 */
4105#if 0 /* not necessary */
4106 pVCpu->iem.s.enmEffOpSize = pVCpu->iem.s.enmDefOpSize = IEMMODE_16BIT;
4107#endif
4108 IEM_MC_BEGIN(0, 2);
4109 IEM_MC_LOCAL(uint16_t, u16Value);
4110 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
4111 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
4112 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
4113 IEM_MC_FETCH_SREG_U16(u16Value, iSegReg);
4114 IEM_MC_STORE_MEM_U16(pVCpu->iem.s.iEffSeg, GCPtrEffDst, u16Value);
4115 IEM_MC_ADVANCE_RIP();
4116 IEM_MC_END();
4117 }
4118 return VINF_SUCCESS;
4119}
4120
4121
4122
4123
4124/**
4125 * @opcode 0x8d
4126 */
4127FNIEMOP_DEF(iemOp_lea_Gv_M)
4128{
4129 IEMOP_MNEMONIC(lea_Gv_M, "lea Gv,M");
4130 uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm);
4131 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
4132 return IEMOP_RAISE_INVALID_OPCODE(); /* no register form */
4133
4134 switch (pVCpu->iem.s.enmEffOpSize)
4135 {
4136 case IEMMODE_16BIT:
4137 IEM_MC_BEGIN(0, 2);
4138 IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc);
4139 IEM_MC_LOCAL(uint16_t, u16Cast);
4140 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0);
4141 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
4142 IEM_MC_ASSIGN_TO_SMALLER(u16Cast, GCPtrEffSrc);
4143 IEM_MC_STORE_GREG_U16(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u16Cast);
4144 IEM_MC_ADVANCE_RIP();
4145 IEM_MC_END();
4146 return VINF_SUCCESS;
4147
4148 case IEMMODE_32BIT:
4149 IEM_MC_BEGIN(0, 2);
4150 IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc);
4151 IEM_MC_LOCAL(uint32_t, u32Cast);
4152 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0);
4153 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
4154 IEM_MC_ASSIGN_TO_SMALLER(u32Cast, GCPtrEffSrc);
4155 IEM_MC_STORE_GREG_U32(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, u32Cast);
4156 IEM_MC_ADVANCE_RIP();
4157 IEM_MC_END();
4158 return VINF_SUCCESS;
4159
4160 case IEMMODE_64BIT:
4161 IEM_MC_BEGIN(0, 1);
4162 IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc);
4163 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0);
4164 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
4165 IEM_MC_STORE_GREG_U64(((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg, GCPtrEffSrc);
4166 IEM_MC_ADVANCE_RIP();
4167 IEM_MC_END();
4168 return VINF_SUCCESS;
4169 }
4170 AssertFailedReturn(VERR_IEM_IPE_7);
4171}
4172
4173
4174/**
4175 * @opcode 0x8e
4176 */
4177FNIEMOP_DEF(iemOp_mov_Sw_Ev)
4178{
4179 IEMOP_MNEMONIC(mov_Sw_Ev, "mov Sw,Ev");
4180
4181 uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm);
4182
4183 /*
4184 * The practical operand size is 16-bit.
4185 */
4186#if 0 /* not necessary */
4187 pVCpu->iem.s.enmEffOpSize = pVCpu->iem.s.enmDefOpSize = IEMMODE_16BIT;
4188#endif
4189
4190 /*
4191 * Check that the destination register exists and can be used with this
4192 * instruction. The REX.R prefix is ignored.
4193 */
4194 uint8_t const iSegReg = ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK);
4195 if ( iSegReg == X86_SREG_CS
4196 || iSegReg > X86_SREG_GS)
4197 return IEMOP_RAISE_INVALID_OPCODE(); /** @todo should probably not be raised until we've fetched all the opcode bytes? */
4198
4199 /*
4200 * If rm is denoting a register, no more instruction bytes.
4201 */
4202 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
4203 {
4204 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
4205 IEM_MC_BEGIN(2, 0);
4206 IEM_MC_ARG_CONST(uint8_t, iSRegArg, iSegReg, 0);
4207 IEM_MC_ARG(uint16_t, u16Value, 1);
4208 IEM_MC_FETCH_GREG_U16(u16Value, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
4209 IEM_MC_CALL_CIMPL_2(iemCImpl_load_SReg, iSRegArg, u16Value);
4210 IEM_MC_END();
4211 }
4212 else
4213 {
4214 /*
4215 * We're loading the register from memory. The access is word sized
4216 * regardless of operand size prefixes.
4217 */
4218 IEM_MC_BEGIN(2, 1);
4219 IEM_MC_ARG_CONST(uint8_t, iSRegArg, iSegReg, 0);
4220 IEM_MC_ARG(uint16_t, u16Value, 1);
4221 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
4222 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
4223 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
4224 IEM_MC_FETCH_MEM_U16(u16Value, pVCpu->iem.s.iEffSeg, GCPtrEffDst);
4225 IEM_MC_CALL_CIMPL_2(iemCImpl_load_SReg, iSRegArg, u16Value);
4226 IEM_MC_END();
4227 }
4228 return VINF_SUCCESS;
4229}
4230
4231
4232/** Opcode 0x8f /0. */
4233FNIEMOP_DEF_1(iemOp_pop_Ev, uint8_t, bRm)
4234{
4235 /* This bugger is rather annoying as it requires rSP to be updated before
4236 doing the effective address calculations. Will eventually require a
4237 split between the R/M+SIB decoding and the effective address
4238 calculation - which is something that is required for any attempt at
4239 reusing this code for a recompiler. It may also be good to have if we
4240 need to delay #UD exception caused by invalid lock prefixes.
4241
4242 For now, we'll do a mostly safe interpreter-only implementation here. */
4243 /** @todo What's the deal with the 'reg' field and pop Ev? Ignorning it for
4244 * now until tests show it's checked.. */
4245 IEMOP_MNEMONIC(pop_Ev, "pop Ev");
4246
4247 /* Register access is relatively easy and can share code. */
4248 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
4249 return FNIEMOP_CALL_1(iemOpCommonPopGReg, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
4250
4251 /*
4252 * Memory target.
4253 *
4254 * Intel says that RSP is incremented before it's used in any effective
4255 * address calcuations. This means some serious extra annoyance here since
4256 * we decode and calculate the effective address in one step and like to
4257 * delay committing registers till everything is done.
4258 *
4259 * So, we'll decode and calculate the effective address twice. This will
4260 * require some recoding if turned into a recompiler.
4261 */
4262 IEMOP_HLP_DEFAULT_64BIT_OP_SIZE(); /* The common code does this differently. */
4263
4264#ifndef TST_IEM_CHECK_MC
4265 /* Calc effective address with modified ESP. */
4266/** @todo testcase */
4267 PCPUMCTX pCtx = IEM_GET_CTX(pVCpu);
4268 RTGCPTR GCPtrEff;
4269 VBOXSTRICTRC rcStrict;
4270 switch (pVCpu->iem.s.enmEffOpSize)
4271 {
4272 case IEMMODE_16BIT: rcStrict = iemOpHlpCalcRmEffAddrEx(pVCpu, bRm, 0, &GCPtrEff, 2); break;
4273 case IEMMODE_32BIT: rcStrict = iemOpHlpCalcRmEffAddrEx(pVCpu, bRm, 0, &GCPtrEff, 4); break;
4274 case IEMMODE_64BIT: rcStrict = iemOpHlpCalcRmEffAddrEx(pVCpu, bRm, 0, &GCPtrEff, 8); break;
4275 IEM_NOT_REACHED_DEFAULT_CASE_RET();
4276 }
4277 if (rcStrict != VINF_SUCCESS)
4278 return rcStrict;
4279 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
4280
4281 /* Perform the operation - this should be CImpl. */
4282 RTUINT64U TmpRsp;
4283 TmpRsp.u = pCtx->rsp;
4284 switch (pVCpu->iem.s.enmEffOpSize)
4285 {
4286 case IEMMODE_16BIT:
4287 {
4288 uint16_t u16Value;
4289 rcStrict = iemMemStackPopU16Ex(pVCpu, &u16Value, &TmpRsp);
4290 if (rcStrict == VINF_SUCCESS)
4291 rcStrict = iemMemStoreDataU16(pVCpu, pVCpu->iem.s.iEffSeg, GCPtrEff, u16Value);
4292 break;
4293 }
4294
4295 case IEMMODE_32BIT:
4296 {
4297 uint32_t u32Value;
4298 rcStrict = iemMemStackPopU32Ex(pVCpu, &u32Value, &TmpRsp);
4299 if (rcStrict == VINF_SUCCESS)
4300 rcStrict = iemMemStoreDataU32(pVCpu, pVCpu->iem.s.iEffSeg, GCPtrEff, u32Value);
4301 break;
4302 }
4303
4304 case IEMMODE_64BIT:
4305 {
4306 uint64_t u64Value;
4307 rcStrict = iemMemStackPopU64Ex(pVCpu, &u64Value, &TmpRsp);
4308 if (rcStrict == VINF_SUCCESS)
4309 rcStrict = iemMemStoreDataU64(pVCpu, pVCpu->iem.s.iEffSeg, GCPtrEff, u64Value);
4310 break;
4311 }
4312
4313 IEM_NOT_REACHED_DEFAULT_CASE_RET();
4314 }
4315 if (rcStrict == VINF_SUCCESS)
4316 {
4317 pCtx->rsp = TmpRsp.u;
4318 iemRegUpdateRipAndClearRF(pVCpu);
4319 }
4320 return rcStrict;
4321
4322#else
4323 return VERR_IEM_IPE_2;
4324#endif
4325}
4326
4327
4328/**
4329 * @opcode 0x8f
4330 */
4331FNIEMOP_DEF(iemOp_Grp1A__xop)
4332{
4333 /*
4334 * AMD has defined /1 thru /7 as XOP prefix. The prefix is similar to the
4335 * three byte VEX prefix, except that the mmmmm field cannot have the values
4336 * 0 thru 7, because it would then be confused with pop Ev (modrm.reg == 0).
4337 */
4338 uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm);
4339 if ((bRm & X86_MODRM_REG_MASK) == (0 << X86_MODRM_REG_SHIFT)) /* /0 */
4340 return FNIEMOP_CALL_1(iemOp_pop_Ev, bRm);
4341
4342 IEMOP_MNEMONIC(xop, "xop");
4343 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fXop)
4344 {
4345 /** @todo Test when exctly the XOP conformance checks kick in during
4346 * instruction decoding and fetching (using \#PF). */
4347 uint8_t bXop2; IEM_OPCODE_GET_NEXT_U8(&bXop2);
4348 uint8_t bOpcode; IEM_OPCODE_GET_NEXT_U8(&bOpcode);
4349 if ( ( pVCpu->iem.s.fPrefixes
4350 & (IEM_OP_PRF_SIZE_OP | IEM_OP_PRF_REPZ | IEM_OP_PRF_REPNZ | IEM_OP_PRF_LOCK | IEM_OP_PRF_REX))
4351 == 0)
4352 {
4353 pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_XOP;
4354 if (bXop2 & 0x80 /* XOP.W */)
4355 pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_SIZE_REX_W;
4356 pVCpu->iem.s.uRexReg = ~bRm >> (7 - 3);
4357 pVCpu->iem.s.uRexIndex = ~bRm >> (6 - 3);
4358 pVCpu->iem.s.uRexB = ~bRm >> (5 - 3);
4359 pVCpu->iem.s.uVex3rdReg = (~bXop2 >> 3) & 0xf;
4360 pVCpu->iem.s.uVexLength = (bXop2 >> 2) & 1;
4361 pVCpu->iem.s.idxPrefix = bXop2 & 0x3;
4362
4363 /** @todo XOP: Just use new tables and decoders. */
4364 switch (bRm & 0x1f)
4365 {
4366 case 8: /* xop opcode map 8. */
4367 IEMOP_BITCH_ABOUT_STUB();
4368 return VERR_IEM_INSTR_NOT_IMPLEMENTED;
4369
4370 case 9: /* xop opcode map 9. */
4371 IEMOP_BITCH_ABOUT_STUB();
4372 return VERR_IEM_INSTR_NOT_IMPLEMENTED;
4373
4374 case 10: /* xop opcode map 10. */
4375 IEMOP_BITCH_ABOUT_STUB();
4376 return VERR_IEM_INSTR_NOT_IMPLEMENTED;
4377
4378 default:
4379 Log(("XOP: Invalid vvvv value: %#x!\n", bRm & 0x1f));
4380 return IEMOP_RAISE_INVALID_OPCODE();
4381 }
4382 }
4383 else
4384 Log(("XOP: Invalid prefix mix!\n"));
4385 }
4386 else
4387 Log(("XOP: XOP support disabled!\n"));
4388 return IEMOP_RAISE_INVALID_OPCODE();
4389}
4390
4391
4392/**
4393 * Common 'xchg reg,rAX' helper.
4394 */
4395FNIEMOP_DEF_1(iemOpCommonXchgGRegRax, uint8_t, iReg)
4396{
4397 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
4398
4399 iReg |= pVCpu->iem.s.uRexB;
4400 switch (pVCpu->iem.s.enmEffOpSize)
4401 {
4402 case IEMMODE_16BIT:
4403 IEM_MC_BEGIN(0, 2);
4404 IEM_MC_LOCAL(uint16_t, u16Tmp1);
4405 IEM_MC_LOCAL(uint16_t, u16Tmp2);
4406 IEM_MC_FETCH_GREG_U16(u16Tmp1, iReg);
4407 IEM_MC_FETCH_GREG_U16(u16Tmp2, X86_GREG_xAX);
4408 IEM_MC_STORE_GREG_U16(X86_GREG_xAX, u16Tmp1);
4409 IEM_MC_STORE_GREG_U16(iReg, u16Tmp2);
4410 IEM_MC_ADVANCE_RIP();
4411 IEM_MC_END();
4412 return VINF_SUCCESS;
4413
4414 case IEMMODE_32BIT:
4415 IEM_MC_BEGIN(0, 2);
4416 IEM_MC_LOCAL(uint32_t, u32Tmp1);
4417 IEM_MC_LOCAL(uint32_t, u32Tmp2);
4418 IEM_MC_FETCH_GREG_U32(u32Tmp1, iReg);
4419 IEM_MC_FETCH_GREG_U32(u32Tmp2, X86_GREG_xAX);
4420 IEM_MC_STORE_GREG_U32(X86_GREG_xAX, u32Tmp1);
4421 IEM_MC_STORE_GREG_U32(iReg, u32Tmp2);
4422 IEM_MC_ADVANCE_RIP();
4423 IEM_MC_END();
4424 return VINF_SUCCESS;
4425
4426 case IEMMODE_64BIT:
4427 IEM_MC_BEGIN(0, 2);
4428 IEM_MC_LOCAL(uint64_t, u64Tmp1);
4429 IEM_MC_LOCAL(uint64_t, u64Tmp2);
4430 IEM_MC_FETCH_GREG_U64(u64Tmp1, iReg);
4431 IEM_MC_FETCH_GREG_U64(u64Tmp2, X86_GREG_xAX);
4432 IEM_MC_STORE_GREG_U64(X86_GREG_xAX, u64Tmp1);
4433 IEM_MC_STORE_GREG_U64(iReg, u64Tmp2);
4434 IEM_MC_ADVANCE_RIP();
4435 IEM_MC_END();
4436 return VINF_SUCCESS;
4437
4438 IEM_NOT_REACHED_DEFAULT_CASE_RET();
4439 }
4440}
4441
4442
4443/**
4444 * @opcode 0x90
4445 */
4446FNIEMOP_DEF(iemOp_nop)
4447{
4448 /* R8/R8D and RAX/EAX can be exchanged. */
4449 if (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX_B)
4450 {
4451 IEMOP_MNEMONIC(xchg_r8_rAX, "xchg r8,rAX");
4452 return FNIEMOP_CALL_1(iemOpCommonXchgGRegRax, X86_GREG_xAX);
4453 }
4454
4455 if (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_LOCK)
4456 IEMOP_MNEMONIC(pause, "pause");
4457 else
4458 IEMOP_MNEMONIC(nop, "nop");
4459 IEM_MC_BEGIN(0, 0);
4460 IEM_MC_ADVANCE_RIP();
4461 IEM_MC_END();
4462 return VINF_SUCCESS;
4463}
4464
4465
4466/**
4467 * @opcode 0x91
4468 */
4469FNIEMOP_DEF(iemOp_xchg_eCX_eAX)
4470{
4471 IEMOP_MNEMONIC(xchg_rCX_rAX, "xchg rCX,rAX");
4472 return FNIEMOP_CALL_1(iemOpCommonXchgGRegRax, X86_GREG_xCX);
4473}
4474
4475
4476/**
4477 * @opcode 0x92
4478 */
4479FNIEMOP_DEF(iemOp_xchg_eDX_eAX)
4480{
4481 IEMOP_MNEMONIC(xchg_rDX_rAX, "xchg rDX,rAX");
4482 return FNIEMOP_CALL_1(iemOpCommonXchgGRegRax, X86_GREG_xDX);
4483}
4484
4485
4486/**
4487 * @opcode 0x93
4488 */
4489FNIEMOP_DEF(iemOp_xchg_eBX_eAX)
4490{
4491 IEMOP_MNEMONIC(xchg_rBX_rAX, "xchg rBX,rAX");
4492 return FNIEMOP_CALL_1(iemOpCommonXchgGRegRax, X86_GREG_xBX);
4493}
4494
4495
4496/**
4497 * @opcode 0x94
4498 */
4499FNIEMOP_DEF(iemOp_xchg_eSP_eAX)
4500{
4501 IEMOP_MNEMONIC(xchg_rSX_rAX, "xchg rSX,rAX");
4502 return FNIEMOP_CALL_1(iemOpCommonXchgGRegRax, X86_GREG_xSP);
4503}
4504
4505
4506/**
4507 * @opcode 0x95
4508 */
4509FNIEMOP_DEF(iemOp_xchg_eBP_eAX)
4510{
4511 IEMOP_MNEMONIC(xchg_rBP_rAX, "xchg rBP,rAX");
4512 return FNIEMOP_CALL_1(iemOpCommonXchgGRegRax, X86_GREG_xBP);
4513}
4514
4515
4516/**
4517 * @opcode 0x96
4518 */
4519FNIEMOP_DEF(iemOp_xchg_eSI_eAX)
4520{
4521 IEMOP_MNEMONIC(xchg_rSI_rAX, "xchg rSI,rAX");
4522 return FNIEMOP_CALL_1(iemOpCommonXchgGRegRax, X86_GREG_xSI);
4523}
4524
4525
4526/**
4527 * @opcode 0x97
4528 */
4529FNIEMOP_DEF(iemOp_xchg_eDI_eAX)
4530{
4531 IEMOP_MNEMONIC(xchg_rDI_rAX, "xchg rDI,rAX");
4532 return FNIEMOP_CALL_1(iemOpCommonXchgGRegRax, X86_GREG_xDI);
4533}
4534
4535
4536/**
4537 * @opcode 0x98
4538 */
4539FNIEMOP_DEF(iemOp_cbw)
4540{
4541 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
4542 switch (pVCpu->iem.s.enmEffOpSize)
4543 {
4544 case IEMMODE_16BIT:
4545 IEMOP_MNEMONIC(cbw, "cbw");
4546 IEM_MC_BEGIN(0, 1);
4547 IEM_MC_IF_GREG_BIT_SET(X86_GREG_xAX, 7) {
4548 IEM_MC_OR_GREG_U16(X86_GREG_xAX, UINT16_C(0xff00));
4549 } IEM_MC_ELSE() {
4550 IEM_MC_AND_GREG_U16(X86_GREG_xAX, UINT16_C(0x00ff));
4551 } IEM_MC_ENDIF();
4552 IEM_MC_ADVANCE_RIP();
4553 IEM_MC_END();
4554 return VINF_SUCCESS;
4555
4556 case IEMMODE_32BIT:
4557 IEMOP_MNEMONIC(cwde, "cwde");
4558 IEM_MC_BEGIN(0, 1);
4559 IEM_MC_IF_GREG_BIT_SET(X86_GREG_xAX, 15) {
4560 IEM_MC_OR_GREG_U32(X86_GREG_xAX, UINT32_C(0xffff0000));
4561 } IEM_MC_ELSE() {
4562 IEM_MC_AND_GREG_U32(X86_GREG_xAX, UINT32_C(0x0000ffff));
4563 } IEM_MC_ENDIF();
4564 IEM_MC_ADVANCE_RIP();
4565 IEM_MC_END();
4566 return VINF_SUCCESS;
4567
4568 case IEMMODE_64BIT:
4569 IEMOP_MNEMONIC(cdqe, "cdqe");
4570 IEM_MC_BEGIN(0, 1);
4571 IEM_MC_IF_GREG_BIT_SET(X86_GREG_xAX, 31) {
4572 IEM_MC_OR_GREG_U64(X86_GREG_xAX, UINT64_C(0xffffffff00000000));
4573 } IEM_MC_ELSE() {
4574 IEM_MC_AND_GREG_U64(X86_GREG_xAX, UINT64_C(0x00000000ffffffff));
4575 } IEM_MC_ENDIF();
4576 IEM_MC_ADVANCE_RIP();
4577 IEM_MC_END();
4578 return VINF_SUCCESS;
4579
4580 IEM_NOT_REACHED_DEFAULT_CASE_RET();
4581 }
4582}
4583
4584
4585/**
4586 * @opcode 0x99
4587 */
4588FNIEMOP_DEF(iemOp_cwd)
4589{
4590 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
4591 switch (pVCpu->iem.s.enmEffOpSize)
4592 {
4593 case IEMMODE_16BIT:
4594 IEMOP_MNEMONIC(cwd, "cwd");
4595 IEM_MC_BEGIN(0, 1);
4596 IEM_MC_IF_GREG_BIT_SET(X86_GREG_xAX, 15) {
4597 IEM_MC_STORE_GREG_U16_CONST(X86_GREG_xDX, UINT16_C(0xffff));
4598 } IEM_MC_ELSE() {
4599 IEM_MC_STORE_GREG_U16_CONST(X86_GREG_xDX, 0);
4600 } IEM_MC_ENDIF();
4601 IEM_MC_ADVANCE_RIP();
4602 IEM_MC_END();
4603 return VINF_SUCCESS;
4604
4605 case IEMMODE_32BIT:
4606 IEMOP_MNEMONIC(cdq, "cdq");
4607 IEM_MC_BEGIN(0, 1);
4608 IEM_MC_IF_GREG_BIT_SET(X86_GREG_xAX, 31) {
4609 IEM_MC_STORE_GREG_U32_CONST(X86_GREG_xDX, UINT32_C(0xffffffff));
4610 } IEM_MC_ELSE() {
4611 IEM_MC_STORE_GREG_U32_CONST(X86_GREG_xDX, 0);
4612 } IEM_MC_ENDIF();
4613 IEM_MC_ADVANCE_RIP();
4614 IEM_MC_END();
4615 return VINF_SUCCESS;
4616
4617 case IEMMODE_64BIT:
4618 IEMOP_MNEMONIC(cqo, "cqo");
4619 IEM_MC_BEGIN(0, 1);
4620 IEM_MC_IF_GREG_BIT_SET(X86_GREG_xAX, 63) {
4621 IEM_MC_STORE_GREG_U64_CONST(X86_GREG_xDX, UINT64_C(0xffffffffffffffff));
4622 } IEM_MC_ELSE() {
4623 IEM_MC_STORE_GREG_U64_CONST(X86_GREG_xDX, 0);
4624 } IEM_MC_ENDIF();
4625 IEM_MC_ADVANCE_RIP();
4626 IEM_MC_END();
4627 return VINF_SUCCESS;
4628
4629 IEM_NOT_REACHED_DEFAULT_CASE_RET();
4630 }
4631}
4632
4633
4634/**
4635 * @opcode 0x9a
4636 */
4637FNIEMOP_DEF(iemOp_call_Ap)
4638{
4639 IEMOP_MNEMONIC(call_Ap, "call Ap");
4640 IEMOP_HLP_NO_64BIT();
4641
4642 /* Decode the far pointer address and pass it on to the far call C implementation. */
4643 uint32_t offSeg;
4644 if (pVCpu->iem.s.enmEffOpSize != IEMMODE_16BIT)
4645 IEM_OPCODE_GET_NEXT_U32(&offSeg);
4646 else
4647 IEM_OPCODE_GET_NEXT_U16_ZX_U32(&offSeg);
4648 uint16_t uSel; IEM_OPCODE_GET_NEXT_U16(&uSel);
4649 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
4650 return IEM_MC_DEFER_TO_CIMPL_3(iemCImpl_callf, uSel, offSeg, pVCpu->iem.s.enmEffOpSize);
4651}
4652
4653
4654/** Opcode 0x9b. (aka fwait) */
4655FNIEMOP_DEF(iemOp_wait)
4656{
4657 IEMOP_MNEMONIC(wait, "wait");
4658 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
4659
4660 IEM_MC_BEGIN(0, 0);
4661 IEM_MC_MAYBE_RAISE_WAIT_DEVICE_NOT_AVAILABLE();
4662 IEM_MC_MAYBE_RAISE_FPU_XCPT();
4663 IEM_MC_ADVANCE_RIP();
4664 IEM_MC_END();
4665 return VINF_SUCCESS;
4666}
4667
4668
4669/**
4670 * @opcode 0x9c
4671 */
4672FNIEMOP_DEF(iemOp_pushf_Fv)
4673{
4674 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
4675 IEMOP_HLP_DEFAULT_64BIT_OP_SIZE();
4676 return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_pushf, pVCpu->iem.s.enmEffOpSize);
4677}
4678
4679
4680/**
4681 * @opcode 0x9d
4682 */
4683FNIEMOP_DEF(iemOp_popf_Fv)
4684{
4685 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
4686 IEMOP_HLP_DEFAULT_64BIT_OP_SIZE();
4687 return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_popf, pVCpu->iem.s.enmEffOpSize);
4688}
4689
4690
4691/**
4692 * @opcode 0x9e
4693 */
4694FNIEMOP_DEF(iemOp_sahf)
4695{
4696 IEMOP_MNEMONIC(sahf, "sahf");
4697 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
4698 if ( pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT
4699 && !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLahfSahf)
4700 return IEMOP_RAISE_INVALID_OPCODE();
4701 IEM_MC_BEGIN(0, 2);
4702 IEM_MC_LOCAL(uint32_t, u32Flags);
4703 IEM_MC_LOCAL(uint32_t, EFlags);
4704 IEM_MC_FETCH_EFLAGS(EFlags);
4705 IEM_MC_FETCH_GREG_U8_ZX_U32(u32Flags, X86_GREG_xSP/*=AH*/);
4706 IEM_MC_AND_LOCAL_U32(u32Flags, X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_CF);
4707 IEM_MC_AND_LOCAL_U32(EFlags, UINT32_C(0xffffff00));
4708 IEM_MC_OR_LOCAL_U32(u32Flags, X86_EFL_1);
4709 IEM_MC_OR_2LOCS_U32(EFlags, u32Flags);
4710 IEM_MC_COMMIT_EFLAGS(EFlags);
4711 IEM_MC_ADVANCE_RIP();
4712 IEM_MC_END();
4713 return VINF_SUCCESS;
4714}
4715
4716
4717/**
4718 * @opcode 0x9f
4719 */
4720FNIEMOP_DEF(iemOp_lahf)
4721{
4722 IEMOP_MNEMONIC(lahf, "lahf");
4723 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
4724 if ( pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT
4725 && !IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLahfSahf)
4726 return IEMOP_RAISE_INVALID_OPCODE();
4727 IEM_MC_BEGIN(0, 1);
4728 IEM_MC_LOCAL(uint8_t, u8Flags);
4729 IEM_MC_FETCH_EFLAGS_U8(u8Flags);
4730 IEM_MC_STORE_GREG_U8(X86_GREG_xSP/*=AH*/, u8Flags);
4731 IEM_MC_ADVANCE_RIP();
4732 IEM_MC_END();
4733 return VINF_SUCCESS;
4734}
4735
4736
4737/**
4738 * Macro used by iemOp_mov_AL_Ob, iemOp_mov_rAX_Ov, iemOp_mov_Ob_AL and
4739 * iemOp_mov_Ov_rAX to fetch the moffsXX bit of the opcode and fend of lock
4740 * prefixes. Will return on failures.
4741 * @param a_GCPtrMemOff The variable to store the offset in.
4742 */
4743#define IEMOP_FETCH_MOFFS_XX(a_GCPtrMemOff) \
4744 do \
4745 { \
4746 switch (pVCpu->iem.s.enmEffAddrMode) \
4747 { \
4748 case IEMMODE_16BIT: \
4749 IEM_OPCODE_GET_NEXT_U16_ZX_U64(&(a_GCPtrMemOff)); \
4750 break; \
4751 case IEMMODE_32BIT: \
4752 IEM_OPCODE_GET_NEXT_U32_ZX_U64(&(a_GCPtrMemOff)); \
4753 break; \
4754 case IEMMODE_64BIT: \
4755 IEM_OPCODE_GET_NEXT_U64(&(a_GCPtrMemOff)); \
4756 break; \
4757 IEM_NOT_REACHED_DEFAULT_CASE_RET(); \
4758 } \
4759 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX(); \
4760 } while (0)
4761
4762/**
4763 * @opcode 0xa0
4764 */
4765FNIEMOP_DEF(iemOp_mov_AL_Ob)
4766{
4767 /*
4768 * Get the offset and fend of lock prefixes.
4769 */
4770 RTGCPTR GCPtrMemOff;
4771 IEMOP_FETCH_MOFFS_XX(GCPtrMemOff);
4772
4773 /*
4774 * Fetch AL.
4775 */
4776 IEM_MC_BEGIN(0,1);
4777 IEM_MC_LOCAL(uint8_t, u8Tmp);
4778 IEM_MC_FETCH_MEM_U8(u8Tmp, pVCpu->iem.s.iEffSeg, GCPtrMemOff);
4779 IEM_MC_STORE_GREG_U8(X86_GREG_xAX, u8Tmp);
4780 IEM_MC_ADVANCE_RIP();
4781 IEM_MC_END();
4782 return VINF_SUCCESS;
4783}
4784
4785
4786/**
4787 * @opcode 0xa1
4788 */
4789FNIEMOP_DEF(iemOp_mov_rAX_Ov)
4790{
4791 /*
4792 * Get the offset and fend of lock prefixes.
4793 */
4794 IEMOP_MNEMONIC(mov_rAX_Ov, "mov rAX,Ov");
4795 RTGCPTR GCPtrMemOff;
4796 IEMOP_FETCH_MOFFS_XX(GCPtrMemOff);
4797
4798 /*
4799 * Fetch rAX.
4800 */
4801 switch (pVCpu->iem.s.enmEffOpSize)
4802 {
4803 case IEMMODE_16BIT:
4804 IEM_MC_BEGIN(0,1);
4805 IEM_MC_LOCAL(uint16_t, u16Tmp);
4806 IEM_MC_FETCH_MEM_U16(u16Tmp, pVCpu->iem.s.iEffSeg, GCPtrMemOff);
4807 IEM_MC_STORE_GREG_U16(X86_GREG_xAX, u16Tmp);
4808 IEM_MC_ADVANCE_RIP();
4809 IEM_MC_END();
4810 return VINF_SUCCESS;
4811
4812 case IEMMODE_32BIT:
4813 IEM_MC_BEGIN(0,1);
4814 IEM_MC_LOCAL(uint32_t, u32Tmp);
4815 IEM_MC_FETCH_MEM_U32(u32Tmp, pVCpu->iem.s.iEffSeg, GCPtrMemOff);
4816 IEM_MC_STORE_GREG_U32(X86_GREG_xAX, u32Tmp);
4817 IEM_MC_ADVANCE_RIP();
4818 IEM_MC_END();
4819 return VINF_SUCCESS;
4820
4821 case IEMMODE_64BIT:
4822 IEM_MC_BEGIN(0,1);
4823 IEM_MC_LOCAL(uint64_t, u64Tmp);
4824 IEM_MC_FETCH_MEM_U64(u64Tmp, pVCpu->iem.s.iEffSeg, GCPtrMemOff);
4825 IEM_MC_STORE_GREG_U64(X86_GREG_xAX, u64Tmp);
4826 IEM_MC_ADVANCE_RIP();
4827 IEM_MC_END();
4828 return VINF_SUCCESS;
4829
4830 IEM_NOT_REACHED_DEFAULT_CASE_RET();
4831 }
4832}
4833
4834
4835/**
4836 * @opcode 0xa2
4837 */
4838FNIEMOP_DEF(iemOp_mov_Ob_AL)
4839{
4840 /*
4841 * Get the offset and fend of lock prefixes.
4842 */
4843 RTGCPTR GCPtrMemOff;
4844 IEMOP_FETCH_MOFFS_XX(GCPtrMemOff);
4845
4846 /*
4847 * Store AL.
4848 */
4849 IEM_MC_BEGIN(0,1);
4850 IEM_MC_LOCAL(uint8_t, u8Tmp);
4851 IEM_MC_FETCH_GREG_U8(u8Tmp, X86_GREG_xAX);
4852 IEM_MC_STORE_MEM_U8(pVCpu->iem.s.iEffSeg, GCPtrMemOff, u8Tmp);
4853 IEM_MC_ADVANCE_RIP();
4854 IEM_MC_END();
4855 return VINF_SUCCESS;
4856}
4857
4858
4859/**
4860 * @opcode 0xa3
4861 */
4862FNIEMOP_DEF(iemOp_mov_Ov_rAX)
4863{
4864 /*
4865 * Get the offset and fend of lock prefixes.
4866 */
4867 RTGCPTR GCPtrMemOff;
4868 IEMOP_FETCH_MOFFS_XX(GCPtrMemOff);
4869
4870 /*
4871 * Store rAX.
4872 */
4873 switch (pVCpu->iem.s.enmEffOpSize)
4874 {
4875 case IEMMODE_16BIT:
4876 IEM_MC_BEGIN(0,1);
4877 IEM_MC_LOCAL(uint16_t, u16Tmp);
4878 IEM_MC_FETCH_GREG_U16(u16Tmp, X86_GREG_xAX);
4879 IEM_MC_STORE_MEM_U16(pVCpu->iem.s.iEffSeg, GCPtrMemOff, u16Tmp);
4880 IEM_MC_ADVANCE_RIP();
4881 IEM_MC_END();
4882 return VINF_SUCCESS;
4883
4884 case IEMMODE_32BIT:
4885 IEM_MC_BEGIN(0,1);
4886 IEM_MC_LOCAL(uint32_t, u32Tmp);
4887 IEM_MC_FETCH_GREG_U32(u32Tmp, X86_GREG_xAX);
4888 IEM_MC_STORE_MEM_U32(pVCpu->iem.s.iEffSeg, GCPtrMemOff, u32Tmp);
4889 IEM_MC_ADVANCE_RIP();
4890 IEM_MC_END();
4891 return VINF_SUCCESS;
4892
4893 case IEMMODE_64BIT:
4894 IEM_MC_BEGIN(0,1);
4895 IEM_MC_LOCAL(uint64_t, u64Tmp);
4896 IEM_MC_FETCH_GREG_U64(u64Tmp, X86_GREG_xAX);
4897 IEM_MC_STORE_MEM_U64(pVCpu->iem.s.iEffSeg, GCPtrMemOff, u64Tmp);
4898 IEM_MC_ADVANCE_RIP();
4899 IEM_MC_END();
4900 return VINF_SUCCESS;
4901
4902 IEM_NOT_REACHED_DEFAULT_CASE_RET();
4903 }
4904}
4905
4906/** Macro used by iemOp_movsb_Xb_Yb and iemOp_movswd_Xv_Yv */
4907#define IEM_MOVS_CASE(ValBits, AddrBits) \
4908 IEM_MC_BEGIN(0, 2); \
4909 IEM_MC_LOCAL(uint##ValBits##_t, uValue); \
4910 IEM_MC_LOCAL(RTGCPTR, uAddr); \
4911 IEM_MC_FETCH_GREG_U##AddrBits##_ZX_U64(uAddr, X86_GREG_xSI); \
4912 IEM_MC_FETCH_MEM_U##ValBits(uValue, pVCpu->iem.s.iEffSeg, uAddr); \
4913 IEM_MC_FETCH_GREG_U##AddrBits##_ZX_U64(uAddr, X86_GREG_xDI); \
4914 IEM_MC_STORE_MEM_U##ValBits(X86_SREG_ES, uAddr, uValue); \
4915 IEM_MC_IF_EFL_BIT_SET(X86_EFL_DF) { \
4916 IEM_MC_SUB_GREG_U##AddrBits(X86_GREG_xDI, ValBits / 8); \
4917 IEM_MC_SUB_GREG_U##AddrBits(X86_GREG_xSI, ValBits / 8); \
4918 } IEM_MC_ELSE() { \
4919 IEM_MC_ADD_GREG_U##AddrBits(X86_GREG_xDI, ValBits / 8); \
4920 IEM_MC_ADD_GREG_U##AddrBits(X86_GREG_xSI, ValBits / 8); \
4921 } IEM_MC_ENDIF(); \
4922 IEM_MC_ADVANCE_RIP(); \
4923 IEM_MC_END();
4924
4925/**
4926 * @opcode 0xa4
4927 */
4928FNIEMOP_DEF(iemOp_movsb_Xb_Yb)
4929{
4930 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
4931
4932 /*
4933 * Use the C implementation if a repeat prefix is encountered.
4934 */
4935 if (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_REPNZ | IEM_OP_PRF_REPZ))
4936 {
4937 IEMOP_MNEMONIC(rep_movsb_Xb_Yb, "rep movsb Xb,Yb");
4938 switch (pVCpu->iem.s.enmEffAddrMode)
4939 {
4940 case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_rep_movs_op8_addr16, pVCpu->iem.s.iEffSeg);
4941 case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_rep_movs_op8_addr32, pVCpu->iem.s.iEffSeg);
4942 case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_rep_movs_op8_addr64, pVCpu->iem.s.iEffSeg);
4943 IEM_NOT_REACHED_DEFAULT_CASE_RET();
4944 }
4945 }
4946 IEMOP_MNEMONIC(movsb_Xb_Yb, "movsb Xb,Yb");
4947
4948 /*
4949 * Sharing case implementation with movs[wdq] below.
4950 */
4951 switch (pVCpu->iem.s.enmEffAddrMode)
4952 {
4953 case IEMMODE_16BIT: IEM_MOVS_CASE(8, 16); break;
4954 case IEMMODE_32BIT: IEM_MOVS_CASE(8, 32); break;
4955 case IEMMODE_64BIT: IEM_MOVS_CASE(8, 64); break;
4956 IEM_NOT_REACHED_DEFAULT_CASE_RET();
4957 }
4958 return VINF_SUCCESS;
4959}
4960
4961
4962/**
4963 * @opcode 0xa5
4964 */
4965FNIEMOP_DEF(iemOp_movswd_Xv_Yv)
4966{
4967 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
4968
4969 /*
4970 * Use the C implementation if a repeat prefix is encountered.
4971 */
4972 if (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_REPNZ | IEM_OP_PRF_REPZ))
4973 {
4974 IEMOP_MNEMONIC(rep_movs_Xv_Yv, "rep movs Xv,Yv");
4975 switch (pVCpu->iem.s.enmEffOpSize)
4976 {
4977 case IEMMODE_16BIT:
4978 switch (pVCpu->iem.s.enmEffAddrMode)
4979 {
4980 case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_rep_movs_op16_addr16, pVCpu->iem.s.iEffSeg);
4981 case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_rep_movs_op16_addr32, pVCpu->iem.s.iEffSeg);
4982 case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_rep_movs_op16_addr64, pVCpu->iem.s.iEffSeg);
4983 IEM_NOT_REACHED_DEFAULT_CASE_RET();
4984 }
4985 break;
4986 case IEMMODE_32BIT:
4987 switch (pVCpu->iem.s.enmEffAddrMode)
4988 {
4989 case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_rep_movs_op32_addr16, pVCpu->iem.s.iEffSeg);
4990 case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_rep_movs_op32_addr32, pVCpu->iem.s.iEffSeg);
4991 case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_rep_movs_op32_addr64, pVCpu->iem.s.iEffSeg);
4992 IEM_NOT_REACHED_DEFAULT_CASE_RET();
4993 }
4994 case IEMMODE_64BIT:
4995 switch (pVCpu->iem.s.enmEffAddrMode)
4996 {
4997 case IEMMODE_16BIT: AssertFailedReturn(VERR_IEM_IPE_6);
4998 case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_rep_movs_op64_addr32, pVCpu->iem.s.iEffSeg);
4999 case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_rep_movs_op64_addr64, pVCpu->iem.s.iEffSeg);
5000 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5001 }
5002 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5003 }
5004 }
5005 IEMOP_MNEMONIC(movs_Xv_Yv, "movs Xv,Yv");
5006
5007 /*
5008 * Annoying double switch here.
5009 * Using ugly macro for implementing the cases, sharing it with movsb.
5010 */
5011 switch (pVCpu->iem.s.enmEffOpSize)
5012 {
5013 case IEMMODE_16BIT:
5014 switch (pVCpu->iem.s.enmEffAddrMode)
5015 {
5016 case IEMMODE_16BIT: IEM_MOVS_CASE(16, 16); break;
5017 case IEMMODE_32BIT: IEM_MOVS_CASE(16, 32); break;
5018 case IEMMODE_64BIT: IEM_MOVS_CASE(16, 64); break;
5019 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5020 }
5021 break;
5022
5023 case IEMMODE_32BIT:
5024 switch (pVCpu->iem.s.enmEffAddrMode)
5025 {
5026 case IEMMODE_16BIT: IEM_MOVS_CASE(32, 16); break;
5027 case IEMMODE_32BIT: IEM_MOVS_CASE(32, 32); break;
5028 case IEMMODE_64BIT: IEM_MOVS_CASE(32, 64); break;
5029 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5030 }
5031 break;
5032
5033 case IEMMODE_64BIT:
5034 switch (pVCpu->iem.s.enmEffAddrMode)
5035 {
5036 case IEMMODE_16BIT: AssertFailedReturn(VERR_IEM_IPE_1); /* cannot be encoded */ break;
5037 case IEMMODE_32BIT: IEM_MOVS_CASE(64, 32); break;
5038 case IEMMODE_64BIT: IEM_MOVS_CASE(64, 64); break;
5039 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5040 }
5041 break;
5042 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5043 }
5044 return VINF_SUCCESS;
5045}
5046
5047#undef IEM_MOVS_CASE
5048
5049/** Macro used by iemOp_cmpsb_Xb_Yb and iemOp_cmpswd_Xv_Yv */
5050#define IEM_CMPS_CASE(ValBits, AddrBits) \
5051 IEM_MC_BEGIN(3, 3); \
5052 IEM_MC_ARG(uint##ValBits##_t *, puValue1, 0); \
5053 IEM_MC_ARG(uint##ValBits##_t, uValue2, 1); \
5054 IEM_MC_ARG(uint32_t *, pEFlags, 2); \
5055 IEM_MC_LOCAL(uint##ValBits##_t, uValue1); \
5056 IEM_MC_LOCAL(RTGCPTR, uAddr); \
5057 \
5058 IEM_MC_FETCH_GREG_U##AddrBits##_ZX_U64(uAddr, X86_GREG_xSI); \
5059 IEM_MC_FETCH_MEM_U##ValBits(uValue1, pVCpu->iem.s.iEffSeg, uAddr); \
5060 IEM_MC_FETCH_GREG_U##AddrBits##_ZX_U64(uAddr, X86_GREG_xDI); \
5061 IEM_MC_FETCH_MEM_U##ValBits(uValue2, X86_SREG_ES, uAddr); \
5062 IEM_MC_REF_LOCAL(puValue1, uValue1); \
5063 IEM_MC_REF_EFLAGS(pEFlags); \
5064 IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_cmp_u##ValBits, puValue1, uValue2, pEFlags); \
5065 \
5066 IEM_MC_IF_EFL_BIT_SET(X86_EFL_DF) { \
5067 IEM_MC_SUB_GREG_U##AddrBits(X86_GREG_xDI, ValBits / 8); \
5068 IEM_MC_SUB_GREG_U##AddrBits(X86_GREG_xSI, ValBits / 8); \
5069 } IEM_MC_ELSE() { \
5070 IEM_MC_ADD_GREG_U##AddrBits(X86_GREG_xDI, ValBits / 8); \
5071 IEM_MC_ADD_GREG_U##AddrBits(X86_GREG_xSI, ValBits / 8); \
5072 } IEM_MC_ENDIF(); \
5073 IEM_MC_ADVANCE_RIP(); \
5074 IEM_MC_END(); \
5075
5076/**
5077 * @opcode 0xa6
5078 */
5079FNIEMOP_DEF(iemOp_cmpsb_Xb_Yb)
5080{
5081 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
5082
5083 /*
5084 * Use the C implementation if a repeat prefix is encountered.
5085 */
5086 if (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REPZ)
5087 {
5088 IEMOP_MNEMONIC(repz_cmps_Xb_Yb, "repz cmps Xb,Yb");
5089 switch (pVCpu->iem.s.enmEffAddrMode)
5090 {
5091 case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_repe_cmps_op8_addr16, pVCpu->iem.s.iEffSeg);
5092 case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_repe_cmps_op8_addr32, pVCpu->iem.s.iEffSeg);
5093 case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_repe_cmps_op8_addr64, pVCpu->iem.s.iEffSeg);
5094 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5095 }
5096 }
5097 if (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REPNZ)
5098 {
5099 IEMOP_MNEMONIC(repnz_cmps_Xb_Yb, "repnz cmps Xb,Yb");
5100 switch (pVCpu->iem.s.enmEffAddrMode)
5101 {
5102 case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_repne_cmps_op8_addr16, pVCpu->iem.s.iEffSeg);
5103 case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_repne_cmps_op8_addr32, pVCpu->iem.s.iEffSeg);
5104 case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_repne_cmps_op8_addr64, pVCpu->iem.s.iEffSeg);
5105 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5106 }
5107 }
5108 IEMOP_MNEMONIC(cmps_Xb_Yb, "cmps Xb,Yb");
5109
5110 /*
5111 * Sharing case implementation with cmps[wdq] below.
5112 */
5113 switch (pVCpu->iem.s.enmEffAddrMode)
5114 {
5115 case IEMMODE_16BIT: IEM_CMPS_CASE(8, 16); break;
5116 case IEMMODE_32BIT: IEM_CMPS_CASE(8, 32); break;
5117 case IEMMODE_64BIT: IEM_CMPS_CASE(8, 64); break;
5118 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5119 }
5120 return VINF_SUCCESS;
5121
5122}
5123
5124
5125/**
5126 * @opcode 0xa7
5127 */
5128FNIEMOP_DEF(iemOp_cmpswd_Xv_Yv)
5129{
5130 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
5131
5132 /*
5133 * Use the C implementation if a repeat prefix is encountered.
5134 */
5135 if (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REPZ)
5136 {
5137 IEMOP_MNEMONIC(repe_cmps_Xv_Yv, "repe cmps Xv,Yv");
5138 switch (pVCpu->iem.s.enmEffOpSize)
5139 {
5140 case IEMMODE_16BIT:
5141 switch (pVCpu->iem.s.enmEffAddrMode)
5142 {
5143 case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_repe_cmps_op16_addr16, pVCpu->iem.s.iEffSeg);
5144 case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_repe_cmps_op16_addr32, pVCpu->iem.s.iEffSeg);
5145 case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_repe_cmps_op16_addr64, pVCpu->iem.s.iEffSeg);
5146 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5147 }
5148 break;
5149 case IEMMODE_32BIT:
5150 switch (pVCpu->iem.s.enmEffAddrMode)
5151 {
5152 case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_repe_cmps_op32_addr16, pVCpu->iem.s.iEffSeg);
5153 case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_repe_cmps_op32_addr32, pVCpu->iem.s.iEffSeg);
5154 case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_repe_cmps_op32_addr64, pVCpu->iem.s.iEffSeg);
5155 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5156 }
5157 case IEMMODE_64BIT:
5158 switch (pVCpu->iem.s.enmEffAddrMode)
5159 {
5160 case IEMMODE_16BIT: AssertFailedReturn(VERR_IEM_IPE_4);
5161 case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_repe_cmps_op64_addr32, pVCpu->iem.s.iEffSeg);
5162 case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_repe_cmps_op64_addr64, pVCpu->iem.s.iEffSeg);
5163 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5164 }
5165 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5166 }
5167 }
5168
5169 if (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REPNZ)
5170 {
5171 IEMOP_MNEMONIC(repne_cmps_Xv_Yv, "repne cmps Xv,Yv");
5172 switch (pVCpu->iem.s.enmEffOpSize)
5173 {
5174 case IEMMODE_16BIT:
5175 switch (pVCpu->iem.s.enmEffAddrMode)
5176 {
5177 case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_repne_cmps_op16_addr16, pVCpu->iem.s.iEffSeg);
5178 case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_repne_cmps_op16_addr32, pVCpu->iem.s.iEffSeg);
5179 case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_repne_cmps_op16_addr64, pVCpu->iem.s.iEffSeg);
5180 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5181 }
5182 break;
5183 case IEMMODE_32BIT:
5184 switch (pVCpu->iem.s.enmEffAddrMode)
5185 {
5186 case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_repne_cmps_op32_addr16, pVCpu->iem.s.iEffSeg);
5187 case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_repne_cmps_op32_addr32, pVCpu->iem.s.iEffSeg);
5188 case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_repne_cmps_op32_addr64, pVCpu->iem.s.iEffSeg);
5189 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5190 }
5191 case IEMMODE_64BIT:
5192 switch (pVCpu->iem.s.enmEffAddrMode)
5193 {
5194 case IEMMODE_16BIT: AssertFailedReturn(VERR_IEM_IPE_2);
5195 case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_repne_cmps_op64_addr32, pVCpu->iem.s.iEffSeg);
5196 case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_repne_cmps_op64_addr64, pVCpu->iem.s.iEffSeg);
5197 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5198 }
5199 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5200 }
5201 }
5202
5203 IEMOP_MNEMONIC(cmps_Xv_Yv, "cmps Xv,Yv");
5204
5205 /*
5206 * Annoying double switch here.
5207 * Using ugly macro for implementing the cases, sharing it with cmpsb.
5208 */
5209 switch (pVCpu->iem.s.enmEffOpSize)
5210 {
5211 case IEMMODE_16BIT:
5212 switch (pVCpu->iem.s.enmEffAddrMode)
5213 {
5214 case IEMMODE_16BIT: IEM_CMPS_CASE(16, 16); break;
5215 case IEMMODE_32BIT: IEM_CMPS_CASE(16, 32); break;
5216 case IEMMODE_64BIT: IEM_CMPS_CASE(16, 64); break;
5217 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5218 }
5219 break;
5220
5221 case IEMMODE_32BIT:
5222 switch (pVCpu->iem.s.enmEffAddrMode)
5223 {
5224 case IEMMODE_16BIT: IEM_CMPS_CASE(32, 16); break;
5225 case IEMMODE_32BIT: IEM_CMPS_CASE(32, 32); break;
5226 case IEMMODE_64BIT: IEM_CMPS_CASE(32, 64); break;
5227 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5228 }
5229 break;
5230
5231 case IEMMODE_64BIT:
5232 switch (pVCpu->iem.s.enmEffAddrMode)
5233 {
5234 case IEMMODE_16BIT: AssertFailedReturn(VERR_IEM_IPE_1); /* cannot be encoded */ break;
5235 case IEMMODE_32BIT: IEM_CMPS_CASE(64, 32); break;
5236 case IEMMODE_64BIT: IEM_CMPS_CASE(64, 64); break;
5237 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5238 }
5239 break;
5240 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5241 }
5242 return VINF_SUCCESS;
5243
5244}
5245
5246#undef IEM_CMPS_CASE
5247
5248/**
5249 * @opcode 0xa8
5250 */
5251FNIEMOP_DEF(iemOp_test_AL_Ib)
5252{
5253 IEMOP_MNEMONIC(test_al_Ib, "test al,Ib");
5254 IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF);
5255 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_AL_Ib, &g_iemAImpl_test);
5256}
5257
5258
5259/**
5260 * @opcode 0xa9
5261 */
5262FNIEMOP_DEF(iemOp_test_eAX_Iz)
5263{
5264 IEMOP_MNEMONIC(test_rAX_Iz, "test rAX,Iz");
5265 IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF);
5266 return FNIEMOP_CALL_1(iemOpHlpBinaryOperator_rAX_Iz, &g_iemAImpl_test);
5267}
5268
5269
5270/** Macro used by iemOp_stosb_Yb_AL and iemOp_stoswd_Yv_eAX */
5271#define IEM_STOS_CASE(ValBits, AddrBits) \
5272 IEM_MC_BEGIN(0, 2); \
5273 IEM_MC_LOCAL(uint##ValBits##_t, uValue); \
5274 IEM_MC_LOCAL(RTGCPTR, uAddr); \
5275 IEM_MC_FETCH_GREG_U##ValBits(uValue, X86_GREG_xAX); \
5276 IEM_MC_FETCH_GREG_U##AddrBits##_ZX_U64(uAddr, X86_GREG_xDI); \
5277 IEM_MC_STORE_MEM_U##ValBits(X86_SREG_ES, uAddr, uValue); \
5278 IEM_MC_IF_EFL_BIT_SET(X86_EFL_DF) { \
5279 IEM_MC_SUB_GREG_U##AddrBits(X86_GREG_xDI, ValBits / 8); \
5280 } IEM_MC_ELSE() { \
5281 IEM_MC_ADD_GREG_U##AddrBits(X86_GREG_xDI, ValBits / 8); \
5282 } IEM_MC_ENDIF(); \
5283 IEM_MC_ADVANCE_RIP(); \
5284 IEM_MC_END(); \
5285
5286/**
5287 * @opcode 0xaa
5288 */
5289FNIEMOP_DEF(iemOp_stosb_Yb_AL)
5290{
5291 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
5292
5293 /*
5294 * Use the C implementation if a repeat prefix is encountered.
5295 */
5296 if (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_REPNZ | IEM_OP_PRF_REPZ))
5297 {
5298 IEMOP_MNEMONIC(rep_stos_Yb_al, "rep stos Yb,al");
5299 switch (pVCpu->iem.s.enmEffAddrMode)
5300 {
5301 case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_stos_al_m16);
5302 case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_stos_al_m32);
5303 case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_stos_al_m64);
5304 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5305 }
5306 }
5307 IEMOP_MNEMONIC(stos_Yb_al, "stos Yb,al");
5308
5309 /*
5310 * Sharing case implementation with stos[wdq] below.
5311 */
5312 switch (pVCpu->iem.s.enmEffAddrMode)
5313 {
5314 case IEMMODE_16BIT: IEM_STOS_CASE(8, 16); break;
5315 case IEMMODE_32BIT: IEM_STOS_CASE(8, 32); break;
5316 case IEMMODE_64BIT: IEM_STOS_CASE(8, 64); break;
5317 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5318 }
5319 return VINF_SUCCESS;
5320}
5321
5322
5323/**
5324 * @opcode 0xab
5325 */
5326FNIEMOP_DEF(iemOp_stoswd_Yv_eAX)
5327{
5328 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
5329
5330 /*
5331 * Use the C implementation if a repeat prefix is encountered.
5332 */
5333 if (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_REPNZ | IEM_OP_PRF_REPZ))
5334 {
5335 IEMOP_MNEMONIC(rep_stos_Yv_rAX, "rep stos Yv,rAX");
5336 switch (pVCpu->iem.s.enmEffOpSize)
5337 {
5338 case IEMMODE_16BIT:
5339 switch (pVCpu->iem.s.enmEffAddrMode)
5340 {
5341 case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_stos_ax_m16);
5342 case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_stos_ax_m32);
5343 case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_stos_ax_m64);
5344 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5345 }
5346 break;
5347 case IEMMODE_32BIT:
5348 switch (pVCpu->iem.s.enmEffAddrMode)
5349 {
5350 case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_stos_eax_m16);
5351 case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_stos_eax_m32);
5352 case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_stos_eax_m64);
5353 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5354 }
5355 case IEMMODE_64BIT:
5356 switch (pVCpu->iem.s.enmEffAddrMode)
5357 {
5358 case IEMMODE_16BIT: AssertFailedReturn(VERR_IEM_IPE_9);
5359 case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_stos_rax_m32);
5360 case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_stos_rax_m64);
5361 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5362 }
5363 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5364 }
5365 }
5366 IEMOP_MNEMONIC(stos_Yv_rAX, "stos Yv,rAX");
5367
5368 /*
5369 * Annoying double switch here.
5370 * Using ugly macro for implementing the cases, sharing it with stosb.
5371 */
5372 switch (pVCpu->iem.s.enmEffOpSize)
5373 {
5374 case IEMMODE_16BIT:
5375 switch (pVCpu->iem.s.enmEffAddrMode)
5376 {
5377 case IEMMODE_16BIT: IEM_STOS_CASE(16, 16); break;
5378 case IEMMODE_32BIT: IEM_STOS_CASE(16, 32); break;
5379 case IEMMODE_64BIT: IEM_STOS_CASE(16, 64); break;
5380 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5381 }
5382 break;
5383
5384 case IEMMODE_32BIT:
5385 switch (pVCpu->iem.s.enmEffAddrMode)
5386 {
5387 case IEMMODE_16BIT: IEM_STOS_CASE(32, 16); break;
5388 case IEMMODE_32BIT: IEM_STOS_CASE(32, 32); break;
5389 case IEMMODE_64BIT: IEM_STOS_CASE(32, 64); break;
5390 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5391 }
5392 break;
5393
5394 case IEMMODE_64BIT:
5395 switch (pVCpu->iem.s.enmEffAddrMode)
5396 {
5397 case IEMMODE_16BIT: AssertFailedReturn(VERR_IEM_IPE_1); /* cannot be encoded */ break;
5398 case IEMMODE_32BIT: IEM_STOS_CASE(64, 32); break;
5399 case IEMMODE_64BIT: IEM_STOS_CASE(64, 64); break;
5400 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5401 }
5402 break;
5403 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5404 }
5405 return VINF_SUCCESS;
5406}
5407
5408#undef IEM_STOS_CASE
5409
5410/** Macro used by iemOp_lodsb_AL_Xb and iemOp_lodswd_eAX_Xv */
5411#define IEM_LODS_CASE(ValBits, AddrBits) \
5412 IEM_MC_BEGIN(0, 2); \
5413 IEM_MC_LOCAL(uint##ValBits##_t, uValue); \
5414 IEM_MC_LOCAL(RTGCPTR, uAddr); \
5415 IEM_MC_FETCH_GREG_U##AddrBits##_ZX_U64(uAddr, X86_GREG_xSI); \
5416 IEM_MC_FETCH_MEM_U##ValBits(uValue, pVCpu->iem.s.iEffSeg, uAddr); \
5417 IEM_MC_STORE_GREG_U##ValBits(X86_GREG_xAX, uValue); \
5418 IEM_MC_IF_EFL_BIT_SET(X86_EFL_DF) { \
5419 IEM_MC_SUB_GREG_U##AddrBits(X86_GREG_xSI, ValBits / 8); \
5420 } IEM_MC_ELSE() { \
5421 IEM_MC_ADD_GREG_U##AddrBits(X86_GREG_xSI, ValBits / 8); \
5422 } IEM_MC_ENDIF(); \
5423 IEM_MC_ADVANCE_RIP(); \
5424 IEM_MC_END();
5425
5426/**
5427 * @opcode 0xac
5428 */
5429FNIEMOP_DEF(iemOp_lodsb_AL_Xb)
5430{
5431 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
5432
5433 /*
5434 * Use the C implementation if a repeat prefix is encountered.
5435 */
5436 if (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_REPNZ | IEM_OP_PRF_REPZ))
5437 {
5438 IEMOP_MNEMONIC(rep_lodsb_AL_Xb, "rep lodsb AL,Xb");
5439 switch (pVCpu->iem.s.enmEffAddrMode)
5440 {
5441 case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_lods_al_m16, pVCpu->iem.s.iEffSeg);
5442 case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_lods_al_m32, pVCpu->iem.s.iEffSeg);
5443 case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_lods_al_m64, pVCpu->iem.s.iEffSeg);
5444 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5445 }
5446 }
5447 IEMOP_MNEMONIC(lodsb_AL_Xb, "lodsb AL,Xb");
5448
5449 /*
5450 * Sharing case implementation with stos[wdq] below.
5451 */
5452 switch (pVCpu->iem.s.enmEffAddrMode)
5453 {
5454 case IEMMODE_16BIT: IEM_LODS_CASE(8, 16); break;
5455 case IEMMODE_32BIT: IEM_LODS_CASE(8, 32); break;
5456 case IEMMODE_64BIT: IEM_LODS_CASE(8, 64); break;
5457 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5458 }
5459 return VINF_SUCCESS;
5460}
5461
5462
5463/**
5464 * @opcode 0xad
5465 */
5466FNIEMOP_DEF(iemOp_lodswd_eAX_Xv)
5467{
5468 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
5469
5470 /*
5471 * Use the C implementation if a repeat prefix is encountered.
5472 */
5473 if (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_REPNZ | IEM_OP_PRF_REPZ))
5474 {
5475 IEMOP_MNEMONIC(rep_lods_rAX_Xv, "rep lods rAX,Xv");
5476 switch (pVCpu->iem.s.enmEffOpSize)
5477 {
5478 case IEMMODE_16BIT:
5479 switch (pVCpu->iem.s.enmEffAddrMode)
5480 {
5481 case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_lods_ax_m16, pVCpu->iem.s.iEffSeg);
5482 case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_lods_ax_m32, pVCpu->iem.s.iEffSeg);
5483 case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_lods_ax_m64, pVCpu->iem.s.iEffSeg);
5484 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5485 }
5486 break;
5487 case IEMMODE_32BIT:
5488 switch (pVCpu->iem.s.enmEffAddrMode)
5489 {
5490 case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_lods_eax_m16, pVCpu->iem.s.iEffSeg);
5491 case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_lods_eax_m32, pVCpu->iem.s.iEffSeg);
5492 case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_lods_eax_m64, pVCpu->iem.s.iEffSeg);
5493 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5494 }
5495 case IEMMODE_64BIT:
5496 switch (pVCpu->iem.s.enmEffAddrMode)
5497 {
5498 case IEMMODE_16BIT: AssertFailedReturn(VERR_IEM_IPE_7);
5499 case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_lods_rax_m32, pVCpu->iem.s.iEffSeg);
5500 case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_lods_rax_m64, pVCpu->iem.s.iEffSeg);
5501 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5502 }
5503 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5504 }
5505 }
5506 IEMOP_MNEMONIC(lods_rAX_Xv, "lods rAX,Xv");
5507
5508 /*
5509 * Annoying double switch here.
5510 * Using ugly macro for implementing the cases, sharing it with lodsb.
5511 */
5512 switch (pVCpu->iem.s.enmEffOpSize)
5513 {
5514 case IEMMODE_16BIT:
5515 switch (pVCpu->iem.s.enmEffAddrMode)
5516 {
5517 case IEMMODE_16BIT: IEM_LODS_CASE(16, 16); break;
5518 case IEMMODE_32BIT: IEM_LODS_CASE(16, 32); break;
5519 case IEMMODE_64BIT: IEM_LODS_CASE(16, 64); break;
5520 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5521 }
5522 break;
5523
5524 case IEMMODE_32BIT:
5525 switch (pVCpu->iem.s.enmEffAddrMode)
5526 {
5527 case IEMMODE_16BIT: IEM_LODS_CASE(32, 16); break;
5528 case IEMMODE_32BIT: IEM_LODS_CASE(32, 32); break;
5529 case IEMMODE_64BIT: IEM_LODS_CASE(32, 64); break;
5530 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5531 }
5532 break;
5533
5534 case IEMMODE_64BIT:
5535 switch (pVCpu->iem.s.enmEffAddrMode)
5536 {
5537 case IEMMODE_16BIT: AssertFailedReturn(VERR_IEM_IPE_1); /* cannot be encoded */ break;
5538 case IEMMODE_32BIT: IEM_LODS_CASE(64, 32); break;
5539 case IEMMODE_64BIT: IEM_LODS_CASE(64, 64); break;
5540 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5541 }
5542 break;
5543 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5544 }
5545 return VINF_SUCCESS;
5546}
5547
5548#undef IEM_LODS_CASE
5549
5550/** Macro used by iemOp_scasb_AL_Xb and iemOp_scaswd_eAX_Xv */
5551#define IEM_SCAS_CASE(ValBits, AddrBits) \
5552 IEM_MC_BEGIN(3, 2); \
5553 IEM_MC_ARG(uint##ValBits##_t *, puRax, 0); \
5554 IEM_MC_ARG(uint##ValBits##_t, uValue, 1); \
5555 IEM_MC_ARG(uint32_t *, pEFlags, 2); \
5556 IEM_MC_LOCAL(RTGCPTR, uAddr); \
5557 \
5558 IEM_MC_FETCH_GREG_U##AddrBits##_ZX_U64(uAddr, X86_GREG_xDI); \
5559 IEM_MC_FETCH_MEM_U##ValBits(uValue, X86_SREG_ES, uAddr); \
5560 IEM_MC_REF_GREG_U##ValBits(puRax, X86_GREG_xAX); \
5561 IEM_MC_REF_EFLAGS(pEFlags); \
5562 IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_cmp_u##ValBits, puRax, uValue, pEFlags); \
5563 \
5564 IEM_MC_IF_EFL_BIT_SET(X86_EFL_DF) { \
5565 IEM_MC_SUB_GREG_U##AddrBits(X86_GREG_xDI, ValBits / 8); \
5566 } IEM_MC_ELSE() { \
5567 IEM_MC_ADD_GREG_U##AddrBits(X86_GREG_xDI, ValBits / 8); \
5568 } IEM_MC_ENDIF(); \
5569 IEM_MC_ADVANCE_RIP(); \
5570 IEM_MC_END();
5571
5572/**
5573 * @opcode 0xae
5574 */
5575FNIEMOP_DEF(iemOp_scasb_AL_Xb)
5576{
5577 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
5578
5579 /*
5580 * Use the C implementation if a repeat prefix is encountered.
5581 */
5582 if (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REPZ)
5583 {
5584 IEMOP_MNEMONIC(repe_scasb_AL_Xb, "repe scasb AL,Xb");
5585 switch (pVCpu->iem.s.enmEffAddrMode)
5586 {
5587 case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_repe_scas_al_m16);
5588 case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_repe_scas_al_m32);
5589 case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_repe_scas_al_m64);
5590 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5591 }
5592 }
5593 if (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REPNZ)
5594 {
5595 IEMOP_MNEMONIC(repone_scasb_AL_Xb, "repne scasb AL,Xb");
5596 switch (pVCpu->iem.s.enmEffAddrMode)
5597 {
5598 case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_repne_scas_al_m16);
5599 case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_repne_scas_al_m32);
5600 case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_repne_scas_al_m64);
5601 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5602 }
5603 }
5604 IEMOP_MNEMONIC(scasb_AL_Xb, "scasb AL,Xb");
5605
5606 /*
5607 * Sharing case implementation with stos[wdq] below.
5608 */
5609 switch (pVCpu->iem.s.enmEffAddrMode)
5610 {
5611 case IEMMODE_16BIT: IEM_SCAS_CASE(8, 16); break;
5612 case IEMMODE_32BIT: IEM_SCAS_CASE(8, 32); break;
5613 case IEMMODE_64BIT: IEM_SCAS_CASE(8, 64); break;
5614 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5615 }
5616 return VINF_SUCCESS;
5617}
5618
5619
5620/**
5621 * @opcode 0xaf
5622 */
5623FNIEMOP_DEF(iemOp_scaswd_eAX_Xv)
5624{
5625 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
5626
5627 /*
5628 * Use the C implementation if a repeat prefix is encountered.
5629 */
5630 if (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REPZ)
5631 {
5632 IEMOP_MNEMONIC(repe_scas_rAX_Xv, "repe scas rAX,Xv");
5633 switch (pVCpu->iem.s.enmEffOpSize)
5634 {
5635 case IEMMODE_16BIT:
5636 switch (pVCpu->iem.s.enmEffAddrMode)
5637 {
5638 case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_repe_scas_ax_m16);
5639 case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_repe_scas_ax_m32);
5640 case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_repe_scas_ax_m64);
5641 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5642 }
5643 break;
5644 case IEMMODE_32BIT:
5645 switch (pVCpu->iem.s.enmEffAddrMode)
5646 {
5647 case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_repe_scas_eax_m16);
5648 case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_repe_scas_eax_m32);
5649 case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_repe_scas_eax_m64);
5650 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5651 }
5652 case IEMMODE_64BIT:
5653 switch (pVCpu->iem.s.enmEffAddrMode)
5654 {
5655 case IEMMODE_16BIT: AssertFailedReturn(VERR_IEM_IPE_6); /** @todo It's this wrong, we can do 16-bit addressing in 64-bit mode, but not 32-bit. right? */
5656 case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_repe_scas_rax_m32);
5657 case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_repe_scas_rax_m64);
5658 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5659 }
5660 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5661 }
5662 }
5663 if (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REPNZ)
5664 {
5665 IEMOP_MNEMONIC(repne_scas_rAX_Xv, "repne scas rAX,Xv");
5666 switch (pVCpu->iem.s.enmEffOpSize)
5667 {
5668 case IEMMODE_16BIT:
5669 switch (pVCpu->iem.s.enmEffAddrMode)
5670 {
5671 case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_repne_scas_ax_m16);
5672 case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_repne_scas_ax_m32);
5673 case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_repne_scas_ax_m64);
5674 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5675 }
5676 break;
5677 case IEMMODE_32BIT:
5678 switch (pVCpu->iem.s.enmEffAddrMode)
5679 {
5680 case IEMMODE_16BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_repne_scas_eax_m16);
5681 case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_repne_scas_eax_m32);
5682 case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_repne_scas_eax_m64);
5683 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5684 }
5685 case IEMMODE_64BIT:
5686 switch (pVCpu->iem.s.enmEffAddrMode)
5687 {
5688 case IEMMODE_16BIT: AssertFailedReturn(VERR_IEM_IPE_5);
5689 case IEMMODE_32BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_repne_scas_rax_m32);
5690 case IEMMODE_64BIT: return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_repne_scas_rax_m64);
5691 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5692 }
5693 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5694 }
5695 }
5696 IEMOP_MNEMONIC(scas_rAX_Xv, "scas rAX,Xv");
5697
5698 /*
5699 * Annoying double switch here.
5700 * Using ugly macro for implementing the cases, sharing it with scasb.
5701 */
5702 switch (pVCpu->iem.s.enmEffOpSize)
5703 {
5704 case IEMMODE_16BIT:
5705 switch (pVCpu->iem.s.enmEffAddrMode)
5706 {
5707 case IEMMODE_16BIT: IEM_SCAS_CASE(16, 16); break;
5708 case IEMMODE_32BIT: IEM_SCAS_CASE(16, 32); break;
5709 case IEMMODE_64BIT: IEM_SCAS_CASE(16, 64); break;
5710 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5711 }
5712 break;
5713
5714 case IEMMODE_32BIT:
5715 switch (pVCpu->iem.s.enmEffAddrMode)
5716 {
5717 case IEMMODE_16BIT: IEM_SCAS_CASE(32, 16); break;
5718 case IEMMODE_32BIT: IEM_SCAS_CASE(32, 32); break;
5719 case IEMMODE_64BIT: IEM_SCAS_CASE(32, 64); break;
5720 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5721 }
5722 break;
5723
5724 case IEMMODE_64BIT:
5725 switch (pVCpu->iem.s.enmEffAddrMode)
5726 {
5727 case IEMMODE_16BIT: AssertFailedReturn(VERR_IEM_IPE_1); /* cannot be encoded */ break;
5728 case IEMMODE_32BIT: IEM_SCAS_CASE(64, 32); break;
5729 case IEMMODE_64BIT: IEM_SCAS_CASE(64, 64); break;
5730 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5731 }
5732 break;
5733 IEM_NOT_REACHED_DEFAULT_CASE_RET();
5734 }
5735 return VINF_SUCCESS;
5736}
5737
5738#undef IEM_SCAS_CASE
5739
5740/**
5741 * Common 'mov r8, imm8' helper.
5742 */
5743FNIEMOP_DEF_1(iemOpCommonMov_r8_Ib, uint8_t, iReg)
5744{
5745 uint8_t u8Imm; IEM_OPCODE_GET_NEXT_U8(&u8Imm);
5746 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
5747
5748 IEM_MC_BEGIN(0, 1);
5749 IEM_MC_LOCAL_CONST(uint8_t, u8Value,/*=*/ u8Imm);
5750 IEM_MC_STORE_GREG_U8(iReg, u8Value);
5751 IEM_MC_ADVANCE_RIP();
5752 IEM_MC_END();
5753
5754 return VINF_SUCCESS;
5755}
5756
5757
5758/**
5759 * @opcode 0xb0
5760 */
5761FNIEMOP_DEF(iemOp_mov_AL_Ib)
5762{
5763 IEMOP_MNEMONIC(mov_AL_Ib, "mov AL,Ib");
5764 return FNIEMOP_CALL_1(iemOpCommonMov_r8_Ib, X86_GREG_xAX | pVCpu->iem.s.uRexB);
5765}
5766
5767
5768/**
5769 * @opcode 0xb1
5770 */
5771FNIEMOP_DEF(iemOp_CL_Ib)
5772{
5773 IEMOP_MNEMONIC(mov_CL_Ib, "mov CL,Ib");
5774 return FNIEMOP_CALL_1(iemOpCommonMov_r8_Ib, X86_GREG_xCX | pVCpu->iem.s.uRexB);
5775}
5776
5777
5778/**
5779 * @opcode 0xb2
5780 */
5781FNIEMOP_DEF(iemOp_DL_Ib)
5782{
5783 IEMOP_MNEMONIC(mov_DL_Ib, "mov DL,Ib");
5784 return FNIEMOP_CALL_1(iemOpCommonMov_r8_Ib, X86_GREG_xDX | pVCpu->iem.s.uRexB);
5785}
5786
5787
5788/**
5789 * @opcode 0xb3
5790 */
5791FNIEMOP_DEF(iemOp_BL_Ib)
5792{
5793 IEMOP_MNEMONIC(mov_BL_Ib, "mov BL,Ib");
5794 return FNIEMOP_CALL_1(iemOpCommonMov_r8_Ib, X86_GREG_xBX | pVCpu->iem.s.uRexB);
5795}
5796
5797
5798/**
5799 * @opcode 0xb4
5800 */
5801FNIEMOP_DEF(iemOp_mov_AH_Ib)
5802{
5803 IEMOP_MNEMONIC(mov_AH_Ib, "mov AH,Ib");
5804 return FNIEMOP_CALL_1(iemOpCommonMov_r8_Ib, X86_GREG_xSP | pVCpu->iem.s.uRexB);
5805}
5806
5807
5808/**
5809 * @opcode 0xb5
5810 */
5811FNIEMOP_DEF(iemOp_CH_Ib)
5812{
5813 IEMOP_MNEMONIC(mov_CH_Ib, "mov CH,Ib");
5814 return FNIEMOP_CALL_1(iemOpCommonMov_r8_Ib, X86_GREG_xBP | pVCpu->iem.s.uRexB);
5815}
5816
5817
5818/**
5819 * @opcode 0xb6
5820 */
5821FNIEMOP_DEF(iemOp_DH_Ib)
5822{
5823 IEMOP_MNEMONIC(mov_DH_Ib, "mov DH,Ib");
5824 return FNIEMOP_CALL_1(iemOpCommonMov_r8_Ib, X86_GREG_xSI | pVCpu->iem.s.uRexB);
5825}
5826
5827
5828/**
5829 * @opcode 0xb7
5830 */
5831FNIEMOP_DEF(iemOp_BH_Ib)
5832{
5833 IEMOP_MNEMONIC(mov_BH_Ib, "mov BH,Ib");
5834 return FNIEMOP_CALL_1(iemOpCommonMov_r8_Ib, X86_GREG_xDI | pVCpu->iem.s.uRexB);
5835}
5836
5837
5838/**
5839 * Common 'mov regX,immX' helper.
5840 */
5841FNIEMOP_DEF_1(iemOpCommonMov_Rv_Iv, uint8_t, iReg)
5842{
5843 switch (pVCpu->iem.s.enmEffOpSize)
5844 {
5845 case IEMMODE_16BIT:
5846 {
5847 uint16_t u16Imm; IEM_OPCODE_GET_NEXT_U16(&u16Imm);
5848 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
5849
5850 IEM_MC_BEGIN(0, 1);
5851 IEM_MC_LOCAL_CONST(uint16_t, u16Value,/*=*/ u16Imm);
5852 IEM_MC_STORE_GREG_U16(iReg, u16Value);
5853 IEM_MC_ADVANCE_RIP();
5854 IEM_MC_END();
5855 break;
5856 }
5857
5858 case IEMMODE_32BIT:
5859 {
5860 uint32_t u32Imm; IEM_OPCODE_GET_NEXT_U32(&u32Imm);
5861 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
5862
5863 IEM_MC_BEGIN(0, 1);
5864 IEM_MC_LOCAL_CONST(uint32_t, u32Value,/*=*/ u32Imm);
5865 IEM_MC_STORE_GREG_U32(iReg, u32Value);
5866 IEM_MC_ADVANCE_RIP();
5867 IEM_MC_END();
5868 break;
5869 }
5870 case IEMMODE_64BIT:
5871 {
5872 uint64_t u64Imm; IEM_OPCODE_GET_NEXT_U64(&u64Imm); /* 64-bit immediate! */
5873 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
5874
5875 IEM_MC_BEGIN(0, 1);
5876 IEM_MC_LOCAL_CONST(uint64_t, u64Value,/*=*/ u64Imm);
5877 IEM_MC_STORE_GREG_U64(iReg, u64Value);
5878 IEM_MC_ADVANCE_RIP();
5879 IEM_MC_END();
5880 break;
5881 }
5882 }
5883
5884 return VINF_SUCCESS;
5885}
5886
5887
5888/**
5889 * @opcode 0xb8
5890 */
5891FNIEMOP_DEF(iemOp_eAX_Iv)
5892{
5893 IEMOP_MNEMONIC(mov_rAX_IV, "mov rAX,IV");
5894 return FNIEMOP_CALL_1(iemOpCommonMov_Rv_Iv, X86_GREG_xAX | pVCpu->iem.s.uRexB);
5895}
5896
5897
5898/**
5899 * @opcode 0xb9
5900 */
5901FNIEMOP_DEF(iemOp_eCX_Iv)
5902{
5903 IEMOP_MNEMONIC(mov_rCX_IV, "mov rCX,IV");
5904 return FNIEMOP_CALL_1(iemOpCommonMov_Rv_Iv, X86_GREG_xCX | pVCpu->iem.s.uRexB);
5905}
5906
5907
5908/**
5909 * @opcode 0xba
5910 */
5911FNIEMOP_DEF(iemOp_eDX_Iv)
5912{
5913 IEMOP_MNEMONIC(mov_rDX_IV, "mov rDX,IV");
5914 return FNIEMOP_CALL_1(iemOpCommonMov_Rv_Iv, X86_GREG_xDX | pVCpu->iem.s.uRexB);
5915}
5916
5917
5918/**
5919 * @opcode 0xbb
5920 */
5921FNIEMOP_DEF(iemOp_eBX_Iv)
5922{
5923 IEMOP_MNEMONIC(mov_rBX_IV, "mov rBX,IV");
5924 return FNIEMOP_CALL_1(iemOpCommonMov_Rv_Iv, X86_GREG_xBX | pVCpu->iem.s.uRexB);
5925}
5926
5927
5928/**
5929 * @opcode 0xbc
5930 */
5931FNIEMOP_DEF(iemOp_eSP_Iv)
5932{
5933 IEMOP_MNEMONIC(mov_rSP_IV, "mov rSP,IV");
5934 return FNIEMOP_CALL_1(iemOpCommonMov_Rv_Iv, X86_GREG_xSP | pVCpu->iem.s.uRexB);
5935}
5936
5937
5938/**
5939 * @opcode 0xbd
5940 */
5941FNIEMOP_DEF(iemOp_eBP_Iv)
5942{
5943 IEMOP_MNEMONIC(mov_rBP_IV, "mov rBP,IV");
5944 return FNIEMOP_CALL_1(iemOpCommonMov_Rv_Iv, X86_GREG_xBP | pVCpu->iem.s.uRexB);
5945}
5946
5947
5948/**
5949 * @opcode 0xbe
5950 */
5951FNIEMOP_DEF(iemOp_eSI_Iv)
5952{
5953 IEMOP_MNEMONIC(mov_rSI_IV, "mov rSI,IV");
5954 return FNIEMOP_CALL_1(iemOpCommonMov_Rv_Iv, X86_GREG_xSI | pVCpu->iem.s.uRexB);
5955}
5956
5957
5958/**
5959 * @opcode 0xbf
5960 */
5961FNIEMOP_DEF(iemOp_eDI_Iv)
5962{
5963 IEMOP_MNEMONIC(mov_rDI_IV, "mov rDI,IV");
5964 return FNIEMOP_CALL_1(iemOpCommonMov_Rv_Iv, X86_GREG_xDI | pVCpu->iem.s.uRexB);
5965}
5966
5967
5968/**
5969 * @opcode 0xc0
5970 */
5971FNIEMOP_DEF(iemOp_Grp2_Eb_Ib)
5972{
5973 IEMOP_HLP_MIN_186();
5974 uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm);
5975 PCIEMOPSHIFTSIZES pImpl;
5976 switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK)
5977 {
5978 case 0: pImpl = &g_iemAImpl_rol; IEMOP_MNEMONIC(rol_Eb_Ib, "rol Eb,Ib"); break;
5979 case 1: pImpl = &g_iemAImpl_ror; IEMOP_MNEMONIC(ror_Eb_Ib, "ror Eb,Ib"); break;
5980 case 2: pImpl = &g_iemAImpl_rcl; IEMOP_MNEMONIC(rcl_Eb_Ib, "rcl Eb,Ib"); break;
5981 case 3: pImpl = &g_iemAImpl_rcr; IEMOP_MNEMONIC(rcr_Eb_Ib, "rcr Eb,Ib"); break;
5982 case 4: pImpl = &g_iemAImpl_shl; IEMOP_MNEMONIC(shl_Eb_Ib, "shl Eb,Ib"); break;
5983 case 5: pImpl = &g_iemAImpl_shr; IEMOP_MNEMONIC(shr_Eb_Ib, "shr Eb,Ib"); break;
5984 case 7: pImpl = &g_iemAImpl_sar; IEMOP_MNEMONIC(sar_Eb_Ib, "sar Eb,Ib"); break;
5985 case 6: return IEMOP_RAISE_INVALID_OPCODE();
5986 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* gcc maybe stupid */
5987 }
5988 IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_OF | X86_EFL_AF);
5989
5990 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
5991 {
5992 /* register */
5993 uint8_t cShift; IEM_OPCODE_GET_NEXT_U8(&cShift);
5994 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
5995 IEM_MC_BEGIN(3, 0);
5996 IEM_MC_ARG(uint8_t *, pu8Dst, 0);
5997 IEM_MC_ARG_CONST(uint8_t, cShiftArg, cShift, 1);
5998 IEM_MC_ARG(uint32_t *, pEFlags, 2);
5999 IEM_MC_REF_GREG_U8(pu8Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
6000 IEM_MC_REF_EFLAGS(pEFlags);
6001 IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU8, pu8Dst, cShiftArg, pEFlags);
6002 IEM_MC_ADVANCE_RIP();
6003 IEM_MC_END();
6004 }
6005 else
6006 {
6007 /* memory */
6008 IEM_MC_BEGIN(3, 2);
6009 IEM_MC_ARG(uint8_t *, pu8Dst, 0);
6010 IEM_MC_ARG(uint8_t, cShiftArg, 1);
6011 IEM_MC_ARG_LOCAL_EFLAGS(pEFlags, EFlags, 2);
6012 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
6013
6014 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 1);
6015 uint8_t cShift; IEM_OPCODE_GET_NEXT_U8(&cShift);
6016 IEM_MC_ASSIGN(cShiftArg, cShift);
6017 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
6018 IEM_MC_MEM_MAP(pu8Dst, IEM_ACCESS_DATA_RW, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/);
6019 IEM_MC_FETCH_EFLAGS(EFlags);
6020 IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU8, pu8Dst, cShiftArg, pEFlags);
6021
6022 IEM_MC_MEM_COMMIT_AND_UNMAP(pu8Dst, IEM_ACCESS_DATA_RW);
6023 IEM_MC_COMMIT_EFLAGS(EFlags);
6024 IEM_MC_ADVANCE_RIP();
6025 IEM_MC_END();
6026 }
6027 return VINF_SUCCESS;
6028}
6029
6030
6031/**
6032 * @opcode 0xc1
6033 */
6034FNIEMOP_DEF(iemOp_Grp2_Ev_Ib)
6035{
6036 IEMOP_HLP_MIN_186();
6037 uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm);
6038 PCIEMOPSHIFTSIZES pImpl;
6039 switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK)
6040 {
6041 case 0: pImpl = &g_iemAImpl_rol; IEMOP_MNEMONIC(rol_Ev_Ib, "rol Ev,Ib"); break;
6042 case 1: pImpl = &g_iemAImpl_ror; IEMOP_MNEMONIC(ror_Ev_Ib, "ror Ev,Ib"); break;
6043 case 2: pImpl = &g_iemAImpl_rcl; IEMOP_MNEMONIC(rcl_Ev_Ib, "rcl Ev,Ib"); break;
6044 case 3: pImpl = &g_iemAImpl_rcr; IEMOP_MNEMONIC(rcr_Ev_Ib, "rcr Ev,Ib"); break;
6045 case 4: pImpl = &g_iemAImpl_shl; IEMOP_MNEMONIC(shl_Ev_Ib, "shl Ev,Ib"); break;
6046 case 5: pImpl = &g_iemAImpl_shr; IEMOP_MNEMONIC(shr_Ev_Ib, "shr Ev,Ib"); break;
6047 case 7: pImpl = &g_iemAImpl_sar; IEMOP_MNEMONIC(sar_Ev_Ib, "sar Ev,Ib"); break;
6048 case 6: return IEMOP_RAISE_INVALID_OPCODE();
6049 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* gcc maybe stupid */
6050 }
6051 IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_OF | X86_EFL_AF);
6052
6053 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
6054 {
6055 /* register */
6056 uint8_t cShift; IEM_OPCODE_GET_NEXT_U8(&cShift);
6057 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
6058 switch (pVCpu->iem.s.enmEffOpSize)
6059 {
6060 case IEMMODE_16BIT:
6061 IEM_MC_BEGIN(3, 0);
6062 IEM_MC_ARG(uint16_t *, pu16Dst, 0);
6063 IEM_MC_ARG_CONST(uint8_t, cShiftArg, cShift, 1);
6064 IEM_MC_ARG(uint32_t *, pEFlags, 2);
6065 IEM_MC_REF_GREG_U16(pu16Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
6066 IEM_MC_REF_EFLAGS(pEFlags);
6067 IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU16, pu16Dst, cShiftArg, pEFlags);
6068 IEM_MC_ADVANCE_RIP();
6069 IEM_MC_END();
6070 return VINF_SUCCESS;
6071
6072 case IEMMODE_32BIT:
6073 IEM_MC_BEGIN(3, 0);
6074 IEM_MC_ARG(uint32_t *, pu32Dst, 0);
6075 IEM_MC_ARG_CONST(uint8_t, cShiftArg, cShift, 1);
6076 IEM_MC_ARG(uint32_t *, pEFlags, 2);
6077 IEM_MC_REF_GREG_U32(pu32Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
6078 IEM_MC_REF_EFLAGS(pEFlags);
6079 IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU32, pu32Dst, cShiftArg, pEFlags);
6080 IEM_MC_CLEAR_HIGH_GREG_U64_BY_REF(pu32Dst);
6081 IEM_MC_ADVANCE_RIP();
6082 IEM_MC_END();
6083 return VINF_SUCCESS;
6084
6085 case IEMMODE_64BIT:
6086 IEM_MC_BEGIN(3, 0);
6087 IEM_MC_ARG(uint64_t *, pu64Dst, 0);
6088 IEM_MC_ARG_CONST(uint8_t, cShiftArg, cShift, 1);
6089 IEM_MC_ARG(uint32_t *, pEFlags, 2);
6090 IEM_MC_REF_GREG_U64(pu64Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
6091 IEM_MC_REF_EFLAGS(pEFlags);
6092 IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU64, pu64Dst, cShiftArg, pEFlags);
6093 IEM_MC_ADVANCE_RIP();
6094 IEM_MC_END();
6095 return VINF_SUCCESS;
6096
6097 IEM_NOT_REACHED_DEFAULT_CASE_RET();
6098 }
6099 }
6100 else
6101 {
6102 /* memory */
6103 switch (pVCpu->iem.s.enmEffOpSize)
6104 {
6105 case IEMMODE_16BIT:
6106 IEM_MC_BEGIN(3, 2);
6107 IEM_MC_ARG(uint16_t *, pu16Dst, 0);
6108 IEM_MC_ARG(uint8_t, cShiftArg, 1);
6109 IEM_MC_ARG_LOCAL_EFLAGS(pEFlags, EFlags, 2);
6110 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
6111
6112 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 1);
6113 uint8_t cShift; IEM_OPCODE_GET_NEXT_U8(&cShift);
6114 IEM_MC_ASSIGN(cShiftArg, cShift);
6115 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
6116 IEM_MC_MEM_MAP(pu16Dst, IEM_ACCESS_DATA_RW, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/);
6117 IEM_MC_FETCH_EFLAGS(EFlags);
6118 IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU16, pu16Dst, cShiftArg, pEFlags);
6119
6120 IEM_MC_MEM_COMMIT_AND_UNMAP(pu16Dst, IEM_ACCESS_DATA_RW);
6121 IEM_MC_COMMIT_EFLAGS(EFlags);
6122 IEM_MC_ADVANCE_RIP();
6123 IEM_MC_END();
6124 return VINF_SUCCESS;
6125
6126 case IEMMODE_32BIT:
6127 IEM_MC_BEGIN(3, 2);
6128 IEM_MC_ARG(uint32_t *, pu32Dst, 0);
6129 IEM_MC_ARG(uint8_t, cShiftArg, 1);
6130 IEM_MC_ARG_LOCAL_EFLAGS(pEFlags, EFlags, 2);
6131 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
6132
6133 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 1);
6134 uint8_t cShift; IEM_OPCODE_GET_NEXT_U8(&cShift);
6135 IEM_MC_ASSIGN(cShiftArg, cShift);
6136 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
6137 IEM_MC_MEM_MAP(pu32Dst, IEM_ACCESS_DATA_RW, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/);
6138 IEM_MC_FETCH_EFLAGS(EFlags);
6139 IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU32, pu32Dst, cShiftArg, pEFlags);
6140
6141 IEM_MC_MEM_COMMIT_AND_UNMAP(pu32Dst, IEM_ACCESS_DATA_RW);
6142 IEM_MC_COMMIT_EFLAGS(EFlags);
6143 IEM_MC_ADVANCE_RIP();
6144 IEM_MC_END();
6145 return VINF_SUCCESS;
6146
6147 case IEMMODE_64BIT:
6148 IEM_MC_BEGIN(3, 2);
6149 IEM_MC_ARG(uint64_t *, pu64Dst, 0);
6150 IEM_MC_ARG(uint8_t, cShiftArg, 1);
6151 IEM_MC_ARG_LOCAL_EFLAGS(pEFlags, EFlags, 2);
6152 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
6153
6154 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 1);
6155 uint8_t cShift; IEM_OPCODE_GET_NEXT_U8(&cShift);
6156 IEM_MC_ASSIGN(cShiftArg, cShift);
6157 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
6158 IEM_MC_MEM_MAP(pu64Dst, IEM_ACCESS_DATA_RW, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/);
6159 IEM_MC_FETCH_EFLAGS(EFlags);
6160 IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU64, pu64Dst, cShiftArg, pEFlags);
6161
6162 IEM_MC_MEM_COMMIT_AND_UNMAP(pu64Dst, IEM_ACCESS_DATA_RW);
6163 IEM_MC_COMMIT_EFLAGS(EFlags);
6164 IEM_MC_ADVANCE_RIP();
6165 IEM_MC_END();
6166 return VINF_SUCCESS;
6167
6168 IEM_NOT_REACHED_DEFAULT_CASE_RET();
6169 }
6170 }
6171}
6172
6173
6174/**
6175 * @opcode 0xc2
6176 */
6177FNIEMOP_DEF(iemOp_retn_Iw)
6178{
6179 IEMOP_MNEMONIC(retn_Iw, "retn Iw");
6180 uint16_t u16Imm; IEM_OPCODE_GET_NEXT_U16(&u16Imm);
6181 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
6182 IEMOP_HLP_DEFAULT_64BIT_OP_SIZE();
6183 return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_retn, pVCpu->iem.s.enmEffOpSize, u16Imm);
6184}
6185
6186
6187/**
6188 * @opcode 0xc3
6189 */
6190FNIEMOP_DEF(iemOp_retn)
6191{
6192 IEMOP_MNEMONIC(retn, "retn");
6193 IEMOP_HLP_DEFAULT_64BIT_OP_SIZE();
6194 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
6195 return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_retn, pVCpu->iem.s.enmEffOpSize, 0);
6196}
6197
6198
6199/**
6200 * @opcode 0xc4
6201 */
6202FNIEMOP_DEF(iemOp_les_Gv_Mp__vex3)
6203{
6204 /* The LDS instruction is invalid 64-bit mode. In legacy and
6205 compatability mode it is invalid with MOD=3.
6206 The use as a VEX prefix is made possible by assigning the inverted
6207 REX.R and REX.X to the two MOD bits, since the REX bits are ignored
6208 outside of 64-bit mode. VEX is not available in real or v86 mode. */
6209 uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm);
6210 if ( pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT
6211 || (bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT) )
6212 {
6213 IEMOP_MNEMONIC(vex3_prefix, "vex3");
6214 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fAvx)
6215 {
6216 /* Note! The real mode, v8086 mode and invalid prefix checks are
6217 done once the instruction is fully decoded. */
6218 uint8_t bVex2; IEM_OPCODE_GET_NEXT_U8(&bVex2);
6219 uint8_t bOpcode; IEM_OPCODE_GET_NEXT_U8(&bOpcode);
6220 pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_VEX;
6221 if (bVex2 & 0x80 /* VEX.W */)
6222 pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_SIZE_REX_W;
6223 pVCpu->iem.s.uRexReg = ~bRm >> (7 - 3);
6224 pVCpu->iem.s.uRexIndex = ~bRm >> (6 - 3);
6225 pVCpu->iem.s.uRexB = ~bRm >> (5 - 3);
6226 pVCpu->iem.s.uVex3rdReg = (~bVex2 >> 3) & 0xf;
6227 pVCpu->iem.s.uVexLength = (bVex2 >> 2) & 1;
6228 pVCpu->iem.s.idxPrefix = bVex2 & 0x3;
6229
6230 switch (bRm & 0x1f)
6231 {
6232 case 1: /* 0x0f lead opcode byte. */
6233 return FNIEMOP_CALL(g_apfnVexMap1[(uintptr_t)bOpcode * 4 + pVCpu->iem.s.idxPrefix]);
6234
6235 case 2: /* 0x0f 0x38 lead opcode bytes. */
6236 /** @todo VEX: Just use new tables and decoders. */
6237 IEMOP_BITCH_ABOUT_STUB();
6238 return VERR_IEM_INSTR_NOT_IMPLEMENTED;
6239
6240 case 3: /* 0x0f 0x3a lead opcode bytes. */
6241 /** @todo VEX: Just use new tables and decoders. */
6242 IEMOP_BITCH_ABOUT_STUB();
6243 return VERR_IEM_INSTR_NOT_IMPLEMENTED;
6244
6245 default:
6246 Log(("VEX3: Invalid vvvv value: %#x!\n", bRm & 0x1f));
6247 return IEMOP_RAISE_INVALID_OPCODE();
6248 }
6249 }
6250 Log(("VEX3: AVX support disabled!\n"));
6251 return IEMOP_RAISE_INVALID_OPCODE();
6252 }
6253
6254 IEMOP_MNEMONIC(les_Gv_Mp, "les Gv,Mp");
6255 return FNIEMOP_CALL_2(iemOpCommonLoadSRegAndGreg, X86_SREG_ES, bRm);
6256}
6257
6258
6259/**
6260 * @opcode 0xc5
6261 */
6262FNIEMOP_DEF(iemOp_lds_Gv_Mp__vex2)
6263{
6264 /* The LES instruction is invalid 64-bit mode. In legacy and
6265 compatability mode it is invalid with MOD=3.
6266 The use as a VEX prefix is made possible by assigning the inverted
6267 REX.R to the top MOD bit, and the top bit in the inverted register
6268 specifier to the bottom MOD bit, thereby effectively limiting 32-bit
6269 to accessing registers 0..7 in this VEX form. */
6270 uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm);
6271 if ( pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT
6272 || (bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
6273 {
6274 IEMOP_MNEMONIC(vex2_prefix, "vex2");
6275 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fAvx)
6276 {
6277 /* Note! The real mode, v8086 mode and invalid prefix checks are
6278 done once the instruction is fully decoded. */
6279 uint8_t bOpcode; IEM_OPCODE_GET_NEXT_U8(&bOpcode);
6280 pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_VEX;
6281 pVCpu->iem.s.uRexReg = ~bRm >> (7 - 3);
6282 pVCpu->iem.s.uVex3rdReg = (~bRm >> 3) & 0xf;
6283 pVCpu->iem.s.uVexLength = (bRm >> 2) & 1;
6284 pVCpu->iem.s.idxPrefix = bRm & 0x3;
6285
6286 return FNIEMOP_CALL(g_apfnVexMap1[(uintptr_t)bOpcode * 4 + pVCpu->iem.s.idxPrefix]);
6287 }
6288
6289 /** @todo does intel completely decode the sequence with SIB/disp before \#UD? */
6290 Log(("VEX2: AVX support disabled!\n"));
6291 return IEMOP_RAISE_INVALID_OPCODE();
6292 }
6293
6294 IEMOP_MNEMONIC(lds_Gv_Mp, "lds Gv,Mp");
6295 return FNIEMOP_CALL_2(iemOpCommonLoadSRegAndGreg, X86_SREG_DS, bRm);
6296}
6297
6298
6299/**
6300 * @opcode 0xc6
6301 */
6302FNIEMOP_DEF(iemOp_Grp11_Eb_Ib)
6303{
6304 uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm);
6305 if ((bRm & X86_MODRM_REG_MASK) != (0 << X86_MODRM_REG_SHIFT)) /* only mov Eb,Ib in this group. */
6306 return IEMOP_RAISE_INVALID_OPCODE();
6307 IEMOP_MNEMONIC(mov_Eb_Ib, "mov Eb,Ib");
6308
6309 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
6310 {
6311 /* register access */
6312 uint8_t u8Imm; IEM_OPCODE_GET_NEXT_U8(&u8Imm);
6313 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
6314 IEM_MC_BEGIN(0, 0);
6315 IEM_MC_STORE_GREG_U8((bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB, u8Imm);
6316 IEM_MC_ADVANCE_RIP();
6317 IEM_MC_END();
6318 }
6319 else
6320 {
6321 /* memory access. */
6322 IEM_MC_BEGIN(0, 1);
6323 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
6324 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 1);
6325 uint8_t u8Imm; IEM_OPCODE_GET_NEXT_U8(&u8Imm);
6326 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
6327 IEM_MC_STORE_MEM_U8(pVCpu->iem.s.iEffSeg, GCPtrEffDst, u8Imm);
6328 IEM_MC_ADVANCE_RIP();
6329 IEM_MC_END();
6330 }
6331 return VINF_SUCCESS;
6332}
6333
6334
6335/**
6336 * @opcode 0xc7
6337 */
6338FNIEMOP_DEF(iemOp_Grp11_Ev_Iz)
6339{
6340 uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm);
6341 if ((bRm & X86_MODRM_REG_MASK) != (0 << X86_MODRM_REG_SHIFT)) /* only mov Eb,Ib in this group. */
6342 return IEMOP_RAISE_INVALID_OPCODE();
6343 IEMOP_MNEMONIC(mov_Ev_Iz, "mov Ev,Iz");
6344
6345 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
6346 {
6347 /* register access */
6348 switch (pVCpu->iem.s.enmEffOpSize)
6349 {
6350 case IEMMODE_16BIT:
6351 IEM_MC_BEGIN(0, 0);
6352 uint16_t u16Imm; IEM_OPCODE_GET_NEXT_U16(&u16Imm);
6353 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
6354 IEM_MC_STORE_GREG_U16((bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB, u16Imm);
6355 IEM_MC_ADVANCE_RIP();
6356 IEM_MC_END();
6357 return VINF_SUCCESS;
6358
6359 case IEMMODE_32BIT:
6360 IEM_MC_BEGIN(0, 0);
6361 uint32_t u32Imm; IEM_OPCODE_GET_NEXT_U32(&u32Imm);
6362 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
6363 IEM_MC_STORE_GREG_U32((bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB, u32Imm);
6364 IEM_MC_ADVANCE_RIP();
6365 IEM_MC_END();
6366 return VINF_SUCCESS;
6367
6368 case IEMMODE_64BIT:
6369 IEM_MC_BEGIN(0, 0);
6370 uint64_t u64Imm; IEM_OPCODE_GET_NEXT_S32_SX_U64(&u64Imm);
6371 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
6372 IEM_MC_STORE_GREG_U64((bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB, u64Imm);
6373 IEM_MC_ADVANCE_RIP();
6374 IEM_MC_END();
6375 return VINF_SUCCESS;
6376
6377 IEM_NOT_REACHED_DEFAULT_CASE_RET();
6378 }
6379 }
6380 else
6381 {
6382 /* memory access. */
6383 switch (pVCpu->iem.s.enmEffOpSize)
6384 {
6385 case IEMMODE_16BIT:
6386 IEM_MC_BEGIN(0, 1);
6387 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
6388 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 2);
6389 uint16_t u16Imm; IEM_OPCODE_GET_NEXT_U16(&u16Imm);
6390 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
6391 IEM_MC_STORE_MEM_U16(pVCpu->iem.s.iEffSeg, GCPtrEffDst, u16Imm);
6392 IEM_MC_ADVANCE_RIP();
6393 IEM_MC_END();
6394 return VINF_SUCCESS;
6395
6396 case IEMMODE_32BIT:
6397 IEM_MC_BEGIN(0, 1);
6398 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
6399 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 4);
6400 uint32_t u32Imm; IEM_OPCODE_GET_NEXT_U32(&u32Imm);
6401 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
6402 IEM_MC_STORE_MEM_U32(pVCpu->iem.s.iEffSeg, GCPtrEffDst, u32Imm);
6403 IEM_MC_ADVANCE_RIP();
6404 IEM_MC_END();
6405 return VINF_SUCCESS;
6406
6407 case IEMMODE_64BIT:
6408 IEM_MC_BEGIN(0, 1);
6409 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
6410 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 4);
6411 uint64_t u64Imm; IEM_OPCODE_GET_NEXT_S32_SX_U64(&u64Imm);
6412 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
6413 IEM_MC_STORE_MEM_U64(pVCpu->iem.s.iEffSeg, GCPtrEffDst, u64Imm);
6414 IEM_MC_ADVANCE_RIP();
6415 IEM_MC_END();
6416 return VINF_SUCCESS;
6417
6418 IEM_NOT_REACHED_DEFAULT_CASE_RET();
6419 }
6420 }
6421}
6422
6423
6424
6425
6426/**
6427 * @opcode 0xc8
6428 */
6429FNIEMOP_DEF(iemOp_enter_Iw_Ib)
6430{
6431 IEMOP_MNEMONIC(enter_Iw_Ib, "enter Iw,Ib");
6432 IEMOP_HLP_MIN_186();
6433 IEMOP_HLP_DEFAULT_64BIT_OP_SIZE();
6434 uint16_t cbFrame; IEM_OPCODE_GET_NEXT_U16(&cbFrame);
6435 uint8_t u8NestingLevel; IEM_OPCODE_GET_NEXT_U8(&u8NestingLevel);
6436 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
6437 return IEM_MC_DEFER_TO_CIMPL_3(iemCImpl_enter, pVCpu->iem.s.enmEffOpSize, cbFrame, u8NestingLevel);
6438}
6439
6440
6441/**
6442 * @opcode 0xc9
6443 */
6444FNIEMOP_DEF(iemOp_leave)
6445{
6446 IEMOP_MNEMONIC(leave, "leave");
6447 IEMOP_HLP_MIN_186();
6448 IEMOP_HLP_DEFAULT_64BIT_OP_SIZE();
6449 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
6450 return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_leave, pVCpu->iem.s.enmEffOpSize);
6451}
6452
6453
6454/**
6455 * @opcode 0xca
6456 */
6457FNIEMOP_DEF(iemOp_retf_Iw)
6458{
6459 IEMOP_MNEMONIC(retf_Iw, "retf Iw");
6460 uint16_t u16Imm; IEM_OPCODE_GET_NEXT_U16(&u16Imm);
6461 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
6462 IEMOP_HLP_DEFAULT_64BIT_OP_SIZE();
6463 return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_retf, pVCpu->iem.s.enmEffOpSize, u16Imm);
6464}
6465
6466
6467/**
6468 * @opcode 0xcb
6469 */
6470FNIEMOP_DEF(iemOp_retf)
6471{
6472 IEMOP_MNEMONIC(retf, "retf");
6473 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
6474 IEMOP_HLP_DEFAULT_64BIT_OP_SIZE();
6475 return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_retf, pVCpu->iem.s.enmEffOpSize, 0);
6476}
6477
6478
6479/**
6480 * @opcode 0xcc
6481 */
6482FNIEMOP_DEF(iemOp_int3)
6483{
6484 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
6485 return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_int, X86_XCPT_BP, true /*fIsBpInstr*/);
6486}
6487
6488
6489/**
6490 * @opcode 0xcd
6491 */
6492FNIEMOP_DEF(iemOp_int_Ib)
6493{
6494 uint8_t u8Int; IEM_OPCODE_GET_NEXT_U8(&u8Int);
6495 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
6496 return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_int, u8Int, false /*fIsBpInstr*/);
6497}
6498
6499
6500/**
6501 * @opcode 0xce
6502 */
6503FNIEMOP_DEF(iemOp_into)
6504{
6505 IEMOP_MNEMONIC(into, "into");
6506 IEMOP_HLP_NO_64BIT();
6507
6508 IEM_MC_BEGIN(2, 0);
6509 IEM_MC_ARG_CONST(uint8_t, u8Int, /*=*/ X86_XCPT_OF, 0);
6510 IEM_MC_ARG_CONST(bool, fIsBpInstr, /*=*/ false, 1);
6511 IEM_MC_CALL_CIMPL_2(iemCImpl_int, u8Int, fIsBpInstr);
6512 IEM_MC_END();
6513 return VINF_SUCCESS;
6514}
6515
6516
6517/**
6518 * @opcode 0xcf
6519 */
6520FNIEMOP_DEF(iemOp_iret)
6521{
6522 IEMOP_MNEMONIC(iret, "iret");
6523 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
6524 return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_iret, pVCpu->iem.s.enmEffOpSize);
6525}
6526
6527
6528/**
6529 * @opcode 0xd0
6530 */
6531FNIEMOP_DEF(iemOp_Grp2_Eb_1)
6532{
6533 uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm);
6534 PCIEMOPSHIFTSIZES pImpl;
6535 switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK)
6536 {
6537 case 0: pImpl = &g_iemAImpl_rol; IEMOP_MNEMONIC(rol_Eb_1, "rol Eb,1"); break;
6538 case 1: pImpl = &g_iemAImpl_ror; IEMOP_MNEMONIC(ror_Eb_1, "ror Eb,1"); break;
6539 case 2: pImpl = &g_iemAImpl_rcl; IEMOP_MNEMONIC(rcl_Eb_1, "rcl Eb,1"); break;
6540 case 3: pImpl = &g_iemAImpl_rcr; IEMOP_MNEMONIC(rcr_Eb_1, "rcr Eb,1"); break;
6541 case 4: pImpl = &g_iemAImpl_shl; IEMOP_MNEMONIC(shl_Eb_1, "shl Eb,1"); break;
6542 case 5: pImpl = &g_iemAImpl_shr; IEMOP_MNEMONIC(shr_Eb_1, "shr Eb,1"); break;
6543 case 7: pImpl = &g_iemAImpl_sar; IEMOP_MNEMONIC(sar_Eb_1, "sar Eb,1"); break;
6544 case 6: return IEMOP_RAISE_INVALID_OPCODE();
6545 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* gcc maybe, well... */
6546 }
6547 IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_OF | X86_EFL_AF);
6548
6549 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
6550 {
6551 /* register */
6552 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
6553 IEM_MC_BEGIN(3, 0);
6554 IEM_MC_ARG(uint8_t *, pu8Dst, 0);
6555 IEM_MC_ARG_CONST(uint8_t, cShiftArg,/*=*/1, 1);
6556 IEM_MC_ARG(uint32_t *, pEFlags, 2);
6557 IEM_MC_REF_GREG_U8(pu8Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
6558 IEM_MC_REF_EFLAGS(pEFlags);
6559 IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU8, pu8Dst, cShiftArg, pEFlags);
6560 IEM_MC_ADVANCE_RIP();
6561 IEM_MC_END();
6562 }
6563 else
6564 {
6565 /* memory */
6566 IEM_MC_BEGIN(3, 2);
6567 IEM_MC_ARG(uint8_t *, pu8Dst, 0);
6568 IEM_MC_ARG_CONST(uint8_t, cShiftArg,/*=*/1, 1);
6569 IEM_MC_ARG_LOCAL_EFLAGS(pEFlags, EFlags, 2);
6570 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
6571
6572 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
6573 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
6574 IEM_MC_MEM_MAP(pu8Dst, IEM_ACCESS_DATA_RW, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/);
6575 IEM_MC_FETCH_EFLAGS(EFlags);
6576 IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU8, pu8Dst, cShiftArg, pEFlags);
6577
6578 IEM_MC_MEM_COMMIT_AND_UNMAP(pu8Dst, IEM_ACCESS_DATA_RW);
6579 IEM_MC_COMMIT_EFLAGS(EFlags);
6580 IEM_MC_ADVANCE_RIP();
6581 IEM_MC_END();
6582 }
6583 return VINF_SUCCESS;
6584}
6585
6586
6587
6588/**
6589 * @opcode 0xd1
6590 */
6591FNIEMOP_DEF(iemOp_Grp2_Ev_1)
6592{
6593 uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm);
6594 PCIEMOPSHIFTSIZES pImpl;
6595 switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK)
6596 {
6597 case 0: pImpl = &g_iemAImpl_rol; IEMOP_MNEMONIC(rol_Ev_1, "rol Ev,1"); break;
6598 case 1: pImpl = &g_iemAImpl_ror; IEMOP_MNEMONIC(ror_Ev_1, "ror Ev,1"); break;
6599 case 2: pImpl = &g_iemAImpl_rcl; IEMOP_MNEMONIC(rcl_Ev_1, "rcl Ev,1"); break;
6600 case 3: pImpl = &g_iemAImpl_rcr; IEMOP_MNEMONIC(rcr_Ev_1, "rcr Ev,1"); break;
6601 case 4: pImpl = &g_iemAImpl_shl; IEMOP_MNEMONIC(shl_Ev_1, "shl Ev,1"); break;
6602 case 5: pImpl = &g_iemAImpl_shr; IEMOP_MNEMONIC(shr_Ev_1, "shr Ev,1"); break;
6603 case 7: pImpl = &g_iemAImpl_sar; IEMOP_MNEMONIC(sar_Ev_1, "sar Ev,1"); break;
6604 case 6: return IEMOP_RAISE_INVALID_OPCODE();
6605 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* gcc maybe, well... */
6606 }
6607 IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_OF | X86_EFL_AF);
6608
6609 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
6610 {
6611 /* register */
6612 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
6613 switch (pVCpu->iem.s.enmEffOpSize)
6614 {
6615 case IEMMODE_16BIT:
6616 IEM_MC_BEGIN(3, 0);
6617 IEM_MC_ARG(uint16_t *, pu16Dst, 0);
6618 IEM_MC_ARG_CONST(uint8_t, cShiftArg,/*=1*/1, 1);
6619 IEM_MC_ARG(uint32_t *, pEFlags, 2);
6620 IEM_MC_REF_GREG_U16(pu16Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
6621 IEM_MC_REF_EFLAGS(pEFlags);
6622 IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU16, pu16Dst, cShiftArg, pEFlags);
6623 IEM_MC_ADVANCE_RIP();
6624 IEM_MC_END();
6625 return VINF_SUCCESS;
6626
6627 case IEMMODE_32BIT:
6628 IEM_MC_BEGIN(3, 0);
6629 IEM_MC_ARG(uint32_t *, pu32Dst, 0);
6630 IEM_MC_ARG_CONST(uint8_t, cShiftArg,/*=1*/1, 1);
6631 IEM_MC_ARG(uint32_t *, pEFlags, 2);
6632 IEM_MC_REF_GREG_U32(pu32Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
6633 IEM_MC_REF_EFLAGS(pEFlags);
6634 IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU32, pu32Dst, cShiftArg, pEFlags);
6635 IEM_MC_CLEAR_HIGH_GREG_U64_BY_REF(pu32Dst);
6636 IEM_MC_ADVANCE_RIP();
6637 IEM_MC_END();
6638 return VINF_SUCCESS;
6639
6640 case IEMMODE_64BIT:
6641 IEM_MC_BEGIN(3, 0);
6642 IEM_MC_ARG(uint64_t *, pu64Dst, 0);
6643 IEM_MC_ARG_CONST(uint8_t, cShiftArg,/*=1*/1, 1);
6644 IEM_MC_ARG(uint32_t *, pEFlags, 2);
6645 IEM_MC_REF_GREG_U64(pu64Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
6646 IEM_MC_REF_EFLAGS(pEFlags);
6647 IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU64, pu64Dst, cShiftArg, pEFlags);
6648 IEM_MC_ADVANCE_RIP();
6649 IEM_MC_END();
6650 return VINF_SUCCESS;
6651
6652 IEM_NOT_REACHED_DEFAULT_CASE_RET();
6653 }
6654 }
6655 else
6656 {
6657 /* memory */
6658 switch (pVCpu->iem.s.enmEffOpSize)
6659 {
6660 case IEMMODE_16BIT:
6661 IEM_MC_BEGIN(3, 2);
6662 IEM_MC_ARG(uint16_t *, pu16Dst, 0);
6663 IEM_MC_ARG_CONST(uint8_t, cShiftArg,/*=1*/1, 1);
6664 IEM_MC_ARG_LOCAL_EFLAGS(pEFlags, EFlags, 2);
6665 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
6666
6667 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
6668 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
6669 IEM_MC_MEM_MAP(pu16Dst, IEM_ACCESS_DATA_RW, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/);
6670 IEM_MC_FETCH_EFLAGS(EFlags);
6671 IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU16, pu16Dst, cShiftArg, pEFlags);
6672
6673 IEM_MC_MEM_COMMIT_AND_UNMAP(pu16Dst, IEM_ACCESS_DATA_RW);
6674 IEM_MC_COMMIT_EFLAGS(EFlags);
6675 IEM_MC_ADVANCE_RIP();
6676 IEM_MC_END();
6677 return VINF_SUCCESS;
6678
6679 case IEMMODE_32BIT:
6680 IEM_MC_BEGIN(3, 2);
6681 IEM_MC_ARG(uint32_t *, pu32Dst, 0);
6682 IEM_MC_ARG_CONST(uint8_t, cShiftArg,/*=1*/1, 1);
6683 IEM_MC_ARG_LOCAL_EFLAGS(pEFlags, EFlags, 2);
6684 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
6685
6686 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
6687 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
6688 IEM_MC_MEM_MAP(pu32Dst, IEM_ACCESS_DATA_RW, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/);
6689 IEM_MC_FETCH_EFLAGS(EFlags);
6690 IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU32, pu32Dst, cShiftArg, pEFlags);
6691
6692 IEM_MC_MEM_COMMIT_AND_UNMAP(pu32Dst, IEM_ACCESS_DATA_RW);
6693 IEM_MC_COMMIT_EFLAGS(EFlags);
6694 IEM_MC_ADVANCE_RIP();
6695 IEM_MC_END();
6696 return VINF_SUCCESS;
6697
6698 case IEMMODE_64BIT:
6699 IEM_MC_BEGIN(3, 2);
6700 IEM_MC_ARG(uint64_t *, pu64Dst, 0);
6701 IEM_MC_ARG_CONST(uint8_t, cShiftArg,/*=1*/1, 1);
6702 IEM_MC_ARG_LOCAL_EFLAGS(pEFlags, EFlags, 2);
6703 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
6704
6705 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
6706 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
6707 IEM_MC_MEM_MAP(pu64Dst, IEM_ACCESS_DATA_RW, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/);
6708 IEM_MC_FETCH_EFLAGS(EFlags);
6709 IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU64, pu64Dst, cShiftArg, pEFlags);
6710
6711 IEM_MC_MEM_COMMIT_AND_UNMAP(pu64Dst, IEM_ACCESS_DATA_RW);
6712 IEM_MC_COMMIT_EFLAGS(EFlags);
6713 IEM_MC_ADVANCE_RIP();
6714 IEM_MC_END();
6715 return VINF_SUCCESS;
6716
6717 IEM_NOT_REACHED_DEFAULT_CASE_RET();
6718 }
6719 }
6720}
6721
6722
6723/**
6724 * @opcode 0xd2
6725 */
6726FNIEMOP_DEF(iemOp_Grp2_Eb_CL)
6727{
6728 uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm);
6729 PCIEMOPSHIFTSIZES pImpl;
6730 switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK)
6731 {
6732 case 0: pImpl = &g_iemAImpl_rol; IEMOP_MNEMONIC(rol_Eb_CL, "rol Eb,CL"); break;
6733 case 1: pImpl = &g_iemAImpl_ror; IEMOP_MNEMONIC(ror_Eb_CL, "ror Eb,CL"); break;
6734 case 2: pImpl = &g_iemAImpl_rcl; IEMOP_MNEMONIC(rcl_Eb_CL, "rcl Eb,CL"); break;
6735 case 3: pImpl = &g_iemAImpl_rcr; IEMOP_MNEMONIC(rcr_Eb_CL, "rcr Eb,CL"); break;
6736 case 4: pImpl = &g_iemAImpl_shl; IEMOP_MNEMONIC(shl_Eb_CL, "shl Eb,CL"); break;
6737 case 5: pImpl = &g_iemAImpl_shr; IEMOP_MNEMONIC(shr_Eb_CL, "shr Eb,CL"); break;
6738 case 7: pImpl = &g_iemAImpl_sar; IEMOP_MNEMONIC(sar_Eb_CL, "sar Eb,CL"); break;
6739 case 6: return IEMOP_RAISE_INVALID_OPCODE();
6740 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* gcc, grr. */
6741 }
6742 IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_OF | X86_EFL_AF);
6743
6744 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
6745 {
6746 /* register */
6747 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
6748 IEM_MC_BEGIN(3, 0);
6749 IEM_MC_ARG(uint8_t *, pu8Dst, 0);
6750 IEM_MC_ARG(uint8_t, cShiftArg, 1);
6751 IEM_MC_ARG(uint32_t *, pEFlags, 2);
6752 IEM_MC_REF_GREG_U8(pu8Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
6753 IEM_MC_FETCH_GREG_U8(cShiftArg, X86_GREG_xCX);
6754 IEM_MC_REF_EFLAGS(pEFlags);
6755 IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU8, pu8Dst, cShiftArg, pEFlags);
6756 IEM_MC_ADVANCE_RIP();
6757 IEM_MC_END();
6758 }
6759 else
6760 {
6761 /* memory */
6762 IEM_MC_BEGIN(3, 2);
6763 IEM_MC_ARG(uint8_t *, pu8Dst, 0);
6764 IEM_MC_ARG(uint8_t, cShiftArg, 1);
6765 IEM_MC_ARG_LOCAL_EFLAGS(pEFlags, EFlags, 2);
6766 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
6767
6768 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
6769 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
6770 IEM_MC_FETCH_GREG_U8(cShiftArg, X86_GREG_xCX);
6771 IEM_MC_MEM_MAP(pu8Dst, IEM_ACCESS_DATA_RW, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/);
6772 IEM_MC_FETCH_EFLAGS(EFlags);
6773 IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU8, pu8Dst, cShiftArg, pEFlags);
6774
6775 IEM_MC_MEM_COMMIT_AND_UNMAP(pu8Dst, IEM_ACCESS_DATA_RW);
6776 IEM_MC_COMMIT_EFLAGS(EFlags);
6777 IEM_MC_ADVANCE_RIP();
6778 IEM_MC_END();
6779 }
6780 return VINF_SUCCESS;
6781}
6782
6783
6784/**
6785 * @opcode 0xd3
6786 */
6787FNIEMOP_DEF(iemOp_Grp2_Ev_CL)
6788{
6789 uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm);
6790 PCIEMOPSHIFTSIZES pImpl;
6791 switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK)
6792 {
6793 case 0: pImpl = &g_iemAImpl_rol; IEMOP_MNEMONIC(rol_Ev_CL, "rol Ev,CL"); break;
6794 case 1: pImpl = &g_iemAImpl_ror; IEMOP_MNEMONIC(ror_Ev_CL, "ror Ev,CL"); break;
6795 case 2: pImpl = &g_iemAImpl_rcl; IEMOP_MNEMONIC(rcl_Ev_CL, "rcl Ev,CL"); break;
6796 case 3: pImpl = &g_iemAImpl_rcr; IEMOP_MNEMONIC(rcr_Ev_CL, "rcr Ev,CL"); break;
6797 case 4: pImpl = &g_iemAImpl_shl; IEMOP_MNEMONIC(shl_Ev_CL, "shl Ev,CL"); break;
6798 case 5: pImpl = &g_iemAImpl_shr; IEMOP_MNEMONIC(shr_Ev_CL, "shr Ev,CL"); break;
6799 case 7: pImpl = &g_iemAImpl_sar; IEMOP_MNEMONIC(sar_Ev_CL, "sar Ev,CL"); break;
6800 case 6: return IEMOP_RAISE_INVALID_OPCODE();
6801 IEM_NOT_REACHED_DEFAULT_CASE_RET(); /* gcc maybe stupid */
6802 }
6803 IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_OF | X86_EFL_AF);
6804
6805 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
6806 {
6807 /* register */
6808 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
6809 switch (pVCpu->iem.s.enmEffOpSize)
6810 {
6811 case IEMMODE_16BIT:
6812 IEM_MC_BEGIN(3, 0);
6813 IEM_MC_ARG(uint16_t *, pu16Dst, 0);
6814 IEM_MC_ARG(uint8_t, cShiftArg, 1);
6815 IEM_MC_ARG(uint32_t *, pEFlags, 2);
6816 IEM_MC_REF_GREG_U16(pu16Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
6817 IEM_MC_FETCH_GREG_U8(cShiftArg, X86_GREG_xCX);
6818 IEM_MC_REF_EFLAGS(pEFlags);
6819 IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU16, pu16Dst, cShiftArg, pEFlags);
6820 IEM_MC_ADVANCE_RIP();
6821 IEM_MC_END();
6822 return VINF_SUCCESS;
6823
6824 case IEMMODE_32BIT:
6825 IEM_MC_BEGIN(3, 0);
6826 IEM_MC_ARG(uint32_t *, pu32Dst, 0);
6827 IEM_MC_ARG(uint8_t, cShiftArg, 1);
6828 IEM_MC_ARG(uint32_t *, pEFlags, 2);
6829 IEM_MC_REF_GREG_U32(pu32Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
6830 IEM_MC_FETCH_GREG_U8(cShiftArg, X86_GREG_xCX);
6831 IEM_MC_REF_EFLAGS(pEFlags);
6832 IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU32, pu32Dst, cShiftArg, pEFlags);
6833 IEM_MC_CLEAR_HIGH_GREG_U64_BY_REF(pu32Dst);
6834 IEM_MC_ADVANCE_RIP();
6835 IEM_MC_END();
6836 return VINF_SUCCESS;
6837
6838 case IEMMODE_64BIT:
6839 IEM_MC_BEGIN(3, 0);
6840 IEM_MC_ARG(uint64_t *, pu64Dst, 0);
6841 IEM_MC_ARG(uint8_t, cShiftArg, 1);
6842 IEM_MC_ARG(uint32_t *, pEFlags, 2);
6843 IEM_MC_REF_GREG_U64(pu64Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
6844 IEM_MC_FETCH_GREG_U8(cShiftArg, X86_GREG_xCX);
6845 IEM_MC_REF_EFLAGS(pEFlags);
6846 IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU64, pu64Dst, cShiftArg, pEFlags);
6847 IEM_MC_ADVANCE_RIP();
6848 IEM_MC_END();
6849 return VINF_SUCCESS;
6850
6851 IEM_NOT_REACHED_DEFAULT_CASE_RET();
6852 }
6853 }
6854 else
6855 {
6856 /* memory */
6857 switch (pVCpu->iem.s.enmEffOpSize)
6858 {
6859 case IEMMODE_16BIT:
6860 IEM_MC_BEGIN(3, 2);
6861 IEM_MC_ARG(uint16_t *, pu16Dst, 0);
6862 IEM_MC_ARG(uint8_t, cShiftArg, 1);
6863 IEM_MC_ARG_LOCAL_EFLAGS(pEFlags, EFlags, 2);
6864 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
6865
6866 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
6867 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
6868 IEM_MC_FETCH_GREG_U8(cShiftArg, X86_GREG_xCX);
6869 IEM_MC_MEM_MAP(pu16Dst, IEM_ACCESS_DATA_RW, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/);
6870 IEM_MC_FETCH_EFLAGS(EFlags);
6871 IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU16, pu16Dst, cShiftArg, pEFlags);
6872
6873 IEM_MC_MEM_COMMIT_AND_UNMAP(pu16Dst, IEM_ACCESS_DATA_RW);
6874 IEM_MC_COMMIT_EFLAGS(EFlags);
6875 IEM_MC_ADVANCE_RIP();
6876 IEM_MC_END();
6877 return VINF_SUCCESS;
6878
6879 case IEMMODE_32BIT:
6880 IEM_MC_BEGIN(3, 2);
6881 IEM_MC_ARG(uint32_t *, pu32Dst, 0);
6882 IEM_MC_ARG(uint8_t, cShiftArg, 1);
6883 IEM_MC_ARG_LOCAL_EFLAGS(pEFlags, EFlags, 2);
6884 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
6885
6886 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
6887 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
6888 IEM_MC_FETCH_GREG_U8(cShiftArg, X86_GREG_xCX);
6889 IEM_MC_MEM_MAP(pu32Dst, IEM_ACCESS_DATA_RW, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/);
6890 IEM_MC_FETCH_EFLAGS(EFlags);
6891 IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU32, pu32Dst, cShiftArg, pEFlags);
6892
6893 IEM_MC_MEM_COMMIT_AND_UNMAP(pu32Dst, IEM_ACCESS_DATA_RW);
6894 IEM_MC_COMMIT_EFLAGS(EFlags);
6895 IEM_MC_ADVANCE_RIP();
6896 IEM_MC_END();
6897 return VINF_SUCCESS;
6898
6899 case IEMMODE_64BIT:
6900 IEM_MC_BEGIN(3, 2);
6901 IEM_MC_ARG(uint64_t *, pu64Dst, 0);
6902 IEM_MC_ARG(uint8_t, cShiftArg, 1);
6903 IEM_MC_ARG_LOCAL_EFLAGS(pEFlags, EFlags, 2);
6904 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
6905
6906 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
6907 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
6908 IEM_MC_FETCH_GREG_U8(cShiftArg, X86_GREG_xCX);
6909 IEM_MC_MEM_MAP(pu64Dst, IEM_ACCESS_DATA_RW, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/);
6910 IEM_MC_FETCH_EFLAGS(EFlags);
6911 IEM_MC_CALL_VOID_AIMPL_3(pImpl->pfnNormalU64, pu64Dst, cShiftArg, pEFlags);
6912
6913 IEM_MC_MEM_COMMIT_AND_UNMAP(pu64Dst, IEM_ACCESS_DATA_RW);
6914 IEM_MC_COMMIT_EFLAGS(EFlags);
6915 IEM_MC_ADVANCE_RIP();
6916 IEM_MC_END();
6917 return VINF_SUCCESS;
6918
6919 IEM_NOT_REACHED_DEFAULT_CASE_RET();
6920 }
6921 }
6922}
6923
6924/**
6925 * @opcode 0xd4
6926 */
6927FNIEMOP_DEF(iemOp_aam_Ib)
6928{
6929 IEMOP_MNEMONIC(aam_Ib, "aam Ib");
6930 uint8_t bImm; IEM_OPCODE_GET_NEXT_U8(&bImm);
6931 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
6932 IEMOP_HLP_NO_64BIT();
6933 if (!bImm)
6934 return IEMOP_RAISE_DIVIDE_ERROR();
6935 return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_aam, bImm);
6936}
6937
6938
6939/**
6940 * @opcode 0xd5
6941 */
6942FNIEMOP_DEF(iemOp_aad_Ib)
6943{
6944 IEMOP_MNEMONIC(aad_Ib, "aad Ib");
6945 uint8_t bImm; IEM_OPCODE_GET_NEXT_U8(&bImm);
6946 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
6947 IEMOP_HLP_NO_64BIT();
6948 return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_aad, bImm);
6949}
6950
6951
6952/**
6953 * @opcode 0xd6
6954 */
6955FNIEMOP_DEF(iemOp_salc)
6956{
6957 IEMOP_MNEMONIC(salc, "salc");
6958 IEMOP_HLP_MIN_286(); /* (undocument at the time) */
6959 uint8_t bImm; IEM_OPCODE_GET_NEXT_U8(&bImm);
6960 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
6961 IEMOP_HLP_NO_64BIT();
6962
6963 IEM_MC_BEGIN(0, 0);
6964 IEM_MC_IF_EFL_BIT_SET(X86_EFL_CF) {
6965 IEM_MC_STORE_GREG_U8_CONST(X86_GREG_xAX, 0xff);
6966 } IEM_MC_ELSE() {
6967 IEM_MC_STORE_GREG_U8_CONST(X86_GREG_xAX, 0x00);
6968 } IEM_MC_ENDIF();
6969 IEM_MC_ADVANCE_RIP();
6970 IEM_MC_END();
6971 return VINF_SUCCESS;
6972}
6973
6974
6975/**
6976 * @opcode 0xd7
6977 */
6978FNIEMOP_DEF(iemOp_xlat)
6979{
6980 IEMOP_MNEMONIC(xlat, "xlat");
6981 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
6982 switch (pVCpu->iem.s.enmEffAddrMode)
6983 {
6984 case IEMMODE_16BIT:
6985 IEM_MC_BEGIN(2, 0);
6986 IEM_MC_LOCAL(uint8_t, u8Tmp);
6987 IEM_MC_LOCAL(uint16_t, u16Addr);
6988 IEM_MC_FETCH_GREG_U8_ZX_U16(u16Addr, X86_GREG_xAX);
6989 IEM_MC_ADD_GREG_U16_TO_LOCAL(u16Addr, X86_GREG_xBX);
6990 IEM_MC_FETCH_MEM16_U8(u8Tmp, pVCpu->iem.s.iEffSeg, u16Addr);
6991 IEM_MC_STORE_GREG_U8(X86_GREG_xAX, u8Tmp);
6992 IEM_MC_ADVANCE_RIP();
6993 IEM_MC_END();
6994 return VINF_SUCCESS;
6995
6996 case IEMMODE_32BIT:
6997 IEM_MC_BEGIN(2, 0);
6998 IEM_MC_LOCAL(uint8_t, u8Tmp);
6999 IEM_MC_LOCAL(uint32_t, u32Addr);
7000 IEM_MC_FETCH_GREG_U8_ZX_U32(u32Addr, X86_GREG_xAX);
7001 IEM_MC_ADD_GREG_U32_TO_LOCAL(u32Addr, X86_GREG_xBX);
7002 IEM_MC_FETCH_MEM32_U8(u8Tmp, pVCpu->iem.s.iEffSeg, u32Addr);
7003 IEM_MC_STORE_GREG_U8(X86_GREG_xAX, u8Tmp);
7004 IEM_MC_ADVANCE_RIP();
7005 IEM_MC_END();
7006 return VINF_SUCCESS;
7007
7008 case IEMMODE_64BIT:
7009 IEM_MC_BEGIN(2, 0);
7010 IEM_MC_LOCAL(uint8_t, u8Tmp);
7011 IEM_MC_LOCAL(uint64_t, u64Addr);
7012 IEM_MC_FETCH_GREG_U8_ZX_U64(u64Addr, X86_GREG_xAX);
7013 IEM_MC_ADD_GREG_U64_TO_LOCAL(u64Addr, X86_GREG_xBX);
7014 IEM_MC_FETCH_MEM_U8(u8Tmp, pVCpu->iem.s.iEffSeg, u64Addr);
7015 IEM_MC_STORE_GREG_U8(X86_GREG_xAX, u8Tmp);
7016 IEM_MC_ADVANCE_RIP();
7017 IEM_MC_END();
7018 return VINF_SUCCESS;
7019
7020 IEM_NOT_REACHED_DEFAULT_CASE_RET();
7021 }
7022}
7023
7024
7025/**
7026 * Common worker for FPU instructions working on ST0 and STn, and storing the
7027 * result in ST0.
7028 *
7029 * @param pfnAImpl Pointer to the instruction implementation (assembly).
7030 */
7031FNIEMOP_DEF_2(iemOpHlpFpu_st0_stN, uint8_t, bRm, PFNIEMAIMPLFPUR80, pfnAImpl)
7032{
7033 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
7034
7035 IEM_MC_BEGIN(3, 1);
7036 IEM_MC_LOCAL(IEMFPURESULT, FpuRes);
7037 IEM_MC_ARG_LOCAL_REF(PIEMFPURESULT, pFpuRes, FpuRes, 0);
7038 IEM_MC_ARG(PCRTFLOAT80U, pr80Value1, 1);
7039 IEM_MC_ARG(PCRTFLOAT80U, pr80Value2, 2);
7040
7041 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
7042 IEM_MC_MAYBE_RAISE_FPU_XCPT();
7043 IEM_MC_PREPARE_FPU_USAGE();
7044 IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80(pr80Value1, 0, pr80Value2, bRm & X86_MODRM_RM_MASK)
7045 IEM_MC_CALL_FPU_AIMPL_3(pfnAImpl, pFpuRes, pr80Value1, pr80Value2);
7046 IEM_MC_STORE_FPU_RESULT(FpuRes, 0);
7047 IEM_MC_ELSE()
7048 IEM_MC_FPU_STACK_UNDERFLOW(0);
7049 IEM_MC_ENDIF();
7050 IEM_MC_ADVANCE_RIP();
7051
7052 IEM_MC_END();
7053 return VINF_SUCCESS;
7054}
7055
7056
7057/**
7058 * Common worker for FPU instructions working on ST0 and STn, and only affecting
7059 * flags.
7060 *
7061 * @param pfnAImpl Pointer to the instruction implementation (assembly).
7062 */
7063FNIEMOP_DEF_2(iemOpHlpFpuNoStore_st0_stN, uint8_t, bRm, PFNIEMAIMPLFPUR80FSW, pfnAImpl)
7064{
7065 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
7066
7067 IEM_MC_BEGIN(3, 1);
7068 IEM_MC_LOCAL(uint16_t, u16Fsw);
7069 IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0);
7070 IEM_MC_ARG(PCRTFLOAT80U, pr80Value1, 1);
7071 IEM_MC_ARG(PCRTFLOAT80U, pr80Value2, 2);
7072
7073 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
7074 IEM_MC_MAYBE_RAISE_FPU_XCPT();
7075 IEM_MC_PREPARE_FPU_USAGE();
7076 IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80(pr80Value1, 0, pr80Value2, bRm & X86_MODRM_RM_MASK)
7077 IEM_MC_CALL_FPU_AIMPL_3(pfnAImpl, pu16Fsw, pr80Value1, pr80Value2);
7078 IEM_MC_UPDATE_FSW(u16Fsw);
7079 IEM_MC_ELSE()
7080 IEM_MC_FPU_STACK_UNDERFLOW(UINT8_MAX);
7081 IEM_MC_ENDIF();
7082 IEM_MC_ADVANCE_RIP();
7083
7084 IEM_MC_END();
7085 return VINF_SUCCESS;
7086}
7087
7088
7089/**
7090 * Common worker for FPU instructions working on ST0 and STn, only affecting
7091 * flags, and popping when done.
7092 *
7093 * @param pfnAImpl Pointer to the instruction implementation (assembly).
7094 */
7095FNIEMOP_DEF_2(iemOpHlpFpuNoStore_st0_stN_pop, uint8_t, bRm, PFNIEMAIMPLFPUR80FSW, pfnAImpl)
7096{
7097 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
7098
7099 IEM_MC_BEGIN(3, 1);
7100 IEM_MC_LOCAL(uint16_t, u16Fsw);
7101 IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0);
7102 IEM_MC_ARG(PCRTFLOAT80U, pr80Value1, 1);
7103 IEM_MC_ARG(PCRTFLOAT80U, pr80Value2, 2);
7104
7105 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
7106 IEM_MC_MAYBE_RAISE_FPU_XCPT();
7107 IEM_MC_PREPARE_FPU_USAGE();
7108 IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80(pr80Value1, 0, pr80Value2, bRm & X86_MODRM_RM_MASK)
7109 IEM_MC_CALL_FPU_AIMPL_3(pfnAImpl, pu16Fsw, pr80Value1, pr80Value2);
7110 IEM_MC_UPDATE_FSW_THEN_POP(u16Fsw);
7111 IEM_MC_ELSE()
7112 IEM_MC_FPU_STACK_UNDERFLOW_THEN_POP(UINT8_MAX);
7113 IEM_MC_ENDIF();
7114 IEM_MC_ADVANCE_RIP();
7115
7116 IEM_MC_END();
7117 return VINF_SUCCESS;
7118}
7119
7120
7121/** Opcode 0xd8 11/0. */
7122FNIEMOP_DEF_1(iemOp_fadd_stN, uint8_t, bRm)
7123{
7124 IEMOP_MNEMONIC(fadd_st0_stN, "fadd st0,stN");
7125 return FNIEMOP_CALL_2(iemOpHlpFpu_st0_stN, bRm, iemAImpl_fadd_r80_by_r80);
7126}
7127
7128
7129/** Opcode 0xd8 11/1. */
7130FNIEMOP_DEF_1(iemOp_fmul_stN, uint8_t, bRm)
7131{
7132 IEMOP_MNEMONIC(fmul_st0_stN, "fmul st0,stN");
7133 return FNIEMOP_CALL_2(iemOpHlpFpu_st0_stN, bRm, iemAImpl_fmul_r80_by_r80);
7134}
7135
7136
7137/** Opcode 0xd8 11/2. */
7138FNIEMOP_DEF_1(iemOp_fcom_stN, uint8_t, bRm)
7139{
7140 IEMOP_MNEMONIC(fcom_st0_stN, "fcom st0,stN");
7141 return FNIEMOP_CALL_2(iemOpHlpFpuNoStore_st0_stN, bRm, iemAImpl_fcom_r80_by_r80);
7142}
7143
7144
7145/** Opcode 0xd8 11/3. */
7146FNIEMOP_DEF_1(iemOp_fcomp_stN, uint8_t, bRm)
7147{
7148 IEMOP_MNEMONIC(fcomp_st0_stN, "fcomp st0,stN");
7149 return FNIEMOP_CALL_2(iemOpHlpFpuNoStore_st0_stN_pop, bRm, iemAImpl_fcom_r80_by_r80);
7150}
7151
7152
7153/** Opcode 0xd8 11/4. */
7154FNIEMOP_DEF_1(iemOp_fsub_stN, uint8_t, bRm)
7155{
7156 IEMOP_MNEMONIC(fsub_st0_stN, "fsub st0,stN");
7157 return FNIEMOP_CALL_2(iemOpHlpFpu_st0_stN, bRm, iemAImpl_fsub_r80_by_r80);
7158}
7159
7160
7161/** Opcode 0xd8 11/5. */
7162FNIEMOP_DEF_1(iemOp_fsubr_stN, uint8_t, bRm)
7163{
7164 IEMOP_MNEMONIC(fsubr_st0_stN, "fsubr st0,stN");
7165 return FNIEMOP_CALL_2(iemOpHlpFpu_st0_stN, bRm, iemAImpl_fsubr_r80_by_r80);
7166}
7167
7168
7169/** Opcode 0xd8 11/6. */
7170FNIEMOP_DEF_1(iemOp_fdiv_stN, uint8_t, bRm)
7171{
7172 IEMOP_MNEMONIC(fdiv_st0_stN, "fdiv st0,stN");
7173 return FNIEMOP_CALL_2(iemOpHlpFpu_st0_stN, bRm, iemAImpl_fdiv_r80_by_r80);
7174}
7175
7176
7177/** Opcode 0xd8 11/7. */
7178FNIEMOP_DEF_1(iemOp_fdivr_stN, uint8_t, bRm)
7179{
7180 IEMOP_MNEMONIC(fdivr_st0_stN, "fdivr st0,stN");
7181 return FNIEMOP_CALL_2(iemOpHlpFpu_st0_stN, bRm, iemAImpl_fdivr_r80_by_r80);
7182}
7183
7184
7185/**
7186 * Common worker for FPU instructions working on ST0 and an m32r, and storing
7187 * the result in ST0.
7188 *
7189 * @param pfnAImpl Pointer to the instruction implementation (assembly).
7190 */
7191FNIEMOP_DEF_2(iemOpHlpFpu_st0_m32r, uint8_t, bRm, PFNIEMAIMPLFPUR32, pfnAImpl)
7192{
7193 IEM_MC_BEGIN(3, 3);
7194 IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc);
7195 IEM_MC_LOCAL(IEMFPURESULT, FpuRes);
7196 IEM_MC_LOCAL(RTFLOAT32U, r32Val2);
7197 IEM_MC_ARG_LOCAL_REF(PIEMFPURESULT, pFpuRes, FpuRes, 0);
7198 IEM_MC_ARG(PCRTFLOAT80U, pr80Value1, 1);
7199 IEM_MC_ARG_LOCAL_REF(PCRTFLOAT32U, pr32Val2, r32Val2, 2);
7200
7201 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0);
7202 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
7203
7204 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
7205 IEM_MC_MAYBE_RAISE_FPU_XCPT();
7206 IEM_MC_FETCH_MEM_R32(r32Val2, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
7207
7208 IEM_MC_PREPARE_FPU_USAGE();
7209 IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value1, 0)
7210 IEM_MC_CALL_FPU_AIMPL_3(pfnAImpl, pFpuRes, pr80Value1, pr32Val2);
7211 IEM_MC_STORE_FPU_RESULT(FpuRes, 0);
7212 IEM_MC_ELSE()
7213 IEM_MC_FPU_STACK_UNDERFLOW(0);
7214 IEM_MC_ENDIF();
7215 IEM_MC_ADVANCE_RIP();
7216
7217 IEM_MC_END();
7218 return VINF_SUCCESS;
7219}
7220
7221
7222/** Opcode 0xd8 !11/0. */
7223FNIEMOP_DEF_1(iemOp_fadd_m32r, uint8_t, bRm)
7224{
7225 IEMOP_MNEMONIC(fadd_st0_m32r, "fadd st0,m32r");
7226 return FNIEMOP_CALL_2(iemOpHlpFpu_st0_m32r, bRm, iemAImpl_fadd_r80_by_r32);
7227}
7228
7229
7230/** Opcode 0xd8 !11/1. */
7231FNIEMOP_DEF_1(iemOp_fmul_m32r, uint8_t, bRm)
7232{
7233 IEMOP_MNEMONIC(fmul_st0_m32r, "fmul st0,m32r");
7234 return FNIEMOP_CALL_2(iemOpHlpFpu_st0_m32r, bRm, iemAImpl_fmul_r80_by_r32);
7235}
7236
7237
7238/** Opcode 0xd8 !11/2. */
7239FNIEMOP_DEF_1(iemOp_fcom_m32r, uint8_t, bRm)
7240{
7241 IEMOP_MNEMONIC(fcom_st0_m32r, "fcom st0,m32r");
7242
7243 IEM_MC_BEGIN(3, 3);
7244 IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc);
7245 IEM_MC_LOCAL(uint16_t, u16Fsw);
7246 IEM_MC_LOCAL(RTFLOAT32U, r32Val2);
7247 IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0);
7248 IEM_MC_ARG(PCRTFLOAT80U, pr80Value1, 1);
7249 IEM_MC_ARG_LOCAL_REF(PCRTFLOAT32U, pr32Val2, r32Val2, 2);
7250
7251 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0);
7252 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
7253
7254 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
7255 IEM_MC_MAYBE_RAISE_FPU_XCPT();
7256 IEM_MC_FETCH_MEM_R32(r32Val2, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
7257
7258 IEM_MC_PREPARE_FPU_USAGE();
7259 IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value1, 0)
7260 IEM_MC_CALL_FPU_AIMPL_3(iemAImpl_fcom_r80_by_r32, pu16Fsw, pr80Value1, pr32Val2);
7261 IEM_MC_UPDATE_FSW_WITH_MEM_OP(u16Fsw, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
7262 IEM_MC_ELSE()
7263 IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP(UINT8_MAX, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
7264 IEM_MC_ENDIF();
7265 IEM_MC_ADVANCE_RIP();
7266
7267 IEM_MC_END();
7268 return VINF_SUCCESS;
7269}
7270
7271
7272/** Opcode 0xd8 !11/3. */
7273FNIEMOP_DEF_1(iemOp_fcomp_m32r, uint8_t, bRm)
7274{
7275 IEMOP_MNEMONIC(fcomp_st0_m32r, "fcomp st0,m32r");
7276
7277 IEM_MC_BEGIN(3, 3);
7278 IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc);
7279 IEM_MC_LOCAL(uint16_t, u16Fsw);
7280 IEM_MC_LOCAL(RTFLOAT32U, r32Val2);
7281 IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0);
7282 IEM_MC_ARG(PCRTFLOAT80U, pr80Value1, 1);
7283 IEM_MC_ARG_LOCAL_REF(PCRTFLOAT32U, pr32Val2, r32Val2, 2);
7284
7285 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0);
7286 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
7287
7288 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
7289 IEM_MC_MAYBE_RAISE_FPU_XCPT();
7290 IEM_MC_FETCH_MEM_R32(r32Val2, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
7291
7292 IEM_MC_PREPARE_FPU_USAGE();
7293 IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value1, 0)
7294 IEM_MC_CALL_FPU_AIMPL_3(iemAImpl_fcom_r80_by_r32, pu16Fsw, pr80Value1, pr32Val2);
7295 IEM_MC_UPDATE_FSW_WITH_MEM_OP_THEN_POP(u16Fsw, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
7296 IEM_MC_ELSE()
7297 IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP_THEN_POP(UINT8_MAX, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
7298 IEM_MC_ENDIF();
7299 IEM_MC_ADVANCE_RIP();
7300
7301 IEM_MC_END();
7302 return VINF_SUCCESS;
7303}
7304
7305
7306/** Opcode 0xd8 !11/4. */
7307FNIEMOP_DEF_1(iemOp_fsub_m32r, uint8_t, bRm)
7308{
7309 IEMOP_MNEMONIC(fsub_st0_m32r, "fsub st0,m32r");
7310 return FNIEMOP_CALL_2(iemOpHlpFpu_st0_m32r, bRm, iemAImpl_fsub_r80_by_r32);
7311}
7312
7313
7314/** Opcode 0xd8 !11/5. */
7315FNIEMOP_DEF_1(iemOp_fsubr_m32r, uint8_t, bRm)
7316{
7317 IEMOP_MNEMONIC(fsubr_st0_m32r, "fsubr st0,m32r");
7318 return FNIEMOP_CALL_2(iemOpHlpFpu_st0_m32r, bRm, iemAImpl_fsubr_r80_by_r32);
7319}
7320
7321
7322/** Opcode 0xd8 !11/6. */
7323FNIEMOP_DEF_1(iemOp_fdiv_m32r, uint8_t, bRm)
7324{
7325 IEMOP_MNEMONIC(fdiv_st0_m32r, "fdiv st0,m32r");
7326 return FNIEMOP_CALL_2(iemOpHlpFpu_st0_m32r, bRm, iemAImpl_fdiv_r80_by_r32);
7327}
7328
7329
7330/** Opcode 0xd8 !11/7. */
7331FNIEMOP_DEF_1(iemOp_fdivr_m32r, uint8_t, bRm)
7332{
7333 IEMOP_MNEMONIC(fdivr_st0_m32r, "fdivr st0,m32r");
7334 return FNIEMOP_CALL_2(iemOpHlpFpu_st0_m32r, bRm, iemAImpl_fdivr_r80_by_r32);
7335}
7336
7337
7338/**
7339 * @opcode 0xd8
7340 */
7341FNIEMOP_DEF(iemOp_EscF0)
7342{
7343 uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm);
7344 pVCpu->iem.s.uFpuOpcode = RT_MAKE_U16(bRm, 0xd8 & 0x7);
7345
7346 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
7347 {
7348 switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK)
7349 {
7350 case 0: return FNIEMOP_CALL_1(iemOp_fadd_stN, bRm);
7351 case 1: return FNIEMOP_CALL_1(iemOp_fmul_stN, bRm);
7352 case 2: return FNIEMOP_CALL_1(iemOp_fcom_stN, bRm);
7353 case 3: return FNIEMOP_CALL_1(iemOp_fcomp_stN, bRm);
7354 case 4: return FNIEMOP_CALL_1(iemOp_fsub_stN, bRm);
7355 case 5: return FNIEMOP_CALL_1(iemOp_fsubr_stN, bRm);
7356 case 6: return FNIEMOP_CALL_1(iemOp_fdiv_stN, bRm);
7357 case 7: return FNIEMOP_CALL_1(iemOp_fdivr_stN, bRm);
7358 IEM_NOT_REACHED_DEFAULT_CASE_RET();
7359 }
7360 }
7361 else
7362 {
7363 switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK)
7364 {
7365 case 0: return FNIEMOP_CALL_1(iemOp_fadd_m32r, bRm);
7366 case 1: return FNIEMOP_CALL_1(iemOp_fmul_m32r, bRm);
7367 case 2: return FNIEMOP_CALL_1(iemOp_fcom_m32r, bRm);
7368 case 3: return FNIEMOP_CALL_1(iemOp_fcomp_m32r, bRm);
7369 case 4: return FNIEMOP_CALL_1(iemOp_fsub_m32r, bRm);
7370 case 5: return FNIEMOP_CALL_1(iemOp_fsubr_m32r, bRm);
7371 case 6: return FNIEMOP_CALL_1(iemOp_fdiv_m32r, bRm);
7372 case 7: return FNIEMOP_CALL_1(iemOp_fdivr_m32r, bRm);
7373 IEM_NOT_REACHED_DEFAULT_CASE_RET();
7374 }
7375 }
7376}
7377
7378
7379/** Opcode 0xd9 /0 mem32real
7380 * @sa iemOp_fld_m64r */
7381FNIEMOP_DEF_1(iemOp_fld_m32r, uint8_t, bRm)
7382{
7383 IEMOP_MNEMONIC(fld_m32r, "fld m32r");
7384
7385 IEM_MC_BEGIN(2, 3);
7386 IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc);
7387 IEM_MC_LOCAL(IEMFPURESULT, FpuRes);
7388 IEM_MC_LOCAL(RTFLOAT32U, r32Val);
7389 IEM_MC_ARG_LOCAL_REF(PIEMFPURESULT, pFpuRes, FpuRes, 0);
7390 IEM_MC_ARG_LOCAL_REF(PCRTFLOAT32U, pr32Val, r32Val, 1);
7391
7392 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0);
7393 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
7394
7395 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
7396 IEM_MC_MAYBE_RAISE_FPU_XCPT();
7397 IEM_MC_FETCH_MEM_R32(r32Val, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
7398
7399 IEM_MC_PREPARE_FPU_USAGE();
7400 IEM_MC_IF_FPUREG_IS_EMPTY(7)
7401 IEM_MC_CALL_FPU_AIMPL_2(iemAImpl_fld_r32_to_r80, pFpuRes, pr32Val);
7402 IEM_MC_PUSH_FPU_RESULT_MEM_OP(FpuRes, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
7403 IEM_MC_ELSE()
7404 IEM_MC_FPU_STACK_PUSH_OVERFLOW_MEM_OP(pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
7405 IEM_MC_ENDIF();
7406 IEM_MC_ADVANCE_RIP();
7407
7408 IEM_MC_END();
7409 return VINF_SUCCESS;
7410}
7411
7412
7413/** Opcode 0xd9 !11/2 mem32real */
7414FNIEMOP_DEF_1(iemOp_fst_m32r, uint8_t, bRm)
7415{
7416 IEMOP_MNEMONIC(fst_m32r, "fst m32r");
7417 IEM_MC_BEGIN(3, 2);
7418 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
7419 IEM_MC_LOCAL(uint16_t, u16Fsw);
7420 IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0);
7421 IEM_MC_ARG(PRTFLOAT32U, pr32Dst, 1);
7422 IEM_MC_ARG(PCRTFLOAT80U, pr80Value, 2);
7423
7424 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
7425 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
7426 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
7427 IEM_MC_MAYBE_RAISE_FPU_XCPT();
7428
7429 IEM_MC_MEM_MAP(pr32Dst, IEM_ACCESS_DATA_W, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 1 /*arg*/);
7430 IEM_MC_PREPARE_FPU_USAGE();
7431 IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value, 0)
7432 IEM_MC_CALL_FPU_AIMPL_3(iemAImpl_fst_r80_to_r32, pu16Fsw, pr32Dst, pr80Value);
7433 IEM_MC_MEM_COMMIT_AND_UNMAP_FOR_FPU_STORE(pr32Dst, IEM_ACCESS_DATA_W, u16Fsw);
7434 IEM_MC_UPDATE_FSW_WITH_MEM_OP(u16Fsw, pVCpu->iem.s.iEffSeg, GCPtrEffDst);
7435 IEM_MC_ELSE()
7436 IEM_MC_IF_FCW_IM()
7437 IEM_MC_STORE_MEM_NEG_QNAN_R32_BY_REF(pr32Dst);
7438 IEM_MC_MEM_COMMIT_AND_UNMAP(pr32Dst, IEM_ACCESS_DATA_W);
7439 IEM_MC_ENDIF();
7440 IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP(UINT8_MAX, pVCpu->iem.s.iEffSeg, GCPtrEffDst);
7441 IEM_MC_ENDIF();
7442 IEM_MC_ADVANCE_RIP();
7443
7444 IEM_MC_END();
7445 return VINF_SUCCESS;
7446}
7447
7448
7449/** Opcode 0xd9 !11/3 */
7450FNIEMOP_DEF_1(iemOp_fstp_m32r, uint8_t, bRm)
7451{
7452 IEMOP_MNEMONIC(fstp_m32r, "fstp m32r");
7453 IEM_MC_BEGIN(3, 2);
7454 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
7455 IEM_MC_LOCAL(uint16_t, u16Fsw);
7456 IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0);
7457 IEM_MC_ARG(PRTFLOAT32U, pr32Dst, 1);
7458 IEM_MC_ARG(PCRTFLOAT80U, pr80Value, 2);
7459
7460 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
7461 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
7462 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
7463 IEM_MC_MAYBE_RAISE_FPU_XCPT();
7464
7465 IEM_MC_MEM_MAP(pr32Dst, IEM_ACCESS_DATA_W, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 1 /*arg*/);
7466 IEM_MC_PREPARE_FPU_USAGE();
7467 IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value, 0)
7468 IEM_MC_CALL_FPU_AIMPL_3(iemAImpl_fst_r80_to_r32, pu16Fsw, pr32Dst, pr80Value);
7469 IEM_MC_MEM_COMMIT_AND_UNMAP_FOR_FPU_STORE(pr32Dst, IEM_ACCESS_DATA_W, u16Fsw);
7470 IEM_MC_UPDATE_FSW_WITH_MEM_OP_THEN_POP(u16Fsw, pVCpu->iem.s.iEffSeg, GCPtrEffDst);
7471 IEM_MC_ELSE()
7472 IEM_MC_IF_FCW_IM()
7473 IEM_MC_STORE_MEM_NEG_QNAN_R32_BY_REF(pr32Dst);
7474 IEM_MC_MEM_COMMIT_AND_UNMAP(pr32Dst, IEM_ACCESS_DATA_W);
7475 IEM_MC_ENDIF();
7476 IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP_THEN_POP(UINT8_MAX, pVCpu->iem.s.iEffSeg, GCPtrEffDst);
7477 IEM_MC_ENDIF();
7478 IEM_MC_ADVANCE_RIP();
7479
7480 IEM_MC_END();
7481 return VINF_SUCCESS;
7482}
7483
7484
7485/** Opcode 0xd9 !11/4 */
7486FNIEMOP_DEF_1(iemOp_fldenv, uint8_t, bRm)
7487{
7488 IEMOP_MNEMONIC(fldenv, "fldenv m14/28byte");
7489 IEM_MC_BEGIN(3, 0);
7490 IEM_MC_ARG_CONST(IEMMODE, enmEffOpSize, /*=*/ pVCpu->iem.s.enmEffOpSize, 0);
7491 IEM_MC_ARG(uint8_t, iEffSeg, 1);
7492 IEM_MC_ARG(RTGCPTR, GCPtrEffSrc, 2);
7493 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0);
7494 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
7495 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
7496 IEM_MC_ACTUALIZE_FPU_STATE_FOR_CHANGE();
7497 IEM_MC_ASSIGN(iEffSeg, pVCpu->iem.s.iEffSeg);
7498 IEM_MC_CALL_CIMPL_3(iemCImpl_fldenv, enmEffOpSize, iEffSeg, GCPtrEffSrc);
7499 IEM_MC_END();
7500 return VINF_SUCCESS;
7501}
7502
7503
7504/** Opcode 0xd9 !11/5 */
7505FNIEMOP_DEF_1(iemOp_fldcw, uint8_t, bRm)
7506{
7507 IEMOP_MNEMONIC(fldcw_m2byte, "fldcw m2byte");
7508 IEM_MC_BEGIN(1, 1);
7509 IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc);
7510 IEM_MC_ARG(uint16_t, u16Fsw, 0);
7511 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0);
7512 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
7513 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
7514 IEM_MC_ACTUALIZE_FPU_STATE_FOR_CHANGE();
7515 IEM_MC_FETCH_MEM_U16(u16Fsw, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
7516 IEM_MC_CALL_CIMPL_1(iemCImpl_fldcw, u16Fsw);
7517 IEM_MC_END();
7518 return VINF_SUCCESS;
7519}
7520
7521
7522/** Opcode 0xd9 !11/6 */
7523FNIEMOP_DEF_1(iemOp_fnstenv, uint8_t, bRm)
7524{
7525 IEMOP_MNEMONIC(fstenv, "fstenv m14/m28byte");
7526 IEM_MC_BEGIN(3, 0);
7527 IEM_MC_ARG_CONST(IEMMODE, enmEffOpSize, /*=*/ pVCpu->iem.s.enmEffOpSize, 0);
7528 IEM_MC_ARG(uint8_t, iEffSeg, 1);
7529 IEM_MC_ARG(RTGCPTR, GCPtrEffDst, 2);
7530 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
7531 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
7532 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
7533 IEM_MC_ACTUALIZE_FPU_STATE_FOR_READ();
7534 IEM_MC_ASSIGN(iEffSeg, pVCpu->iem.s.iEffSeg);
7535 IEM_MC_CALL_CIMPL_3(iemCImpl_fnstenv, enmEffOpSize, iEffSeg, GCPtrEffDst);
7536 IEM_MC_END();
7537 return VINF_SUCCESS;
7538}
7539
7540
7541/** Opcode 0xd9 !11/7 */
7542FNIEMOP_DEF_1(iemOp_fnstcw, uint8_t, bRm)
7543{
7544 IEMOP_MNEMONIC(fnstcw_m2byte, "fnstcw m2byte");
7545 IEM_MC_BEGIN(2, 0);
7546 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
7547 IEM_MC_LOCAL(uint16_t, u16Fcw);
7548 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
7549 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
7550 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
7551 IEM_MC_ACTUALIZE_FPU_STATE_FOR_READ();
7552 IEM_MC_FETCH_FCW(u16Fcw);
7553 IEM_MC_STORE_MEM_U16(pVCpu->iem.s.iEffSeg, GCPtrEffDst, u16Fcw);
7554 IEM_MC_ADVANCE_RIP(); /* C0-C3 are documented as undefined, we leave them unmodified. */
7555 IEM_MC_END();
7556 return VINF_SUCCESS;
7557}
7558
7559
7560/** Opcode 0xd9 0xd0, 0xd9 0xd8-0xdf, ++?. */
7561FNIEMOP_DEF(iemOp_fnop)
7562{
7563 IEMOP_MNEMONIC(fnop, "fnop");
7564 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
7565
7566 IEM_MC_BEGIN(0, 0);
7567 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
7568 IEM_MC_MAYBE_RAISE_FPU_XCPT();
7569 IEM_MC_ACTUALIZE_FPU_STATE_FOR_CHANGE();
7570 /** @todo Testcase: looks like FNOP leaves FOP alone but updates FPUIP. Could be
7571 * intel optimizations. Investigate. */
7572 IEM_MC_UPDATE_FPU_OPCODE_IP();
7573 IEM_MC_ADVANCE_RIP(); /* C0-C3 are documented as undefined, we leave them unmodified. */
7574 IEM_MC_END();
7575 return VINF_SUCCESS;
7576}
7577
7578
7579/** Opcode 0xd9 11/0 stN */
7580FNIEMOP_DEF_1(iemOp_fld_stN, uint8_t, bRm)
7581{
7582 IEMOP_MNEMONIC(fld_stN, "fld stN");
7583 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
7584
7585 /** @todo Testcase: Check if this raises \#MF? Intel mentioned it not. AMD
7586 * indicates that it does. */
7587 IEM_MC_BEGIN(0, 2);
7588 IEM_MC_LOCAL(PCRTFLOAT80U, pr80Value);
7589 IEM_MC_LOCAL(IEMFPURESULT, FpuRes);
7590 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
7591 IEM_MC_MAYBE_RAISE_FPU_XCPT();
7592
7593 IEM_MC_PREPARE_FPU_USAGE();
7594 IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value, bRm & X86_MODRM_RM_MASK)
7595 IEM_MC_SET_FPU_RESULT(FpuRes, 0 /*FSW*/, pr80Value);
7596 IEM_MC_PUSH_FPU_RESULT(FpuRes);
7597 IEM_MC_ELSE()
7598 IEM_MC_FPU_STACK_PUSH_UNDERFLOW();
7599 IEM_MC_ENDIF();
7600
7601 IEM_MC_ADVANCE_RIP();
7602 IEM_MC_END();
7603
7604 return VINF_SUCCESS;
7605}
7606
7607
7608/** Opcode 0xd9 11/3 stN */
7609FNIEMOP_DEF_1(iemOp_fxch_stN, uint8_t, bRm)
7610{
7611 IEMOP_MNEMONIC(fxch_stN, "fxch stN");
7612 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
7613
7614 /** @todo Testcase: Check if this raises \#MF? Intel mentioned it not. AMD
7615 * indicates that it does. */
7616 IEM_MC_BEGIN(1, 3);
7617 IEM_MC_LOCAL(PCRTFLOAT80U, pr80Value1);
7618 IEM_MC_LOCAL(PCRTFLOAT80U, pr80Value2);
7619 IEM_MC_LOCAL(IEMFPURESULT, FpuRes);
7620 IEM_MC_ARG_CONST(uint8_t, iStReg, /*=*/ bRm & X86_MODRM_RM_MASK, 0);
7621 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
7622 IEM_MC_MAYBE_RAISE_FPU_XCPT();
7623
7624 IEM_MC_PREPARE_FPU_USAGE();
7625 IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80(pr80Value1, 0, pr80Value2, bRm & X86_MODRM_RM_MASK)
7626 IEM_MC_SET_FPU_RESULT(FpuRes, X86_FSW_C1, pr80Value2);
7627 IEM_MC_STORE_FPUREG_R80_SRC_REF(bRm & X86_MODRM_RM_MASK, pr80Value1);
7628 IEM_MC_STORE_FPU_RESULT(FpuRes, 0);
7629 IEM_MC_ELSE()
7630 IEM_MC_CALL_CIMPL_1(iemCImpl_fxch_underflow, iStReg);
7631 IEM_MC_ENDIF();
7632
7633 IEM_MC_ADVANCE_RIP();
7634 IEM_MC_END();
7635
7636 return VINF_SUCCESS;
7637}
7638
7639
7640/** Opcode 0xd9 11/4, 0xdd 11/2. */
7641FNIEMOP_DEF_1(iemOp_fstp_stN, uint8_t, bRm)
7642{
7643 IEMOP_MNEMONIC(fstp_st0_stN, "fstp st0,stN");
7644 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
7645
7646 /* fstp st0, st0 is frequently used as an official 'ffreep st0' sequence. */
7647 uint8_t const iDstReg = bRm & X86_MODRM_RM_MASK;
7648 if (!iDstReg)
7649 {
7650 IEM_MC_BEGIN(0, 1);
7651 IEM_MC_LOCAL_CONST(uint16_t, u16Fsw, /*=*/ 0);
7652 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
7653 IEM_MC_MAYBE_RAISE_FPU_XCPT();
7654
7655 IEM_MC_PREPARE_FPU_USAGE();
7656 IEM_MC_IF_FPUREG_NOT_EMPTY(0)
7657 IEM_MC_UPDATE_FSW_THEN_POP(u16Fsw);
7658 IEM_MC_ELSE()
7659 IEM_MC_FPU_STACK_UNDERFLOW_THEN_POP(0);
7660 IEM_MC_ENDIF();
7661
7662 IEM_MC_ADVANCE_RIP();
7663 IEM_MC_END();
7664 }
7665 else
7666 {
7667 IEM_MC_BEGIN(0, 2);
7668 IEM_MC_LOCAL(PCRTFLOAT80U, pr80Value);
7669 IEM_MC_LOCAL(IEMFPURESULT, FpuRes);
7670 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
7671 IEM_MC_MAYBE_RAISE_FPU_XCPT();
7672
7673 IEM_MC_PREPARE_FPU_USAGE();
7674 IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value, 0)
7675 IEM_MC_SET_FPU_RESULT(FpuRes, 0 /*FSW*/, pr80Value);
7676 IEM_MC_STORE_FPU_RESULT_THEN_POP(FpuRes, iDstReg);
7677 IEM_MC_ELSE()
7678 IEM_MC_FPU_STACK_UNDERFLOW_THEN_POP(iDstReg);
7679 IEM_MC_ENDIF();
7680
7681 IEM_MC_ADVANCE_RIP();
7682 IEM_MC_END();
7683 }
7684 return VINF_SUCCESS;
7685}
7686
7687
7688/**
7689 * Common worker for FPU instructions working on ST0 and replaces it with the
7690 * result, i.e. unary operators.
7691 *
7692 * @param pfnAImpl Pointer to the instruction implementation (assembly).
7693 */
7694FNIEMOP_DEF_1(iemOpHlpFpu_st0, PFNIEMAIMPLFPUR80UNARY, pfnAImpl)
7695{
7696 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
7697
7698 IEM_MC_BEGIN(2, 1);
7699 IEM_MC_LOCAL(IEMFPURESULT, FpuRes);
7700 IEM_MC_ARG_LOCAL_REF(PIEMFPURESULT, pFpuRes, FpuRes, 0);
7701 IEM_MC_ARG(PCRTFLOAT80U, pr80Value, 1);
7702
7703 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
7704 IEM_MC_MAYBE_RAISE_FPU_XCPT();
7705 IEM_MC_PREPARE_FPU_USAGE();
7706 IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value, 0)
7707 IEM_MC_CALL_FPU_AIMPL_2(pfnAImpl, pFpuRes, pr80Value);
7708 IEM_MC_STORE_FPU_RESULT(FpuRes, 0);
7709 IEM_MC_ELSE()
7710 IEM_MC_FPU_STACK_UNDERFLOW(0);
7711 IEM_MC_ENDIF();
7712 IEM_MC_ADVANCE_RIP();
7713
7714 IEM_MC_END();
7715 return VINF_SUCCESS;
7716}
7717
7718
7719/** Opcode 0xd9 0xe0. */
7720FNIEMOP_DEF(iemOp_fchs)
7721{
7722 IEMOP_MNEMONIC(fchs_st0, "fchs st0");
7723 return FNIEMOP_CALL_1(iemOpHlpFpu_st0, iemAImpl_fchs_r80);
7724}
7725
7726
7727/** Opcode 0xd9 0xe1. */
7728FNIEMOP_DEF(iemOp_fabs)
7729{
7730 IEMOP_MNEMONIC(fabs_st0, "fabs st0");
7731 return FNIEMOP_CALL_1(iemOpHlpFpu_st0, iemAImpl_fabs_r80);
7732}
7733
7734
7735/**
7736 * Common worker for FPU instructions working on ST0 and only returns FSW.
7737 *
7738 * @param pfnAImpl Pointer to the instruction implementation (assembly).
7739 */
7740FNIEMOP_DEF_1(iemOpHlpFpuNoStore_st0, PFNIEMAIMPLFPUR80UNARYFSW, pfnAImpl)
7741{
7742 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
7743
7744 IEM_MC_BEGIN(2, 1);
7745 IEM_MC_LOCAL(uint16_t, u16Fsw);
7746 IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0);
7747 IEM_MC_ARG(PCRTFLOAT80U, pr80Value, 1);
7748
7749 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
7750 IEM_MC_MAYBE_RAISE_FPU_XCPT();
7751 IEM_MC_PREPARE_FPU_USAGE();
7752 IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value, 0)
7753 IEM_MC_CALL_FPU_AIMPL_2(pfnAImpl, pu16Fsw, pr80Value);
7754 IEM_MC_UPDATE_FSW(u16Fsw);
7755 IEM_MC_ELSE()
7756 IEM_MC_FPU_STACK_UNDERFLOW(UINT8_MAX);
7757 IEM_MC_ENDIF();
7758 IEM_MC_ADVANCE_RIP();
7759
7760 IEM_MC_END();
7761 return VINF_SUCCESS;
7762}
7763
7764
7765/** Opcode 0xd9 0xe4. */
7766FNIEMOP_DEF(iemOp_ftst)
7767{
7768 IEMOP_MNEMONIC(ftst_st0, "ftst st0");
7769 return FNIEMOP_CALL_1(iemOpHlpFpuNoStore_st0, iemAImpl_ftst_r80);
7770}
7771
7772
7773/** Opcode 0xd9 0xe5. */
7774FNIEMOP_DEF(iemOp_fxam)
7775{
7776 IEMOP_MNEMONIC(fxam_st0, "fxam st0");
7777 return FNIEMOP_CALL_1(iemOpHlpFpuNoStore_st0, iemAImpl_fxam_r80);
7778}
7779
7780
7781/**
7782 * Common worker for FPU instructions pushing a constant onto the FPU stack.
7783 *
7784 * @param pfnAImpl Pointer to the instruction implementation (assembly).
7785 */
7786FNIEMOP_DEF_1(iemOpHlpFpuPushConstant, PFNIEMAIMPLFPUR80LDCONST, pfnAImpl)
7787{
7788 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
7789
7790 IEM_MC_BEGIN(1, 1);
7791 IEM_MC_LOCAL(IEMFPURESULT, FpuRes);
7792 IEM_MC_ARG_LOCAL_REF(PIEMFPURESULT, pFpuRes, FpuRes, 0);
7793
7794 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
7795 IEM_MC_MAYBE_RAISE_FPU_XCPT();
7796 IEM_MC_PREPARE_FPU_USAGE();
7797 IEM_MC_IF_FPUREG_IS_EMPTY(7)
7798 IEM_MC_CALL_FPU_AIMPL_1(pfnAImpl, pFpuRes);
7799 IEM_MC_PUSH_FPU_RESULT(FpuRes);
7800 IEM_MC_ELSE()
7801 IEM_MC_FPU_STACK_PUSH_OVERFLOW();
7802 IEM_MC_ENDIF();
7803 IEM_MC_ADVANCE_RIP();
7804
7805 IEM_MC_END();
7806 return VINF_SUCCESS;
7807}
7808
7809
7810/** Opcode 0xd9 0xe8. */
7811FNIEMOP_DEF(iemOp_fld1)
7812{
7813 IEMOP_MNEMONIC(fld1, "fld1");
7814 return FNIEMOP_CALL_1(iemOpHlpFpuPushConstant, iemAImpl_fld1);
7815}
7816
7817
7818/** Opcode 0xd9 0xe9. */
7819FNIEMOP_DEF(iemOp_fldl2t)
7820{
7821 IEMOP_MNEMONIC(fldl2t, "fldl2t");
7822 return FNIEMOP_CALL_1(iemOpHlpFpuPushConstant, iemAImpl_fldl2t);
7823}
7824
7825
7826/** Opcode 0xd9 0xea. */
7827FNIEMOP_DEF(iemOp_fldl2e)
7828{
7829 IEMOP_MNEMONIC(fldl2e, "fldl2e");
7830 return FNIEMOP_CALL_1(iemOpHlpFpuPushConstant, iemAImpl_fldl2e);
7831}
7832
7833/** Opcode 0xd9 0xeb. */
7834FNIEMOP_DEF(iemOp_fldpi)
7835{
7836 IEMOP_MNEMONIC(fldpi, "fldpi");
7837 return FNIEMOP_CALL_1(iemOpHlpFpuPushConstant, iemAImpl_fldpi);
7838}
7839
7840
7841/** Opcode 0xd9 0xec. */
7842FNIEMOP_DEF(iemOp_fldlg2)
7843{
7844 IEMOP_MNEMONIC(fldlg2, "fldlg2");
7845 return FNIEMOP_CALL_1(iemOpHlpFpuPushConstant, iemAImpl_fldlg2);
7846}
7847
7848/** Opcode 0xd9 0xed. */
7849FNIEMOP_DEF(iemOp_fldln2)
7850{
7851 IEMOP_MNEMONIC(fldln2, "fldln2");
7852 return FNIEMOP_CALL_1(iemOpHlpFpuPushConstant, iemAImpl_fldln2);
7853}
7854
7855
7856/** Opcode 0xd9 0xee. */
7857FNIEMOP_DEF(iemOp_fldz)
7858{
7859 IEMOP_MNEMONIC(fldz, "fldz");
7860 return FNIEMOP_CALL_1(iemOpHlpFpuPushConstant, iemAImpl_fldz);
7861}
7862
7863
7864/** Opcode 0xd9 0xf0. */
7865FNIEMOP_DEF(iemOp_f2xm1)
7866{
7867 IEMOP_MNEMONIC(f2xm1_st0, "f2xm1 st0");
7868 return FNIEMOP_CALL_1(iemOpHlpFpu_st0, iemAImpl_f2xm1_r80);
7869}
7870
7871
7872/**
7873 * Common worker for FPU instructions working on STn and ST0, storing the result
7874 * in STn, and popping the stack unless IE, DE or ZE was raised.
7875 *
7876 * @param pfnAImpl Pointer to the instruction implementation (assembly).
7877 */
7878FNIEMOP_DEF_2(iemOpHlpFpu_stN_st0_pop, uint8_t, bRm, PFNIEMAIMPLFPUR80, pfnAImpl)
7879{
7880 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
7881
7882 IEM_MC_BEGIN(3, 1);
7883 IEM_MC_LOCAL(IEMFPURESULT, FpuRes);
7884 IEM_MC_ARG_LOCAL_REF(PIEMFPURESULT, pFpuRes, FpuRes, 0);
7885 IEM_MC_ARG(PCRTFLOAT80U, pr80Value1, 1);
7886 IEM_MC_ARG(PCRTFLOAT80U, pr80Value2, 2);
7887
7888 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
7889 IEM_MC_MAYBE_RAISE_FPU_XCPT();
7890
7891 IEM_MC_PREPARE_FPU_USAGE();
7892 IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80(pr80Value1, bRm & X86_MODRM_RM_MASK, pr80Value2, 0)
7893 IEM_MC_CALL_FPU_AIMPL_3(pfnAImpl, pFpuRes, pr80Value1, pr80Value2);
7894 IEM_MC_STORE_FPU_RESULT_THEN_POP(FpuRes, bRm & X86_MODRM_RM_MASK);
7895 IEM_MC_ELSE()
7896 IEM_MC_FPU_STACK_UNDERFLOW_THEN_POP(bRm & X86_MODRM_RM_MASK);
7897 IEM_MC_ENDIF();
7898 IEM_MC_ADVANCE_RIP();
7899
7900 IEM_MC_END();
7901 return VINF_SUCCESS;
7902}
7903
7904
7905/** Opcode 0xd9 0xf1. */
7906FNIEMOP_DEF(iemOp_fyl2x)
7907{
7908 IEMOP_MNEMONIC(fyl2x_st0, "fyl2x st1,st0");
7909 return FNIEMOP_CALL_2(iemOpHlpFpu_stN_st0_pop, 1, iemAImpl_fyl2x_r80_by_r80);
7910}
7911
7912
7913/**
7914 * Common worker for FPU instructions working on ST0 and having two outputs, one
7915 * replacing ST0 and one pushed onto the stack.
7916 *
7917 * @param pfnAImpl Pointer to the instruction implementation (assembly).
7918 */
7919FNIEMOP_DEF_1(iemOpHlpFpuReplace_st0_push, PFNIEMAIMPLFPUR80UNARYTWO, pfnAImpl)
7920{
7921 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
7922
7923 IEM_MC_BEGIN(2, 1);
7924 IEM_MC_LOCAL(IEMFPURESULTTWO, FpuResTwo);
7925 IEM_MC_ARG_LOCAL_REF(PIEMFPURESULTTWO, pFpuResTwo, FpuResTwo, 0);
7926 IEM_MC_ARG(PCRTFLOAT80U, pr80Value, 1);
7927
7928 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
7929 IEM_MC_MAYBE_RAISE_FPU_XCPT();
7930 IEM_MC_PREPARE_FPU_USAGE();
7931 IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value, 0)
7932 IEM_MC_CALL_FPU_AIMPL_2(pfnAImpl, pFpuResTwo, pr80Value);
7933 IEM_MC_PUSH_FPU_RESULT_TWO(FpuResTwo);
7934 IEM_MC_ELSE()
7935 IEM_MC_FPU_STACK_PUSH_UNDERFLOW_TWO();
7936 IEM_MC_ENDIF();
7937 IEM_MC_ADVANCE_RIP();
7938
7939 IEM_MC_END();
7940 return VINF_SUCCESS;
7941}
7942
7943
7944/** Opcode 0xd9 0xf2. */
7945FNIEMOP_DEF(iemOp_fptan)
7946{
7947 IEMOP_MNEMONIC(fptan_st0, "fptan st0");
7948 return FNIEMOP_CALL_1(iemOpHlpFpuReplace_st0_push, iemAImpl_fptan_r80_r80);
7949}
7950
7951
7952/** Opcode 0xd9 0xf3. */
7953FNIEMOP_DEF(iemOp_fpatan)
7954{
7955 IEMOP_MNEMONIC(fpatan_st1_st0, "fpatan st1,st0");
7956 return FNIEMOP_CALL_2(iemOpHlpFpu_stN_st0_pop, 1, iemAImpl_fpatan_r80_by_r80);
7957}
7958
7959
7960/** Opcode 0xd9 0xf4. */
7961FNIEMOP_DEF(iemOp_fxtract)
7962{
7963 IEMOP_MNEMONIC(fxtract_st0, "fxtract st0");
7964 return FNIEMOP_CALL_1(iemOpHlpFpuReplace_st0_push, iemAImpl_fxtract_r80_r80);
7965}
7966
7967
7968/** Opcode 0xd9 0xf5. */
7969FNIEMOP_DEF(iemOp_fprem1)
7970{
7971 IEMOP_MNEMONIC(fprem1_st0_st1, "fprem1 st0,st1");
7972 return FNIEMOP_CALL_2(iemOpHlpFpu_st0_stN, 1, iemAImpl_fprem1_r80_by_r80);
7973}
7974
7975
7976/** Opcode 0xd9 0xf6. */
7977FNIEMOP_DEF(iemOp_fdecstp)
7978{
7979 IEMOP_MNEMONIC(fdecstp, "fdecstp");
7980 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
7981 /* Note! C0, C2 and C3 are documented as undefined, we clear them. */
7982 /** @todo Testcase: Check whether FOP, FPUIP and FPUCS are affected by
7983 * FINCSTP and FDECSTP. */
7984
7985 IEM_MC_BEGIN(0,0);
7986
7987 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
7988 IEM_MC_MAYBE_RAISE_FPU_XCPT();
7989
7990 IEM_MC_ACTUALIZE_FPU_STATE_FOR_CHANGE();
7991 IEM_MC_FPU_STACK_DEC_TOP();
7992 IEM_MC_UPDATE_FSW_CONST(0);
7993
7994 IEM_MC_ADVANCE_RIP();
7995 IEM_MC_END();
7996 return VINF_SUCCESS;
7997}
7998
7999
8000/** Opcode 0xd9 0xf7. */
8001FNIEMOP_DEF(iemOp_fincstp)
8002{
8003 IEMOP_MNEMONIC(fincstp, "fincstp");
8004 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
8005 /* Note! C0, C2 and C3 are documented as undefined, we clear them. */
8006 /** @todo Testcase: Check whether FOP, FPUIP and FPUCS are affected by
8007 * FINCSTP and FDECSTP. */
8008
8009 IEM_MC_BEGIN(0,0);
8010
8011 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
8012 IEM_MC_MAYBE_RAISE_FPU_XCPT();
8013
8014 IEM_MC_ACTUALIZE_FPU_STATE_FOR_CHANGE();
8015 IEM_MC_FPU_STACK_INC_TOP();
8016 IEM_MC_UPDATE_FSW_CONST(0);
8017
8018 IEM_MC_ADVANCE_RIP();
8019 IEM_MC_END();
8020 return VINF_SUCCESS;
8021}
8022
8023
8024/** Opcode 0xd9 0xf8. */
8025FNIEMOP_DEF(iemOp_fprem)
8026{
8027 IEMOP_MNEMONIC(fprem_st0_st1, "fprem st0,st1");
8028 return FNIEMOP_CALL_2(iemOpHlpFpu_st0_stN, 1, iemAImpl_fprem_r80_by_r80);
8029}
8030
8031
8032/** Opcode 0xd9 0xf9. */
8033FNIEMOP_DEF(iemOp_fyl2xp1)
8034{
8035 IEMOP_MNEMONIC(fyl2xp1_st1_st0, "fyl2xp1 st1,st0");
8036 return FNIEMOP_CALL_2(iemOpHlpFpu_stN_st0_pop, 1, iemAImpl_fyl2xp1_r80_by_r80);
8037}
8038
8039
8040/** Opcode 0xd9 0xfa. */
8041FNIEMOP_DEF(iemOp_fsqrt)
8042{
8043 IEMOP_MNEMONIC(fsqrt_st0, "fsqrt st0");
8044 return FNIEMOP_CALL_1(iemOpHlpFpu_st0, iemAImpl_fsqrt_r80);
8045}
8046
8047
8048/** Opcode 0xd9 0xfb. */
8049FNIEMOP_DEF(iemOp_fsincos)
8050{
8051 IEMOP_MNEMONIC(fsincos_st0, "fsincos st0");
8052 return FNIEMOP_CALL_1(iemOpHlpFpuReplace_st0_push, iemAImpl_fsincos_r80_r80);
8053}
8054
8055
8056/** Opcode 0xd9 0xfc. */
8057FNIEMOP_DEF(iemOp_frndint)
8058{
8059 IEMOP_MNEMONIC(frndint_st0, "frndint st0");
8060 return FNIEMOP_CALL_1(iemOpHlpFpu_st0, iemAImpl_frndint_r80);
8061}
8062
8063
8064/** Opcode 0xd9 0xfd. */
8065FNIEMOP_DEF(iemOp_fscale)
8066{
8067 IEMOP_MNEMONIC(fscale_st0_st1, "fscale st0,st1");
8068 return FNIEMOP_CALL_2(iemOpHlpFpu_st0_stN, 1, iemAImpl_fscale_r80_by_r80);
8069}
8070
8071
8072/** Opcode 0xd9 0xfe. */
8073FNIEMOP_DEF(iemOp_fsin)
8074{
8075 IEMOP_MNEMONIC(fsin_st0, "fsin st0");
8076 return FNIEMOP_CALL_1(iemOpHlpFpu_st0, iemAImpl_fsin_r80);
8077}
8078
8079
8080/** Opcode 0xd9 0xff. */
8081FNIEMOP_DEF(iemOp_fcos)
8082{
8083 IEMOP_MNEMONIC(fcos_st0, "fcos st0");
8084 return FNIEMOP_CALL_1(iemOpHlpFpu_st0, iemAImpl_fcos_r80);
8085}
8086
8087
8088/** Used by iemOp_EscF1. */
8089IEM_STATIC const PFNIEMOP g_apfnEscF1_E0toFF[32] =
8090{
8091 /* 0xe0 */ iemOp_fchs,
8092 /* 0xe1 */ iemOp_fabs,
8093 /* 0xe2 */ iemOp_Invalid,
8094 /* 0xe3 */ iemOp_Invalid,
8095 /* 0xe4 */ iemOp_ftst,
8096 /* 0xe5 */ iemOp_fxam,
8097 /* 0xe6 */ iemOp_Invalid,
8098 /* 0xe7 */ iemOp_Invalid,
8099 /* 0xe8 */ iemOp_fld1,
8100 /* 0xe9 */ iemOp_fldl2t,
8101 /* 0xea */ iemOp_fldl2e,
8102 /* 0xeb */ iemOp_fldpi,
8103 /* 0xec */ iemOp_fldlg2,
8104 /* 0xed */ iemOp_fldln2,
8105 /* 0xee */ iemOp_fldz,
8106 /* 0xef */ iemOp_Invalid,
8107 /* 0xf0 */ iemOp_f2xm1,
8108 /* 0xf1 */ iemOp_fyl2x,
8109 /* 0xf2 */ iemOp_fptan,
8110 /* 0xf3 */ iemOp_fpatan,
8111 /* 0xf4 */ iemOp_fxtract,
8112 /* 0xf5 */ iemOp_fprem1,
8113 /* 0xf6 */ iemOp_fdecstp,
8114 /* 0xf7 */ iemOp_fincstp,
8115 /* 0xf8 */ iemOp_fprem,
8116 /* 0xf9 */ iemOp_fyl2xp1,
8117 /* 0xfa */ iemOp_fsqrt,
8118 /* 0xfb */ iemOp_fsincos,
8119 /* 0xfc */ iemOp_frndint,
8120 /* 0xfd */ iemOp_fscale,
8121 /* 0xfe */ iemOp_fsin,
8122 /* 0xff */ iemOp_fcos
8123};
8124
8125
8126/**
8127 * @opcode 0xd9
8128 */
8129FNIEMOP_DEF(iemOp_EscF1)
8130{
8131 uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm);
8132 pVCpu->iem.s.uFpuOpcode = RT_MAKE_U16(bRm, 0xd9 & 0x7);
8133
8134 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
8135 {
8136 switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK)
8137 {
8138 case 0: return FNIEMOP_CALL_1(iemOp_fld_stN, bRm);
8139 case 1: return FNIEMOP_CALL_1(iemOp_fxch_stN, bRm);
8140 case 2:
8141 if (bRm == 0xd0)
8142 return FNIEMOP_CALL(iemOp_fnop);
8143 return IEMOP_RAISE_INVALID_OPCODE();
8144 case 3: return FNIEMOP_CALL_1(iemOp_fstp_stN, bRm); /* Reserved. Intel behavior seems to be FSTP ST(i) though. */
8145 case 4:
8146 case 5:
8147 case 6:
8148 case 7:
8149 Assert((unsigned)bRm - 0xe0U < RT_ELEMENTS(g_apfnEscF1_E0toFF));
8150 return FNIEMOP_CALL(g_apfnEscF1_E0toFF[bRm - 0xe0]);
8151 IEM_NOT_REACHED_DEFAULT_CASE_RET();
8152 }
8153 }
8154 else
8155 {
8156 switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK)
8157 {
8158 case 0: return FNIEMOP_CALL_1(iemOp_fld_m32r, bRm);
8159 case 1: return IEMOP_RAISE_INVALID_OPCODE();
8160 case 2: return FNIEMOP_CALL_1(iemOp_fst_m32r, bRm);
8161 case 3: return FNIEMOP_CALL_1(iemOp_fstp_m32r, bRm);
8162 case 4: return FNIEMOP_CALL_1(iemOp_fldenv, bRm);
8163 case 5: return FNIEMOP_CALL_1(iemOp_fldcw, bRm);
8164 case 6: return FNIEMOP_CALL_1(iemOp_fnstenv, bRm);
8165 case 7: return FNIEMOP_CALL_1(iemOp_fnstcw, bRm);
8166 IEM_NOT_REACHED_DEFAULT_CASE_RET();
8167 }
8168 }
8169}
8170
8171
8172/** Opcode 0xda 11/0. */
8173FNIEMOP_DEF_1(iemOp_fcmovb_stN, uint8_t, bRm)
8174{
8175 IEMOP_MNEMONIC(fcmovb_st0_stN, "fcmovb st0,stN");
8176 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
8177
8178 IEM_MC_BEGIN(0, 1);
8179 IEM_MC_LOCAL(PCRTFLOAT80U, pr80ValueN);
8180
8181 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
8182 IEM_MC_MAYBE_RAISE_FPU_XCPT();
8183
8184 IEM_MC_PREPARE_FPU_USAGE();
8185 IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80_FIRST(pr80ValueN, bRm & X86_MODRM_RM_MASK, 0)
8186 IEM_MC_IF_EFL_BIT_SET(X86_EFL_CF)
8187 IEM_MC_STORE_FPUREG_R80_SRC_REF(0, pr80ValueN);
8188 IEM_MC_ENDIF();
8189 IEM_MC_UPDATE_FPU_OPCODE_IP();
8190 IEM_MC_ELSE()
8191 IEM_MC_FPU_STACK_UNDERFLOW(0);
8192 IEM_MC_ENDIF();
8193 IEM_MC_ADVANCE_RIP();
8194
8195 IEM_MC_END();
8196 return VINF_SUCCESS;
8197}
8198
8199
8200/** Opcode 0xda 11/1. */
8201FNIEMOP_DEF_1(iemOp_fcmove_stN, uint8_t, bRm)
8202{
8203 IEMOP_MNEMONIC(fcmove_st0_stN, "fcmove st0,stN");
8204 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
8205
8206 IEM_MC_BEGIN(0, 1);
8207 IEM_MC_LOCAL(PCRTFLOAT80U, pr80ValueN);
8208
8209 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
8210 IEM_MC_MAYBE_RAISE_FPU_XCPT();
8211
8212 IEM_MC_PREPARE_FPU_USAGE();
8213 IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80_FIRST(pr80ValueN, bRm & X86_MODRM_RM_MASK, 0)
8214 IEM_MC_IF_EFL_BIT_SET(X86_EFL_ZF)
8215 IEM_MC_STORE_FPUREG_R80_SRC_REF(0, pr80ValueN);
8216 IEM_MC_ENDIF();
8217 IEM_MC_UPDATE_FPU_OPCODE_IP();
8218 IEM_MC_ELSE()
8219 IEM_MC_FPU_STACK_UNDERFLOW(0);
8220 IEM_MC_ENDIF();
8221 IEM_MC_ADVANCE_RIP();
8222
8223 IEM_MC_END();
8224 return VINF_SUCCESS;
8225}
8226
8227
8228/** Opcode 0xda 11/2. */
8229FNIEMOP_DEF_1(iemOp_fcmovbe_stN, uint8_t, bRm)
8230{
8231 IEMOP_MNEMONIC(fcmovbe_st0_stN, "fcmovbe st0,stN");
8232 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
8233
8234 IEM_MC_BEGIN(0, 1);
8235 IEM_MC_LOCAL(PCRTFLOAT80U, pr80ValueN);
8236
8237 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
8238 IEM_MC_MAYBE_RAISE_FPU_XCPT();
8239
8240 IEM_MC_PREPARE_FPU_USAGE();
8241 IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80_FIRST(pr80ValueN, bRm & X86_MODRM_RM_MASK, 0)
8242 IEM_MC_IF_EFL_ANY_BITS_SET(X86_EFL_CF | X86_EFL_ZF)
8243 IEM_MC_STORE_FPUREG_R80_SRC_REF(0, pr80ValueN);
8244 IEM_MC_ENDIF();
8245 IEM_MC_UPDATE_FPU_OPCODE_IP();
8246 IEM_MC_ELSE()
8247 IEM_MC_FPU_STACK_UNDERFLOW(0);
8248 IEM_MC_ENDIF();
8249 IEM_MC_ADVANCE_RIP();
8250
8251 IEM_MC_END();
8252 return VINF_SUCCESS;
8253}
8254
8255
8256/** Opcode 0xda 11/3. */
8257FNIEMOP_DEF_1(iemOp_fcmovu_stN, uint8_t, bRm)
8258{
8259 IEMOP_MNEMONIC(fcmovu_st0_stN, "fcmovu st0,stN");
8260 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
8261
8262 IEM_MC_BEGIN(0, 1);
8263 IEM_MC_LOCAL(PCRTFLOAT80U, pr80ValueN);
8264
8265 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
8266 IEM_MC_MAYBE_RAISE_FPU_XCPT();
8267
8268 IEM_MC_PREPARE_FPU_USAGE();
8269 IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80_FIRST(pr80ValueN, bRm & X86_MODRM_RM_MASK, 0)
8270 IEM_MC_IF_EFL_BIT_SET(X86_EFL_PF)
8271 IEM_MC_STORE_FPUREG_R80_SRC_REF(0, pr80ValueN);
8272 IEM_MC_ENDIF();
8273 IEM_MC_UPDATE_FPU_OPCODE_IP();
8274 IEM_MC_ELSE()
8275 IEM_MC_FPU_STACK_UNDERFLOW(0);
8276 IEM_MC_ENDIF();
8277 IEM_MC_ADVANCE_RIP();
8278
8279 IEM_MC_END();
8280 return VINF_SUCCESS;
8281}
8282
8283
8284/**
8285 * Common worker for FPU instructions working on ST0 and STn, only affecting
8286 * flags, and popping twice when done.
8287 *
8288 * @param pfnAImpl Pointer to the instruction implementation (assembly).
8289 */
8290FNIEMOP_DEF_1(iemOpHlpFpuNoStore_st0_stN_pop_pop, PFNIEMAIMPLFPUR80FSW, pfnAImpl)
8291{
8292 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
8293
8294 IEM_MC_BEGIN(3, 1);
8295 IEM_MC_LOCAL(uint16_t, u16Fsw);
8296 IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0);
8297 IEM_MC_ARG(PCRTFLOAT80U, pr80Value1, 1);
8298 IEM_MC_ARG(PCRTFLOAT80U, pr80Value2, 2);
8299
8300 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
8301 IEM_MC_MAYBE_RAISE_FPU_XCPT();
8302
8303 IEM_MC_PREPARE_FPU_USAGE();
8304 IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80(pr80Value1, 0, pr80Value2, 1)
8305 IEM_MC_CALL_FPU_AIMPL_3(pfnAImpl, pu16Fsw, pr80Value1, pr80Value2);
8306 IEM_MC_UPDATE_FSW_THEN_POP_POP(u16Fsw);
8307 IEM_MC_ELSE()
8308 IEM_MC_FPU_STACK_UNDERFLOW_THEN_POP_POP();
8309 IEM_MC_ENDIF();
8310 IEM_MC_ADVANCE_RIP();
8311
8312 IEM_MC_END();
8313 return VINF_SUCCESS;
8314}
8315
8316
8317/** Opcode 0xda 0xe9. */
8318FNIEMOP_DEF(iemOp_fucompp)
8319{
8320 IEMOP_MNEMONIC(fucompp_st0_stN, "fucompp st0,stN");
8321 return FNIEMOP_CALL_1(iemOpHlpFpuNoStore_st0_stN_pop_pop, iemAImpl_fucom_r80_by_r80);
8322}
8323
8324
8325/**
8326 * Common worker for FPU instructions working on ST0 and an m32i, and storing
8327 * the result in ST0.
8328 *
8329 * @param pfnAImpl Pointer to the instruction implementation (assembly).
8330 */
8331FNIEMOP_DEF_2(iemOpHlpFpu_st0_m32i, uint8_t, bRm, PFNIEMAIMPLFPUI32, pfnAImpl)
8332{
8333 IEM_MC_BEGIN(3, 3);
8334 IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc);
8335 IEM_MC_LOCAL(IEMFPURESULT, FpuRes);
8336 IEM_MC_LOCAL(int32_t, i32Val2);
8337 IEM_MC_ARG_LOCAL_REF(PIEMFPURESULT, pFpuRes, FpuRes, 0);
8338 IEM_MC_ARG(PCRTFLOAT80U, pr80Value1, 1);
8339 IEM_MC_ARG_LOCAL_REF(int32_t const *, pi32Val2, i32Val2, 2);
8340
8341 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0);
8342 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
8343
8344 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
8345 IEM_MC_MAYBE_RAISE_FPU_XCPT();
8346 IEM_MC_FETCH_MEM_I32(i32Val2, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
8347
8348 IEM_MC_PREPARE_FPU_USAGE();
8349 IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value1, 0)
8350 IEM_MC_CALL_FPU_AIMPL_3(pfnAImpl, pFpuRes, pr80Value1, pi32Val2);
8351 IEM_MC_STORE_FPU_RESULT(FpuRes, 0);
8352 IEM_MC_ELSE()
8353 IEM_MC_FPU_STACK_UNDERFLOW(0);
8354 IEM_MC_ENDIF();
8355 IEM_MC_ADVANCE_RIP();
8356
8357 IEM_MC_END();
8358 return VINF_SUCCESS;
8359}
8360
8361
8362/** Opcode 0xda !11/0. */
8363FNIEMOP_DEF_1(iemOp_fiadd_m32i, uint8_t, bRm)
8364{
8365 IEMOP_MNEMONIC(fiadd_m32i, "fiadd m32i");
8366 return FNIEMOP_CALL_2(iemOpHlpFpu_st0_m32i, bRm, iemAImpl_fiadd_r80_by_i32);
8367}
8368
8369
8370/** Opcode 0xda !11/1. */
8371FNIEMOP_DEF_1(iemOp_fimul_m32i, uint8_t, bRm)
8372{
8373 IEMOP_MNEMONIC(fimul_m32i, "fimul m32i");
8374 return FNIEMOP_CALL_2(iemOpHlpFpu_st0_m32i, bRm, iemAImpl_fimul_r80_by_i32);
8375}
8376
8377
8378/** Opcode 0xda !11/2. */
8379FNIEMOP_DEF_1(iemOp_ficom_m32i, uint8_t, bRm)
8380{
8381 IEMOP_MNEMONIC(ficom_st0_m32i, "ficom st0,m32i");
8382
8383 IEM_MC_BEGIN(3, 3);
8384 IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc);
8385 IEM_MC_LOCAL(uint16_t, u16Fsw);
8386 IEM_MC_LOCAL(int32_t, i32Val2);
8387 IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0);
8388 IEM_MC_ARG(PCRTFLOAT80U, pr80Value1, 1);
8389 IEM_MC_ARG_LOCAL_REF(int32_t const *, pi32Val2, i32Val2, 2);
8390
8391 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0);
8392 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
8393
8394 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
8395 IEM_MC_MAYBE_RAISE_FPU_XCPT();
8396 IEM_MC_FETCH_MEM_I32(i32Val2, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
8397
8398 IEM_MC_PREPARE_FPU_USAGE();
8399 IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value1, 0)
8400 IEM_MC_CALL_FPU_AIMPL_3(iemAImpl_ficom_r80_by_i32, pu16Fsw, pr80Value1, pi32Val2);
8401 IEM_MC_UPDATE_FSW_WITH_MEM_OP(u16Fsw, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
8402 IEM_MC_ELSE()
8403 IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP(UINT8_MAX, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
8404 IEM_MC_ENDIF();
8405 IEM_MC_ADVANCE_RIP();
8406
8407 IEM_MC_END();
8408 return VINF_SUCCESS;
8409}
8410
8411
8412/** Opcode 0xda !11/3. */
8413FNIEMOP_DEF_1(iemOp_ficomp_m32i, uint8_t, bRm)
8414{
8415 IEMOP_MNEMONIC(ficomp_st0_m32i, "ficomp st0,m32i");
8416
8417 IEM_MC_BEGIN(3, 3);
8418 IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc);
8419 IEM_MC_LOCAL(uint16_t, u16Fsw);
8420 IEM_MC_LOCAL(int32_t, i32Val2);
8421 IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0);
8422 IEM_MC_ARG(PCRTFLOAT80U, pr80Value1, 1);
8423 IEM_MC_ARG_LOCAL_REF(int32_t const *, pi32Val2, i32Val2, 2);
8424
8425 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0);
8426 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
8427
8428 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
8429 IEM_MC_MAYBE_RAISE_FPU_XCPT();
8430 IEM_MC_FETCH_MEM_I32(i32Val2, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
8431
8432 IEM_MC_PREPARE_FPU_USAGE();
8433 IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value1, 0)
8434 IEM_MC_CALL_FPU_AIMPL_3(iemAImpl_ficom_r80_by_i32, pu16Fsw, pr80Value1, pi32Val2);
8435 IEM_MC_UPDATE_FSW_WITH_MEM_OP_THEN_POP(u16Fsw, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
8436 IEM_MC_ELSE()
8437 IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP_THEN_POP(UINT8_MAX, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
8438 IEM_MC_ENDIF();
8439 IEM_MC_ADVANCE_RIP();
8440
8441 IEM_MC_END();
8442 return VINF_SUCCESS;
8443}
8444
8445
8446/** Opcode 0xda !11/4. */
8447FNIEMOP_DEF_1(iemOp_fisub_m32i, uint8_t, bRm)
8448{
8449 IEMOP_MNEMONIC(fisub_m32i, "fisub m32i");
8450 return FNIEMOP_CALL_2(iemOpHlpFpu_st0_m32i, bRm, iemAImpl_fisub_r80_by_i32);
8451}
8452
8453
8454/** Opcode 0xda !11/5. */
8455FNIEMOP_DEF_1(iemOp_fisubr_m32i, uint8_t, bRm)
8456{
8457 IEMOP_MNEMONIC(fisubr_m32i, "fisubr m32i");
8458 return FNIEMOP_CALL_2(iemOpHlpFpu_st0_m32i, bRm, iemAImpl_fisubr_r80_by_i32);
8459}
8460
8461
8462/** Opcode 0xda !11/6. */
8463FNIEMOP_DEF_1(iemOp_fidiv_m32i, uint8_t, bRm)
8464{
8465 IEMOP_MNEMONIC(fidiv_m32i, "fidiv m32i");
8466 return FNIEMOP_CALL_2(iemOpHlpFpu_st0_m32i, bRm, iemAImpl_fidiv_r80_by_i32);
8467}
8468
8469
8470/** Opcode 0xda !11/7. */
8471FNIEMOP_DEF_1(iemOp_fidivr_m32i, uint8_t, bRm)
8472{
8473 IEMOP_MNEMONIC(fidivr_m32i, "fidivr m32i");
8474 return FNIEMOP_CALL_2(iemOpHlpFpu_st0_m32i, bRm, iemAImpl_fidivr_r80_by_i32);
8475}
8476
8477
8478/**
8479 * @opcode 0xda
8480 */
8481FNIEMOP_DEF(iemOp_EscF2)
8482{
8483 uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm);
8484 pVCpu->iem.s.uFpuOpcode = RT_MAKE_U16(bRm, 0xda & 0x7);
8485 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
8486 {
8487 switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK)
8488 {
8489 case 0: return FNIEMOP_CALL_1(iemOp_fcmovb_stN, bRm);
8490 case 1: return FNIEMOP_CALL_1(iemOp_fcmove_stN, bRm);
8491 case 2: return FNIEMOP_CALL_1(iemOp_fcmovbe_stN, bRm);
8492 case 3: return FNIEMOP_CALL_1(iemOp_fcmovu_stN, bRm);
8493 case 4: return IEMOP_RAISE_INVALID_OPCODE();
8494 case 5:
8495 if (bRm == 0xe9)
8496 return FNIEMOP_CALL(iemOp_fucompp);
8497 return IEMOP_RAISE_INVALID_OPCODE();
8498 case 6: return IEMOP_RAISE_INVALID_OPCODE();
8499 case 7: return IEMOP_RAISE_INVALID_OPCODE();
8500 IEM_NOT_REACHED_DEFAULT_CASE_RET();
8501 }
8502 }
8503 else
8504 {
8505 switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK)
8506 {
8507 case 0: return FNIEMOP_CALL_1(iemOp_fiadd_m32i, bRm);
8508 case 1: return FNIEMOP_CALL_1(iemOp_fimul_m32i, bRm);
8509 case 2: return FNIEMOP_CALL_1(iemOp_ficom_m32i, bRm);
8510 case 3: return FNIEMOP_CALL_1(iemOp_ficomp_m32i, bRm);
8511 case 4: return FNIEMOP_CALL_1(iemOp_fisub_m32i, bRm);
8512 case 5: return FNIEMOP_CALL_1(iemOp_fisubr_m32i, bRm);
8513 case 6: return FNIEMOP_CALL_1(iemOp_fidiv_m32i, bRm);
8514 case 7: return FNIEMOP_CALL_1(iemOp_fidivr_m32i, bRm);
8515 IEM_NOT_REACHED_DEFAULT_CASE_RET();
8516 }
8517 }
8518}
8519
8520
8521/** Opcode 0xdb !11/0. */
8522FNIEMOP_DEF_1(iemOp_fild_m32i, uint8_t, bRm)
8523{
8524 IEMOP_MNEMONIC(fild_m32i, "fild m32i");
8525
8526 IEM_MC_BEGIN(2, 3);
8527 IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc);
8528 IEM_MC_LOCAL(IEMFPURESULT, FpuRes);
8529 IEM_MC_LOCAL(int32_t, i32Val);
8530 IEM_MC_ARG_LOCAL_REF(PIEMFPURESULT, pFpuRes, FpuRes, 0);
8531 IEM_MC_ARG_LOCAL_REF(int32_t const *, pi32Val, i32Val, 1);
8532
8533 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0);
8534 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
8535
8536 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
8537 IEM_MC_MAYBE_RAISE_FPU_XCPT();
8538 IEM_MC_FETCH_MEM_I32(i32Val, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
8539
8540 IEM_MC_PREPARE_FPU_USAGE();
8541 IEM_MC_IF_FPUREG_IS_EMPTY(7)
8542 IEM_MC_CALL_FPU_AIMPL_2(iemAImpl_fild_i32_to_r80, pFpuRes, pi32Val);
8543 IEM_MC_PUSH_FPU_RESULT_MEM_OP(FpuRes, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
8544 IEM_MC_ELSE()
8545 IEM_MC_FPU_STACK_PUSH_OVERFLOW_MEM_OP(pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
8546 IEM_MC_ENDIF();
8547 IEM_MC_ADVANCE_RIP();
8548
8549 IEM_MC_END();
8550 return VINF_SUCCESS;
8551}
8552
8553
8554/** Opcode 0xdb !11/1. */
8555FNIEMOP_DEF_1(iemOp_fisttp_m32i, uint8_t, bRm)
8556{
8557 IEMOP_MNEMONIC(fisttp_m32i, "fisttp m32i");
8558 IEM_MC_BEGIN(3, 2);
8559 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
8560 IEM_MC_LOCAL(uint16_t, u16Fsw);
8561 IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0);
8562 IEM_MC_ARG(int32_t *, pi32Dst, 1);
8563 IEM_MC_ARG(PCRTFLOAT80U, pr80Value, 2);
8564
8565 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
8566 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
8567 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
8568 IEM_MC_MAYBE_RAISE_FPU_XCPT();
8569
8570 IEM_MC_MEM_MAP(pi32Dst, IEM_ACCESS_DATA_W, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 1 /*arg*/);
8571 IEM_MC_PREPARE_FPU_USAGE();
8572 IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value, 0)
8573 IEM_MC_CALL_FPU_AIMPL_3(iemAImpl_fistt_r80_to_i32, pu16Fsw, pi32Dst, pr80Value);
8574 IEM_MC_MEM_COMMIT_AND_UNMAP_FOR_FPU_STORE(pi32Dst, IEM_ACCESS_DATA_W, u16Fsw);
8575 IEM_MC_UPDATE_FSW_WITH_MEM_OP_THEN_POP(u16Fsw, pVCpu->iem.s.iEffSeg, GCPtrEffDst);
8576 IEM_MC_ELSE()
8577 IEM_MC_IF_FCW_IM()
8578 IEM_MC_STORE_MEM_I32_CONST_BY_REF(pi32Dst, INT32_MIN /* (integer indefinite) */);
8579 IEM_MC_MEM_COMMIT_AND_UNMAP(pi32Dst, IEM_ACCESS_DATA_W);
8580 IEM_MC_ENDIF();
8581 IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP_THEN_POP(UINT8_MAX, pVCpu->iem.s.iEffSeg, GCPtrEffDst);
8582 IEM_MC_ENDIF();
8583 IEM_MC_ADVANCE_RIP();
8584
8585 IEM_MC_END();
8586 return VINF_SUCCESS;
8587}
8588
8589
8590/** Opcode 0xdb !11/2. */
8591FNIEMOP_DEF_1(iemOp_fist_m32i, uint8_t, bRm)
8592{
8593 IEMOP_MNEMONIC(fist_m32i, "fist m32i");
8594 IEM_MC_BEGIN(3, 2);
8595 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
8596 IEM_MC_LOCAL(uint16_t, u16Fsw);
8597 IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0);
8598 IEM_MC_ARG(int32_t *, pi32Dst, 1);
8599 IEM_MC_ARG(PCRTFLOAT80U, pr80Value, 2);
8600
8601 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
8602 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
8603 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
8604 IEM_MC_MAYBE_RAISE_FPU_XCPT();
8605
8606 IEM_MC_MEM_MAP(pi32Dst, IEM_ACCESS_DATA_W, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 1 /*arg*/);
8607 IEM_MC_PREPARE_FPU_USAGE();
8608 IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value, 0)
8609 IEM_MC_CALL_FPU_AIMPL_3(iemAImpl_fist_r80_to_i32, pu16Fsw, pi32Dst, pr80Value);
8610 IEM_MC_MEM_COMMIT_AND_UNMAP_FOR_FPU_STORE(pi32Dst, IEM_ACCESS_DATA_W, u16Fsw);
8611 IEM_MC_UPDATE_FSW_WITH_MEM_OP(u16Fsw, pVCpu->iem.s.iEffSeg, GCPtrEffDst);
8612 IEM_MC_ELSE()
8613 IEM_MC_IF_FCW_IM()
8614 IEM_MC_STORE_MEM_I32_CONST_BY_REF(pi32Dst, INT32_MIN /* (integer indefinite) */);
8615 IEM_MC_MEM_COMMIT_AND_UNMAP(pi32Dst, IEM_ACCESS_DATA_W);
8616 IEM_MC_ENDIF();
8617 IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP(UINT8_MAX, pVCpu->iem.s.iEffSeg, GCPtrEffDst);
8618 IEM_MC_ENDIF();
8619 IEM_MC_ADVANCE_RIP();
8620
8621 IEM_MC_END();
8622 return VINF_SUCCESS;
8623}
8624
8625
8626/** Opcode 0xdb !11/3. */
8627FNIEMOP_DEF_1(iemOp_fistp_m32i, uint8_t, bRm)
8628{
8629 IEMOP_MNEMONIC(fistp_m32i, "fistp m32i");
8630 IEM_MC_BEGIN(3, 2);
8631 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
8632 IEM_MC_LOCAL(uint16_t, u16Fsw);
8633 IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0);
8634 IEM_MC_ARG(int32_t *, pi32Dst, 1);
8635 IEM_MC_ARG(PCRTFLOAT80U, pr80Value, 2);
8636
8637 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
8638 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
8639 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
8640 IEM_MC_MAYBE_RAISE_FPU_XCPT();
8641
8642 IEM_MC_MEM_MAP(pi32Dst, IEM_ACCESS_DATA_W, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 1 /*arg*/);
8643 IEM_MC_PREPARE_FPU_USAGE();
8644 IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value, 0)
8645 IEM_MC_CALL_FPU_AIMPL_3(iemAImpl_fist_r80_to_i32, pu16Fsw, pi32Dst, pr80Value);
8646 IEM_MC_MEM_COMMIT_AND_UNMAP_FOR_FPU_STORE(pi32Dst, IEM_ACCESS_DATA_W, u16Fsw);
8647 IEM_MC_UPDATE_FSW_WITH_MEM_OP_THEN_POP(u16Fsw, pVCpu->iem.s.iEffSeg, GCPtrEffDst);
8648 IEM_MC_ELSE()
8649 IEM_MC_IF_FCW_IM()
8650 IEM_MC_STORE_MEM_I32_CONST_BY_REF(pi32Dst, INT32_MIN /* (integer indefinite) */);
8651 IEM_MC_MEM_COMMIT_AND_UNMAP(pi32Dst, IEM_ACCESS_DATA_W);
8652 IEM_MC_ENDIF();
8653 IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP_THEN_POP(UINT8_MAX, pVCpu->iem.s.iEffSeg, GCPtrEffDst);
8654 IEM_MC_ENDIF();
8655 IEM_MC_ADVANCE_RIP();
8656
8657 IEM_MC_END();
8658 return VINF_SUCCESS;
8659}
8660
8661
8662/** Opcode 0xdb !11/5. */
8663FNIEMOP_DEF_1(iemOp_fld_m80r, uint8_t, bRm)
8664{
8665 IEMOP_MNEMONIC(fld_m80r, "fld m80r");
8666
8667 IEM_MC_BEGIN(2, 3);
8668 IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc);
8669 IEM_MC_LOCAL(IEMFPURESULT, FpuRes);
8670 IEM_MC_LOCAL(RTFLOAT80U, r80Val);
8671 IEM_MC_ARG_LOCAL_REF(PIEMFPURESULT, pFpuRes, FpuRes, 0);
8672 IEM_MC_ARG_LOCAL_REF(PCRTFLOAT80U, pr80Val, r80Val, 1);
8673
8674 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0);
8675 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
8676
8677 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
8678 IEM_MC_MAYBE_RAISE_FPU_XCPT();
8679 IEM_MC_FETCH_MEM_R80(r80Val, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
8680
8681 IEM_MC_PREPARE_FPU_USAGE();
8682 IEM_MC_IF_FPUREG_IS_EMPTY(7)
8683 IEM_MC_CALL_FPU_AIMPL_2(iemAImpl_fld_r80_from_r80, pFpuRes, pr80Val);
8684 IEM_MC_PUSH_FPU_RESULT_MEM_OP(FpuRes, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
8685 IEM_MC_ELSE()
8686 IEM_MC_FPU_STACK_PUSH_OVERFLOW_MEM_OP(pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
8687 IEM_MC_ENDIF();
8688 IEM_MC_ADVANCE_RIP();
8689
8690 IEM_MC_END();
8691 return VINF_SUCCESS;
8692}
8693
8694
8695/** Opcode 0xdb !11/7. */
8696FNIEMOP_DEF_1(iemOp_fstp_m80r, uint8_t, bRm)
8697{
8698 IEMOP_MNEMONIC(fstp_m80r, "fstp m80r");
8699 IEM_MC_BEGIN(3, 2);
8700 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
8701 IEM_MC_LOCAL(uint16_t, u16Fsw);
8702 IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0);
8703 IEM_MC_ARG(PRTFLOAT80U, pr80Dst, 1);
8704 IEM_MC_ARG(PCRTFLOAT80U, pr80Value, 2);
8705
8706 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
8707 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
8708 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
8709 IEM_MC_MAYBE_RAISE_FPU_XCPT();
8710
8711 IEM_MC_MEM_MAP(pr80Dst, IEM_ACCESS_DATA_W, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 1 /*arg*/);
8712 IEM_MC_PREPARE_FPU_USAGE();
8713 IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value, 0)
8714 IEM_MC_CALL_FPU_AIMPL_3(iemAImpl_fst_r80_to_r80, pu16Fsw, pr80Dst, pr80Value);
8715 IEM_MC_MEM_COMMIT_AND_UNMAP_FOR_FPU_STORE(pr80Dst, IEM_ACCESS_DATA_W, u16Fsw);
8716 IEM_MC_UPDATE_FSW_WITH_MEM_OP_THEN_POP(u16Fsw, pVCpu->iem.s.iEffSeg, GCPtrEffDst);
8717 IEM_MC_ELSE()
8718 IEM_MC_IF_FCW_IM()
8719 IEM_MC_STORE_MEM_NEG_QNAN_R80_BY_REF(pr80Dst);
8720 IEM_MC_MEM_COMMIT_AND_UNMAP(pr80Dst, IEM_ACCESS_DATA_W);
8721 IEM_MC_ENDIF();
8722 IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP_THEN_POP(UINT8_MAX, pVCpu->iem.s.iEffSeg, GCPtrEffDst);
8723 IEM_MC_ENDIF();
8724 IEM_MC_ADVANCE_RIP();
8725
8726 IEM_MC_END();
8727 return VINF_SUCCESS;
8728}
8729
8730
8731/** Opcode 0xdb 11/0. */
8732FNIEMOP_DEF_1(iemOp_fcmovnb_stN, uint8_t, bRm)
8733{
8734 IEMOP_MNEMONIC(fcmovnb_st0_stN, "fcmovnb st0,stN");
8735 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
8736
8737 IEM_MC_BEGIN(0, 1);
8738 IEM_MC_LOCAL(PCRTFLOAT80U, pr80ValueN);
8739
8740 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
8741 IEM_MC_MAYBE_RAISE_FPU_XCPT();
8742
8743 IEM_MC_PREPARE_FPU_USAGE();
8744 IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80_FIRST(pr80ValueN, bRm & X86_MODRM_RM_MASK, 0)
8745 IEM_MC_IF_EFL_BIT_NOT_SET(X86_EFL_CF)
8746 IEM_MC_STORE_FPUREG_R80_SRC_REF(0, pr80ValueN);
8747 IEM_MC_ENDIF();
8748 IEM_MC_UPDATE_FPU_OPCODE_IP();
8749 IEM_MC_ELSE()
8750 IEM_MC_FPU_STACK_UNDERFLOW(0);
8751 IEM_MC_ENDIF();
8752 IEM_MC_ADVANCE_RIP();
8753
8754 IEM_MC_END();
8755 return VINF_SUCCESS;
8756}
8757
8758
8759/** Opcode 0xdb 11/1. */
8760FNIEMOP_DEF_1(iemOp_fcmovne_stN, uint8_t, bRm)
8761{
8762 IEMOP_MNEMONIC(fcmovne_st0_stN, "fcmovne st0,stN");
8763 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
8764
8765 IEM_MC_BEGIN(0, 1);
8766 IEM_MC_LOCAL(PCRTFLOAT80U, pr80ValueN);
8767
8768 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
8769 IEM_MC_MAYBE_RAISE_FPU_XCPT();
8770
8771 IEM_MC_PREPARE_FPU_USAGE();
8772 IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80_FIRST(pr80ValueN, bRm & X86_MODRM_RM_MASK, 0)
8773 IEM_MC_IF_EFL_BIT_NOT_SET(X86_EFL_ZF)
8774 IEM_MC_STORE_FPUREG_R80_SRC_REF(0, pr80ValueN);
8775 IEM_MC_ENDIF();
8776 IEM_MC_UPDATE_FPU_OPCODE_IP();
8777 IEM_MC_ELSE()
8778 IEM_MC_FPU_STACK_UNDERFLOW(0);
8779 IEM_MC_ENDIF();
8780 IEM_MC_ADVANCE_RIP();
8781
8782 IEM_MC_END();
8783 return VINF_SUCCESS;
8784}
8785
8786
8787/** Opcode 0xdb 11/2. */
8788FNIEMOP_DEF_1(iemOp_fcmovnbe_stN, uint8_t, bRm)
8789{
8790 IEMOP_MNEMONIC(fcmovnbe_st0_stN, "fcmovnbe st0,stN");
8791 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
8792
8793 IEM_MC_BEGIN(0, 1);
8794 IEM_MC_LOCAL(PCRTFLOAT80U, pr80ValueN);
8795
8796 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
8797 IEM_MC_MAYBE_RAISE_FPU_XCPT();
8798
8799 IEM_MC_PREPARE_FPU_USAGE();
8800 IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80_FIRST(pr80ValueN, bRm & X86_MODRM_RM_MASK, 0)
8801 IEM_MC_IF_EFL_NO_BITS_SET(X86_EFL_CF | X86_EFL_ZF)
8802 IEM_MC_STORE_FPUREG_R80_SRC_REF(0, pr80ValueN);
8803 IEM_MC_ENDIF();
8804 IEM_MC_UPDATE_FPU_OPCODE_IP();
8805 IEM_MC_ELSE()
8806 IEM_MC_FPU_STACK_UNDERFLOW(0);
8807 IEM_MC_ENDIF();
8808 IEM_MC_ADVANCE_RIP();
8809
8810 IEM_MC_END();
8811 return VINF_SUCCESS;
8812}
8813
8814
8815/** Opcode 0xdb 11/3. */
8816FNIEMOP_DEF_1(iemOp_fcmovnnu_stN, uint8_t, bRm)
8817{
8818 IEMOP_MNEMONIC(fcmovnnu_st0_stN, "fcmovnnu st0,stN");
8819 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
8820
8821 IEM_MC_BEGIN(0, 1);
8822 IEM_MC_LOCAL(PCRTFLOAT80U, pr80ValueN);
8823
8824 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
8825 IEM_MC_MAYBE_RAISE_FPU_XCPT();
8826
8827 IEM_MC_PREPARE_FPU_USAGE();
8828 IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80_FIRST(pr80ValueN, bRm & X86_MODRM_RM_MASK, 0)
8829 IEM_MC_IF_EFL_BIT_NOT_SET(X86_EFL_PF)
8830 IEM_MC_STORE_FPUREG_R80_SRC_REF(0, pr80ValueN);
8831 IEM_MC_ENDIF();
8832 IEM_MC_UPDATE_FPU_OPCODE_IP();
8833 IEM_MC_ELSE()
8834 IEM_MC_FPU_STACK_UNDERFLOW(0);
8835 IEM_MC_ENDIF();
8836 IEM_MC_ADVANCE_RIP();
8837
8838 IEM_MC_END();
8839 return VINF_SUCCESS;
8840}
8841
8842
8843/** Opcode 0xdb 0xe0. */
8844FNIEMOP_DEF(iemOp_fneni)
8845{
8846 IEMOP_MNEMONIC(fneni, "fneni (8087/ign)");
8847 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
8848 IEM_MC_BEGIN(0,0);
8849 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
8850 IEM_MC_ADVANCE_RIP();
8851 IEM_MC_END();
8852 return VINF_SUCCESS;
8853}
8854
8855
8856/** Opcode 0xdb 0xe1. */
8857FNIEMOP_DEF(iemOp_fndisi)
8858{
8859 IEMOP_MNEMONIC(fndisi, "fndisi (8087/ign)");
8860 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
8861 IEM_MC_BEGIN(0,0);
8862 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
8863 IEM_MC_ADVANCE_RIP();
8864 IEM_MC_END();
8865 return VINF_SUCCESS;
8866}
8867
8868
8869/** Opcode 0xdb 0xe2. */
8870FNIEMOP_DEF(iemOp_fnclex)
8871{
8872 IEMOP_MNEMONIC(fnclex, "fnclex");
8873 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
8874
8875 IEM_MC_BEGIN(0,0);
8876 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
8877 IEM_MC_ACTUALIZE_FPU_STATE_FOR_CHANGE();
8878 IEM_MC_CLEAR_FSW_EX();
8879 IEM_MC_ADVANCE_RIP();
8880 IEM_MC_END();
8881 return VINF_SUCCESS;
8882}
8883
8884
8885/** Opcode 0xdb 0xe3. */
8886FNIEMOP_DEF(iemOp_fninit)
8887{
8888 IEMOP_MNEMONIC(fninit, "fninit");
8889 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
8890 return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_finit, false /*fCheckXcpts*/);
8891}
8892
8893
8894/** Opcode 0xdb 0xe4. */
8895FNIEMOP_DEF(iemOp_fnsetpm)
8896{
8897 IEMOP_MNEMONIC(fnsetpm, "fnsetpm (80287/ign)"); /* set protected mode on fpu. */
8898 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
8899 IEM_MC_BEGIN(0,0);
8900 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
8901 IEM_MC_ADVANCE_RIP();
8902 IEM_MC_END();
8903 return VINF_SUCCESS;
8904}
8905
8906
8907/** Opcode 0xdb 0xe5. */
8908FNIEMOP_DEF(iemOp_frstpm)
8909{
8910 IEMOP_MNEMONIC(frstpm, "frstpm (80287XL/ign)"); /* reset pm, back to real mode. */
8911#if 0 /* #UDs on newer CPUs */
8912 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
8913 IEM_MC_BEGIN(0,0);
8914 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
8915 IEM_MC_ADVANCE_RIP();
8916 IEM_MC_END();
8917 return VINF_SUCCESS;
8918#else
8919 return IEMOP_RAISE_INVALID_OPCODE();
8920#endif
8921}
8922
8923
8924/** Opcode 0xdb 11/5. */
8925FNIEMOP_DEF_1(iemOp_fucomi_stN, uint8_t, bRm)
8926{
8927 IEMOP_MNEMONIC(fucomi_st0_stN, "fucomi st0,stN");
8928 return IEM_MC_DEFER_TO_CIMPL_3(iemCImpl_fcomi_fucomi, bRm & X86_MODRM_RM_MASK, iemAImpl_fucomi_r80_by_r80, false /*fPop*/);
8929}
8930
8931
8932/** Opcode 0xdb 11/6. */
8933FNIEMOP_DEF_1(iemOp_fcomi_stN, uint8_t, bRm)
8934{
8935 IEMOP_MNEMONIC(fcomi_st0_stN, "fcomi st0,stN");
8936 return IEM_MC_DEFER_TO_CIMPL_3(iemCImpl_fcomi_fucomi, bRm & X86_MODRM_RM_MASK, iemAImpl_fcomi_r80_by_r80, false /*fPop*/);
8937}
8938
8939
8940/**
8941 * @opcode 0xdb
8942 */
8943FNIEMOP_DEF(iemOp_EscF3)
8944{
8945 uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm);
8946 pVCpu->iem.s.uFpuOpcode = RT_MAKE_U16(bRm, 0xdb & 0x7);
8947 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
8948 {
8949 switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK)
8950 {
8951 case 0: return FNIEMOP_CALL_1(iemOp_fcmovnb_stN, bRm);
8952 case 1: return FNIEMOP_CALL_1(iemOp_fcmovne_stN, bRm);
8953 case 2: return FNIEMOP_CALL_1(iemOp_fcmovnbe_stN, bRm);
8954 case 3: return FNIEMOP_CALL_1(iemOp_fcmovnnu_stN, bRm);
8955 case 4:
8956 switch (bRm)
8957 {
8958 case 0xe0: return FNIEMOP_CALL(iemOp_fneni);
8959 case 0xe1: return FNIEMOP_CALL(iemOp_fndisi);
8960 case 0xe2: return FNIEMOP_CALL(iemOp_fnclex);
8961 case 0xe3: return FNIEMOP_CALL(iemOp_fninit);
8962 case 0xe4: return FNIEMOP_CALL(iemOp_fnsetpm);
8963 case 0xe5: return FNIEMOP_CALL(iemOp_frstpm);
8964 case 0xe6: return IEMOP_RAISE_INVALID_OPCODE();
8965 case 0xe7: return IEMOP_RAISE_INVALID_OPCODE();
8966 IEM_NOT_REACHED_DEFAULT_CASE_RET();
8967 }
8968 break;
8969 case 5: return FNIEMOP_CALL_1(iemOp_fucomi_stN, bRm);
8970 case 6: return FNIEMOP_CALL_1(iemOp_fcomi_stN, bRm);
8971 case 7: return IEMOP_RAISE_INVALID_OPCODE();
8972 IEM_NOT_REACHED_DEFAULT_CASE_RET();
8973 }
8974 }
8975 else
8976 {
8977 switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK)
8978 {
8979 case 0: return FNIEMOP_CALL_1(iemOp_fild_m32i, bRm);
8980 case 1: return FNIEMOP_CALL_1(iemOp_fisttp_m32i,bRm);
8981 case 2: return FNIEMOP_CALL_1(iemOp_fist_m32i, bRm);
8982 case 3: return FNIEMOP_CALL_1(iemOp_fistp_m32i, bRm);
8983 case 4: return IEMOP_RAISE_INVALID_OPCODE();
8984 case 5: return FNIEMOP_CALL_1(iemOp_fld_m80r, bRm);
8985 case 6: return IEMOP_RAISE_INVALID_OPCODE();
8986 case 7: return FNIEMOP_CALL_1(iemOp_fstp_m80r, bRm);
8987 IEM_NOT_REACHED_DEFAULT_CASE_RET();
8988 }
8989 }
8990}
8991
8992
8993/**
8994 * Common worker for FPU instructions working on STn and ST0, and storing the
8995 * result in STn unless IE, DE or ZE was raised.
8996 *
8997 * @param pfnAImpl Pointer to the instruction implementation (assembly).
8998 */
8999FNIEMOP_DEF_2(iemOpHlpFpu_stN_st0, uint8_t, bRm, PFNIEMAIMPLFPUR80, pfnAImpl)
9000{
9001 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
9002
9003 IEM_MC_BEGIN(3, 1);
9004 IEM_MC_LOCAL(IEMFPURESULT, FpuRes);
9005 IEM_MC_ARG_LOCAL_REF(PIEMFPURESULT, pFpuRes, FpuRes, 0);
9006 IEM_MC_ARG(PCRTFLOAT80U, pr80Value1, 1);
9007 IEM_MC_ARG(PCRTFLOAT80U, pr80Value2, 2);
9008
9009 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
9010 IEM_MC_MAYBE_RAISE_FPU_XCPT();
9011
9012 IEM_MC_PREPARE_FPU_USAGE();
9013 IEM_MC_IF_TWO_FPUREGS_NOT_EMPTY_REF_R80(pr80Value1, bRm & X86_MODRM_RM_MASK, pr80Value2, 0)
9014 IEM_MC_CALL_FPU_AIMPL_3(pfnAImpl, pFpuRes, pr80Value1, pr80Value2);
9015 IEM_MC_STORE_FPU_RESULT(FpuRes, bRm & X86_MODRM_RM_MASK);
9016 IEM_MC_ELSE()
9017 IEM_MC_FPU_STACK_UNDERFLOW(bRm & X86_MODRM_RM_MASK);
9018 IEM_MC_ENDIF();
9019 IEM_MC_ADVANCE_RIP();
9020
9021 IEM_MC_END();
9022 return VINF_SUCCESS;
9023}
9024
9025
9026/** Opcode 0xdc 11/0. */
9027FNIEMOP_DEF_1(iemOp_fadd_stN_st0, uint8_t, bRm)
9028{
9029 IEMOP_MNEMONIC(fadd_stN_st0, "fadd stN,st0");
9030 return FNIEMOP_CALL_2(iemOpHlpFpu_stN_st0, bRm, iemAImpl_fadd_r80_by_r80);
9031}
9032
9033
9034/** Opcode 0xdc 11/1. */
9035FNIEMOP_DEF_1(iemOp_fmul_stN_st0, uint8_t, bRm)
9036{
9037 IEMOP_MNEMONIC(fmul_stN_st0, "fmul stN,st0");
9038 return FNIEMOP_CALL_2(iemOpHlpFpu_stN_st0, bRm, iemAImpl_fmul_r80_by_r80);
9039}
9040
9041
9042/** Opcode 0xdc 11/4. */
9043FNIEMOP_DEF_1(iemOp_fsubr_stN_st0, uint8_t, bRm)
9044{
9045 IEMOP_MNEMONIC(fsubr_stN_st0, "fsubr stN,st0");
9046 return FNIEMOP_CALL_2(iemOpHlpFpu_stN_st0, bRm, iemAImpl_fsubr_r80_by_r80);
9047}
9048
9049
9050/** Opcode 0xdc 11/5. */
9051FNIEMOP_DEF_1(iemOp_fsub_stN_st0, uint8_t, bRm)
9052{
9053 IEMOP_MNEMONIC(fsub_stN_st0, "fsub stN,st0");
9054 return FNIEMOP_CALL_2(iemOpHlpFpu_stN_st0, bRm, iemAImpl_fsub_r80_by_r80);
9055}
9056
9057
9058/** Opcode 0xdc 11/6. */
9059FNIEMOP_DEF_1(iemOp_fdivr_stN_st0, uint8_t, bRm)
9060{
9061 IEMOP_MNEMONIC(fdivr_stN_st0, "fdivr stN,st0");
9062 return FNIEMOP_CALL_2(iemOpHlpFpu_stN_st0, bRm, iemAImpl_fdivr_r80_by_r80);
9063}
9064
9065
9066/** Opcode 0xdc 11/7. */
9067FNIEMOP_DEF_1(iemOp_fdiv_stN_st0, uint8_t, bRm)
9068{
9069 IEMOP_MNEMONIC(fdiv_stN_st0, "fdiv stN,st0");
9070 return FNIEMOP_CALL_2(iemOpHlpFpu_stN_st0, bRm, iemAImpl_fdiv_r80_by_r80);
9071}
9072
9073
9074/**
9075 * Common worker for FPU instructions working on ST0 and a 64-bit floating point
9076 * memory operand, and storing the result in ST0.
9077 *
9078 * @param pfnAImpl Pointer to the instruction implementation (assembly).
9079 */
9080FNIEMOP_DEF_2(iemOpHlpFpu_ST0_m64r, uint8_t, bRm, PFNIEMAIMPLFPUR64, pfnImpl)
9081{
9082 IEM_MC_BEGIN(3, 3);
9083 IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc);
9084 IEM_MC_LOCAL(IEMFPURESULT, FpuRes);
9085 IEM_MC_LOCAL(RTFLOAT64U, r64Factor2);
9086 IEM_MC_ARG_LOCAL_REF(PIEMFPURESULT, pFpuRes, FpuRes, 0);
9087 IEM_MC_ARG(PCRTFLOAT80U, pr80Factor1, 1);
9088 IEM_MC_ARG_LOCAL_REF(PRTFLOAT64U, pr64Factor2, r64Factor2, 2);
9089
9090 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0);
9091 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
9092 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
9093 IEM_MC_MAYBE_RAISE_FPU_XCPT();
9094
9095 IEM_MC_FETCH_MEM_R64(r64Factor2, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
9096 IEM_MC_PREPARE_FPU_USAGE();
9097 IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Factor1, 0)
9098 IEM_MC_CALL_FPU_AIMPL_3(pfnImpl, pFpuRes, pr80Factor1, pr64Factor2);
9099 IEM_MC_STORE_FPU_RESULT_MEM_OP(FpuRes, 0, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
9100 IEM_MC_ELSE()
9101 IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP(0, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
9102 IEM_MC_ENDIF();
9103 IEM_MC_ADVANCE_RIP();
9104
9105 IEM_MC_END();
9106 return VINF_SUCCESS;
9107}
9108
9109
9110/** Opcode 0xdc !11/0. */
9111FNIEMOP_DEF_1(iemOp_fadd_m64r, uint8_t, bRm)
9112{
9113 IEMOP_MNEMONIC(fadd_m64r, "fadd m64r");
9114 return FNIEMOP_CALL_2(iemOpHlpFpu_ST0_m64r, bRm, iemAImpl_fadd_r80_by_r64);
9115}
9116
9117
9118/** Opcode 0xdc !11/1. */
9119FNIEMOP_DEF_1(iemOp_fmul_m64r, uint8_t, bRm)
9120{
9121 IEMOP_MNEMONIC(fmul_m64r, "fmul m64r");
9122 return FNIEMOP_CALL_2(iemOpHlpFpu_ST0_m64r, bRm, iemAImpl_fmul_r80_by_r64);
9123}
9124
9125
9126/** Opcode 0xdc !11/2. */
9127FNIEMOP_DEF_1(iemOp_fcom_m64r, uint8_t, bRm)
9128{
9129 IEMOP_MNEMONIC(fcom_st0_m64r, "fcom st0,m64r");
9130
9131 IEM_MC_BEGIN(3, 3);
9132 IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc);
9133 IEM_MC_LOCAL(uint16_t, u16Fsw);
9134 IEM_MC_LOCAL(RTFLOAT64U, r64Val2);
9135 IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0);
9136 IEM_MC_ARG(PCRTFLOAT80U, pr80Value1, 1);
9137 IEM_MC_ARG_LOCAL_REF(PCRTFLOAT64U, pr64Val2, r64Val2, 2);
9138
9139 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0);
9140 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
9141
9142 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
9143 IEM_MC_MAYBE_RAISE_FPU_XCPT();
9144 IEM_MC_FETCH_MEM_R64(r64Val2, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
9145
9146 IEM_MC_PREPARE_FPU_USAGE();
9147 IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value1, 0)
9148 IEM_MC_CALL_FPU_AIMPL_3(iemAImpl_fcom_r80_by_r64, pu16Fsw, pr80Value1, pr64Val2);
9149 IEM_MC_UPDATE_FSW_WITH_MEM_OP(u16Fsw, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
9150 IEM_MC_ELSE()
9151 IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP(UINT8_MAX, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
9152 IEM_MC_ENDIF();
9153 IEM_MC_ADVANCE_RIP();
9154
9155 IEM_MC_END();
9156 return VINF_SUCCESS;
9157}
9158
9159
9160/** Opcode 0xdc !11/3. */
9161FNIEMOP_DEF_1(iemOp_fcomp_m64r, uint8_t, bRm)
9162{
9163 IEMOP_MNEMONIC(fcomp_st0_m64r, "fcomp st0,m64r");
9164
9165 IEM_MC_BEGIN(3, 3);
9166 IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc);
9167 IEM_MC_LOCAL(uint16_t, u16Fsw);
9168 IEM_MC_LOCAL(RTFLOAT64U, r64Val2);
9169 IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0);
9170 IEM_MC_ARG(PCRTFLOAT80U, pr80Value1, 1);
9171 IEM_MC_ARG_LOCAL_REF(PCRTFLOAT64U, pr64Val2, r64Val2, 2);
9172
9173 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0);
9174 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
9175
9176 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
9177 IEM_MC_MAYBE_RAISE_FPU_XCPT();
9178 IEM_MC_FETCH_MEM_R64(r64Val2, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
9179
9180 IEM_MC_PREPARE_FPU_USAGE();
9181 IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value1, 0)
9182 IEM_MC_CALL_FPU_AIMPL_3(iemAImpl_fcom_r80_by_r64, pu16Fsw, pr80Value1, pr64Val2);
9183 IEM_MC_UPDATE_FSW_WITH_MEM_OP_THEN_POP(u16Fsw, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
9184 IEM_MC_ELSE()
9185 IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP_THEN_POP(UINT8_MAX, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
9186 IEM_MC_ENDIF();
9187 IEM_MC_ADVANCE_RIP();
9188
9189 IEM_MC_END();
9190 return VINF_SUCCESS;
9191}
9192
9193
9194/** Opcode 0xdc !11/4. */
9195FNIEMOP_DEF_1(iemOp_fsub_m64r, uint8_t, bRm)
9196{
9197 IEMOP_MNEMONIC(fsub_m64r, "fsub m64r");
9198 return FNIEMOP_CALL_2(iemOpHlpFpu_ST0_m64r, bRm, iemAImpl_fsub_r80_by_r64);
9199}
9200
9201
9202/** Opcode 0xdc !11/5. */
9203FNIEMOP_DEF_1(iemOp_fsubr_m64r, uint8_t, bRm)
9204{
9205 IEMOP_MNEMONIC(fsubr_m64r, "fsubr m64r");
9206 return FNIEMOP_CALL_2(iemOpHlpFpu_ST0_m64r, bRm, iemAImpl_fsubr_r80_by_r64);
9207}
9208
9209
9210/** Opcode 0xdc !11/6. */
9211FNIEMOP_DEF_1(iemOp_fdiv_m64r, uint8_t, bRm)
9212{
9213 IEMOP_MNEMONIC(fdiv_m64r, "fdiv m64r");
9214 return FNIEMOP_CALL_2(iemOpHlpFpu_ST0_m64r, bRm, iemAImpl_fdiv_r80_by_r64);
9215}
9216
9217
9218/** Opcode 0xdc !11/7. */
9219FNIEMOP_DEF_1(iemOp_fdivr_m64r, uint8_t, bRm)
9220{
9221 IEMOP_MNEMONIC(fdivr_m64r, "fdivr m64r");
9222 return FNIEMOP_CALL_2(iemOpHlpFpu_ST0_m64r, bRm, iemAImpl_fdivr_r80_by_r64);
9223}
9224
9225
9226/**
9227 * @opcode 0xdc
9228 */
9229FNIEMOP_DEF(iemOp_EscF4)
9230{
9231 uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm);
9232 pVCpu->iem.s.uFpuOpcode = RT_MAKE_U16(bRm, 0xdc & 0x7);
9233 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
9234 {
9235 switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK)
9236 {
9237 case 0: return FNIEMOP_CALL_1(iemOp_fadd_stN_st0, bRm);
9238 case 1: return FNIEMOP_CALL_1(iemOp_fmul_stN_st0, bRm);
9239 case 2: return FNIEMOP_CALL_1(iemOp_fcom_stN, bRm); /* Marked reserved, intel behavior is that of FCOM ST(i). */
9240 case 3: return FNIEMOP_CALL_1(iemOp_fcomp_stN, bRm); /* Marked reserved, intel behavior is that of FCOMP ST(i). */
9241 case 4: return FNIEMOP_CALL_1(iemOp_fsubr_stN_st0, bRm);
9242 case 5: return FNIEMOP_CALL_1(iemOp_fsub_stN_st0, bRm);
9243 case 6: return FNIEMOP_CALL_1(iemOp_fdivr_stN_st0, bRm);
9244 case 7: return FNIEMOP_CALL_1(iemOp_fdiv_stN_st0, bRm);
9245 IEM_NOT_REACHED_DEFAULT_CASE_RET();
9246 }
9247 }
9248 else
9249 {
9250 switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK)
9251 {
9252 case 0: return FNIEMOP_CALL_1(iemOp_fadd_m64r, bRm);
9253 case 1: return FNIEMOP_CALL_1(iemOp_fmul_m64r, bRm);
9254 case 2: return FNIEMOP_CALL_1(iemOp_fcom_m64r, bRm);
9255 case 3: return FNIEMOP_CALL_1(iemOp_fcomp_m64r, bRm);
9256 case 4: return FNIEMOP_CALL_1(iemOp_fsub_m64r, bRm);
9257 case 5: return FNIEMOP_CALL_1(iemOp_fsubr_m64r, bRm);
9258 case 6: return FNIEMOP_CALL_1(iemOp_fdiv_m64r, bRm);
9259 case 7: return FNIEMOP_CALL_1(iemOp_fdivr_m64r, bRm);
9260 IEM_NOT_REACHED_DEFAULT_CASE_RET();
9261 }
9262 }
9263}
9264
9265
9266/** Opcode 0xdd !11/0.
9267 * @sa iemOp_fld_m32r */
9268FNIEMOP_DEF_1(iemOp_fld_m64r, uint8_t, bRm)
9269{
9270 IEMOP_MNEMONIC(fld_m64r, "fld m64r");
9271
9272 IEM_MC_BEGIN(2, 3);
9273 IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc);
9274 IEM_MC_LOCAL(IEMFPURESULT, FpuRes);
9275 IEM_MC_LOCAL(RTFLOAT64U, r64Val);
9276 IEM_MC_ARG_LOCAL_REF(PIEMFPURESULT, pFpuRes, FpuRes, 0);
9277 IEM_MC_ARG_LOCAL_REF(PCRTFLOAT64U, pr64Val, r64Val, 1);
9278
9279 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0);
9280 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
9281 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
9282 IEM_MC_MAYBE_RAISE_FPU_XCPT();
9283
9284 IEM_MC_FETCH_MEM_R64(r64Val, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
9285 IEM_MC_PREPARE_FPU_USAGE();
9286 IEM_MC_IF_FPUREG_IS_EMPTY(7)
9287 IEM_MC_CALL_FPU_AIMPL_2(iemAImpl_fld_r64_to_r80, pFpuRes, pr64Val);
9288 IEM_MC_PUSH_FPU_RESULT_MEM_OP(FpuRes, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
9289 IEM_MC_ELSE()
9290 IEM_MC_FPU_STACK_PUSH_OVERFLOW_MEM_OP(pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
9291 IEM_MC_ENDIF();
9292 IEM_MC_ADVANCE_RIP();
9293
9294 IEM_MC_END();
9295 return VINF_SUCCESS;
9296}
9297
9298
9299/** Opcode 0xdd !11/0. */
9300FNIEMOP_DEF_1(iemOp_fisttp_m64i, uint8_t, bRm)
9301{
9302 IEMOP_MNEMONIC(fisttp_m64i, "fisttp m64i");
9303 IEM_MC_BEGIN(3, 2);
9304 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
9305 IEM_MC_LOCAL(uint16_t, u16Fsw);
9306 IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0);
9307 IEM_MC_ARG(int64_t *, pi64Dst, 1);
9308 IEM_MC_ARG(PCRTFLOAT80U, pr80Value, 2);
9309
9310 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
9311 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
9312 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
9313 IEM_MC_MAYBE_RAISE_FPU_XCPT();
9314
9315 IEM_MC_MEM_MAP(pi64Dst, IEM_ACCESS_DATA_W, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 1 /*arg*/);
9316 IEM_MC_PREPARE_FPU_USAGE();
9317 IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value, 0)
9318 IEM_MC_CALL_FPU_AIMPL_3(iemAImpl_fistt_r80_to_i64, pu16Fsw, pi64Dst, pr80Value);
9319 IEM_MC_MEM_COMMIT_AND_UNMAP_FOR_FPU_STORE(pi64Dst, IEM_ACCESS_DATA_W, u16Fsw);
9320 IEM_MC_UPDATE_FSW_WITH_MEM_OP_THEN_POP(u16Fsw, pVCpu->iem.s.iEffSeg, GCPtrEffDst);
9321 IEM_MC_ELSE()
9322 IEM_MC_IF_FCW_IM()
9323 IEM_MC_STORE_MEM_I64_CONST_BY_REF(pi64Dst, INT64_MIN /* (integer indefinite) */);
9324 IEM_MC_MEM_COMMIT_AND_UNMAP(pi64Dst, IEM_ACCESS_DATA_W);
9325 IEM_MC_ENDIF();
9326 IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP_THEN_POP(UINT8_MAX, pVCpu->iem.s.iEffSeg, GCPtrEffDst);
9327 IEM_MC_ENDIF();
9328 IEM_MC_ADVANCE_RIP();
9329
9330 IEM_MC_END();
9331 return VINF_SUCCESS;
9332}
9333
9334
9335/** Opcode 0xdd !11/0. */
9336FNIEMOP_DEF_1(iemOp_fst_m64r, uint8_t, bRm)
9337{
9338 IEMOP_MNEMONIC(fst_m64r, "fst m64r");
9339 IEM_MC_BEGIN(3, 2);
9340 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
9341 IEM_MC_LOCAL(uint16_t, u16Fsw);
9342 IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0);
9343 IEM_MC_ARG(PRTFLOAT64U, pr64Dst, 1);
9344 IEM_MC_ARG(PCRTFLOAT80U, pr80Value, 2);
9345
9346 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
9347 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
9348 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
9349 IEM_MC_MAYBE_RAISE_FPU_XCPT();
9350
9351 IEM_MC_MEM_MAP(pr64Dst, IEM_ACCESS_DATA_W, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 1 /*arg*/);
9352 IEM_MC_PREPARE_FPU_USAGE();
9353 IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value, 0)
9354 IEM_MC_CALL_FPU_AIMPL_3(iemAImpl_fst_r80_to_r64, pu16Fsw, pr64Dst, pr80Value);
9355 IEM_MC_MEM_COMMIT_AND_UNMAP_FOR_FPU_STORE(pr64Dst, IEM_ACCESS_DATA_W, u16Fsw);
9356 IEM_MC_UPDATE_FSW_WITH_MEM_OP(u16Fsw, pVCpu->iem.s.iEffSeg, GCPtrEffDst);
9357 IEM_MC_ELSE()
9358 IEM_MC_IF_FCW_IM()
9359 IEM_MC_STORE_MEM_NEG_QNAN_R64_BY_REF(pr64Dst);
9360 IEM_MC_MEM_COMMIT_AND_UNMAP(pr64Dst, IEM_ACCESS_DATA_W);
9361 IEM_MC_ENDIF();
9362 IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP(UINT8_MAX, pVCpu->iem.s.iEffSeg, GCPtrEffDst);
9363 IEM_MC_ENDIF();
9364 IEM_MC_ADVANCE_RIP();
9365
9366 IEM_MC_END();
9367 return VINF_SUCCESS;
9368}
9369
9370
9371
9372
9373/** Opcode 0xdd !11/0. */
9374FNIEMOP_DEF_1(iemOp_fstp_m64r, uint8_t, bRm)
9375{
9376 IEMOP_MNEMONIC(fstp_m64r, "fstp m64r");
9377 IEM_MC_BEGIN(3, 2);
9378 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
9379 IEM_MC_LOCAL(uint16_t, u16Fsw);
9380 IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0);
9381 IEM_MC_ARG(PRTFLOAT64U, pr64Dst, 1);
9382 IEM_MC_ARG(PCRTFLOAT80U, pr80Value, 2);
9383
9384 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
9385 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
9386 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
9387 IEM_MC_MAYBE_RAISE_FPU_XCPT();
9388
9389 IEM_MC_MEM_MAP(pr64Dst, IEM_ACCESS_DATA_W, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 1 /*arg*/);
9390 IEM_MC_PREPARE_FPU_USAGE();
9391 IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value, 0)
9392 IEM_MC_CALL_FPU_AIMPL_3(iemAImpl_fst_r80_to_r64, pu16Fsw, pr64Dst, pr80Value);
9393 IEM_MC_MEM_COMMIT_AND_UNMAP_FOR_FPU_STORE(pr64Dst, IEM_ACCESS_DATA_W, u16Fsw);
9394 IEM_MC_UPDATE_FSW_WITH_MEM_OP_THEN_POP(u16Fsw, pVCpu->iem.s.iEffSeg, GCPtrEffDst);
9395 IEM_MC_ELSE()
9396 IEM_MC_IF_FCW_IM()
9397 IEM_MC_STORE_MEM_NEG_QNAN_R64_BY_REF(pr64Dst);
9398 IEM_MC_MEM_COMMIT_AND_UNMAP(pr64Dst, IEM_ACCESS_DATA_W);
9399 IEM_MC_ENDIF();
9400 IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP_THEN_POP(UINT8_MAX, pVCpu->iem.s.iEffSeg, GCPtrEffDst);
9401 IEM_MC_ENDIF();
9402 IEM_MC_ADVANCE_RIP();
9403
9404 IEM_MC_END();
9405 return VINF_SUCCESS;
9406}
9407
9408
9409/** Opcode 0xdd !11/0. */
9410FNIEMOP_DEF_1(iemOp_frstor, uint8_t, bRm)
9411{
9412 IEMOP_MNEMONIC(frstor, "frstor m94/108byte");
9413 IEM_MC_BEGIN(3, 0);
9414 IEM_MC_ARG_CONST(IEMMODE, enmEffOpSize, /*=*/ pVCpu->iem.s.enmEffOpSize, 0);
9415 IEM_MC_ARG(uint8_t, iEffSeg, 1);
9416 IEM_MC_ARG(RTGCPTR, GCPtrEffSrc, 2);
9417 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0);
9418 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
9419 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
9420 IEM_MC_ACTUALIZE_FPU_STATE_FOR_CHANGE();
9421 IEM_MC_ASSIGN(iEffSeg, pVCpu->iem.s.iEffSeg);
9422 IEM_MC_CALL_CIMPL_3(iemCImpl_frstor, enmEffOpSize, iEffSeg, GCPtrEffSrc);
9423 IEM_MC_END();
9424 return VINF_SUCCESS;
9425}
9426
9427
9428/** Opcode 0xdd !11/0. */
9429FNIEMOP_DEF_1(iemOp_fnsave, uint8_t, bRm)
9430{
9431 IEMOP_MNEMONIC(fnsave, "fnsave m94/108byte");
9432 IEM_MC_BEGIN(3, 0);
9433 IEM_MC_ARG_CONST(IEMMODE, enmEffOpSize, /*=*/ pVCpu->iem.s.enmEffOpSize, 0);
9434 IEM_MC_ARG(uint8_t, iEffSeg, 1);
9435 IEM_MC_ARG(RTGCPTR, GCPtrEffDst, 2);
9436 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
9437 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
9438 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
9439 IEM_MC_ACTUALIZE_FPU_STATE_FOR_READ();
9440 IEM_MC_ASSIGN(iEffSeg, pVCpu->iem.s.iEffSeg);
9441 IEM_MC_CALL_CIMPL_3(iemCImpl_fnsave, enmEffOpSize, iEffSeg, GCPtrEffDst);
9442 IEM_MC_END();
9443 return VINF_SUCCESS;
9444
9445}
9446
9447/** Opcode 0xdd !11/0. */
9448FNIEMOP_DEF_1(iemOp_fnstsw, uint8_t, bRm)
9449{
9450 IEMOP_MNEMONIC(fnstsw_m16, "fnstsw m16");
9451
9452 IEM_MC_BEGIN(0, 2);
9453 IEM_MC_LOCAL(uint16_t, u16Tmp);
9454 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
9455
9456 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
9457 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
9458 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
9459
9460 IEM_MC_ACTUALIZE_FPU_STATE_FOR_READ();
9461 IEM_MC_FETCH_FSW(u16Tmp);
9462 IEM_MC_STORE_MEM_U16(pVCpu->iem.s.iEffSeg, GCPtrEffDst, u16Tmp);
9463 IEM_MC_ADVANCE_RIP();
9464
9465/** @todo Debug / drop a hint to the verifier that things may differ
9466 * from REM. Seen 0x4020 (iem) vs 0x4000 (rem) at 0008:801c6b88 booting
9467 * NT4SP1. (X86_FSW_PE) */
9468 IEM_MC_END();
9469 return VINF_SUCCESS;
9470}
9471
9472
9473/** Opcode 0xdd 11/0. */
9474FNIEMOP_DEF_1(iemOp_ffree_stN, uint8_t, bRm)
9475{
9476 IEMOP_MNEMONIC(ffree_stN, "ffree stN");
9477 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
9478 /* Note! C0, C1, C2 and C3 are documented as undefined, we leave the
9479 unmodified. */
9480
9481 IEM_MC_BEGIN(0, 0);
9482
9483 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
9484 IEM_MC_MAYBE_RAISE_FPU_XCPT();
9485
9486 IEM_MC_ACTUALIZE_FPU_STATE_FOR_CHANGE();
9487 IEM_MC_FPU_STACK_FREE(bRm & X86_MODRM_RM_MASK);
9488 IEM_MC_UPDATE_FPU_OPCODE_IP();
9489
9490 IEM_MC_ADVANCE_RIP();
9491 IEM_MC_END();
9492 return VINF_SUCCESS;
9493}
9494
9495
9496/** Opcode 0xdd 11/1. */
9497FNIEMOP_DEF_1(iemOp_fst_stN, uint8_t, bRm)
9498{
9499 IEMOP_MNEMONIC(fst_st0_stN, "fst st0,stN");
9500 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
9501
9502 IEM_MC_BEGIN(0, 2);
9503 IEM_MC_LOCAL(PCRTFLOAT80U, pr80Value);
9504 IEM_MC_LOCAL(IEMFPURESULT, FpuRes);
9505 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
9506 IEM_MC_MAYBE_RAISE_FPU_XCPT();
9507
9508 IEM_MC_PREPARE_FPU_USAGE();
9509 IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value, 0)
9510 IEM_MC_SET_FPU_RESULT(FpuRes, 0 /*FSW*/, pr80Value);
9511 IEM_MC_STORE_FPU_RESULT(FpuRes, bRm & X86_MODRM_RM_MASK);
9512 IEM_MC_ELSE()
9513 IEM_MC_FPU_STACK_UNDERFLOW(bRm & X86_MODRM_RM_MASK);
9514 IEM_MC_ENDIF();
9515
9516 IEM_MC_ADVANCE_RIP();
9517 IEM_MC_END();
9518 return VINF_SUCCESS;
9519}
9520
9521
9522/** Opcode 0xdd 11/3. */
9523FNIEMOP_DEF_1(iemOp_fucom_stN_st0, uint8_t, bRm)
9524{
9525 IEMOP_MNEMONIC(fucom_st0_stN, "fucom st0,stN");
9526 return FNIEMOP_CALL_2(iemOpHlpFpuNoStore_st0_stN, bRm, iemAImpl_fucom_r80_by_r80);
9527}
9528
9529
9530/** Opcode 0xdd 11/4. */
9531FNIEMOP_DEF_1(iemOp_fucomp_stN, uint8_t, bRm)
9532{
9533 IEMOP_MNEMONIC(fucomp_st0_stN, "fucomp st0,stN");
9534 return FNIEMOP_CALL_2(iemOpHlpFpuNoStore_st0_stN_pop, bRm, iemAImpl_fucom_r80_by_r80);
9535}
9536
9537
9538/**
9539 * @opcode 0xdd
9540 */
9541FNIEMOP_DEF(iemOp_EscF5)
9542{
9543 uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm);
9544 pVCpu->iem.s.uFpuOpcode = RT_MAKE_U16(bRm, 0xdd & 0x7);
9545 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
9546 {
9547 switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK)
9548 {
9549 case 0: return FNIEMOP_CALL_1(iemOp_ffree_stN, bRm);
9550 case 1: return FNIEMOP_CALL_1(iemOp_fxch_stN, bRm); /* Reserved, intel behavior is that of XCHG ST(i). */
9551 case 2: return FNIEMOP_CALL_1(iemOp_fst_stN, bRm);
9552 case 3: return FNIEMOP_CALL_1(iemOp_fstp_stN, bRm);
9553 case 4: return FNIEMOP_CALL_1(iemOp_fucom_stN_st0,bRm);
9554 case 5: return FNIEMOP_CALL_1(iemOp_fucomp_stN, bRm);
9555 case 6: return IEMOP_RAISE_INVALID_OPCODE();
9556 case 7: return IEMOP_RAISE_INVALID_OPCODE();
9557 IEM_NOT_REACHED_DEFAULT_CASE_RET();
9558 }
9559 }
9560 else
9561 {
9562 switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK)
9563 {
9564 case 0: return FNIEMOP_CALL_1(iemOp_fld_m64r, bRm);
9565 case 1: return FNIEMOP_CALL_1(iemOp_fisttp_m64i, bRm);
9566 case 2: return FNIEMOP_CALL_1(iemOp_fst_m64r, bRm);
9567 case 3: return FNIEMOP_CALL_1(iemOp_fstp_m64r, bRm);
9568 case 4: return FNIEMOP_CALL_1(iemOp_frstor, bRm);
9569 case 5: return IEMOP_RAISE_INVALID_OPCODE();
9570 case 6: return FNIEMOP_CALL_1(iemOp_fnsave, bRm);
9571 case 7: return FNIEMOP_CALL_1(iemOp_fnstsw, bRm);
9572 IEM_NOT_REACHED_DEFAULT_CASE_RET();
9573 }
9574 }
9575}
9576
9577
9578/** Opcode 0xde 11/0. */
9579FNIEMOP_DEF_1(iemOp_faddp_stN_st0, uint8_t, bRm)
9580{
9581 IEMOP_MNEMONIC(faddp_stN_st0, "faddp stN,st0");
9582 return FNIEMOP_CALL_2(iemOpHlpFpu_stN_st0_pop, bRm, iemAImpl_fadd_r80_by_r80);
9583}
9584
9585
9586/** Opcode 0xde 11/0. */
9587FNIEMOP_DEF_1(iemOp_fmulp_stN_st0, uint8_t, bRm)
9588{
9589 IEMOP_MNEMONIC(fmulp_stN_st0, "fmulp stN,st0");
9590 return FNIEMOP_CALL_2(iemOpHlpFpu_stN_st0_pop, bRm, iemAImpl_fmul_r80_by_r80);
9591}
9592
9593
9594/** Opcode 0xde 0xd9. */
9595FNIEMOP_DEF(iemOp_fcompp)
9596{
9597 IEMOP_MNEMONIC(fcompp_st0_stN, "fcompp st0,stN");
9598 return FNIEMOP_CALL_1(iemOpHlpFpuNoStore_st0_stN_pop_pop, iemAImpl_fcom_r80_by_r80);
9599}
9600
9601
9602/** Opcode 0xde 11/4. */
9603FNIEMOP_DEF_1(iemOp_fsubrp_stN_st0, uint8_t, bRm)
9604{
9605 IEMOP_MNEMONIC(fsubrp_stN_st0, "fsubrp stN,st0");
9606 return FNIEMOP_CALL_2(iemOpHlpFpu_stN_st0_pop, bRm, iemAImpl_fsubr_r80_by_r80);
9607}
9608
9609
9610/** Opcode 0xde 11/5. */
9611FNIEMOP_DEF_1(iemOp_fsubp_stN_st0, uint8_t, bRm)
9612{
9613 IEMOP_MNEMONIC(fsubp_stN_st0, "fsubp stN,st0");
9614 return FNIEMOP_CALL_2(iemOpHlpFpu_stN_st0_pop, bRm, iemAImpl_fsub_r80_by_r80);
9615}
9616
9617
9618/** Opcode 0xde 11/6. */
9619FNIEMOP_DEF_1(iemOp_fdivrp_stN_st0, uint8_t, bRm)
9620{
9621 IEMOP_MNEMONIC(fdivrp_stN_st0, "fdivrp stN,st0");
9622 return FNIEMOP_CALL_2(iemOpHlpFpu_stN_st0_pop, bRm, iemAImpl_fdivr_r80_by_r80);
9623}
9624
9625
9626/** Opcode 0xde 11/7. */
9627FNIEMOP_DEF_1(iemOp_fdivp_stN_st0, uint8_t, bRm)
9628{
9629 IEMOP_MNEMONIC(fdivp_stN_st0, "fdivp stN,st0");
9630 return FNIEMOP_CALL_2(iemOpHlpFpu_stN_st0_pop, bRm, iemAImpl_fdiv_r80_by_r80);
9631}
9632
9633
9634/**
9635 * Common worker for FPU instructions working on ST0 and an m16i, and storing
9636 * the result in ST0.
9637 *
9638 * @param pfnAImpl Pointer to the instruction implementation (assembly).
9639 */
9640FNIEMOP_DEF_2(iemOpHlpFpu_st0_m16i, uint8_t, bRm, PFNIEMAIMPLFPUI16, pfnAImpl)
9641{
9642 IEM_MC_BEGIN(3, 3);
9643 IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc);
9644 IEM_MC_LOCAL(IEMFPURESULT, FpuRes);
9645 IEM_MC_LOCAL(int16_t, i16Val2);
9646 IEM_MC_ARG_LOCAL_REF(PIEMFPURESULT, pFpuRes, FpuRes, 0);
9647 IEM_MC_ARG(PCRTFLOAT80U, pr80Value1, 1);
9648 IEM_MC_ARG_LOCAL_REF(int16_t const *, pi16Val2, i16Val2, 2);
9649
9650 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0);
9651 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
9652
9653 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
9654 IEM_MC_MAYBE_RAISE_FPU_XCPT();
9655 IEM_MC_FETCH_MEM_I16(i16Val2, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
9656
9657 IEM_MC_PREPARE_FPU_USAGE();
9658 IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value1, 0)
9659 IEM_MC_CALL_FPU_AIMPL_3(pfnAImpl, pFpuRes, pr80Value1, pi16Val2);
9660 IEM_MC_STORE_FPU_RESULT(FpuRes, 0);
9661 IEM_MC_ELSE()
9662 IEM_MC_FPU_STACK_UNDERFLOW(0);
9663 IEM_MC_ENDIF();
9664 IEM_MC_ADVANCE_RIP();
9665
9666 IEM_MC_END();
9667 return VINF_SUCCESS;
9668}
9669
9670
9671/** Opcode 0xde !11/0. */
9672FNIEMOP_DEF_1(iemOp_fiadd_m16i, uint8_t, bRm)
9673{
9674 IEMOP_MNEMONIC(fiadd_m16i, "fiadd m16i");
9675 return FNIEMOP_CALL_2(iemOpHlpFpu_st0_m16i, bRm, iemAImpl_fiadd_r80_by_i16);
9676}
9677
9678
9679/** Opcode 0xde !11/1. */
9680FNIEMOP_DEF_1(iemOp_fimul_m16i, uint8_t, bRm)
9681{
9682 IEMOP_MNEMONIC(fimul_m16i, "fimul m16i");
9683 return FNIEMOP_CALL_2(iemOpHlpFpu_st0_m16i, bRm, iemAImpl_fimul_r80_by_i16);
9684}
9685
9686
9687/** Opcode 0xde !11/2. */
9688FNIEMOP_DEF_1(iemOp_ficom_m16i, uint8_t, bRm)
9689{
9690 IEMOP_MNEMONIC(ficom_st0_m16i, "ficom st0,m16i");
9691
9692 IEM_MC_BEGIN(3, 3);
9693 IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc);
9694 IEM_MC_LOCAL(uint16_t, u16Fsw);
9695 IEM_MC_LOCAL(int16_t, i16Val2);
9696 IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0);
9697 IEM_MC_ARG(PCRTFLOAT80U, pr80Value1, 1);
9698 IEM_MC_ARG_LOCAL_REF(int16_t const *, pi16Val2, i16Val2, 2);
9699
9700 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0);
9701 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
9702
9703 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
9704 IEM_MC_MAYBE_RAISE_FPU_XCPT();
9705 IEM_MC_FETCH_MEM_I16(i16Val2, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
9706
9707 IEM_MC_PREPARE_FPU_USAGE();
9708 IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value1, 0)
9709 IEM_MC_CALL_FPU_AIMPL_3(iemAImpl_ficom_r80_by_i16, pu16Fsw, pr80Value1, pi16Val2);
9710 IEM_MC_UPDATE_FSW_WITH_MEM_OP(u16Fsw, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
9711 IEM_MC_ELSE()
9712 IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP(UINT8_MAX, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
9713 IEM_MC_ENDIF();
9714 IEM_MC_ADVANCE_RIP();
9715
9716 IEM_MC_END();
9717 return VINF_SUCCESS;
9718}
9719
9720
9721/** Opcode 0xde !11/3. */
9722FNIEMOP_DEF_1(iemOp_ficomp_m16i, uint8_t, bRm)
9723{
9724 IEMOP_MNEMONIC(ficomp_st0_m16i, "ficomp st0,m16i");
9725
9726 IEM_MC_BEGIN(3, 3);
9727 IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc);
9728 IEM_MC_LOCAL(uint16_t, u16Fsw);
9729 IEM_MC_LOCAL(int16_t, i16Val2);
9730 IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0);
9731 IEM_MC_ARG(PCRTFLOAT80U, pr80Value1, 1);
9732 IEM_MC_ARG_LOCAL_REF(int16_t const *, pi16Val2, i16Val2, 2);
9733
9734 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0);
9735 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
9736
9737 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
9738 IEM_MC_MAYBE_RAISE_FPU_XCPT();
9739 IEM_MC_FETCH_MEM_I16(i16Val2, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
9740
9741 IEM_MC_PREPARE_FPU_USAGE();
9742 IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value1, 0)
9743 IEM_MC_CALL_FPU_AIMPL_3(iemAImpl_ficom_r80_by_i16, pu16Fsw, pr80Value1, pi16Val2);
9744 IEM_MC_UPDATE_FSW_WITH_MEM_OP_THEN_POP(u16Fsw, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
9745 IEM_MC_ELSE()
9746 IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP_THEN_POP(UINT8_MAX, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
9747 IEM_MC_ENDIF();
9748 IEM_MC_ADVANCE_RIP();
9749
9750 IEM_MC_END();
9751 return VINF_SUCCESS;
9752}
9753
9754
9755/** Opcode 0xde !11/4. */
9756FNIEMOP_DEF_1(iemOp_fisub_m16i, uint8_t, bRm)
9757{
9758 IEMOP_MNEMONIC(fisub_m16i, "fisub m16i");
9759 return FNIEMOP_CALL_2(iemOpHlpFpu_st0_m16i, bRm, iemAImpl_fisub_r80_by_i16);
9760}
9761
9762
9763/** Opcode 0xde !11/5. */
9764FNIEMOP_DEF_1(iemOp_fisubr_m16i, uint8_t, bRm)
9765{
9766 IEMOP_MNEMONIC(fisubr_m16i, "fisubr m16i");
9767 return FNIEMOP_CALL_2(iemOpHlpFpu_st0_m16i, bRm, iemAImpl_fisubr_r80_by_i16);
9768}
9769
9770
9771/** Opcode 0xde !11/6. */
9772FNIEMOP_DEF_1(iemOp_fidiv_m16i, uint8_t, bRm)
9773{
9774 IEMOP_MNEMONIC(fidiv_m16i, "fidiv m16i");
9775 return FNIEMOP_CALL_2(iemOpHlpFpu_st0_m16i, bRm, iemAImpl_fidiv_r80_by_i16);
9776}
9777
9778
9779/** Opcode 0xde !11/7. */
9780FNIEMOP_DEF_1(iemOp_fidivr_m16i, uint8_t, bRm)
9781{
9782 IEMOP_MNEMONIC(fidivr_m16i, "fidivr m16i");
9783 return FNIEMOP_CALL_2(iemOpHlpFpu_st0_m16i, bRm, iemAImpl_fidivr_r80_by_i16);
9784}
9785
9786
9787/**
9788 * @opcode 0xde
9789 */
9790FNIEMOP_DEF(iemOp_EscF6)
9791{
9792 uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm);
9793 pVCpu->iem.s.uFpuOpcode = RT_MAKE_U16(bRm, 0xde & 0x7);
9794 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
9795 {
9796 switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK)
9797 {
9798 case 0: return FNIEMOP_CALL_1(iemOp_faddp_stN_st0, bRm);
9799 case 1: return FNIEMOP_CALL_1(iemOp_fmulp_stN_st0, bRm);
9800 case 2: return FNIEMOP_CALL_1(iemOp_fcomp_stN, bRm);
9801 case 3: if (bRm == 0xd9)
9802 return FNIEMOP_CALL(iemOp_fcompp);
9803 return IEMOP_RAISE_INVALID_OPCODE();
9804 case 4: return FNIEMOP_CALL_1(iemOp_fsubrp_stN_st0, bRm);
9805 case 5: return FNIEMOP_CALL_1(iemOp_fsubp_stN_st0, bRm);
9806 case 6: return FNIEMOP_CALL_1(iemOp_fdivrp_stN_st0, bRm);
9807 case 7: return FNIEMOP_CALL_1(iemOp_fdivp_stN_st0, bRm);
9808 IEM_NOT_REACHED_DEFAULT_CASE_RET();
9809 }
9810 }
9811 else
9812 {
9813 switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK)
9814 {
9815 case 0: return FNIEMOP_CALL_1(iemOp_fiadd_m16i, bRm);
9816 case 1: return FNIEMOP_CALL_1(iemOp_fimul_m16i, bRm);
9817 case 2: return FNIEMOP_CALL_1(iemOp_ficom_m16i, bRm);
9818 case 3: return FNIEMOP_CALL_1(iemOp_ficomp_m16i, bRm);
9819 case 4: return FNIEMOP_CALL_1(iemOp_fisub_m16i, bRm);
9820 case 5: return FNIEMOP_CALL_1(iemOp_fisubr_m16i, bRm);
9821 case 6: return FNIEMOP_CALL_1(iemOp_fidiv_m16i, bRm);
9822 case 7: return FNIEMOP_CALL_1(iemOp_fidivr_m16i, bRm);
9823 IEM_NOT_REACHED_DEFAULT_CASE_RET();
9824 }
9825 }
9826}
9827
9828
9829/** Opcode 0xdf 11/0.
9830 * Undocument instruction, assumed to work like ffree + fincstp. */
9831FNIEMOP_DEF_1(iemOp_ffreep_stN, uint8_t, bRm)
9832{
9833 IEMOP_MNEMONIC(ffreep_stN, "ffreep stN");
9834 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
9835
9836 IEM_MC_BEGIN(0, 0);
9837
9838 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
9839 IEM_MC_MAYBE_RAISE_FPU_XCPT();
9840
9841 IEM_MC_ACTUALIZE_FPU_STATE_FOR_CHANGE();
9842 IEM_MC_FPU_STACK_FREE(bRm & X86_MODRM_RM_MASK);
9843 IEM_MC_FPU_STACK_INC_TOP();
9844 IEM_MC_UPDATE_FPU_OPCODE_IP();
9845
9846 IEM_MC_ADVANCE_RIP();
9847 IEM_MC_END();
9848 return VINF_SUCCESS;
9849}
9850
9851
9852/** Opcode 0xdf 0xe0. */
9853FNIEMOP_DEF(iemOp_fnstsw_ax)
9854{
9855 IEMOP_MNEMONIC(fnstsw_ax, "fnstsw ax");
9856 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
9857
9858 IEM_MC_BEGIN(0, 1);
9859 IEM_MC_LOCAL(uint16_t, u16Tmp);
9860 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
9861 IEM_MC_ACTUALIZE_FPU_STATE_FOR_READ();
9862 IEM_MC_FETCH_FSW(u16Tmp);
9863 IEM_MC_STORE_GREG_U16(X86_GREG_xAX, u16Tmp);
9864 IEM_MC_ADVANCE_RIP();
9865 IEM_MC_END();
9866 return VINF_SUCCESS;
9867}
9868
9869
9870/** Opcode 0xdf 11/5. */
9871FNIEMOP_DEF_1(iemOp_fucomip_st0_stN, uint8_t, bRm)
9872{
9873 IEMOP_MNEMONIC(fucomip_st0_stN, "fucomip st0,stN");
9874 return IEM_MC_DEFER_TO_CIMPL_3(iemCImpl_fcomi_fucomi, bRm & X86_MODRM_RM_MASK, iemAImpl_fcomi_r80_by_r80, true /*fPop*/);
9875}
9876
9877
9878/** Opcode 0xdf 11/6. */
9879FNIEMOP_DEF_1(iemOp_fcomip_st0_stN, uint8_t, bRm)
9880{
9881 IEMOP_MNEMONIC(fcomip_st0_stN, "fcomip st0,stN");
9882 return IEM_MC_DEFER_TO_CIMPL_3(iemCImpl_fcomi_fucomi, bRm & X86_MODRM_RM_MASK, iemAImpl_fcomi_r80_by_r80, true /*fPop*/);
9883}
9884
9885
9886/** Opcode 0xdf !11/0. */
9887FNIEMOP_DEF_1(iemOp_fild_m16i, uint8_t, bRm)
9888{
9889 IEMOP_MNEMONIC(fild_m16i, "fild m16i");
9890
9891 IEM_MC_BEGIN(2, 3);
9892 IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc);
9893 IEM_MC_LOCAL(IEMFPURESULT, FpuRes);
9894 IEM_MC_LOCAL(int16_t, i16Val);
9895 IEM_MC_ARG_LOCAL_REF(PIEMFPURESULT, pFpuRes, FpuRes, 0);
9896 IEM_MC_ARG_LOCAL_REF(int16_t const *, pi16Val, i16Val, 1);
9897
9898 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0);
9899 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
9900
9901 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
9902 IEM_MC_MAYBE_RAISE_FPU_XCPT();
9903 IEM_MC_FETCH_MEM_I16(i16Val, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
9904
9905 IEM_MC_PREPARE_FPU_USAGE();
9906 IEM_MC_IF_FPUREG_IS_EMPTY(7)
9907 IEM_MC_CALL_FPU_AIMPL_2(iemAImpl_fild_i16_to_r80, pFpuRes, pi16Val);
9908 IEM_MC_PUSH_FPU_RESULT_MEM_OP(FpuRes, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
9909 IEM_MC_ELSE()
9910 IEM_MC_FPU_STACK_PUSH_OVERFLOW_MEM_OP(pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
9911 IEM_MC_ENDIF();
9912 IEM_MC_ADVANCE_RIP();
9913
9914 IEM_MC_END();
9915 return VINF_SUCCESS;
9916}
9917
9918
9919/** Opcode 0xdf !11/1. */
9920FNIEMOP_DEF_1(iemOp_fisttp_m16i, uint8_t, bRm)
9921{
9922 IEMOP_MNEMONIC(fisttp_m16i, "fisttp m16i");
9923 IEM_MC_BEGIN(3, 2);
9924 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
9925 IEM_MC_LOCAL(uint16_t, u16Fsw);
9926 IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0);
9927 IEM_MC_ARG(int16_t *, pi16Dst, 1);
9928 IEM_MC_ARG(PCRTFLOAT80U, pr80Value, 2);
9929
9930 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
9931 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
9932 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
9933 IEM_MC_MAYBE_RAISE_FPU_XCPT();
9934
9935 IEM_MC_MEM_MAP(pi16Dst, IEM_ACCESS_DATA_W, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 1 /*arg*/);
9936 IEM_MC_PREPARE_FPU_USAGE();
9937 IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value, 0)
9938 IEM_MC_CALL_FPU_AIMPL_3(iemAImpl_fistt_r80_to_i16, pu16Fsw, pi16Dst, pr80Value);
9939 IEM_MC_MEM_COMMIT_AND_UNMAP_FOR_FPU_STORE(pi16Dst, IEM_ACCESS_DATA_W, u16Fsw);
9940 IEM_MC_UPDATE_FSW_WITH_MEM_OP_THEN_POP(u16Fsw, pVCpu->iem.s.iEffSeg, GCPtrEffDst);
9941 IEM_MC_ELSE()
9942 IEM_MC_IF_FCW_IM()
9943 IEM_MC_STORE_MEM_I16_CONST_BY_REF(pi16Dst, INT16_MIN /* (integer indefinite) */);
9944 IEM_MC_MEM_COMMIT_AND_UNMAP(pi16Dst, IEM_ACCESS_DATA_W);
9945 IEM_MC_ENDIF();
9946 IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP_THEN_POP(UINT8_MAX, pVCpu->iem.s.iEffSeg, GCPtrEffDst);
9947 IEM_MC_ENDIF();
9948 IEM_MC_ADVANCE_RIP();
9949
9950 IEM_MC_END();
9951 return VINF_SUCCESS;
9952}
9953
9954
9955/** Opcode 0xdf !11/2. */
9956FNIEMOP_DEF_1(iemOp_fist_m16i, uint8_t, bRm)
9957{
9958 IEMOP_MNEMONIC(fist_m16i, "fist m16i");
9959 IEM_MC_BEGIN(3, 2);
9960 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
9961 IEM_MC_LOCAL(uint16_t, u16Fsw);
9962 IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0);
9963 IEM_MC_ARG(int16_t *, pi16Dst, 1);
9964 IEM_MC_ARG(PCRTFLOAT80U, pr80Value, 2);
9965
9966 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
9967 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
9968 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
9969 IEM_MC_MAYBE_RAISE_FPU_XCPT();
9970
9971 IEM_MC_MEM_MAP(pi16Dst, IEM_ACCESS_DATA_W, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 1 /*arg*/);
9972 IEM_MC_PREPARE_FPU_USAGE();
9973 IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value, 0)
9974 IEM_MC_CALL_FPU_AIMPL_3(iemAImpl_fist_r80_to_i16, pu16Fsw, pi16Dst, pr80Value);
9975 IEM_MC_MEM_COMMIT_AND_UNMAP_FOR_FPU_STORE(pi16Dst, IEM_ACCESS_DATA_W, u16Fsw);
9976 IEM_MC_UPDATE_FSW_WITH_MEM_OP(u16Fsw, pVCpu->iem.s.iEffSeg, GCPtrEffDst);
9977 IEM_MC_ELSE()
9978 IEM_MC_IF_FCW_IM()
9979 IEM_MC_STORE_MEM_I16_CONST_BY_REF(pi16Dst, INT16_MIN /* (integer indefinite) */);
9980 IEM_MC_MEM_COMMIT_AND_UNMAP(pi16Dst, IEM_ACCESS_DATA_W);
9981 IEM_MC_ENDIF();
9982 IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP(UINT8_MAX, pVCpu->iem.s.iEffSeg, GCPtrEffDst);
9983 IEM_MC_ENDIF();
9984 IEM_MC_ADVANCE_RIP();
9985
9986 IEM_MC_END();
9987 return VINF_SUCCESS;
9988}
9989
9990
9991/** Opcode 0xdf !11/3. */
9992FNIEMOP_DEF_1(iemOp_fistp_m16i, uint8_t, bRm)
9993{
9994 IEMOP_MNEMONIC(fistp_m16i, "fistp m16i");
9995 IEM_MC_BEGIN(3, 2);
9996 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
9997 IEM_MC_LOCAL(uint16_t, u16Fsw);
9998 IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0);
9999 IEM_MC_ARG(int16_t *, pi16Dst, 1);
10000 IEM_MC_ARG(PCRTFLOAT80U, pr80Value, 2);
10001
10002 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
10003 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
10004 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
10005 IEM_MC_MAYBE_RAISE_FPU_XCPT();
10006
10007 IEM_MC_MEM_MAP(pi16Dst, IEM_ACCESS_DATA_W, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 1 /*arg*/);
10008 IEM_MC_PREPARE_FPU_USAGE();
10009 IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value, 0)
10010 IEM_MC_CALL_FPU_AIMPL_3(iemAImpl_fist_r80_to_i16, pu16Fsw, pi16Dst, pr80Value);
10011 IEM_MC_MEM_COMMIT_AND_UNMAP_FOR_FPU_STORE(pi16Dst, IEM_ACCESS_DATA_W, u16Fsw);
10012 IEM_MC_UPDATE_FSW_WITH_MEM_OP_THEN_POP(u16Fsw, pVCpu->iem.s.iEffSeg, GCPtrEffDst);
10013 IEM_MC_ELSE()
10014 IEM_MC_IF_FCW_IM()
10015 IEM_MC_STORE_MEM_I16_CONST_BY_REF(pi16Dst, INT16_MIN /* (integer indefinite) */);
10016 IEM_MC_MEM_COMMIT_AND_UNMAP(pi16Dst, IEM_ACCESS_DATA_W);
10017 IEM_MC_ENDIF();
10018 IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP_THEN_POP(UINT8_MAX, pVCpu->iem.s.iEffSeg, GCPtrEffDst);
10019 IEM_MC_ENDIF();
10020 IEM_MC_ADVANCE_RIP();
10021
10022 IEM_MC_END();
10023 return VINF_SUCCESS;
10024}
10025
10026
10027/** Opcode 0xdf !11/4. */
10028FNIEMOP_STUB_1(iemOp_fbld_m80d, uint8_t, bRm);
10029
10030
10031/** Opcode 0xdf !11/5. */
10032FNIEMOP_DEF_1(iemOp_fild_m64i, uint8_t, bRm)
10033{
10034 IEMOP_MNEMONIC(fild_m64i, "fild m64i");
10035
10036 IEM_MC_BEGIN(2, 3);
10037 IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc);
10038 IEM_MC_LOCAL(IEMFPURESULT, FpuRes);
10039 IEM_MC_LOCAL(int64_t, i64Val);
10040 IEM_MC_ARG_LOCAL_REF(PIEMFPURESULT, pFpuRes, FpuRes, 0);
10041 IEM_MC_ARG_LOCAL_REF(int64_t const *, pi64Val, i64Val, 1);
10042
10043 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0);
10044 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
10045
10046 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
10047 IEM_MC_MAYBE_RAISE_FPU_XCPT();
10048 IEM_MC_FETCH_MEM_I64(i64Val, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
10049
10050 IEM_MC_PREPARE_FPU_USAGE();
10051 IEM_MC_IF_FPUREG_IS_EMPTY(7)
10052 IEM_MC_CALL_FPU_AIMPL_2(iemAImpl_fild_i64_to_r80, pFpuRes, pi64Val);
10053 IEM_MC_PUSH_FPU_RESULT_MEM_OP(FpuRes, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
10054 IEM_MC_ELSE()
10055 IEM_MC_FPU_STACK_PUSH_OVERFLOW_MEM_OP(pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
10056 IEM_MC_ENDIF();
10057 IEM_MC_ADVANCE_RIP();
10058
10059 IEM_MC_END();
10060 return VINF_SUCCESS;
10061}
10062
10063
10064/** Opcode 0xdf !11/6. */
10065FNIEMOP_STUB_1(iemOp_fbstp_m80d, uint8_t, bRm);
10066
10067
10068/** Opcode 0xdf !11/7. */
10069FNIEMOP_DEF_1(iemOp_fistp_m64i, uint8_t, bRm)
10070{
10071 IEMOP_MNEMONIC(fistp_m64i, "fistp m64i");
10072 IEM_MC_BEGIN(3, 2);
10073 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
10074 IEM_MC_LOCAL(uint16_t, u16Fsw);
10075 IEM_MC_ARG_LOCAL_REF(uint16_t *, pu16Fsw, u16Fsw, 0);
10076 IEM_MC_ARG(int64_t *, pi64Dst, 1);
10077 IEM_MC_ARG(PCRTFLOAT80U, pr80Value, 2);
10078
10079 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
10080 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
10081 IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE();
10082 IEM_MC_MAYBE_RAISE_FPU_XCPT();
10083
10084 IEM_MC_MEM_MAP(pi64Dst, IEM_ACCESS_DATA_W, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 1 /*arg*/);
10085 IEM_MC_PREPARE_FPU_USAGE();
10086 IEM_MC_IF_FPUREG_NOT_EMPTY_REF_R80(pr80Value, 0)
10087 IEM_MC_CALL_FPU_AIMPL_3(iemAImpl_fist_r80_to_i64, pu16Fsw, pi64Dst, pr80Value);
10088 IEM_MC_MEM_COMMIT_AND_UNMAP_FOR_FPU_STORE(pi64Dst, IEM_ACCESS_DATA_W, u16Fsw);
10089 IEM_MC_UPDATE_FSW_WITH_MEM_OP_THEN_POP(u16Fsw, pVCpu->iem.s.iEffSeg, GCPtrEffDst);
10090 IEM_MC_ELSE()
10091 IEM_MC_IF_FCW_IM()
10092 IEM_MC_STORE_MEM_I64_CONST_BY_REF(pi64Dst, INT64_MIN /* (integer indefinite) */);
10093 IEM_MC_MEM_COMMIT_AND_UNMAP(pi64Dst, IEM_ACCESS_DATA_W);
10094 IEM_MC_ENDIF();
10095 IEM_MC_FPU_STACK_UNDERFLOW_MEM_OP_THEN_POP(UINT8_MAX, pVCpu->iem.s.iEffSeg, GCPtrEffDst);
10096 IEM_MC_ENDIF();
10097 IEM_MC_ADVANCE_RIP();
10098
10099 IEM_MC_END();
10100 return VINF_SUCCESS;
10101}
10102
10103
10104/**
10105 * @opcode 0xdf
10106 */
10107FNIEMOP_DEF(iemOp_EscF7)
10108{
10109 uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm);
10110 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
10111 {
10112 switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK)
10113 {
10114 case 0: return FNIEMOP_CALL_1(iemOp_ffreep_stN, bRm); /* ffree + pop afterwards, since forever according to AMD. */
10115 case 1: return FNIEMOP_CALL_1(iemOp_fxch_stN, bRm); /* Reserved, behaves like FXCH ST(i) on intel. */
10116 case 2: return FNIEMOP_CALL_1(iemOp_fstp_stN, bRm); /* Reserved, behaves like FSTP ST(i) on intel. */
10117 case 3: return FNIEMOP_CALL_1(iemOp_fstp_stN, bRm); /* Reserved, behaves like FSTP ST(i) on intel. */
10118 case 4: if (bRm == 0xe0)
10119 return FNIEMOP_CALL(iemOp_fnstsw_ax);
10120 return IEMOP_RAISE_INVALID_OPCODE();
10121 case 5: return FNIEMOP_CALL_1(iemOp_fucomip_st0_stN, bRm);
10122 case 6: return FNIEMOP_CALL_1(iemOp_fcomip_st0_stN, bRm);
10123 case 7: return IEMOP_RAISE_INVALID_OPCODE();
10124 IEM_NOT_REACHED_DEFAULT_CASE_RET();
10125 }
10126 }
10127 else
10128 {
10129 switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK)
10130 {
10131 case 0: return FNIEMOP_CALL_1(iemOp_fild_m16i, bRm);
10132 case 1: return FNIEMOP_CALL_1(iemOp_fisttp_m16i, bRm);
10133 case 2: return FNIEMOP_CALL_1(iemOp_fist_m16i, bRm);
10134 case 3: return FNIEMOP_CALL_1(iemOp_fistp_m16i, bRm);
10135 case 4: return FNIEMOP_CALL_1(iemOp_fbld_m80d, bRm);
10136 case 5: return FNIEMOP_CALL_1(iemOp_fild_m64i, bRm);
10137 case 6: return FNIEMOP_CALL_1(iemOp_fbstp_m80d, bRm);
10138 case 7: return FNIEMOP_CALL_1(iemOp_fistp_m64i, bRm);
10139 IEM_NOT_REACHED_DEFAULT_CASE_RET();
10140 }
10141 }
10142}
10143
10144
10145/**
10146 * @opcode 0xe0
10147 */
10148FNIEMOP_DEF(iemOp_loopne_Jb)
10149{
10150 IEMOP_MNEMONIC(loopne_Jb, "loopne Jb");
10151 int8_t i8Imm; IEM_OPCODE_GET_NEXT_S8(&i8Imm);
10152 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
10153 IEMOP_HLP_DEFAULT_64BIT_OP_SIZE();
10154
10155 switch (pVCpu->iem.s.enmEffAddrMode)
10156 {
10157 case IEMMODE_16BIT:
10158 IEM_MC_BEGIN(0,0);
10159 IEM_MC_SUB_GREG_U16(X86_GREG_xCX, 1);
10160 IEM_MC_IF_CX_IS_NZ_AND_EFL_BIT_NOT_SET(X86_EFL_ZF) {
10161 IEM_MC_REL_JMP_S8(i8Imm);
10162 } IEM_MC_ELSE() {
10163 IEM_MC_ADVANCE_RIP();
10164 } IEM_MC_ENDIF();
10165 IEM_MC_END();
10166 return VINF_SUCCESS;
10167
10168 case IEMMODE_32BIT:
10169 IEM_MC_BEGIN(0,0);
10170 IEM_MC_SUB_GREG_U32(X86_GREG_xCX, 1);
10171 IEM_MC_IF_ECX_IS_NZ_AND_EFL_BIT_NOT_SET(X86_EFL_ZF) {
10172 IEM_MC_REL_JMP_S8(i8Imm);
10173 } IEM_MC_ELSE() {
10174 IEM_MC_ADVANCE_RIP();
10175 } IEM_MC_ENDIF();
10176 IEM_MC_END();
10177 return VINF_SUCCESS;
10178
10179 case IEMMODE_64BIT:
10180 IEM_MC_BEGIN(0,0);
10181 IEM_MC_SUB_GREG_U64(X86_GREG_xCX, 1);
10182 IEM_MC_IF_RCX_IS_NZ_AND_EFL_BIT_NOT_SET(X86_EFL_ZF) {
10183 IEM_MC_REL_JMP_S8(i8Imm);
10184 } IEM_MC_ELSE() {
10185 IEM_MC_ADVANCE_RIP();
10186 } IEM_MC_ENDIF();
10187 IEM_MC_END();
10188 return VINF_SUCCESS;
10189
10190 IEM_NOT_REACHED_DEFAULT_CASE_RET();
10191 }
10192}
10193
10194
10195/**
10196 * @opcode 0xe1
10197 */
10198FNIEMOP_DEF(iemOp_loope_Jb)
10199{
10200 IEMOP_MNEMONIC(loope_Jb, "loope Jb");
10201 int8_t i8Imm; IEM_OPCODE_GET_NEXT_S8(&i8Imm);
10202 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
10203 IEMOP_HLP_DEFAULT_64BIT_OP_SIZE();
10204
10205 switch (pVCpu->iem.s.enmEffAddrMode)
10206 {
10207 case IEMMODE_16BIT:
10208 IEM_MC_BEGIN(0,0);
10209 IEM_MC_SUB_GREG_U16(X86_GREG_xCX, 1);
10210 IEM_MC_IF_CX_IS_NZ_AND_EFL_BIT_SET(X86_EFL_ZF) {
10211 IEM_MC_REL_JMP_S8(i8Imm);
10212 } IEM_MC_ELSE() {
10213 IEM_MC_ADVANCE_RIP();
10214 } IEM_MC_ENDIF();
10215 IEM_MC_END();
10216 return VINF_SUCCESS;
10217
10218 case IEMMODE_32BIT:
10219 IEM_MC_BEGIN(0,0);
10220 IEM_MC_SUB_GREG_U32(X86_GREG_xCX, 1);
10221 IEM_MC_IF_ECX_IS_NZ_AND_EFL_BIT_SET(X86_EFL_ZF) {
10222 IEM_MC_REL_JMP_S8(i8Imm);
10223 } IEM_MC_ELSE() {
10224 IEM_MC_ADVANCE_RIP();
10225 } IEM_MC_ENDIF();
10226 IEM_MC_END();
10227 return VINF_SUCCESS;
10228
10229 case IEMMODE_64BIT:
10230 IEM_MC_BEGIN(0,0);
10231 IEM_MC_SUB_GREG_U64(X86_GREG_xCX, 1);
10232 IEM_MC_IF_RCX_IS_NZ_AND_EFL_BIT_SET(X86_EFL_ZF) {
10233 IEM_MC_REL_JMP_S8(i8Imm);
10234 } IEM_MC_ELSE() {
10235 IEM_MC_ADVANCE_RIP();
10236 } IEM_MC_ENDIF();
10237 IEM_MC_END();
10238 return VINF_SUCCESS;
10239
10240 IEM_NOT_REACHED_DEFAULT_CASE_RET();
10241 }
10242}
10243
10244
10245/**
10246 * @opcode 0xe2
10247 */
10248FNIEMOP_DEF(iemOp_loop_Jb)
10249{
10250 IEMOP_MNEMONIC(loop_Jb, "loop Jb");
10251 int8_t i8Imm; IEM_OPCODE_GET_NEXT_S8(&i8Imm);
10252 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
10253 IEMOP_HLP_DEFAULT_64BIT_OP_SIZE();
10254
10255 /** @todo Check out the #GP case if EIP < CS.Base or EIP > CS.Limit when
10256 * using the 32-bit operand size override. How can that be restarted? See
10257 * weird pseudo code in intel manual. */
10258 switch (pVCpu->iem.s.enmEffAddrMode)
10259 {
10260 case IEMMODE_16BIT:
10261 IEM_MC_BEGIN(0,0);
10262 if (-(int8_t)IEM_GET_INSTR_LEN(pVCpu) != i8Imm)
10263 {
10264 IEM_MC_SUB_GREG_U16(X86_GREG_xCX, 1);
10265 IEM_MC_IF_CX_IS_NZ() {
10266 IEM_MC_REL_JMP_S8(i8Imm);
10267 } IEM_MC_ELSE() {
10268 IEM_MC_ADVANCE_RIP();
10269 } IEM_MC_ENDIF();
10270 }
10271 else
10272 {
10273 IEM_MC_STORE_GREG_U16_CONST(X86_GREG_xCX, 0);
10274 IEM_MC_ADVANCE_RIP();
10275 }
10276 IEM_MC_END();
10277 return VINF_SUCCESS;
10278
10279 case IEMMODE_32BIT:
10280 IEM_MC_BEGIN(0,0);
10281 if (-(int8_t)IEM_GET_INSTR_LEN(pVCpu) != i8Imm)
10282 {
10283 IEM_MC_SUB_GREG_U32(X86_GREG_xCX, 1);
10284 IEM_MC_IF_ECX_IS_NZ() {
10285 IEM_MC_REL_JMP_S8(i8Imm);
10286 } IEM_MC_ELSE() {
10287 IEM_MC_ADVANCE_RIP();
10288 } IEM_MC_ENDIF();
10289 }
10290 else
10291 {
10292 IEM_MC_STORE_GREG_U32_CONST(X86_GREG_xCX, 0);
10293 IEM_MC_ADVANCE_RIP();
10294 }
10295 IEM_MC_END();
10296 return VINF_SUCCESS;
10297
10298 case IEMMODE_64BIT:
10299 IEM_MC_BEGIN(0,0);
10300 if (-(int8_t)IEM_GET_INSTR_LEN(pVCpu) != i8Imm)
10301 {
10302 IEM_MC_SUB_GREG_U64(X86_GREG_xCX, 1);
10303 IEM_MC_IF_RCX_IS_NZ() {
10304 IEM_MC_REL_JMP_S8(i8Imm);
10305 } IEM_MC_ELSE() {
10306 IEM_MC_ADVANCE_RIP();
10307 } IEM_MC_ENDIF();
10308 }
10309 else
10310 {
10311 IEM_MC_STORE_GREG_U64_CONST(X86_GREG_xCX, 0);
10312 IEM_MC_ADVANCE_RIP();
10313 }
10314 IEM_MC_END();
10315 return VINF_SUCCESS;
10316
10317 IEM_NOT_REACHED_DEFAULT_CASE_RET();
10318 }
10319}
10320
10321
10322/**
10323 * @opcode 0xe3
10324 */
10325FNIEMOP_DEF(iemOp_jecxz_Jb)
10326{
10327 IEMOP_MNEMONIC(jecxz_Jb, "jecxz Jb");
10328 int8_t i8Imm; IEM_OPCODE_GET_NEXT_S8(&i8Imm);
10329 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
10330 IEMOP_HLP_DEFAULT_64BIT_OP_SIZE();
10331
10332 switch (pVCpu->iem.s.enmEffAddrMode)
10333 {
10334 case IEMMODE_16BIT:
10335 IEM_MC_BEGIN(0,0);
10336 IEM_MC_IF_CX_IS_NZ() {
10337 IEM_MC_ADVANCE_RIP();
10338 } IEM_MC_ELSE() {
10339 IEM_MC_REL_JMP_S8(i8Imm);
10340 } IEM_MC_ENDIF();
10341 IEM_MC_END();
10342 return VINF_SUCCESS;
10343
10344 case IEMMODE_32BIT:
10345 IEM_MC_BEGIN(0,0);
10346 IEM_MC_IF_ECX_IS_NZ() {
10347 IEM_MC_ADVANCE_RIP();
10348 } IEM_MC_ELSE() {
10349 IEM_MC_REL_JMP_S8(i8Imm);
10350 } IEM_MC_ENDIF();
10351 IEM_MC_END();
10352 return VINF_SUCCESS;
10353
10354 case IEMMODE_64BIT:
10355 IEM_MC_BEGIN(0,0);
10356 IEM_MC_IF_RCX_IS_NZ() {
10357 IEM_MC_ADVANCE_RIP();
10358 } IEM_MC_ELSE() {
10359 IEM_MC_REL_JMP_S8(i8Imm);
10360 } IEM_MC_ENDIF();
10361 IEM_MC_END();
10362 return VINF_SUCCESS;
10363
10364 IEM_NOT_REACHED_DEFAULT_CASE_RET();
10365 }
10366}
10367
10368
10369/** Opcode 0xe4 */
10370FNIEMOP_DEF(iemOp_in_AL_Ib)
10371{
10372 IEMOP_MNEMONIC(in_AL_Ib, "in AL,Ib");
10373 uint8_t u8Imm; IEM_OPCODE_GET_NEXT_U8(&u8Imm);
10374 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
10375 return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_in, u8Imm, 1);
10376}
10377
10378
10379/** Opcode 0xe5 */
10380FNIEMOP_DEF(iemOp_in_eAX_Ib)
10381{
10382 IEMOP_MNEMONIC(in_eAX_Ib, "in eAX,Ib");
10383 uint8_t u8Imm; IEM_OPCODE_GET_NEXT_U8(&u8Imm);
10384 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
10385 return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_in, u8Imm, pVCpu->iem.s.enmEffOpSize == IEMMODE_16BIT ? 2 : 4);
10386}
10387
10388
10389/** Opcode 0xe6 */
10390FNIEMOP_DEF(iemOp_out_Ib_AL)
10391{
10392 IEMOP_MNEMONIC(out_Ib_AL, "out Ib,AL");
10393 uint8_t u8Imm; IEM_OPCODE_GET_NEXT_U8(&u8Imm);
10394 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
10395 return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_out, u8Imm, 1);
10396}
10397
10398
10399/** Opcode 0xe7 */
10400FNIEMOP_DEF(iemOp_out_Ib_eAX)
10401{
10402 IEMOP_MNEMONIC(out_Ib_eAX, "out Ib,eAX");
10403 uint8_t u8Imm; IEM_OPCODE_GET_NEXT_U8(&u8Imm);
10404 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
10405 return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_out, u8Imm, pVCpu->iem.s.enmEffOpSize == IEMMODE_16BIT ? 2 : 4);
10406}
10407
10408
10409/**
10410 * @opcode 0xe8
10411 */
10412FNIEMOP_DEF(iemOp_call_Jv)
10413{
10414 IEMOP_MNEMONIC(call_Jv, "call Jv");
10415 IEMOP_HLP_DEFAULT_64BIT_OP_SIZE();
10416 switch (pVCpu->iem.s.enmEffOpSize)
10417 {
10418 case IEMMODE_16BIT:
10419 {
10420 uint16_t u16Imm; IEM_OPCODE_GET_NEXT_U16(&u16Imm);
10421 return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_call_rel_16, (int16_t)u16Imm);
10422 }
10423
10424 case IEMMODE_32BIT:
10425 {
10426 uint32_t u32Imm; IEM_OPCODE_GET_NEXT_U32(&u32Imm);
10427 return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_call_rel_32, (int32_t)u32Imm);
10428 }
10429
10430 case IEMMODE_64BIT:
10431 {
10432 uint64_t u64Imm; IEM_OPCODE_GET_NEXT_S32_SX_U64(&u64Imm);
10433 return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_call_rel_64, u64Imm);
10434 }
10435
10436 IEM_NOT_REACHED_DEFAULT_CASE_RET();
10437 }
10438}
10439
10440
10441/**
10442 * @opcode 0xe9
10443 */
10444FNIEMOP_DEF(iemOp_jmp_Jv)
10445{
10446 IEMOP_MNEMONIC(jmp_Jv, "jmp Jv");
10447 IEMOP_HLP_DEFAULT_64BIT_OP_SIZE();
10448 switch (pVCpu->iem.s.enmEffOpSize)
10449 {
10450 case IEMMODE_16BIT:
10451 {
10452 int16_t i16Imm; IEM_OPCODE_GET_NEXT_S16(&i16Imm);
10453 IEM_MC_BEGIN(0, 0);
10454 IEM_MC_REL_JMP_S16(i16Imm);
10455 IEM_MC_END();
10456 return VINF_SUCCESS;
10457 }
10458
10459 case IEMMODE_64BIT:
10460 case IEMMODE_32BIT:
10461 {
10462 int32_t i32Imm; IEM_OPCODE_GET_NEXT_S32(&i32Imm);
10463 IEM_MC_BEGIN(0, 0);
10464 IEM_MC_REL_JMP_S32(i32Imm);
10465 IEM_MC_END();
10466 return VINF_SUCCESS;
10467 }
10468
10469 IEM_NOT_REACHED_DEFAULT_CASE_RET();
10470 }
10471}
10472
10473
10474/**
10475 * @opcode 0xea
10476 */
10477FNIEMOP_DEF(iemOp_jmp_Ap)
10478{
10479 IEMOP_MNEMONIC(jmp_Ap, "jmp Ap");
10480 IEMOP_HLP_NO_64BIT();
10481
10482 /* Decode the far pointer address and pass it on to the far call C implementation. */
10483 uint32_t offSeg;
10484 if (pVCpu->iem.s.enmEffOpSize != IEMMODE_16BIT)
10485 IEM_OPCODE_GET_NEXT_U32(&offSeg);
10486 else
10487 IEM_OPCODE_GET_NEXT_U16_ZX_U32(&offSeg);
10488 uint16_t uSel; IEM_OPCODE_GET_NEXT_U16(&uSel);
10489 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
10490 return IEM_MC_DEFER_TO_CIMPL_3(iemCImpl_FarJmp, uSel, offSeg, pVCpu->iem.s.enmEffOpSize);
10491}
10492
10493
10494/**
10495 * @opcode 0xeb
10496 */
10497FNIEMOP_DEF(iemOp_jmp_Jb)
10498{
10499 IEMOP_MNEMONIC(jmp_Jb, "jmp Jb");
10500 int8_t i8Imm; IEM_OPCODE_GET_NEXT_S8(&i8Imm);
10501 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
10502 IEMOP_HLP_DEFAULT_64BIT_OP_SIZE();
10503
10504 IEM_MC_BEGIN(0, 0);
10505 IEM_MC_REL_JMP_S8(i8Imm);
10506 IEM_MC_END();
10507 return VINF_SUCCESS;
10508}
10509
10510
10511/** Opcode 0xec */
10512FNIEMOP_DEF(iemOp_in_AL_DX)
10513{
10514 IEMOP_MNEMONIC(in_AL_DX, "in AL,DX");
10515 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
10516 return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_in_eAX_DX, 1);
10517}
10518
10519
10520/** Opcode 0xed */
10521FNIEMOP_DEF(iemOp_eAX_DX)
10522{
10523 IEMOP_MNEMONIC(in_eAX_DX, "in eAX,DX");
10524 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
10525 return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_in_eAX_DX, pVCpu->iem.s.enmEffOpSize == IEMMODE_16BIT ? 2 : 4);
10526}
10527
10528
10529/** Opcode 0xee */
10530FNIEMOP_DEF(iemOp_out_DX_AL)
10531{
10532 IEMOP_MNEMONIC(out_DX_AL, "out DX,AL");
10533 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
10534 return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_out_DX_eAX, 1);
10535}
10536
10537
10538/** Opcode 0xef */
10539FNIEMOP_DEF(iemOp_out_DX_eAX)
10540{
10541 IEMOP_MNEMONIC(out_DX_eAX, "out DX,eAX");
10542 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
10543 return IEM_MC_DEFER_TO_CIMPL_1(iemCImpl_out_DX_eAX, pVCpu->iem.s.enmEffOpSize == IEMMODE_16BIT ? 2 : 4);
10544}
10545
10546
10547/**
10548 * @opcode 0xf0
10549 */
10550FNIEMOP_DEF(iemOp_lock)
10551{
10552 IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("lock");
10553 pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_LOCK;
10554
10555 uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b);
10556 return FNIEMOP_CALL(g_apfnOneByteMap[b]);
10557}
10558
10559
10560/**
10561 * @opcode 0xf1
10562 */
10563FNIEMOP_DEF(iemOp_int1)
10564{
10565 IEMOP_MNEMONIC(int1, "int1"); /* icebp */
10566 IEMOP_HLP_MIN_386(); /** @todo does not generate #UD on 286, or so they say... */
10567 /** @todo testcase! */
10568 return IEM_MC_DEFER_TO_CIMPL_2(iemCImpl_int, X86_XCPT_DB, false /*fIsBpInstr*/);
10569}
10570
10571
10572/**
10573 * @opcode 0xf2
10574 */
10575FNIEMOP_DEF(iemOp_repne)
10576{
10577 /* This overrides any previous REPE prefix. */
10578 pVCpu->iem.s.fPrefixes &= ~IEM_OP_PRF_REPZ;
10579 IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("repne");
10580 pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_REPNZ;
10581
10582 /* For the 4 entry opcode tables, REPNZ overrides any previous
10583 REPZ and operand size prefixes. */
10584 pVCpu->iem.s.idxPrefix = 3;
10585
10586 uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b);
10587 return FNIEMOP_CALL(g_apfnOneByteMap[b]);
10588}
10589
10590
10591/**
10592 * @opcode 0xf3
10593 */
10594FNIEMOP_DEF(iemOp_repe)
10595{
10596 /* This overrides any previous REPNE prefix. */
10597 pVCpu->iem.s.fPrefixes &= ~IEM_OP_PRF_REPNZ;
10598 IEMOP_HLP_CLEAR_REX_NOT_BEFORE_OPCODE("repe");
10599 pVCpu->iem.s.fPrefixes |= IEM_OP_PRF_REPZ;
10600
10601 /* For the 4 entry opcode tables, REPNZ overrides any previous
10602 REPNZ and operand size prefixes. */
10603 pVCpu->iem.s.idxPrefix = 2;
10604
10605 uint8_t b; IEM_OPCODE_GET_NEXT_U8(&b);
10606 return FNIEMOP_CALL(g_apfnOneByteMap[b]);
10607}
10608
10609
10610/**
10611 * @opcode 0xf4
10612 */
10613FNIEMOP_DEF(iemOp_hlt)
10614{
10615 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
10616 return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_hlt);
10617}
10618
10619
10620/**
10621 * @opcode 0xf5
10622 */
10623FNIEMOP_DEF(iemOp_cmc)
10624{
10625 IEMOP_MNEMONIC(cmc, "cmc");
10626 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
10627 IEM_MC_BEGIN(0, 0);
10628 IEM_MC_FLIP_EFL_BIT(X86_EFL_CF);
10629 IEM_MC_ADVANCE_RIP();
10630 IEM_MC_END();
10631 return VINF_SUCCESS;
10632}
10633
10634
10635/**
10636 * Common implementation of 'inc/dec/not/neg Eb'.
10637 *
10638 * @param bRm The RM byte.
10639 * @param pImpl The instruction implementation.
10640 */
10641FNIEMOP_DEF_2(iemOpCommonUnaryEb, uint8_t, bRm, PCIEMOPUNARYSIZES, pImpl)
10642{
10643 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
10644 {
10645 /* register access */
10646 IEM_MC_BEGIN(2, 0);
10647 IEM_MC_ARG(uint8_t *, pu8Dst, 0);
10648 IEM_MC_ARG(uint32_t *, pEFlags, 1);
10649 IEM_MC_REF_GREG_U8(pu8Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
10650 IEM_MC_REF_EFLAGS(pEFlags);
10651 IEM_MC_CALL_VOID_AIMPL_2(pImpl->pfnNormalU8, pu8Dst, pEFlags);
10652 IEM_MC_ADVANCE_RIP();
10653 IEM_MC_END();
10654 }
10655 else
10656 {
10657 /* memory access. */
10658 IEM_MC_BEGIN(2, 2);
10659 IEM_MC_ARG(uint8_t *, pu8Dst, 0);
10660 IEM_MC_ARG_LOCAL_EFLAGS( pEFlags, EFlags, 1);
10661 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
10662
10663 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
10664 IEM_MC_MEM_MAP(pu8Dst, IEM_ACCESS_DATA_RW, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/);
10665 IEM_MC_FETCH_EFLAGS(EFlags);
10666 if (!(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_LOCK))
10667 IEM_MC_CALL_VOID_AIMPL_2(pImpl->pfnNormalU8, pu8Dst, pEFlags);
10668 else
10669 IEM_MC_CALL_VOID_AIMPL_2(pImpl->pfnLockedU8, pu8Dst, pEFlags);
10670
10671 IEM_MC_MEM_COMMIT_AND_UNMAP(pu8Dst, IEM_ACCESS_DATA_RW);
10672 IEM_MC_COMMIT_EFLAGS(EFlags);
10673 IEM_MC_ADVANCE_RIP();
10674 IEM_MC_END();
10675 }
10676 return VINF_SUCCESS;
10677}
10678
10679
10680/**
10681 * Common implementation of 'inc/dec/not/neg Ev'.
10682 *
10683 * @param bRm The RM byte.
10684 * @param pImpl The instruction implementation.
10685 */
10686FNIEMOP_DEF_2(iemOpCommonUnaryEv, uint8_t, bRm, PCIEMOPUNARYSIZES, pImpl)
10687{
10688 /* Registers are handled by a common worker. */
10689 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
10690 return FNIEMOP_CALL_2(iemOpCommonUnaryGReg, pImpl, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
10691
10692 /* Memory we do here. */
10693 switch (pVCpu->iem.s.enmEffOpSize)
10694 {
10695 case IEMMODE_16BIT:
10696 IEM_MC_BEGIN(2, 2);
10697 IEM_MC_ARG(uint16_t *, pu16Dst, 0);
10698 IEM_MC_ARG_LOCAL_EFLAGS( pEFlags, EFlags, 1);
10699 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
10700
10701 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
10702 IEM_MC_MEM_MAP(pu16Dst, IEM_ACCESS_DATA_RW, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/);
10703 IEM_MC_FETCH_EFLAGS(EFlags);
10704 if (!(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_LOCK))
10705 IEM_MC_CALL_VOID_AIMPL_2(pImpl->pfnNormalU16, pu16Dst, pEFlags);
10706 else
10707 IEM_MC_CALL_VOID_AIMPL_2(pImpl->pfnLockedU16, pu16Dst, pEFlags);
10708
10709 IEM_MC_MEM_COMMIT_AND_UNMAP(pu16Dst, IEM_ACCESS_DATA_RW);
10710 IEM_MC_COMMIT_EFLAGS(EFlags);
10711 IEM_MC_ADVANCE_RIP();
10712 IEM_MC_END();
10713 return VINF_SUCCESS;
10714
10715 case IEMMODE_32BIT:
10716 IEM_MC_BEGIN(2, 2);
10717 IEM_MC_ARG(uint32_t *, pu32Dst, 0);
10718 IEM_MC_ARG_LOCAL_EFLAGS( pEFlags, EFlags, 1);
10719 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
10720
10721 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
10722 IEM_MC_MEM_MAP(pu32Dst, IEM_ACCESS_DATA_RW, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/);
10723 IEM_MC_FETCH_EFLAGS(EFlags);
10724 if (!(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_LOCK))
10725 IEM_MC_CALL_VOID_AIMPL_2(pImpl->pfnNormalU32, pu32Dst, pEFlags);
10726 else
10727 IEM_MC_CALL_VOID_AIMPL_2(pImpl->pfnLockedU32, pu32Dst, pEFlags);
10728
10729 IEM_MC_MEM_COMMIT_AND_UNMAP(pu32Dst, IEM_ACCESS_DATA_RW);
10730 IEM_MC_COMMIT_EFLAGS(EFlags);
10731 IEM_MC_ADVANCE_RIP();
10732 IEM_MC_END();
10733 return VINF_SUCCESS;
10734
10735 case IEMMODE_64BIT:
10736 IEM_MC_BEGIN(2, 2);
10737 IEM_MC_ARG(uint64_t *, pu64Dst, 0);
10738 IEM_MC_ARG_LOCAL_EFLAGS( pEFlags, EFlags, 1);
10739 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
10740
10741 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
10742 IEM_MC_MEM_MAP(pu64Dst, IEM_ACCESS_DATA_RW, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/);
10743 IEM_MC_FETCH_EFLAGS(EFlags);
10744 if (!(pVCpu->iem.s.fPrefixes & IEM_OP_PRF_LOCK))
10745 IEM_MC_CALL_VOID_AIMPL_2(pImpl->pfnNormalU64, pu64Dst, pEFlags);
10746 else
10747 IEM_MC_CALL_VOID_AIMPL_2(pImpl->pfnLockedU64, pu64Dst, pEFlags);
10748
10749 IEM_MC_MEM_COMMIT_AND_UNMAP(pu64Dst, IEM_ACCESS_DATA_RW);
10750 IEM_MC_COMMIT_EFLAGS(EFlags);
10751 IEM_MC_ADVANCE_RIP();
10752 IEM_MC_END();
10753 return VINF_SUCCESS;
10754
10755 IEM_NOT_REACHED_DEFAULT_CASE_RET();
10756 }
10757}
10758
10759
10760/** Opcode 0xf6 /0. */
10761FNIEMOP_DEF_1(iemOp_grp3_test_Eb, uint8_t, bRm)
10762{
10763 IEMOP_MNEMONIC(test_Eb_Ib, "test Eb,Ib");
10764 IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF);
10765
10766 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
10767 {
10768 /* register access */
10769 uint8_t u8Imm; IEM_OPCODE_GET_NEXT_U8(&u8Imm);
10770 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
10771
10772 IEM_MC_BEGIN(3, 0);
10773 IEM_MC_ARG(uint8_t *, pu8Dst, 0);
10774 IEM_MC_ARG_CONST(uint8_t, u8Src,/*=*/u8Imm, 1);
10775 IEM_MC_ARG(uint32_t *, pEFlags, 2);
10776 IEM_MC_REF_GREG_U8(pu8Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
10777 IEM_MC_REF_EFLAGS(pEFlags);
10778 IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_test_u8, pu8Dst, u8Src, pEFlags);
10779 IEM_MC_ADVANCE_RIP();
10780 IEM_MC_END();
10781 }
10782 else
10783 {
10784 /* memory access. */
10785 IEM_MC_BEGIN(3, 2);
10786 IEM_MC_ARG(uint8_t *, pu8Dst, 0);
10787 IEM_MC_ARG(uint8_t, u8Src, 1);
10788 IEM_MC_ARG_LOCAL_EFLAGS( pEFlags, EFlags, 2);
10789 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
10790
10791 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 1);
10792 uint8_t u8Imm; IEM_OPCODE_GET_NEXT_U8(&u8Imm);
10793 IEM_MC_ASSIGN(u8Src, u8Imm);
10794 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
10795 IEM_MC_MEM_MAP(pu8Dst, IEM_ACCESS_DATA_R, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/);
10796 IEM_MC_FETCH_EFLAGS(EFlags);
10797 IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_test_u8, pu8Dst, u8Src, pEFlags);
10798
10799 IEM_MC_MEM_COMMIT_AND_UNMAP(pu8Dst, IEM_ACCESS_DATA_R);
10800 IEM_MC_COMMIT_EFLAGS(EFlags);
10801 IEM_MC_ADVANCE_RIP();
10802 IEM_MC_END();
10803 }
10804 return VINF_SUCCESS;
10805}
10806
10807
10808/** Opcode 0xf7 /0. */
10809FNIEMOP_DEF_1(iemOp_grp3_test_Ev, uint8_t, bRm)
10810{
10811 IEMOP_MNEMONIC(test_Ev_Iv, "test Ev,Iv");
10812 IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_AF);
10813
10814 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
10815 {
10816 /* register access */
10817 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
10818 switch (pVCpu->iem.s.enmEffOpSize)
10819 {
10820 case IEMMODE_16BIT:
10821 {
10822 uint16_t u16Imm; IEM_OPCODE_GET_NEXT_U16(&u16Imm);
10823 IEM_MC_BEGIN(3, 0);
10824 IEM_MC_ARG(uint16_t *, pu16Dst, 0);
10825 IEM_MC_ARG_CONST(uint16_t, u16Src,/*=*/u16Imm, 1);
10826 IEM_MC_ARG(uint32_t *, pEFlags, 2);
10827 IEM_MC_REF_GREG_U16(pu16Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
10828 IEM_MC_REF_EFLAGS(pEFlags);
10829 IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_test_u16, pu16Dst, u16Src, pEFlags);
10830 IEM_MC_ADVANCE_RIP();
10831 IEM_MC_END();
10832 return VINF_SUCCESS;
10833 }
10834
10835 case IEMMODE_32BIT:
10836 {
10837 uint32_t u32Imm; IEM_OPCODE_GET_NEXT_U32(&u32Imm);
10838 IEM_MC_BEGIN(3, 0);
10839 IEM_MC_ARG(uint32_t *, pu32Dst, 0);
10840 IEM_MC_ARG_CONST(uint32_t, u32Src,/*=*/u32Imm, 1);
10841 IEM_MC_ARG(uint32_t *, pEFlags, 2);
10842 IEM_MC_REF_GREG_U32(pu32Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
10843 IEM_MC_REF_EFLAGS(pEFlags);
10844 IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_test_u32, pu32Dst, u32Src, pEFlags);
10845 /* No clearing the high dword here - test doesn't write back the result. */
10846 IEM_MC_ADVANCE_RIP();
10847 IEM_MC_END();
10848 return VINF_SUCCESS;
10849 }
10850
10851 case IEMMODE_64BIT:
10852 {
10853 uint64_t u64Imm; IEM_OPCODE_GET_NEXT_S32_SX_U64(&u64Imm);
10854 IEM_MC_BEGIN(3, 0);
10855 IEM_MC_ARG(uint64_t *, pu64Dst, 0);
10856 IEM_MC_ARG_CONST(uint64_t, u64Src,/*=*/u64Imm, 1);
10857 IEM_MC_ARG(uint32_t *, pEFlags, 2);
10858 IEM_MC_REF_GREG_U64(pu64Dst, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
10859 IEM_MC_REF_EFLAGS(pEFlags);
10860 IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_test_u64, pu64Dst, u64Src, pEFlags);
10861 IEM_MC_ADVANCE_RIP();
10862 IEM_MC_END();
10863 return VINF_SUCCESS;
10864 }
10865
10866 IEM_NOT_REACHED_DEFAULT_CASE_RET();
10867 }
10868 }
10869 else
10870 {
10871 /* memory access. */
10872 switch (pVCpu->iem.s.enmEffOpSize)
10873 {
10874 case IEMMODE_16BIT:
10875 {
10876 IEM_MC_BEGIN(3, 2);
10877 IEM_MC_ARG(uint16_t *, pu16Dst, 0);
10878 IEM_MC_ARG(uint16_t, u16Src, 1);
10879 IEM_MC_ARG_LOCAL_EFLAGS( pEFlags, EFlags, 2);
10880 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
10881
10882 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 2);
10883 uint16_t u16Imm; IEM_OPCODE_GET_NEXT_U16(&u16Imm);
10884 IEM_MC_ASSIGN(u16Src, u16Imm);
10885 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
10886 IEM_MC_MEM_MAP(pu16Dst, IEM_ACCESS_DATA_R, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/);
10887 IEM_MC_FETCH_EFLAGS(EFlags);
10888 IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_test_u16, pu16Dst, u16Src, pEFlags);
10889
10890 IEM_MC_MEM_COMMIT_AND_UNMAP(pu16Dst, IEM_ACCESS_DATA_R);
10891 IEM_MC_COMMIT_EFLAGS(EFlags);
10892 IEM_MC_ADVANCE_RIP();
10893 IEM_MC_END();
10894 return VINF_SUCCESS;
10895 }
10896
10897 case IEMMODE_32BIT:
10898 {
10899 IEM_MC_BEGIN(3, 2);
10900 IEM_MC_ARG(uint32_t *, pu32Dst, 0);
10901 IEM_MC_ARG(uint32_t, u32Src, 1);
10902 IEM_MC_ARG_LOCAL_EFLAGS( pEFlags, EFlags, 2);
10903 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
10904
10905 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 4);
10906 uint32_t u32Imm; IEM_OPCODE_GET_NEXT_U32(&u32Imm);
10907 IEM_MC_ASSIGN(u32Src, u32Imm);
10908 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
10909 IEM_MC_MEM_MAP(pu32Dst, IEM_ACCESS_DATA_R, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/);
10910 IEM_MC_FETCH_EFLAGS(EFlags);
10911 IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_test_u32, pu32Dst, u32Src, pEFlags);
10912
10913 IEM_MC_MEM_COMMIT_AND_UNMAP(pu32Dst, IEM_ACCESS_DATA_R);
10914 IEM_MC_COMMIT_EFLAGS(EFlags);
10915 IEM_MC_ADVANCE_RIP();
10916 IEM_MC_END();
10917 return VINF_SUCCESS;
10918 }
10919
10920 case IEMMODE_64BIT:
10921 {
10922 IEM_MC_BEGIN(3, 2);
10923 IEM_MC_ARG(uint64_t *, pu64Dst, 0);
10924 IEM_MC_ARG(uint64_t, u64Src, 1);
10925 IEM_MC_ARG_LOCAL_EFLAGS( pEFlags, EFlags, 2);
10926 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
10927
10928 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 4);
10929 uint64_t u64Imm; IEM_OPCODE_GET_NEXT_S32_SX_U64(&u64Imm);
10930 IEM_MC_ASSIGN(u64Src, u64Imm);
10931 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
10932 IEM_MC_MEM_MAP(pu64Dst, IEM_ACCESS_DATA_R, pVCpu->iem.s.iEffSeg, GCPtrEffDst, 0 /*arg*/);
10933 IEM_MC_FETCH_EFLAGS(EFlags);
10934 IEM_MC_CALL_VOID_AIMPL_3(iemAImpl_test_u64, pu64Dst, u64Src, pEFlags);
10935
10936 IEM_MC_MEM_COMMIT_AND_UNMAP(pu64Dst, IEM_ACCESS_DATA_R);
10937 IEM_MC_COMMIT_EFLAGS(EFlags);
10938 IEM_MC_ADVANCE_RIP();
10939 IEM_MC_END();
10940 return VINF_SUCCESS;
10941 }
10942
10943 IEM_NOT_REACHED_DEFAULT_CASE_RET();
10944 }
10945 }
10946}
10947
10948
10949/** Opcode 0xf6 /4, /5, /6 and /7. */
10950FNIEMOP_DEF_2(iemOpCommonGrp3MulDivEb, uint8_t, bRm, PFNIEMAIMPLMULDIVU8, pfnU8)
10951{
10952 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
10953 {
10954 /* register access */
10955 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
10956 IEM_MC_BEGIN(3, 1);
10957 IEM_MC_ARG(uint16_t *, pu16AX, 0);
10958 IEM_MC_ARG(uint8_t, u8Value, 1);
10959 IEM_MC_ARG(uint32_t *, pEFlags, 2);
10960 IEM_MC_LOCAL(int32_t, rc);
10961
10962 IEM_MC_FETCH_GREG_U8(u8Value, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
10963 IEM_MC_REF_GREG_U16(pu16AX, X86_GREG_xAX);
10964 IEM_MC_REF_EFLAGS(pEFlags);
10965 IEM_MC_CALL_AIMPL_3(rc, pfnU8, pu16AX, u8Value, pEFlags);
10966 IEM_MC_IF_LOCAL_IS_Z(rc) {
10967 IEM_MC_ADVANCE_RIP();
10968 } IEM_MC_ELSE() {
10969 IEM_MC_RAISE_DIVIDE_ERROR();
10970 } IEM_MC_ENDIF();
10971
10972 IEM_MC_END();
10973 }
10974 else
10975 {
10976 /* memory access. */
10977 IEM_MC_BEGIN(3, 2);
10978 IEM_MC_ARG(uint16_t *, pu16AX, 0);
10979 IEM_MC_ARG(uint8_t, u8Value, 1);
10980 IEM_MC_ARG(uint32_t *, pEFlags, 2);
10981 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
10982 IEM_MC_LOCAL(int32_t, rc);
10983
10984 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
10985 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
10986 IEM_MC_FETCH_MEM_U8(u8Value, pVCpu->iem.s.iEffSeg, GCPtrEffDst);
10987 IEM_MC_REF_GREG_U16(pu16AX, X86_GREG_xAX);
10988 IEM_MC_REF_EFLAGS(pEFlags);
10989 IEM_MC_CALL_AIMPL_3(rc, pfnU8, pu16AX, u8Value, pEFlags);
10990 IEM_MC_IF_LOCAL_IS_Z(rc) {
10991 IEM_MC_ADVANCE_RIP();
10992 } IEM_MC_ELSE() {
10993 IEM_MC_RAISE_DIVIDE_ERROR();
10994 } IEM_MC_ENDIF();
10995
10996 IEM_MC_END();
10997 }
10998 return VINF_SUCCESS;
10999}
11000
11001
11002/** Opcode 0xf7 /4, /5, /6 and /7. */
11003FNIEMOP_DEF_2(iemOpCommonGrp3MulDivEv, uint8_t, bRm, PCIEMOPMULDIVSIZES, pImpl)
11004{
11005 IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF);
11006
11007 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
11008 {
11009 /* register access */
11010 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
11011 switch (pVCpu->iem.s.enmEffOpSize)
11012 {
11013 case IEMMODE_16BIT:
11014 {
11015 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
11016 IEM_MC_BEGIN(4, 1);
11017 IEM_MC_ARG(uint16_t *, pu16AX, 0);
11018 IEM_MC_ARG(uint16_t *, pu16DX, 1);
11019 IEM_MC_ARG(uint16_t, u16Value, 2);
11020 IEM_MC_ARG(uint32_t *, pEFlags, 3);
11021 IEM_MC_LOCAL(int32_t, rc);
11022
11023 IEM_MC_FETCH_GREG_U16(u16Value, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
11024 IEM_MC_REF_GREG_U16(pu16AX, X86_GREG_xAX);
11025 IEM_MC_REF_GREG_U16(pu16DX, X86_GREG_xDX);
11026 IEM_MC_REF_EFLAGS(pEFlags);
11027 IEM_MC_CALL_AIMPL_4(rc, pImpl->pfnU16, pu16AX, pu16DX, u16Value, pEFlags);
11028 IEM_MC_IF_LOCAL_IS_Z(rc) {
11029 IEM_MC_ADVANCE_RIP();
11030 } IEM_MC_ELSE() {
11031 IEM_MC_RAISE_DIVIDE_ERROR();
11032 } IEM_MC_ENDIF();
11033
11034 IEM_MC_END();
11035 return VINF_SUCCESS;
11036 }
11037
11038 case IEMMODE_32BIT:
11039 {
11040 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
11041 IEM_MC_BEGIN(4, 1);
11042 IEM_MC_ARG(uint32_t *, pu32AX, 0);
11043 IEM_MC_ARG(uint32_t *, pu32DX, 1);
11044 IEM_MC_ARG(uint32_t, u32Value, 2);
11045 IEM_MC_ARG(uint32_t *, pEFlags, 3);
11046 IEM_MC_LOCAL(int32_t, rc);
11047
11048 IEM_MC_FETCH_GREG_U32(u32Value, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
11049 IEM_MC_REF_GREG_U32(pu32AX, X86_GREG_xAX);
11050 IEM_MC_REF_GREG_U32(pu32DX, X86_GREG_xDX);
11051 IEM_MC_REF_EFLAGS(pEFlags);
11052 IEM_MC_CALL_AIMPL_4(rc, pImpl->pfnU32, pu32AX, pu32DX, u32Value, pEFlags);
11053 IEM_MC_IF_LOCAL_IS_Z(rc) {
11054 IEM_MC_CLEAR_HIGH_GREG_U64_BY_REF(pu32AX);
11055 IEM_MC_CLEAR_HIGH_GREG_U64_BY_REF(pu32DX);
11056 IEM_MC_ADVANCE_RIP();
11057 } IEM_MC_ELSE() {
11058 IEM_MC_RAISE_DIVIDE_ERROR();
11059 } IEM_MC_ENDIF();
11060
11061 IEM_MC_END();
11062 return VINF_SUCCESS;
11063 }
11064
11065 case IEMMODE_64BIT:
11066 {
11067 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
11068 IEM_MC_BEGIN(4, 1);
11069 IEM_MC_ARG(uint64_t *, pu64AX, 0);
11070 IEM_MC_ARG(uint64_t *, pu64DX, 1);
11071 IEM_MC_ARG(uint64_t, u64Value, 2);
11072 IEM_MC_ARG(uint32_t *, pEFlags, 3);
11073 IEM_MC_LOCAL(int32_t, rc);
11074
11075 IEM_MC_FETCH_GREG_U64(u64Value, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
11076 IEM_MC_REF_GREG_U64(pu64AX, X86_GREG_xAX);
11077 IEM_MC_REF_GREG_U64(pu64DX, X86_GREG_xDX);
11078 IEM_MC_REF_EFLAGS(pEFlags);
11079 IEM_MC_CALL_AIMPL_4(rc, pImpl->pfnU64, pu64AX, pu64DX, u64Value, pEFlags);
11080 IEM_MC_IF_LOCAL_IS_Z(rc) {
11081 IEM_MC_ADVANCE_RIP();
11082 } IEM_MC_ELSE() {
11083 IEM_MC_RAISE_DIVIDE_ERROR();
11084 } IEM_MC_ENDIF();
11085
11086 IEM_MC_END();
11087 return VINF_SUCCESS;
11088 }
11089
11090 IEM_NOT_REACHED_DEFAULT_CASE_RET();
11091 }
11092 }
11093 else
11094 {
11095 /* memory access. */
11096 switch (pVCpu->iem.s.enmEffOpSize)
11097 {
11098 case IEMMODE_16BIT:
11099 {
11100 IEM_MC_BEGIN(4, 2);
11101 IEM_MC_ARG(uint16_t *, pu16AX, 0);
11102 IEM_MC_ARG(uint16_t *, pu16DX, 1);
11103 IEM_MC_ARG(uint16_t, u16Value, 2);
11104 IEM_MC_ARG(uint32_t *, pEFlags, 3);
11105 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
11106 IEM_MC_LOCAL(int32_t, rc);
11107
11108 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
11109 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
11110 IEM_MC_FETCH_MEM_U16(u16Value, pVCpu->iem.s.iEffSeg, GCPtrEffDst);
11111 IEM_MC_REF_GREG_U16(pu16AX, X86_GREG_xAX);
11112 IEM_MC_REF_GREG_U16(pu16DX, X86_GREG_xDX);
11113 IEM_MC_REF_EFLAGS(pEFlags);
11114 IEM_MC_CALL_AIMPL_4(rc, pImpl->pfnU16, pu16AX, pu16DX, u16Value, pEFlags);
11115 IEM_MC_IF_LOCAL_IS_Z(rc) {
11116 IEM_MC_ADVANCE_RIP();
11117 } IEM_MC_ELSE() {
11118 IEM_MC_RAISE_DIVIDE_ERROR();
11119 } IEM_MC_ENDIF();
11120
11121 IEM_MC_END();
11122 return VINF_SUCCESS;
11123 }
11124
11125 case IEMMODE_32BIT:
11126 {
11127 IEM_MC_BEGIN(4, 2);
11128 IEM_MC_ARG(uint32_t *, pu32AX, 0);
11129 IEM_MC_ARG(uint32_t *, pu32DX, 1);
11130 IEM_MC_ARG(uint32_t, u32Value, 2);
11131 IEM_MC_ARG(uint32_t *, pEFlags, 3);
11132 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
11133 IEM_MC_LOCAL(int32_t, rc);
11134
11135 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
11136 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
11137 IEM_MC_FETCH_MEM_U32(u32Value, pVCpu->iem.s.iEffSeg, GCPtrEffDst);
11138 IEM_MC_REF_GREG_U32(pu32AX, X86_GREG_xAX);
11139 IEM_MC_REF_GREG_U32(pu32DX, X86_GREG_xDX);
11140 IEM_MC_REF_EFLAGS(pEFlags);
11141 IEM_MC_CALL_AIMPL_4(rc, pImpl->pfnU32, pu32AX, pu32DX, u32Value, pEFlags);
11142 IEM_MC_IF_LOCAL_IS_Z(rc) {
11143 IEM_MC_CLEAR_HIGH_GREG_U64_BY_REF(pu32AX);
11144 IEM_MC_CLEAR_HIGH_GREG_U64_BY_REF(pu32DX);
11145 IEM_MC_ADVANCE_RIP();
11146 } IEM_MC_ELSE() {
11147 IEM_MC_RAISE_DIVIDE_ERROR();
11148 } IEM_MC_ENDIF();
11149
11150 IEM_MC_END();
11151 return VINF_SUCCESS;
11152 }
11153
11154 case IEMMODE_64BIT:
11155 {
11156 IEM_MC_BEGIN(4, 2);
11157 IEM_MC_ARG(uint64_t *, pu64AX, 0);
11158 IEM_MC_ARG(uint64_t *, pu64DX, 1);
11159 IEM_MC_ARG(uint64_t, u64Value, 2);
11160 IEM_MC_ARG(uint32_t *, pEFlags, 3);
11161 IEM_MC_LOCAL(RTGCPTR, GCPtrEffDst);
11162 IEM_MC_LOCAL(int32_t, rc);
11163
11164 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffDst, bRm, 0);
11165 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
11166 IEM_MC_FETCH_MEM_U64(u64Value, pVCpu->iem.s.iEffSeg, GCPtrEffDst);
11167 IEM_MC_REF_GREG_U64(pu64AX, X86_GREG_xAX);
11168 IEM_MC_REF_GREG_U64(pu64DX, X86_GREG_xDX);
11169 IEM_MC_REF_EFLAGS(pEFlags);
11170 IEM_MC_CALL_AIMPL_4(rc, pImpl->pfnU64, pu64AX, pu64DX, u64Value, pEFlags);
11171 IEM_MC_IF_LOCAL_IS_Z(rc) {
11172 IEM_MC_ADVANCE_RIP();
11173 } IEM_MC_ELSE() {
11174 IEM_MC_RAISE_DIVIDE_ERROR();
11175 } IEM_MC_ENDIF();
11176
11177 IEM_MC_END();
11178 return VINF_SUCCESS;
11179 }
11180
11181 IEM_NOT_REACHED_DEFAULT_CASE_RET();
11182 }
11183 }
11184}
11185
11186/**
11187 * @opcode 0xf6
11188 */
11189FNIEMOP_DEF(iemOp_Grp3_Eb)
11190{
11191 uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm);
11192 switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK)
11193 {
11194 case 0:
11195 return FNIEMOP_CALL_1(iemOp_grp3_test_Eb, bRm);
11196 case 1:
11197/** @todo testcase: Present on <=386, most 486 (not early), Pentiums, and current CPUs too. CPUUNDOC.EXE */
11198 return IEMOP_RAISE_INVALID_OPCODE();
11199 case 2:
11200 IEMOP_MNEMONIC(not_Eb, "not Eb");
11201 return FNIEMOP_CALL_2(iemOpCommonUnaryEb, bRm, &g_iemAImpl_not);
11202 case 3:
11203 IEMOP_MNEMONIC(neg_Eb, "neg Eb");
11204 return FNIEMOP_CALL_2(iemOpCommonUnaryEb, bRm, &g_iemAImpl_neg);
11205 case 4:
11206 IEMOP_MNEMONIC(mul_Eb, "mul Eb");
11207 IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF);
11208 return FNIEMOP_CALL_2(iemOpCommonGrp3MulDivEb, bRm, iemAImpl_mul_u8);
11209 case 5:
11210 IEMOP_MNEMONIC(imul_Eb, "imul Eb");
11211 IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF);
11212 return FNIEMOP_CALL_2(iemOpCommonGrp3MulDivEb, bRm, iemAImpl_imul_u8);
11213 case 6:
11214 IEMOP_MNEMONIC(div_Eb, "div Eb");
11215 IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_OF | X86_EFL_CF);
11216 return FNIEMOP_CALL_2(iemOpCommonGrp3MulDivEb, bRm, iemAImpl_div_u8);
11217 case 7:
11218 IEMOP_MNEMONIC(idiv_Eb, "idiv Eb");
11219 IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_OF | X86_EFL_CF);
11220 return FNIEMOP_CALL_2(iemOpCommonGrp3MulDivEb, bRm, iemAImpl_idiv_u8);
11221 IEM_NOT_REACHED_DEFAULT_CASE_RET();
11222 }
11223}
11224
11225
11226/**
11227 * @opcode 0xf7
11228 */
11229FNIEMOP_DEF(iemOp_Grp3_Ev)
11230{
11231 uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm);
11232 switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK)
11233 {
11234 case 0:
11235 return FNIEMOP_CALL_1(iemOp_grp3_test_Ev, bRm);
11236 case 1:
11237/** @todo testcase: Present on <=386, most 486 (not early), Pentiums, and current CPUs too. CPUUNDOC.EXE */
11238 return IEMOP_RAISE_INVALID_OPCODE();
11239 case 2:
11240 IEMOP_MNEMONIC(not_Ev, "not Ev");
11241 return FNIEMOP_CALL_2(iemOpCommonUnaryEv, bRm, &g_iemAImpl_not);
11242 case 3:
11243 IEMOP_MNEMONIC(neg_Ev, "neg Ev");
11244 return FNIEMOP_CALL_2(iemOpCommonUnaryEv, bRm, &g_iemAImpl_neg);
11245 case 4:
11246 IEMOP_MNEMONIC(mul_Ev, "mul Ev");
11247 IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF);
11248 return FNIEMOP_CALL_2(iemOpCommonGrp3MulDivEv, bRm, &g_iemAImpl_mul);
11249 case 5:
11250 IEMOP_MNEMONIC(imul_Ev, "imul Ev");
11251 IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF);
11252 return FNIEMOP_CALL_2(iemOpCommonGrp3MulDivEv, bRm, &g_iemAImpl_imul);
11253 case 6:
11254 IEMOP_MNEMONIC(div_Ev, "div Ev");
11255 IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_OF | X86_EFL_CF);
11256 return FNIEMOP_CALL_2(iemOpCommonGrp3MulDivEv, bRm, &g_iemAImpl_div);
11257 case 7:
11258 IEMOP_MNEMONIC(idiv_Ev, "idiv Ev");
11259 IEMOP_VERIFICATION_UNDEFINED_EFLAGS(X86_EFL_SF | X86_EFL_ZF | X86_EFL_AF | X86_EFL_PF | X86_EFL_OF | X86_EFL_CF);
11260 return FNIEMOP_CALL_2(iemOpCommonGrp3MulDivEv, bRm, &g_iemAImpl_idiv);
11261 IEM_NOT_REACHED_DEFAULT_CASE_RET();
11262 }
11263}
11264
11265
11266/**
11267 * @opcode 0xf8
11268 */
11269FNIEMOP_DEF(iemOp_clc)
11270{
11271 IEMOP_MNEMONIC(clc, "clc");
11272 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
11273 IEM_MC_BEGIN(0, 0);
11274 IEM_MC_CLEAR_EFL_BIT(X86_EFL_CF);
11275 IEM_MC_ADVANCE_RIP();
11276 IEM_MC_END();
11277 return VINF_SUCCESS;
11278}
11279
11280
11281/**
11282 * @opcode 0xf9
11283 */
11284FNIEMOP_DEF(iemOp_stc)
11285{
11286 IEMOP_MNEMONIC(stc, "stc");
11287 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
11288 IEM_MC_BEGIN(0, 0);
11289 IEM_MC_SET_EFL_BIT(X86_EFL_CF);
11290 IEM_MC_ADVANCE_RIP();
11291 IEM_MC_END();
11292 return VINF_SUCCESS;
11293}
11294
11295
11296/**
11297 * @opcode 0xfa
11298 */
11299FNIEMOP_DEF(iemOp_cli)
11300{
11301 IEMOP_MNEMONIC(cli, "cli");
11302 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
11303 return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_cli);
11304}
11305
11306
11307FNIEMOP_DEF(iemOp_sti)
11308{
11309 IEMOP_MNEMONIC(sti, "sti");
11310 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
11311 return IEM_MC_DEFER_TO_CIMPL_0(iemCImpl_sti);
11312}
11313
11314
11315/**
11316 * @opcode 0xfc
11317 */
11318FNIEMOP_DEF(iemOp_cld)
11319{
11320 IEMOP_MNEMONIC(cld, "cld");
11321 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
11322 IEM_MC_BEGIN(0, 0);
11323 IEM_MC_CLEAR_EFL_BIT(X86_EFL_DF);
11324 IEM_MC_ADVANCE_RIP();
11325 IEM_MC_END();
11326 return VINF_SUCCESS;
11327}
11328
11329
11330/**
11331 * @opcode 0xfd
11332 */
11333FNIEMOP_DEF(iemOp_std)
11334{
11335 IEMOP_MNEMONIC(std, "std");
11336 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
11337 IEM_MC_BEGIN(0, 0);
11338 IEM_MC_SET_EFL_BIT(X86_EFL_DF);
11339 IEM_MC_ADVANCE_RIP();
11340 IEM_MC_END();
11341 return VINF_SUCCESS;
11342}
11343
11344
11345/**
11346 * @opcode 0xfe
11347 */
11348FNIEMOP_DEF(iemOp_Grp4)
11349{
11350 uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm);
11351 switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK)
11352 {
11353 case 0:
11354 IEMOP_MNEMONIC(inc_Eb, "inc Eb");
11355 return FNIEMOP_CALL_2(iemOpCommonUnaryEb, bRm, &g_iemAImpl_inc);
11356 case 1:
11357 IEMOP_MNEMONIC(dec_Eb, "dec Eb");
11358 return FNIEMOP_CALL_2(iemOpCommonUnaryEb, bRm, &g_iemAImpl_dec);
11359 default:
11360 IEMOP_MNEMONIC(grp4_ud, "grp4-ud");
11361 return IEMOP_RAISE_INVALID_OPCODE();
11362 }
11363}
11364
11365
11366/**
11367 * Opcode 0xff /2.
11368 * @param bRm The RM byte.
11369 */
11370FNIEMOP_DEF_1(iemOp_Grp5_calln_Ev, uint8_t, bRm)
11371{
11372 IEMOP_MNEMONIC(calln_Ev, "calln Ev");
11373 IEMOP_HLP_DEFAULT_64BIT_OP_SIZE();
11374
11375 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
11376 {
11377 /* The new RIP is taken from a register. */
11378 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
11379 switch (pVCpu->iem.s.enmEffOpSize)
11380 {
11381 case IEMMODE_16BIT:
11382 IEM_MC_BEGIN(1, 0);
11383 IEM_MC_ARG(uint16_t, u16Target, 0);
11384 IEM_MC_FETCH_GREG_U16(u16Target, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
11385 IEM_MC_CALL_CIMPL_1(iemCImpl_call_16, u16Target);
11386 IEM_MC_END()
11387 return VINF_SUCCESS;
11388
11389 case IEMMODE_32BIT:
11390 IEM_MC_BEGIN(1, 0);
11391 IEM_MC_ARG(uint32_t, u32Target, 0);
11392 IEM_MC_FETCH_GREG_U32(u32Target, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
11393 IEM_MC_CALL_CIMPL_1(iemCImpl_call_32, u32Target);
11394 IEM_MC_END()
11395 return VINF_SUCCESS;
11396
11397 case IEMMODE_64BIT:
11398 IEM_MC_BEGIN(1, 0);
11399 IEM_MC_ARG(uint64_t, u64Target, 0);
11400 IEM_MC_FETCH_GREG_U64(u64Target, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
11401 IEM_MC_CALL_CIMPL_1(iemCImpl_call_64, u64Target);
11402 IEM_MC_END()
11403 return VINF_SUCCESS;
11404
11405 IEM_NOT_REACHED_DEFAULT_CASE_RET();
11406 }
11407 }
11408 else
11409 {
11410 /* The new RIP is taken from a register. */
11411 switch (pVCpu->iem.s.enmEffOpSize)
11412 {
11413 case IEMMODE_16BIT:
11414 IEM_MC_BEGIN(1, 1);
11415 IEM_MC_ARG(uint16_t, u16Target, 0);
11416 IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc);
11417 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0);
11418 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
11419 IEM_MC_FETCH_MEM_U16(u16Target, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
11420 IEM_MC_CALL_CIMPL_1(iemCImpl_call_16, u16Target);
11421 IEM_MC_END()
11422 return VINF_SUCCESS;
11423
11424 case IEMMODE_32BIT:
11425 IEM_MC_BEGIN(1, 1);
11426 IEM_MC_ARG(uint32_t, u32Target, 0);
11427 IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc);
11428 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0);
11429 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
11430 IEM_MC_FETCH_MEM_U32(u32Target, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
11431 IEM_MC_CALL_CIMPL_1(iemCImpl_call_32, u32Target);
11432 IEM_MC_END()
11433 return VINF_SUCCESS;
11434
11435 case IEMMODE_64BIT:
11436 IEM_MC_BEGIN(1, 1);
11437 IEM_MC_ARG(uint64_t, u64Target, 0);
11438 IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc);
11439 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0);
11440 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
11441 IEM_MC_FETCH_MEM_U64(u64Target, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
11442 IEM_MC_CALL_CIMPL_1(iemCImpl_call_64, u64Target);
11443 IEM_MC_END()
11444 return VINF_SUCCESS;
11445
11446 IEM_NOT_REACHED_DEFAULT_CASE_RET();
11447 }
11448 }
11449}
11450
11451typedef IEM_CIMPL_DECL_TYPE_3(FNIEMCIMPLFARBRANCH, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmOpSize);
11452
11453FNIEMOP_DEF_2(iemOpHlp_Grp5_far_Ep, uint8_t, bRm, FNIEMCIMPLFARBRANCH *, pfnCImpl)
11454{
11455 /* Registers? How?? */
11456 if (RT_LIKELY((bRm & X86_MODRM_MOD_MASK) != (3 << X86_MODRM_MOD_SHIFT)))
11457 { /* likely */ }
11458 else
11459 return IEMOP_RAISE_INVALID_OPCODE(); /* callf eax is not legal */
11460
11461 /* Far pointer loaded from memory. */
11462 switch (pVCpu->iem.s.enmEffOpSize)
11463 {
11464 case IEMMODE_16BIT:
11465 IEM_MC_BEGIN(3, 1);
11466 IEM_MC_ARG(uint16_t, u16Sel, 0);
11467 IEM_MC_ARG(uint16_t, offSeg, 1);
11468 IEM_MC_ARG_CONST(IEMMODE, enmEffOpSize, IEMMODE_16BIT, 2);
11469 IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc);
11470 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0);
11471 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
11472 IEM_MC_FETCH_MEM_U16(offSeg, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
11473 IEM_MC_FETCH_MEM_U16_DISP(u16Sel, pVCpu->iem.s.iEffSeg, GCPtrEffSrc, 2);
11474 IEM_MC_CALL_CIMPL_3(pfnCImpl, u16Sel, offSeg, enmEffOpSize);
11475 IEM_MC_END();
11476 return VINF_SUCCESS;
11477
11478 case IEMMODE_64BIT:
11479 /** @todo testcase: AMD does not seem to believe in the case (see bs-cpu-xcpt-1)
11480 * and will apparently ignore REX.W, at least for the jmp far qword [rsp]
11481 * and call far qword [rsp] encodings. */
11482 if (!IEM_IS_GUEST_CPU_AMD(pVCpu))
11483 {
11484 IEM_MC_BEGIN(3, 1);
11485 IEM_MC_ARG(uint16_t, u16Sel, 0);
11486 IEM_MC_ARG(uint64_t, offSeg, 1);
11487 IEM_MC_ARG_CONST(IEMMODE, enmEffOpSize, IEMMODE_16BIT, 2);
11488 IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc);
11489 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0);
11490 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
11491 IEM_MC_FETCH_MEM_U64(offSeg, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
11492 IEM_MC_FETCH_MEM_U16_DISP(u16Sel, pVCpu->iem.s.iEffSeg, GCPtrEffSrc, 8);
11493 IEM_MC_CALL_CIMPL_3(pfnCImpl, u16Sel, offSeg, enmEffOpSize);
11494 IEM_MC_END();
11495 return VINF_SUCCESS;
11496 }
11497 /* AMD falls thru. */
11498 /* fall thru */
11499
11500 case IEMMODE_32BIT:
11501 IEM_MC_BEGIN(3, 1);
11502 IEM_MC_ARG(uint16_t, u16Sel, 0);
11503 IEM_MC_ARG(uint32_t, offSeg, 1);
11504 IEM_MC_ARG_CONST(IEMMODE, enmEffOpSize, IEMMODE_32BIT, 2);
11505 IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc);
11506 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0);
11507 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
11508 IEM_MC_FETCH_MEM_U32(offSeg, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
11509 IEM_MC_FETCH_MEM_U16_DISP(u16Sel, pVCpu->iem.s.iEffSeg, GCPtrEffSrc, 4);
11510 IEM_MC_CALL_CIMPL_3(pfnCImpl, u16Sel, offSeg, enmEffOpSize);
11511 IEM_MC_END();
11512 return VINF_SUCCESS;
11513
11514 IEM_NOT_REACHED_DEFAULT_CASE_RET();
11515 }
11516}
11517
11518
11519/**
11520 * Opcode 0xff /3.
11521 * @param bRm The RM byte.
11522 */
11523FNIEMOP_DEF_1(iemOp_Grp5_callf_Ep, uint8_t, bRm)
11524{
11525 IEMOP_MNEMONIC(callf_Ep, "callf Ep");
11526 return FNIEMOP_CALL_2(iemOpHlp_Grp5_far_Ep, bRm, iemCImpl_callf);
11527}
11528
11529
11530/**
11531 * Opcode 0xff /4.
11532 * @param bRm The RM byte.
11533 */
11534FNIEMOP_DEF_1(iemOp_Grp5_jmpn_Ev, uint8_t, bRm)
11535{
11536 IEMOP_MNEMONIC(jmpn_Ev, "jmpn Ev");
11537 IEMOP_HLP_DEFAULT_64BIT_OP_SIZE();
11538
11539 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
11540 {
11541 /* The new RIP is taken from a register. */
11542 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
11543 switch (pVCpu->iem.s.enmEffOpSize)
11544 {
11545 case IEMMODE_16BIT:
11546 IEM_MC_BEGIN(0, 1);
11547 IEM_MC_LOCAL(uint16_t, u16Target);
11548 IEM_MC_FETCH_GREG_U16(u16Target, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
11549 IEM_MC_SET_RIP_U16(u16Target);
11550 IEM_MC_END()
11551 return VINF_SUCCESS;
11552
11553 case IEMMODE_32BIT:
11554 IEM_MC_BEGIN(0, 1);
11555 IEM_MC_LOCAL(uint32_t, u32Target);
11556 IEM_MC_FETCH_GREG_U32(u32Target, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
11557 IEM_MC_SET_RIP_U32(u32Target);
11558 IEM_MC_END()
11559 return VINF_SUCCESS;
11560
11561 case IEMMODE_64BIT:
11562 IEM_MC_BEGIN(0, 1);
11563 IEM_MC_LOCAL(uint64_t, u64Target);
11564 IEM_MC_FETCH_GREG_U64(u64Target, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
11565 IEM_MC_SET_RIP_U64(u64Target);
11566 IEM_MC_END()
11567 return VINF_SUCCESS;
11568
11569 IEM_NOT_REACHED_DEFAULT_CASE_RET();
11570 }
11571 }
11572 else
11573 {
11574 /* The new RIP is taken from a memory location. */
11575 switch (pVCpu->iem.s.enmEffOpSize)
11576 {
11577 case IEMMODE_16BIT:
11578 IEM_MC_BEGIN(0, 2);
11579 IEM_MC_LOCAL(uint16_t, u16Target);
11580 IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc);
11581 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0);
11582 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
11583 IEM_MC_FETCH_MEM_U16(u16Target, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
11584 IEM_MC_SET_RIP_U16(u16Target);
11585 IEM_MC_END()
11586 return VINF_SUCCESS;
11587
11588 case IEMMODE_32BIT:
11589 IEM_MC_BEGIN(0, 2);
11590 IEM_MC_LOCAL(uint32_t, u32Target);
11591 IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc);
11592 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0);
11593 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
11594 IEM_MC_FETCH_MEM_U32(u32Target, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
11595 IEM_MC_SET_RIP_U32(u32Target);
11596 IEM_MC_END()
11597 return VINF_SUCCESS;
11598
11599 case IEMMODE_64BIT:
11600 IEM_MC_BEGIN(0, 2);
11601 IEM_MC_LOCAL(uint64_t, u64Target);
11602 IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc);
11603 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0);
11604 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
11605 IEM_MC_FETCH_MEM_U64(u64Target, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
11606 IEM_MC_SET_RIP_U64(u64Target);
11607 IEM_MC_END()
11608 return VINF_SUCCESS;
11609
11610 IEM_NOT_REACHED_DEFAULT_CASE_RET();
11611 }
11612 }
11613}
11614
11615
11616/**
11617 * Opcode 0xff /5.
11618 * @param bRm The RM byte.
11619 */
11620FNIEMOP_DEF_1(iemOp_Grp5_jmpf_Ep, uint8_t, bRm)
11621{
11622 IEMOP_MNEMONIC(jmpf_Ep, "jmpf Ep");
11623 return FNIEMOP_CALL_2(iemOpHlp_Grp5_far_Ep, bRm, iemCImpl_FarJmp);
11624}
11625
11626
11627/**
11628 * Opcode 0xff /6.
11629 * @param bRm The RM byte.
11630 */
11631FNIEMOP_DEF_1(iemOp_Grp5_push_Ev, uint8_t, bRm)
11632{
11633 IEMOP_MNEMONIC(push_Ev, "push Ev");
11634
11635 /* Registers are handled by a common worker. */
11636 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
11637 return FNIEMOP_CALL_1(iemOpCommonPushGReg, (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB);
11638
11639 /* Memory we do here. */
11640 IEMOP_HLP_DEFAULT_64BIT_OP_SIZE();
11641 switch (pVCpu->iem.s.enmEffOpSize)
11642 {
11643 case IEMMODE_16BIT:
11644 IEM_MC_BEGIN(0, 2);
11645 IEM_MC_LOCAL(uint16_t, u16Src);
11646 IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc);
11647 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0);
11648 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
11649 IEM_MC_FETCH_MEM_U16(u16Src, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
11650 IEM_MC_PUSH_U16(u16Src);
11651 IEM_MC_ADVANCE_RIP();
11652 IEM_MC_END();
11653 return VINF_SUCCESS;
11654
11655 case IEMMODE_32BIT:
11656 IEM_MC_BEGIN(0, 2);
11657 IEM_MC_LOCAL(uint32_t, u32Src);
11658 IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc);
11659 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0);
11660 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
11661 IEM_MC_FETCH_MEM_U32(u32Src, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
11662 IEM_MC_PUSH_U32(u32Src);
11663 IEM_MC_ADVANCE_RIP();
11664 IEM_MC_END();
11665 return VINF_SUCCESS;
11666
11667 case IEMMODE_64BIT:
11668 IEM_MC_BEGIN(0, 2);
11669 IEM_MC_LOCAL(uint64_t, u64Src);
11670 IEM_MC_LOCAL(RTGCPTR, GCPtrEffSrc);
11671 IEM_MC_CALC_RM_EFF_ADDR(GCPtrEffSrc, bRm, 0);
11672 IEMOP_HLP_DONE_DECODING_NO_LOCK_PREFIX();
11673 IEM_MC_FETCH_MEM_U64(u64Src, pVCpu->iem.s.iEffSeg, GCPtrEffSrc);
11674 IEM_MC_PUSH_U64(u64Src);
11675 IEM_MC_ADVANCE_RIP();
11676 IEM_MC_END();
11677 return VINF_SUCCESS;
11678
11679 IEM_NOT_REACHED_DEFAULT_CASE_RET();
11680 }
11681}
11682
11683
11684/**
11685 * @opcode 0xff
11686 */
11687FNIEMOP_DEF(iemOp_Grp5)
11688{
11689 uint8_t bRm; IEM_OPCODE_GET_NEXT_U8(&bRm);
11690 switch ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK)
11691 {
11692 case 0:
11693 IEMOP_MNEMONIC(inc_Ev, "inc Ev");
11694 return FNIEMOP_CALL_2(iemOpCommonUnaryEv, bRm, &g_iemAImpl_inc);
11695 case 1:
11696 IEMOP_MNEMONIC(dec_Ev, "dec Ev");
11697 return FNIEMOP_CALL_2(iemOpCommonUnaryEv, bRm, &g_iemAImpl_dec);
11698 case 2:
11699 return FNIEMOP_CALL_1(iemOp_Grp5_calln_Ev, bRm);
11700 case 3:
11701 return FNIEMOP_CALL_1(iemOp_Grp5_callf_Ep, bRm);
11702 case 4:
11703 return FNIEMOP_CALL_1(iemOp_Grp5_jmpn_Ev, bRm);
11704 case 5:
11705 return FNIEMOP_CALL_1(iemOp_Grp5_jmpf_Ep, bRm);
11706 case 6:
11707 return FNIEMOP_CALL_1(iemOp_Grp5_push_Ev, bRm);
11708 case 7:
11709 IEMOP_MNEMONIC(grp5_ud, "grp5-ud");
11710 return IEMOP_RAISE_INVALID_OPCODE();
11711 }
11712 AssertFailedReturn(VERR_IEM_IPE_3);
11713}
11714
11715
11716
11717const PFNIEMOP g_apfnOneByteMap[256] =
11718{
11719 /* 0x00 */ iemOp_add_Eb_Gb, iemOp_add_Ev_Gv, iemOp_add_Gb_Eb, iemOp_add_Gv_Ev,
11720 /* 0x04 */ iemOp_add_Al_Ib, iemOp_add_eAX_Iz, iemOp_push_ES, iemOp_pop_ES,
11721 /* 0x08 */ iemOp_or_Eb_Gb, iemOp_or_Ev_Gv, iemOp_or_Gb_Eb, iemOp_or_Gv_Ev,
11722 /* 0x0c */ iemOp_or_Al_Ib, iemOp_or_eAX_Iz, iemOp_push_CS, iemOp_2byteEscape,
11723 /* 0x10 */ iemOp_adc_Eb_Gb, iemOp_adc_Ev_Gv, iemOp_adc_Gb_Eb, iemOp_adc_Gv_Ev,
11724 /* 0x14 */ iemOp_adc_Al_Ib, iemOp_adc_eAX_Iz, iemOp_push_SS, iemOp_pop_SS,
11725 /* 0x18 */ iemOp_sbb_Eb_Gb, iemOp_sbb_Ev_Gv, iemOp_sbb_Gb_Eb, iemOp_sbb_Gv_Ev,
11726 /* 0x1c */ iemOp_sbb_Al_Ib, iemOp_sbb_eAX_Iz, iemOp_push_DS, iemOp_pop_DS,
11727 /* 0x20 */ iemOp_and_Eb_Gb, iemOp_and_Ev_Gv, iemOp_and_Gb_Eb, iemOp_and_Gv_Ev,
11728 /* 0x24 */ iemOp_and_Al_Ib, iemOp_and_eAX_Iz, iemOp_seg_ES, iemOp_daa,
11729 /* 0x28 */ iemOp_sub_Eb_Gb, iemOp_sub_Ev_Gv, iemOp_sub_Gb_Eb, iemOp_sub_Gv_Ev,
11730 /* 0x2c */ iemOp_sub_Al_Ib, iemOp_sub_eAX_Iz, iemOp_seg_CS, iemOp_das,
11731 /* 0x30 */ iemOp_xor_Eb_Gb, iemOp_xor_Ev_Gv, iemOp_xor_Gb_Eb, iemOp_xor_Gv_Ev,
11732 /* 0x34 */ iemOp_xor_Al_Ib, iemOp_xor_eAX_Iz, iemOp_seg_SS, iemOp_aaa,
11733 /* 0x38 */ iemOp_cmp_Eb_Gb, iemOp_cmp_Ev_Gv, iemOp_cmp_Gb_Eb, iemOp_cmp_Gv_Ev,
11734 /* 0x3c */ iemOp_cmp_Al_Ib, iemOp_cmp_eAX_Iz, iemOp_seg_DS, iemOp_aas,
11735 /* 0x40 */ iemOp_inc_eAX, iemOp_inc_eCX, iemOp_inc_eDX, iemOp_inc_eBX,
11736 /* 0x44 */ iemOp_inc_eSP, iemOp_inc_eBP, iemOp_inc_eSI, iemOp_inc_eDI,
11737 /* 0x48 */ iemOp_dec_eAX, iemOp_dec_eCX, iemOp_dec_eDX, iemOp_dec_eBX,
11738 /* 0x4c */ iemOp_dec_eSP, iemOp_dec_eBP, iemOp_dec_eSI, iemOp_dec_eDI,
11739 /* 0x50 */ iemOp_push_eAX, iemOp_push_eCX, iemOp_push_eDX, iemOp_push_eBX,
11740 /* 0x54 */ iemOp_push_eSP, iemOp_push_eBP, iemOp_push_eSI, iemOp_push_eDI,
11741 /* 0x58 */ iemOp_pop_eAX, iemOp_pop_eCX, iemOp_pop_eDX, iemOp_pop_eBX,
11742 /* 0x5c */ iemOp_pop_eSP, iemOp_pop_eBP, iemOp_pop_eSI, iemOp_pop_eDI,
11743 /* 0x60 */ iemOp_pusha, iemOp_popa__mvex, iemOp_bound_Gv_Ma__evex, iemOp_arpl_Ew_Gw_movsx_Gv_Ev,
11744 /* 0x64 */ iemOp_seg_FS, iemOp_seg_GS, iemOp_op_size, iemOp_addr_size,
11745 /* 0x68 */ iemOp_push_Iz, iemOp_imul_Gv_Ev_Iz, iemOp_push_Ib, iemOp_imul_Gv_Ev_Ib,
11746 /* 0x6c */ iemOp_insb_Yb_DX, iemOp_inswd_Yv_DX, iemOp_outsb_Yb_DX, iemOp_outswd_Yv_DX,
11747 /* 0x70 */ iemOp_jo_Jb, iemOp_jno_Jb, iemOp_jc_Jb, iemOp_jnc_Jb,
11748 /* 0x74 */ iemOp_je_Jb, iemOp_jne_Jb, iemOp_jbe_Jb, iemOp_jnbe_Jb,
11749 /* 0x78 */ iemOp_js_Jb, iemOp_jns_Jb, iemOp_jp_Jb, iemOp_jnp_Jb,
11750 /* 0x7c */ iemOp_jl_Jb, iemOp_jnl_Jb, iemOp_jle_Jb, iemOp_jnle_Jb,
11751 /* 0x80 */ iemOp_Grp1_Eb_Ib_80, iemOp_Grp1_Ev_Iz, iemOp_Grp1_Eb_Ib_82, iemOp_Grp1_Ev_Ib,
11752 /* 0x84 */ iemOp_test_Eb_Gb, iemOp_test_Ev_Gv, iemOp_xchg_Eb_Gb, iemOp_xchg_Ev_Gv,
11753 /* 0x88 */ iemOp_mov_Eb_Gb, iemOp_mov_Ev_Gv, iemOp_mov_Gb_Eb, iemOp_mov_Gv_Ev,
11754 /* 0x8c */ iemOp_mov_Ev_Sw, iemOp_lea_Gv_M, iemOp_mov_Sw_Ev, iemOp_Grp1A__xop,
11755 /* 0x90 */ iemOp_nop, iemOp_xchg_eCX_eAX, iemOp_xchg_eDX_eAX, iemOp_xchg_eBX_eAX,
11756 /* 0x94 */ iemOp_xchg_eSP_eAX, iemOp_xchg_eBP_eAX, iemOp_xchg_eSI_eAX, iemOp_xchg_eDI_eAX,
11757 /* 0x98 */ iemOp_cbw, iemOp_cwd, iemOp_call_Ap, iemOp_wait,
11758 /* 0x9c */ iemOp_pushf_Fv, iemOp_popf_Fv, iemOp_sahf, iemOp_lahf,
11759 /* 0xa0 */ iemOp_mov_AL_Ob, iemOp_mov_rAX_Ov, iemOp_mov_Ob_AL, iemOp_mov_Ov_rAX,
11760 /* 0xa4 */ iemOp_movsb_Xb_Yb, iemOp_movswd_Xv_Yv, iemOp_cmpsb_Xb_Yb, iemOp_cmpswd_Xv_Yv,
11761 /* 0xa8 */ iemOp_test_AL_Ib, iemOp_test_eAX_Iz, iemOp_stosb_Yb_AL, iemOp_stoswd_Yv_eAX,
11762 /* 0xac */ iemOp_lodsb_AL_Xb, iemOp_lodswd_eAX_Xv, iemOp_scasb_AL_Xb, iemOp_scaswd_eAX_Xv,
11763 /* 0xb0 */ iemOp_mov_AL_Ib, iemOp_CL_Ib, iemOp_DL_Ib, iemOp_BL_Ib,
11764 /* 0xb4 */ iemOp_mov_AH_Ib, iemOp_CH_Ib, iemOp_DH_Ib, iemOp_BH_Ib,
11765 /* 0xb8 */ iemOp_eAX_Iv, iemOp_eCX_Iv, iemOp_eDX_Iv, iemOp_eBX_Iv,
11766 /* 0xbc */ iemOp_eSP_Iv, iemOp_eBP_Iv, iemOp_eSI_Iv, iemOp_eDI_Iv,
11767 /* 0xc0 */ iemOp_Grp2_Eb_Ib, iemOp_Grp2_Ev_Ib, iemOp_retn_Iw, iemOp_retn,
11768 /* 0xc4 */ iemOp_les_Gv_Mp__vex3, iemOp_lds_Gv_Mp__vex2, iemOp_Grp11_Eb_Ib, iemOp_Grp11_Ev_Iz,
11769 /* 0xc8 */ iemOp_enter_Iw_Ib, iemOp_leave, iemOp_retf_Iw, iemOp_retf,
11770 /* 0xcc */ iemOp_int3, iemOp_int_Ib, iemOp_into, iemOp_iret,
11771 /* 0xd0 */ iemOp_Grp2_Eb_1, iemOp_Grp2_Ev_1, iemOp_Grp2_Eb_CL, iemOp_Grp2_Ev_CL,
11772 /* 0xd4 */ iemOp_aam_Ib, iemOp_aad_Ib, iemOp_salc, iemOp_xlat,
11773 /* 0xd8 */ iemOp_EscF0, iemOp_EscF1, iemOp_EscF2, iemOp_EscF3,
11774 /* 0xdc */ iemOp_EscF4, iemOp_EscF5, iemOp_EscF6, iemOp_EscF7,
11775 /* 0xe0 */ iemOp_loopne_Jb, iemOp_loope_Jb, iemOp_loop_Jb, iemOp_jecxz_Jb,
11776 /* 0xe4 */ iemOp_in_AL_Ib, iemOp_in_eAX_Ib, iemOp_out_Ib_AL, iemOp_out_Ib_eAX,
11777 /* 0xe8 */ iemOp_call_Jv, iemOp_jmp_Jv, iemOp_jmp_Ap, iemOp_jmp_Jb,
11778 /* 0xec */ iemOp_in_AL_DX, iemOp_eAX_DX, iemOp_out_DX_AL, iemOp_out_DX_eAX,
11779 /* 0xf0 */ iemOp_lock, iemOp_int1, iemOp_repne, iemOp_repe,
11780 /* 0xf4 */ iemOp_hlt, iemOp_cmc, iemOp_Grp3_Eb, iemOp_Grp3_Ev,
11781 /* 0xf8 */ iemOp_clc, iemOp_stc, iemOp_cli, iemOp_sti,
11782 /* 0xfc */ iemOp_cld, iemOp_std, iemOp_Grp4, iemOp_Grp5,
11783};
11784
11785
11786/** @} */
11787
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette