VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAll.cpp@ 25866

Last change on this file since 25866 was 25866, checked in by vboxsync, 15 years ago

VMM: More micro optimizations.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 82.9 KB
Line 
1/* $Id: PGMAll.cpp 25866 2010-01-15 14:26:49Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor - All context code.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.215389.xyz. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22/*******************************************************************************
23* Header Files *
24*******************************************************************************/
25#define LOG_GROUP LOG_GROUP_PGM
26#include <VBox/pgm.h>
27#include <VBox/cpum.h>
28#include <VBox/selm.h>
29#include <VBox/iom.h>
30#include <VBox/sup.h>
31#include <VBox/mm.h>
32#include <VBox/stam.h>
33#include <VBox/csam.h>
34#include <VBox/patm.h>
35#include <VBox/trpm.h>
36#include <VBox/rem.h>
37#include <VBox/em.h>
38#include <VBox/hwaccm.h>
39#include <VBox/hwacc_vmx.h>
40#include "PGMInternal.h"
41#include <VBox/vm.h>
42#include <iprt/assert.h>
43#include <iprt/asm.h>
44#include <iprt/string.h>
45#include <VBox/log.h>
46#include <VBox/param.h>
47#include <VBox/err.h>
48
49
50/*******************************************************************************
51* Structures and Typedefs *
52*******************************************************************************/
53/**
54 * Stated structure for PGM_GST_NAME(HandlerVirtualUpdate) that's
55 * passed to PGM_GST_NAME(VirtHandlerUpdateOne) during enumeration.
56 */
57typedef struct PGMHVUSTATE
58{
59 /** The VM handle. */
60 PVM pVM;
61 /** The VMCPU handle. */
62 PVMCPU pVCpu;
63 /** The todo flags. */
64 RTUINT fTodo;
65 /** The CR4 register value. */
66 uint32_t cr4;
67} PGMHVUSTATE, *PPGMHVUSTATE;
68
69
70/*******************************************************************************
71* Internal Functions *
72*******************************************************************************/
73DECLINLINE(int) pgmShwGetLongModePDPtr(PVMCPU pVCpu, RTGCPTR64 GCPtr, PX86PML4E *ppPml4e, PX86PDPT *ppPdpt, PX86PDPAE *ppPD);
74DECLINLINE(int) pgmShwGetPaePoolPagePD(PPGMCPU pPGM, RTGCPTR GCPtr, PPGMPOOLPAGE *ppShwPde);
75
76/*
77 * Shadow - 32-bit mode
78 */
79#define PGM_SHW_TYPE PGM_TYPE_32BIT
80#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
81#include "PGMAllShw.h"
82
83/* Guest - real mode */
84#define PGM_GST_TYPE PGM_TYPE_REAL
85#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
86#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
87#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
88#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
89#include "PGMGstDefs.h"
90#include "PGMAllGst.h"
91#include "PGMAllBth.h"
92#undef BTH_PGMPOOLKIND_PT_FOR_PT
93#undef BTH_PGMPOOLKIND_ROOT
94#undef PGM_BTH_NAME
95#undef PGM_GST_TYPE
96#undef PGM_GST_NAME
97
98/* Guest - protected mode */
99#define PGM_GST_TYPE PGM_TYPE_PROT
100#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
101#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
102#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
103#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
104#include "PGMGstDefs.h"
105#include "PGMAllGst.h"
106#include "PGMAllBth.h"
107#undef BTH_PGMPOOLKIND_PT_FOR_PT
108#undef BTH_PGMPOOLKIND_ROOT
109#undef PGM_BTH_NAME
110#undef PGM_GST_TYPE
111#undef PGM_GST_NAME
112
113/* Guest - 32-bit mode */
114#define PGM_GST_TYPE PGM_TYPE_32BIT
115#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
116#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
117#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
118#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
119#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
120#include "PGMGstDefs.h"
121#include "PGMAllGst.h"
122#include "PGMAllBth.h"
123#undef BTH_PGMPOOLKIND_PT_FOR_BIG
124#undef BTH_PGMPOOLKIND_PT_FOR_PT
125#undef BTH_PGMPOOLKIND_ROOT
126#undef PGM_BTH_NAME
127#undef PGM_GST_TYPE
128#undef PGM_GST_NAME
129
130#undef PGM_SHW_TYPE
131#undef PGM_SHW_NAME
132
133
134/*
135 * Shadow - PAE mode
136 */
137#define PGM_SHW_TYPE PGM_TYPE_PAE
138#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
139#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
140#include "PGMAllShw.h"
141
142/* Guest - real mode */
143#define PGM_GST_TYPE PGM_TYPE_REAL
144#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
145#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
146#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
147#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
148#include "PGMGstDefs.h"
149#include "PGMAllBth.h"
150#undef BTH_PGMPOOLKIND_PT_FOR_PT
151#undef BTH_PGMPOOLKIND_ROOT
152#undef PGM_BTH_NAME
153#undef PGM_GST_TYPE
154#undef PGM_GST_NAME
155
156/* Guest - protected mode */
157#define PGM_GST_TYPE PGM_TYPE_PROT
158#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
159#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
160#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
161#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
162#include "PGMGstDefs.h"
163#include "PGMAllBth.h"
164#undef BTH_PGMPOOLKIND_PT_FOR_PT
165#undef BTH_PGMPOOLKIND_ROOT
166#undef PGM_BTH_NAME
167#undef PGM_GST_TYPE
168#undef PGM_GST_NAME
169
170/* Guest - 32-bit mode */
171#define PGM_GST_TYPE PGM_TYPE_32BIT
172#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
173#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
174#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
175#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
176#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
177#include "PGMGstDefs.h"
178#include "PGMAllBth.h"
179#undef BTH_PGMPOOLKIND_PT_FOR_BIG
180#undef BTH_PGMPOOLKIND_PT_FOR_PT
181#undef BTH_PGMPOOLKIND_ROOT
182#undef PGM_BTH_NAME
183#undef PGM_GST_TYPE
184#undef PGM_GST_NAME
185
186
187/* Guest - PAE mode */
188#define PGM_GST_TYPE PGM_TYPE_PAE
189#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
190#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
191#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
192#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
193#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
194#include "PGMGstDefs.h"
195#include "PGMAllGst.h"
196#include "PGMAllBth.h"
197#undef BTH_PGMPOOLKIND_PT_FOR_BIG
198#undef BTH_PGMPOOLKIND_PT_FOR_PT
199#undef BTH_PGMPOOLKIND_ROOT
200#undef PGM_BTH_NAME
201#undef PGM_GST_TYPE
202#undef PGM_GST_NAME
203
204#undef PGM_SHW_TYPE
205#undef PGM_SHW_NAME
206
207
208#ifndef IN_RC /* AMD64 implies VT-x/AMD-V */
209/*
210 * Shadow - AMD64 mode
211 */
212# define PGM_SHW_TYPE PGM_TYPE_AMD64
213# define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
214# include "PGMAllShw.h"
215
216/* Guest - protected mode (only used for AMD-V nested paging in 64 bits mode) */
217# define PGM_GST_TYPE PGM_TYPE_PROT
218# define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
219# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_PROT(name)
220# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
221# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PD_PHYS
222# include "PGMGstDefs.h"
223# include "PGMAllBth.h"
224# undef BTH_PGMPOOLKIND_PT_FOR_PT
225# undef BTH_PGMPOOLKIND_ROOT
226# undef PGM_BTH_NAME
227# undef PGM_GST_TYPE
228# undef PGM_GST_NAME
229
230# ifdef VBOX_WITH_64_BITS_GUESTS
231/* Guest - AMD64 mode */
232# define PGM_GST_TYPE PGM_TYPE_AMD64
233# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
234# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
235# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
236# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
237# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
238# include "PGMGstDefs.h"
239# include "PGMAllGst.h"
240# include "PGMAllBth.h"
241# undef BTH_PGMPOOLKIND_PT_FOR_BIG
242# undef BTH_PGMPOOLKIND_PT_FOR_PT
243# undef BTH_PGMPOOLKIND_ROOT
244# undef PGM_BTH_NAME
245# undef PGM_GST_TYPE
246# undef PGM_GST_NAME
247# endif /* VBOX_WITH_64_BITS_GUESTS */
248
249# undef PGM_SHW_TYPE
250# undef PGM_SHW_NAME
251
252
253/*
254 * Shadow - Nested paging mode
255 */
256# define PGM_SHW_TYPE PGM_TYPE_NESTED
257# define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
258# include "PGMAllShw.h"
259
260/* Guest - real mode */
261# define PGM_GST_TYPE PGM_TYPE_REAL
262# define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
263# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
264# include "PGMGstDefs.h"
265# include "PGMAllBth.h"
266# undef PGM_BTH_NAME
267# undef PGM_GST_TYPE
268# undef PGM_GST_NAME
269
270/* Guest - protected mode */
271# define PGM_GST_TYPE PGM_TYPE_PROT
272# define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
273# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
274# include "PGMGstDefs.h"
275# include "PGMAllBth.h"
276# undef PGM_BTH_NAME
277# undef PGM_GST_TYPE
278# undef PGM_GST_NAME
279
280/* Guest - 32-bit mode */
281# define PGM_GST_TYPE PGM_TYPE_32BIT
282# define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
283# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
284# include "PGMGstDefs.h"
285# include "PGMAllBth.h"
286# undef PGM_BTH_NAME
287# undef PGM_GST_TYPE
288# undef PGM_GST_NAME
289
290/* Guest - PAE mode */
291# define PGM_GST_TYPE PGM_TYPE_PAE
292# define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
293# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
294# include "PGMGstDefs.h"
295# include "PGMAllBth.h"
296# undef PGM_BTH_NAME
297# undef PGM_GST_TYPE
298# undef PGM_GST_NAME
299
300# ifdef VBOX_WITH_64_BITS_GUESTS
301/* Guest - AMD64 mode */
302# define PGM_GST_TYPE PGM_TYPE_AMD64
303# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
304# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
305# include "PGMGstDefs.h"
306# include "PGMAllBth.h"
307# undef PGM_BTH_NAME
308# undef PGM_GST_TYPE
309# undef PGM_GST_NAME
310# endif /* VBOX_WITH_64_BITS_GUESTS */
311
312# undef PGM_SHW_TYPE
313# undef PGM_SHW_NAME
314
315
316/*
317 * Shadow - EPT
318 */
319# define PGM_SHW_TYPE PGM_TYPE_EPT
320# define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
321# include "PGMAllShw.h"
322
323/* Guest - real mode */
324# define PGM_GST_TYPE PGM_TYPE_REAL
325# define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
326# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
327# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_EPT_PT_FOR_PHYS
328# include "PGMGstDefs.h"
329# include "PGMAllBth.h"
330# undef BTH_PGMPOOLKIND_PT_FOR_PT
331# undef PGM_BTH_NAME
332# undef PGM_GST_TYPE
333# undef PGM_GST_NAME
334
335/* Guest - protected mode */
336# define PGM_GST_TYPE PGM_TYPE_PROT
337# define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
338# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
339# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_EPT_PT_FOR_PHYS
340# include "PGMGstDefs.h"
341# include "PGMAllBth.h"
342# undef BTH_PGMPOOLKIND_PT_FOR_PT
343# undef PGM_BTH_NAME
344# undef PGM_GST_TYPE
345# undef PGM_GST_NAME
346
347/* Guest - 32-bit mode */
348# define PGM_GST_TYPE PGM_TYPE_32BIT
349# define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
350# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
351# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_EPT_PT_FOR_PHYS
352# include "PGMGstDefs.h"
353# include "PGMAllBth.h"
354# undef BTH_PGMPOOLKIND_PT_FOR_PT
355# undef PGM_BTH_NAME
356# undef PGM_GST_TYPE
357# undef PGM_GST_NAME
358
359/* Guest - PAE mode */
360# define PGM_GST_TYPE PGM_TYPE_PAE
361# define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
362# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
363# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_EPT_PT_FOR_PHYS
364# include "PGMGstDefs.h"
365# include "PGMAllBth.h"
366# undef BTH_PGMPOOLKIND_PT_FOR_PT
367# undef PGM_BTH_NAME
368# undef PGM_GST_TYPE
369# undef PGM_GST_NAME
370
371# ifdef VBOX_WITH_64_BITS_GUESTS
372/* Guest - AMD64 mode */
373# define PGM_GST_TYPE PGM_TYPE_AMD64
374# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
375# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
376# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_EPT_PT_FOR_PHYS
377# include "PGMGstDefs.h"
378# include "PGMAllBth.h"
379# undef BTH_PGMPOOLKIND_PT_FOR_PT
380# undef PGM_BTH_NAME
381# undef PGM_GST_TYPE
382# undef PGM_GST_NAME
383# endif /* VBOX_WITH_64_BITS_GUESTS */
384
385# undef PGM_SHW_TYPE
386# undef PGM_SHW_NAME
387
388#endif /* !IN_RC */
389
390
391#ifndef IN_RING3
392/**
393 * #PF Handler.
394 *
395 * @returns VBox status code (appropriate for trap handling and GC return).
396 * @param pVCpu VMCPU handle.
397 * @param uErr The trap error code.
398 * @param pRegFrame Trap register frame.
399 * @param pvFault The fault address.
400 */
401VMMDECL(int) PGMTrap0eHandler(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)
402{
403 PVM pVM = pVCpu->CTX_SUFF(pVM);
404
405 Log(("PGMTrap0eHandler: uErr=%RGu pvFault=%RGv eip=%04x:%RGv\n", uErr, pvFault, pRegFrame->cs, (RTGCPTR)pRegFrame->rip));
406 STAM_PROFILE_START(&pVCpu->pgm.s.StatRZTrap0e, a);
407 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = NULL; } );
408
409
410#ifdef VBOX_WITH_STATISTICS
411 /*
412 * Error code stats.
413 */
414 if (uErr & X86_TRAP_PF_US)
415 {
416 if (!(uErr & X86_TRAP_PF_P))
417 {
418 if (uErr & X86_TRAP_PF_RW)
419 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eUSNotPresentWrite);
420 else
421 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eUSNotPresentRead);
422 }
423 else if (uErr & X86_TRAP_PF_RW)
424 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eUSWrite);
425 else if (uErr & X86_TRAP_PF_RSVD)
426 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eUSReserved);
427 else if (uErr & X86_TRAP_PF_ID)
428 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eUSNXE);
429 else
430 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eUSRead);
431 }
432 else
433 { /* Supervisor */
434 if (!(uErr & X86_TRAP_PF_P))
435 {
436 if (uErr & X86_TRAP_PF_RW)
437 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eSVNotPresentWrite);
438 else
439 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eSVNotPresentRead);
440 }
441 else if (uErr & X86_TRAP_PF_RW)
442 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eSVWrite);
443 else if (uErr & X86_TRAP_PF_ID)
444 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eSNXE);
445 else if (uErr & X86_TRAP_PF_RSVD)
446 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eSVReserved);
447 }
448#endif /* VBOX_WITH_STATISTICS */
449
450 /*
451 * Call the worker.
452 */
453 pgmLock(pVM);
454 int rc = PGM_BTH_PFN(Trap0eHandler, pVCpu)(pVCpu, uErr, pRegFrame, pvFault);
455 Assert(PGMIsLockOwner(pVM));
456 pgmUnlock(pVM);
457 if (rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
458 rc = VINF_SUCCESS;
459
460# ifdef IN_RING0
461 /* Note: hack alert for difficult to reproduce problem. */
462 if ( rc == VERR_PAGE_NOT_PRESENT /* SMP only ; disassembly might fail. */
463 || rc == VERR_PAGE_TABLE_NOT_PRESENT /* seen with UNI & SMP */
464 || rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT /* seen with SMP */
465 || rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT) /* precaution */
466 {
467 Log(("WARNING: Unexpected VERR_PAGE_TABLE_NOT_PRESENT (%d) for page fault at %RGv error code %x (rip=%RGv)\n", rc, pvFault, uErr, pRegFrame->rip));
468 /* Some kind of inconsistency in the SMP case; it's safe to just execute the instruction again; not sure about single VCPU VMs though. */
469 rc = VINF_SUCCESS;
470 }
471# endif
472
473 STAM_STATS({ if (rc == VINF_EM_RAW_GUEST_TRAP) STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eGuestPF); });
474 STAM_STATS({ if (!pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution))
475 pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2Misc; });
476 STAM_PROFILE_STOP_EX(&pVCpu->pgm.s.StatRZTrap0e, pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution), a);
477 return rc;
478}
479#endif /* !IN_RING3 */
480
481
482/**
483 * Prefetch a page
484 *
485 * Typically used to sync commonly used pages before entering raw mode
486 * after a CR3 reload.
487 *
488 * @returns VBox status code suitable for scheduling.
489 * @retval VINF_SUCCESS on success.
490 * @retval VINF_PGM_SYNC_CR3 if we're out of shadow pages or something like that.
491 * @param pVCpu VMCPU handle.
492 * @param GCPtrPage Page to invalidate.
493 */
494VMMDECL(int) PGMPrefetchPage(PVMCPU pVCpu, RTGCPTR GCPtrPage)
495{
496 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_MID_Z(Stat,Prefetch), a);
497 int rc = PGM_BTH_PFN(PrefetchPage, pVCpu)(pVCpu, GCPtrPage);
498 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,Prefetch), a);
499 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("rc=%Rrc\n", rc));
500 return rc;
501}
502
503
504/**
505 * Gets the mapping corresponding to the specified address (if any).
506 *
507 * @returns Pointer to the mapping.
508 * @returns NULL if not
509 *
510 * @param pVM The virtual machine.
511 * @param GCPtr The guest context pointer.
512 */
513PPGMMAPPING pgmGetMapping(PVM pVM, RTGCPTR GCPtr)
514{
515 PPGMMAPPING pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
516 while (pMapping)
517 {
518 if ((uintptr_t)GCPtr < (uintptr_t)pMapping->GCPtr)
519 break;
520 if ((uintptr_t)GCPtr - (uintptr_t)pMapping->GCPtr < pMapping->cb)
521 return pMapping;
522 pMapping = pMapping->CTX_SUFF(pNext);
523 }
524 return NULL;
525}
526
527
528/**
529 * Verifies a range of pages for read or write access
530 *
531 * Only checks the guest's page tables
532 *
533 * @returns VBox status code.
534 * @param pVCpu VMCPU handle.
535 * @param Addr Guest virtual address to check
536 * @param cbSize Access size
537 * @param fAccess Access type (r/w, user/supervisor (X86_PTE_*))
538 * @remarks Current not in use.
539 */
540VMMDECL(int) PGMIsValidAccess(PVMCPU pVCpu, RTGCPTR Addr, uint32_t cbSize, uint32_t fAccess)
541{
542 /*
543 * Validate input.
544 */
545 if (fAccess & ~(X86_PTE_US | X86_PTE_RW))
546 {
547 AssertMsgFailed(("PGMIsValidAccess: invalid access type %08x\n", fAccess));
548 return VERR_INVALID_PARAMETER;
549 }
550
551 uint64_t fPage;
552 int rc = PGMGstGetPage(pVCpu, (RTGCPTR)Addr, &fPage, NULL);
553 if (RT_FAILURE(rc))
554 {
555 Log(("PGMIsValidAccess: access violation for %RGv rc=%d\n", Addr, rc));
556 return VINF_EM_RAW_GUEST_TRAP;
557 }
558
559 /*
560 * Check if the access would cause a page fault
561 *
562 * Note that hypervisor page directories are not present in the guest's tables, so this check
563 * is sufficient.
564 */
565 bool fWrite = !!(fAccess & X86_PTE_RW);
566 bool fUser = !!(fAccess & X86_PTE_US);
567 if ( !(fPage & X86_PTE_P)
568 || (fWrite && !(fPage & X86_PTE_RW))
569 || (fUser && !(fPage & X86_PTE_US)) )
570 {
571 Log(("PGMIsValidAccess: access violation for %RGv attr %#llx vs %d:%d\n", Addr, fPage, fWrite, fUser));
572 return VINF_EM_RAW_GUEST_TRAP;
573 }
574 if ( RT_SUCCESS(rc)
575 && PAGE_ADDRESS(Addr) != PAGE_ADDRESS(Addr + cbSize))
576 return PGMIsValidAccess(pVCpu, Addr + PAGE_SIZE, (cbSize > PAGE_SIZE) ? cbSize - PAGE_SIZE : 1, fAccess);
577 return rc;
578}
579
580
581/**
582 * Verifies a range of pages for read or write access
583 *
584 * Supports handling of pages marked for dirty bit tracking and CSAM
585 *
586 * @returns VBox status code.
587 * @param pVCpu VMCPU handle.
588 * @param Addr Guest virtual address to check
589 * @param cbSize Access size
590 * @param fAccess Access type (r/w, user/supervisor (X86_PTE_*))
591 */
592VMMDECL(int) PGMVerifyAccess(PVMCPU pVCpu, RTGCPTR Addr, uint32_t cbSize, uint32_t fAccess)
593{
594 PVM pVM = pVCpu->CTX_SUFF(pVM);
595
596 AssertMsg(!(fAccess & ~(X86_PTE_US | X86_PTE_RW)), ("PGMVerifyAccess: invalid access type %08x\n", fAccess));
597
598 /*
599 * Get going.
600 */
601 uint64_t fPageGst;
602 int rc = PGMGstGetPage(pVCpu, (RTGCPTR)Addr, &fPageGst, NULL);
603 if (RT_FAILURE(rc))
604 {
605 Log(("PGMVerifyAccess: access violation for %RGv rc=%d\n", Addr, rc));
606 return VINF_EM_RAW_GUEST_TRAP;
607 }
608
609 /*
610 * Check if the access would cause a page fault
611 *
612 * Note that hypervisor page directories are not present in the guest's tables, so this check
613 * is sufficient.
614 */
615 const bool fWrite = !!(fAccess & X86_PTE_RW);
616 const bool fUser = !!(fAccess & X86_PTE_US);
617 if ( !(fPageGst & X86_PTE_P)
618 || (fWrite && !(fPageGst & X86_PTE_RW))
619 || (fUser && !(fPageGst & X86_PTE_US)) )
620 {
621 Log(("PGMVerifyAccess: access violation for %RGv attr %#llx vs %d:%d\n", Addr, fPageGst, fWrite, fUser));
622 return VINF_EM_RAW_GUEST_TRAP;
623 }
624
625 if (!HWACCMIsNestedPagingActive(pVM))
626 {
627 /*
628 * Next step is to verify if we protected this page for dirty bit tracking or for CSAM scanning
629 */
630 rc = PGMShwGetPage(pVCpu, (RTGCPTR)Addr, NULL, NULL);
631 if ( rc == VERR_PAGE_NOT_PRESENT
632 || rc == VERR_PAGE_TABLE_NOT_PRESENT)
633 {
634 /*
635 * Page is not present in our page tables.
636 * Try to sync it!
637 */
638 Assert(X86_TRAP_PF_RW == X86_PTE_RW && X86_TRAP_PF_US == X86_PTE_US);
639 uint32_t uErr = fAccess & (X86_TRAP_PF_RW | X86_TRAP_PF_US);
640 rc = PGM_BTH_PFN(VerifyAccessSyncPage, pVCpu)(pVCpu, Addr, fPageGst, uErr);
641 if (rc != VINF_SUCCESS)
642 return rc;
643 }
644 else
645 AssertMsg(rc == VINF_SUCCESS, ("PGMShwGetPage %RGv failed with %Rrc\n", Addr, rc));
646 }
647
648#if 0 /* def VBOX_STRICT; triggers too often now */
649 /*
650 * This check is a bit paranoid, but useful.
651 */
652 /** @note this will assert when writing to monitored pages (a bit annoying actually) */
653 uint64_t fPageShw;
654 rc = PGMShwGetPage(pVCpu, (RTGCPTR)Addr, &fPageShw, NULL);
655 if ( (rc == VERR_PAGE_NOT_PRESENT || RT_FAILURE(rc))
656 || (fWrite && !(fPageShw & X86_PTE_RW))
657 || (fUser && !(fPageShw & X86_PTE_US)) )
658 {
659 AssertMsgFailed(("Unexpected access violation for %RGv! rc=%Rrc write=%d user=%d\n",
660 Addr, rc, fWrite && !(fPageShw & X86_PTE_RW), fUser && !(fPageShw & X86_PTE_US)));
661 return VINF_EM_RAW_GUEST_TRAP;
662 }
663#endif
664
665 if ( RT_SUCCESS(rc)
666 && ( PAGE_ADDRESS(Addr) != PAGE_ADDRESS(Addr + cbSize - 1)
667 || Addr + cbSize < Addr))
668 {
669 /* Don't recursively call PGMVerifyAccess as we might run out of stack. */
670 for (;;)
671 {
672 Addr += PAGE_SIZE;
673 if (cbSize > PAGE_SIZE)
674 cbSize -= PAGE_SIZE;
675 else
676 cbSize = 1;
677 rc = PGMVerifyAccess(pVCpu, Addr, 1, fAccess);
678 if (rc != VINF_SUCCESS)
679 break;
680 if (PAGE_ADDRESS(Addr) == PAGE_ADDRESS(Addr + cbSize - 1))
681 break;
682 }
683 }
684 return rc;
685}
686
687
688/**
689 * Emulation of the invlpg instruction (HC only actually).
690 *
691 * @returns VBox status code, special care required.
692 * @retval VINF_PGM_SYNC_CR3 - handled.
693 * @retval VINF_EM_RAW_EMULATE_INSTR - not handled (RC only).
694 * @retval VERR_REM_FLUSHED_PAGES_OVERFLOW - not handled.
695 *
696 * @param pVCpu VMCPU handle.
697 * @param GCPtrPage Page to invalidate.
698 *
699 * @remark ASSUMES the page table entry or page directory is valid. Fairly
700 * safe, but there could be edge cases!
701 *
702 * @todo Flush page or page directory only if necessary!
703 */
704VMMDECL(int) PGMInvalidatePage(PVMCPU pVCpu, RTGCPTR GCPtrPage)
705{
706 PVM pVM = pVCpu->CTX_SUFF(pVM);
707 int rc;
708 Log3(("PGMInvalidatePage: GCPtrPage=%RGv\n", GCPtrPage));
709
710#ifndef IN_RING3
711 /*
712 * Notify the recompiler so it can record this instruction.
713 * Failure happens when it's out of space. We'll return to HC in that case.
714 */
715 rc = REMNotifyInvalidatePage(pVM, GCPtrPage);
716 if (rc != VINF_SUCCESS)
717 return rc;
718#endif /* !IN_RING3 */
719
720
721#ifdef IN_RC
722 /*
723 * Check for conflicts and pending CR3 monitoring updates.
724 */
725 if (!pVM->pgm.s.fMappingsFixed)
726 {
727 if ( pgmGetMapping(pVM, GCPtrPage)
728 && PGMGstGetPage(pVCpu, GCPtrPage, NULL, NULL) != VERR_PAGE_TABLE_NOT_PRESENT)
729 {
730 LogFlow(("PGMGCInvalidatePage: Conflict!\n"));
731 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
732 STAM_COUNTER_INC(&pVM->pgm.s.StatRCInvlPgConflict);
733 return VINF_PGM_SYNC_CR3;
734 }
735
736 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3)
737 {
738 LogFlow(("PGMGCInvalidatePage: PGM_SYNC_MONITOR_CR3 -> reinterpret instruction in R3\n"));
739 STAM_COUNTER_INC(&pVM->pgm.s.StatRCInvlPgSyncMonCR3);
740 return VINF_EM_RAW_EMULATE_INSTR;
741 }
742 }
743#endif /* IN_RC */
744
745 /*
746 * Call paging mode specific worker.
747 */
748 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePage), a);
749 pgmLock(pVM);
750 rc = PGM_BTH_PFN(InvalidatePage, pVCpu)(pVCpu, GCPtrPage);
751 pgmUnlock(pVM);
752 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePage), a);
753
754#ifdef IN_RING3
755 /*
756 * Check if we have a pending update of the CR3 monitoring.
757 */
758 if ( RT_SUCCESS(rc)
759 && (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3))
760 {
761 pVCpu->pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3;
762 Assert(!pVM->pgm.s.fMappingsFixed);
763 }
764
765 /*
766 * Inform CSAM about the flush
767 *
768 * Note: This is to check if monitored pages have been changed; when we implement
769 * callbacks for virtual handlers, this is no longer required.
770 */
771 CSAMR3FlushPage(pVM, GCPtrPage);
772#endif /* IN_RING3 */
773 return rc;
774}
775
776
777/**
778 * Executes an instruction using the interpreter.
779 *
780 * @returns VBox status code (appropriate for trap handling and GC return).
781 * @param pVM VM handle.
782 * @param pVCpu VMCPU handle.
783 * @param pRegFrame Register frame.
784 * @param pvFault Fault address.
785 */
786VMMDECL(int) PGMInterpretInstruction(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)
787{
788 uint32_t cb;
789 int rc = EMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault, &cb);
790 if (rc == VERR_EM_INTERPRETER)
791 rc = VINF_EM_RAW_EMULATE_INSTR;
792 if (rc != VINF_SUCCESS)
793 Log(("PGMInterpretInstruction: returns %Rrc (pvFault=%RGv)\n", rc, pvFault));
794 return rc;
795}
796
797
798/**
799 * Gets effective page information (from the VMM page directory).
800 *
801 * @returns VBox status.
802 * @param pVCpu VMCPU handle.
803 * @param GCPtr Guest Context virtual address of the page.
804 * @param pfFlags Where to store the flags. These are X86_PTE_*.
805 * @param pHCPhys Where to store the HC physical address of the page.
806 * This is page aligned.
807 * @remark You should use PGMMapGetPage() for pages in a mapping.
808 */
809VMMDECL(int) PGMShwGetPage(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys)
810{
811 pgmLock(pVCpu->CTX_SUFF(pVM));
812 int rc = PGM_SHW_PFN(GetPage, pVCpu)(pVCpu, GCPtr, pfFlags, pHCPhys);
813 pgmUnlock(pVCpu->CTX_SUFF(pVM));
814 return rc;
815}
816
817
818/**
819 * Sets (replaces) the page flags for a range of pages in the shadow context.
820 *
821 * @returns VBox status.
822 * @param pVCpu VMCPU handle.
823 * @param GCPtr The address of the first page.
824 * @param cb The size of the range in bytes.
825 * @param fFlags Page flags X86_PTE_*, excluding the page mask of course.
826 * @remark You must use PGMMapSetPage() for pages in a mapping.
827 */
828VMMDECL(int) PGMShwSetPage(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cb, uint64_t fFlags)
829{
830 return PGMShwModifyPage(pVCpu, GCPtr, cb, fFlags, 0);
831}
832
833
834/**
835 * Modify page flags for a range of pages in the shadow context.
836 *
837 * The existing flags are ANDed with the fMask and ORed with the fFlags.
838 *
839 * @returns VBox status code.
840 * @param pVCpu VMCPU handle.
841 * @param GCPtr Virtual address of the first page in the range.
842 * @param cb Size (in bytes) of the range to apply the modification to.
843 * @param fFlags The OR mask - page flags X86_PTE_*, excluding the page mask of course.
844 * @param fMask The AND mask - page flags X86_PTE_*.
845 * Be very CAREFUL when ~'ing constants which could be 32-bit!
846 * @remark You must use PGMMapModifyPage() for pages in a mapping.
847 */
848VMMDECL(int) PGMShwModifyPage(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cb, uint64_t fFlags, uint64_t fMask)
849{
850 AssertMsg(!(fFlags & X86_PTE_PAE_PG_MASK), ("fFlags=%#llx\n", fFlags));
851 Assert(cb);
852
853 /*
854 * Align the input.
855 */
856 cb += GCPtr & PAGE_OFFSET_MASK;
857 cb = RT_ALIGN_Z(cb, PAGE_SIZE);
858 GCPtr = (GCPtr & PAGE_BASE_GC_MASK); /** @todo this ain't necessary, right... */
859
860 /*
861 * Call worker.
862 */
863 PVM pVM = pVCpu->CTX_SUFF(pVM);
864 pgmLock(pVM);
865 int rc = PGM_SHW_PFN(ModifyPage, pVCpu)(pVCpu, GCPtr, cb, fFlags, fMask);
866 pgmUnlock(pVM);
867 return rc;
868}
869
870/**
871 * Gets the shadow page directory for the specified address, PAE.
872 *
873 * @returns Pointer to the shadow PD.
874 * @param pVCpu The VMCPU handle.
875 * @param GCPtr The address.
876 * @param pGstPdpe Guest PDPT entry
877 * @param ppPD Receives address of page directory
878 */
879int pgmShwSyncPaePDPtr(PVMCPU pVCpu, RTGCPTR GCPtr, PX86PDPE pGstPdpe, PX86PDPAE *ppPD)
880{
881 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
882 PX86PDPT pPdpt = pgmShwGetPaePDPTPtr(&pVCpu->pgm.s);
883 PX86PDPE pPdpe = &pPdpt->a[iPdPt];
884 PVM pVM = pVCpu->CTX_SUFF(pVM);
885 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
886 PPGMPOOLPAGE pShwPage;
887 int rc;
888
889 Assert(PGMIsLockOwner(pVM));
890
891 /* Allocate page directory if not present. */
892 if ( !pPdpe->n.u1Present
893 && !(pPdpe->u & X86_PDPE_PG_MASK))
894 {
895 RTGCPTR64 GCPdPt;
896 PGMPOOLKIND enmKind;
897
898# if defined(IN_RC)
899 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
900 PGMDynLockHCPage(pVM, (uint8_t *)pPdpe);
901# endif
902
903 if (HWACCMIsNestedPagingActive(pVM) || !CPUMIsGuestPagingEnabled(pVCpu))
904 {
905 /* AMD-V nested paging or real/protected mode without paging */
906 GCPdPt = (RTGCPTR64)iPdPt << X86_PDPT_SHIFT;
907 enmKind = PGMPOOLKIND_PAE_PD_PHYS;
908 }
909 else
910 {
911 Assert(pGstPdpe);
912
913 if (CPUMGetGuestCR4(pVCpu) & X86_CR4_PAE)
914 {
915 if (!pGstPdpe->n.u1Present)
916 {
917 /* PD not present; guest must reload CR3 to change it.
918 * No need to monitor anything in this case.
919 */
920 Assert(!HWACCMIsEnabled(pVM));
921
922 GCPdPt = pGstPdpe->u & X86_PDPE_PG_MASK;
923 enmKind = PGMPOOLKIND_PAE_PD_PHYS;
924 pGstPdpe->n.u1Present = 1;
925 }
926 else
927 {
928 GCPdPt = pGstPdpe->u & X86_PDPE_PG_MASK;
929 enmKind = PGMPOOLKIND_PAE_PD_FOR_PAE_PD;
930 }
931 }
932 else
933 {
934 GCPdPt = CPUMGetGuestCR3(pVCpu);
935 enmKind = (PGMPOOLKIND)(PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD + iPdPt);
936 }
937 }
938
939 /* Create a reference back to the PDPT by using the index in its shadow page. */
940 rc = pgmPoolAlloc(pVM, GCPdPt, enmKind, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)->idx, iPdPt, &pShwPage);
941 AssertRCReturn(rc, rc);
942
943 /* The PD was cached or created; hook it up now. */
944 pPdpe->u |= pShwPage->Core.Key
945 | (pGstPdpe->u & ~(X86_PDPE_PG_MASK | X86_PDPE_AVL_MASK | X86_PDPE_PCD | X86_PDPE_PWT));
946
947# if defined(IN_RC)
948 /* In 32 bits PAE mode we *must* invalidate the TLB when changing a PDPT entry; the CPU fetches them only during cr3 load, so any
949 * non-present PDPT will continue to cause page faults.
950 */
951 ASMReloadCR3();
952 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdpe);
953# endif
954 }
955 else
956 {
957 pShwPage = pgmPoolGetPage(pPool, pPdpe->u & X86_PDPE_PG_MASK);
958 AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
959 Assert((pPdpe->u & X86_PDPE_PG_MASK) == pShwPage->Core.Key);
960
961 pgmPoolCacheUsed(pPool, pShwPage);
962 }
963 *ppPD = (PX86PDPAE)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
964 return VINF_SUCCESS;
965}
966
967
968/**
969 * Gets the pointer to the shadow page directory entry for an address, PAE.
970 *
971 * @returns Pointer to the PDE.
972 * @param pPGM Pointer to the PGMCPU instance data.
973 * @param GCPtr The address.
974 * @param ppShwPde Receives the address of the pgm pool page for the shadow page directory
975 */
976DECLINLINE(int) pgmShwGetPaePoolPagePD(PPGMCPU pPGM, RTGCPTR GCPtr, PPGMPOOLPAGE *ppShwPde)
977{
978 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
979 PX86PDPT pPdpt = pgmShwGetPaePDPTPtr(pPGM);
980
981 Assert(PGMIsLockOwner(PGMCPU2VM(pPGM)));
982
983 AssertReturn(pPdpt, VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT); /* can't happen */
984 if (!pPdpt->a[iPdPt].n.u1Present)
985 {
986 LogFlow(("pgmShwGetPaePoolPagePD: PD %d not present (%RX64)\n", iPdPt, pPdpt->a[iPdPt].u));
987 return VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT;
988 }
989 AssertMsg(pPdpt->a[iPdPt].u & X86_PDPE_PG_MASK, ("GCPtr=%RGv\n", GCPtr));
990
991 /* Fetch the pgm pool shadow descriptor. */
992 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(PGMCPU2PGM(pPGM)->CTX_SUFF(pPool), pPdpt->a[iPdPt].u & X86_PDPE_PG_MASK);
993 AssertReturn(pShwPde, VERR_INTERNAL_ERROR);
994
995 *ppShwPde = pShwPde;
996 return VINF_SUCCESS;
997}
998
999#ifndef IN_RC
1000
1001/**
1002 * Syncs the SHADOW page directory pointer for the specified address.
1003 *
1004 * Allocates backing pages in case the PDPT or PML4 entry is missing.
1005 *
1006 * The caller is responsible for making sure the guest has a valid PD before
1007 * calling this function.
1008 *
1009 * @returns VBox status.
1010 * @param pVCpu VMCPU handle.
1011 * @param GCPtr The address.
1012 * @param pGstPml4e Guest PML4 entry
1013 * @param pGstPdpe Guest PDPT entry
1014 * @param ppPD Receives address of page directory
1015 */
1016int pgmShwSyncLongModePDPtr(PVMCPU pVCpu, RTGCPTR64 GCPtr, PX86PML4E pGstPml4e, PX86PDPE pGstPdpe, PX86PDPAE *ppPD)
1017{
1018 PPGMCPU pPGM = &pVCpu->pgm.s;
1019 PVM pVM = pVCpu->CTX_SUFF(pVM);
1020 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1021 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
1022 PX86PML4E pPml4e = pgmShwGetLongModePML4EPtr(pPGM, iPml4);
1023 bool fNestedPagingOrNoGstPaging = HWACCMIsNestedPagingActive(pVM) || !CPUMIsGuestPagingEnabled(pVCpu);
1024 PPGMPOOLPAGE pShwPage;
1025 int rc;
1026
1027 Assert(PGMIsLockOwner(pVM));
1028
1029 /* Allocate page directory pointer table if not present. */
1030 if ( !pPml4e->n.u1Present
1031 && !(pPml4e->u & X86_PML4E_PG_MASK))
1032 {
1033 RTGCPTR64 GCPml4;
1034 PGMPOOLKIND enmKind;
1035
1036 Assert(pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
1037
1038 if (fNestedPagingOrNoGstPaging)
1039 {
1040 /* AMD-V nested paging or real/protected mode without paging */
1041 GCPml4 = (RTGCPTR64)iPml4 << X86_PML4_SHIFT;
1042 enmKind = PGMPOOLKIND_64BIT_PDPT_FOR_PHYS;
1043 }
1044 else
1045 {
1046 Assert(pGstPml4e && pGstPdpe);
1047
1048 GCPml4 = pGstPml4e->u & X86_PML4E_PG_MASK;
1049 enmKind = PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT;
1050 }
1051
1052 /* Create a reference back to the PDPT by using the index in its shadow page. */
1053 rc = pgmPoolAlloc(pVM, GCPml4, enmKind, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)->idx, iPml4, &pShwPage);
1054 AssertRCReturn(rc, rc);
1055 }
1056 else
1057 {
1058 pShwPage = pgmPoolGetPage(pPool, pPml4e->u & X86_PML4E_PG_MASK);
1059 AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
1060
1061 pgmPoolCacheUsed(pPool, pShwPage);
1062 }
1063 /* The PDPT was cached or created; hook it up now. */
1064 pPml4e->u |= pShwPage->Core.Key
1065 | (pGstPml4e->u & ~(X86_PML4E_PG_MASK | X86_PML4E_AVL_MASK | X86_PML4E_PCD | X86_PML4E_PWT));
1066
1067 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1068 PX86PDPT pPdpt = (PX86PDPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1069 PX86PDPE pPdpe = &pPdpt->a[iPdPt];
1070
1071 /* Allocate page directory if not present. */
1072 if ( !pPdpe->n.u1Present
1073 && !(pPdpe->u & X86_PDPE_PG_MASK))
1074 {
1075 RTGCPTR64 GCPdPt;
1076 PGMPOOLKIND enmKind;
1077
1078 if (fNestedPagingOrNoGstPaging)
1079 {
1080 /* AMD-V nested paging or real/protected mode without paging */
1081 GCPdPt = (RTGCPTR64)iPdPt << X86_PDPT_SHIFT;
1082 enmKind = PGMPOOLKIND_64BIT_PD_FOR_PHYS;
1083 }
1084 else
1085 {
1086 Assert(pGstPdpe);
1087
1088 GCPdPt = pGstPdpe->u & X86_PDPE_PG_MASK;
1089 enmKind = PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD;
1090 }
1091
1092 /* Create a reference back to the PDPT by using the index in its shadow page. */
1093 rc = pgmPoolAlloc(pVM, GCPdPt, enmKind, pShwPage->idx, iPdPt, &pShwPage);
1094 AssertRCReturn(rc, rc);
1095 }
1096 else
1097 {
1098 pShwPage = pgmPoolGetPage(pPool, pPdpe->u & X86_PDPE_PG_MASK);
1099 AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
1100
1101 pgmPoolCacheUsed(pPool, pShwPage);
1102 }
1103 /* The PD was cached or created; hook it up now. */
1104 pPdpe->u |= pShwPage->Core.Key
1105 | (pGstPdpe->u & ~(X86_PDPE_PG_MASK | X86_PDPE_AVL_MASK | X86_PDPE_PCD | X86_PDPE_PWT));
1106
1107 *ppPD = (PX86PDPAE)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1108 return VINF_SUCCESS;
1109}
1110
1111
1112/**
1113 * Gets the SHADOW page directory pointer for the specified address (long mode).
1114 *
1115 * @returns VBox status.
1116 * @param pVCpu VMCPU handle.
1117 * @param GCPtr The address.
1118 * @param ppPdpt Receives address of pdpt
1119 * @param ppPD Receives address of page directory
1120 */
1121DECLINLINE(int) pgmShwGetLongModePDPtr(PVMCPU pVCpu, RTGCPTR64 GCPtr, PX86PML4E *ppPml4e, PX86PDPT *ppPdpt, PX86PDPAE *ppPD)
1122{
1123 PPGMCPU pPGM = &pVCpu->pgm.s;
1124 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
1125 PCX86PML4E pPml4e = pgmShwGetLongModePML4EPtr(pPGM, iPml4);
1126
1127 Assert(PGMIsLockOwner(PGMCPU2VM(pPGM)));
1128
1129 AssertReturn(pPml4e, VERR_INTERNAL_ERROR);
1130 if (ppPml4e)
1131 *ppPml4e = (PX86PML4E)pPml4e;
1132
1133 Log4(("pgmShwGetLongModePDPtr %VGv (%VHv) %RX64\n", GCPtr, pPml4e, pPml4e->u));
1134
1135 if (!pPml4e->n.u1Present)
1136 return VERR_PAGE_MAP_LEVEL4_NOT_PRESENT;
1137
1138 PVM pVM = pVCpu->CTX_SUFF(pVM);
1139 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1140 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPml4e->u & X86_PML4E_PG_MASK);
1141 AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
1142
1143 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1144 PCX86PDPT pPdpt = *ppPdpt = (PX86PDPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1145 if (!pPdpt->a[iPdPt].n.u1Present)
1146 return VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT;
1147
1148 pShwPage = pgmPoolGetPage(pPool, pPdpt->a[iPdPt].u & X86_PDPE_PG_MASK);
1149 AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
1150
1151 *ppPD = (PX86PDPAE)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1152 return VINF_SUCCESS;
1153}
1154
1155
1156/**
1157 * Syncs the SHADOW EPT page directory pointer for the specified address. Allocates
1158 * backing pages in case the PDPT or PML4 entry is missing.
1159 *
1160 * @returns VBox status.
1161 * @param pVCpu VMCPU handle.
1162 * @param GCPtr The address.
1163 * @param ppPdpt Receives address of pdpt
1164 * @param ppPD Receives address of page directory
1165 */
1166int pgmShwGetEPTPDPtr(PVMCPU pVCpu, RTGCPTR64 GCPtr, PEPTPDPT *ppPdpt, PEPTPD *ppPD)
1167{
1168 PPGMCPU pPGM = &pVCpu->pgm.s;
1169 PVM pVM = pVCpu->CTX_SUFF(pVM);
1170 const unsigned iPml4 = (GCPtr >> EPT_PML4_SHIFT) & EPT_PML4_MASK;
1171 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1172 PEPTPML4 pPml4;
1173 PEPTPML4E pPml4e;
1174 PPGMPOOLPAGE pShwPage;
1175 int rc;
1176
1177 Assert(HWACCMIsNestedPagingActive(pVM));
1178 Assert(PGMIsLockOwner(pVM));
1179
1180 pPml4 = (PEPTPML4)PGMPOOL_PAGE_2_PTR_BY_PGMCPU(pPGM, pPGM->CTX_SUFF(pShwPageCR3));
1181 Assert(pPml4);
1182
1183 /* Allocate page directory pointer table if not present. */
1184 pPml4e = &pPml4->a[iPml4];
1185 if ( !pPml4e->n.u1Present
1186 && !(pPml4e->u & EPT_PML4E_PG_MASK))
1187 {
1188 Assert(!(pPml4e->u & EPT_PML4E_PG_MASK));
1189 RTGCPTR64 GCPml4 = (RTGCPTR64)iPml4 << EPT_PML4_SHIFT;
1190
1191 rc = pgmPoolAlloc(pVM, GCPml4, PGMPOOLKIND_EPT_PDPT_FOR_PHYS, PGMPOOL_IDX_NESTED_ROOT, iPml4, &pShwPage);
1192 AssertRCReturn(rc, rc);
1193 }
1194 else
1195 {
1196 pShwPage = pgmPoolGetPage(pPool, pPml4e->u & EPT_PML4E_PG_MASK);
1197 AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
1198
1199 pgmPoolCacheUsed(pPool, pShwPage);
1200 }
1201 /* The PDPT was cached or created; hook it up now and fill with the default value. */
1202 pPml4e->u = pShwPage->Core.Key;
1203 pPml4e->n.u1Present = 1;
1204 pPml4e->n.u1Write = 1;
1205 pPml4e->n.u1Execute = 1;
1206
1207 const unsigned iPdPt = (GCPtr >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK;
1208 PEPTPDPT pPdpt = (PEPTPDPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1209 PEPTPDPTE pPdpe = &pPdpt->a[iPdPt];
1210
1211 if (ppPdpt)
1212 *ppPdpt = pPdpt;
1213
1214 /* Allocate page directory if not present. */
1215 if ( !pPdpe->n.u1Present
1216 && !(pPdpe->u & EPT_PDPTE_PG_MASK))
1217 {
1218 RTGCPTR64 GCPdPt = (RTGCPTR64)iPdPt << EPT_PDPT_SHIFT;
1219
1220 rc = pgmPoolAlloc(pVM, GCPdPt, PGMPOOLKIND_64BIT_PD_FOR_PHYS, pShwPage->idx, iPdPt, &pShwPage);
1221 AssertRCReturn(rc, rc);
1222 }
1223 else
1224 {
1225 pShwPage = pgmPoolGetPage(pPool, pPdpe->u & EPT_PDPTE_PG_MASK);
1226 AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
1227
1228 pgmPoolCacheUsed(pPool, pShwPage);
1229 }
1230 /* The PD was cached or created; hook it up now and fill with the default value. */
1231 pPdpe->u = pShwPage->Core.Key;
1232 pPdpe->n.u1Present = 1;
1233 pPdpe->n.u1Write = 1;
1234 pPdpe->n.u1Execute = 1;
1235
1236 *ppPD = (PEPTPD)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1237 return VINF_SUCCESS;
1238}
1239
1240#endif /* IN_RC */
1241
1242/**
1243 * Gets effective Guest OS page information.
1244 *
1245 * When GCPtr is in a big page, the function will return as if it was a normal
1246 * 4KB page. If the need for distinguishing between big and normal page becomes
1247 * necessary at a later point, a PGMGstGetPage() will be created for that
1248 * purpose.
1249 *
1250 * @returns VBox status.
1251 * @param pVCpu VMCPU handle.
1252 * @param GCPtr Guest Context virtual address of the page.
1253 * @param pfFlags Where to store the flags. These are X86_PTE_*, even for big pages.
1254 * @param pGCPhys Where to store the GC physical address of the page.
1255 * This is page aligned. The fact that the
1256 */
1257VMMDECL(int) PGMGstGetPage(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys)
1258{
1259 return PGM_GST_PFN(GetPage, pVCpu)(pVCpu, GCPtr, pfFlags, pGCPhys);
1260}
1261
1262
1263/**
1264 * Checks if the page is present.
1265 *
1266 * @returns true if the page is present.
1267 * @returns false if the page is not present.
1268 * @param pVCpu VMCPU handle.
1269 * @param GCPtr Address within the page.
1270 */
1271VMMDECL(bool) PGMGstIsPagePresent(PVMCPU pVCpu, RTGCPTR GCPtr)
1272{
1273 int rc = PGMGstGetPage(pVCpu, GCPtr, NULL, NULL);
1274 return RT_SUCCESS(rc);
1275}
1276
1277
1278/**
1279 * Sets (replaces) the page flags for a range of pages in the guest's tables.
1280 *
1281 * @returns VBox status.
1282 * @param pVCpu VMCPU handle.
1283 * @param GCPtr The address of the first page.
1284 * @param cb The size of the range in bytes.
1285 * @param fFlags Page flags X86_PTE_*, excluding the page mask of course.
1286 */
1287VMMDECL(int) PGMGstSetPage(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cb, uint64_t fFlags)
1288{
1289 return PGMGstModifyPage(pVCpu, GCPtr, cb, fFlags, 0);
1290}
1291
1292
1293/**
1294 * Modify page flags for a range of pages in the guest's tables
1295 *
1296 * The existing flags are ANDed with the fMask and ORed with the fFlags.
1297 *
1298 * @returns VBox status code.
1299 * @param pVCpu VMCPU handle.
1300 * @param GCPtr Virtual address of the first page in the range.
1301 * @param cb Size (in bytes) of the range to apply the modification to.
1302 * @param fFlags The OR mask - page flags X86_PTE_*, excluding the page mask of course.
1303 * @param fMask The AND mask - page flags X86_PTE_*, excluding the page mask of course.
1304 * Be very CAREFUL when ~'ing constants which could be 32-bit!
1305 */
1306VMMDECL(int) PGMGstModifyPage(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cb, uint64_t fFlags, uint64_t fMask)
1307{
1308 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_MID_Z(Stat,GstModifyPage), a);
1309
1310 /*
1311 * Validate input.
1312 */
1313 AssertMsg(!(fFlags & X86_PTE_PAE_PG_MASK), ("fFlags=%#llx\n", fFlags));
1314 Assert(cb);
1315
1316 LogFlow(("PGMGstModifyPage %RGv %d bytes fFlags=%08llx fMask=%08llx\n", GCPtr, cb, fFlags, fMask));
1317
1318 /*
1319 * Adjust input.
1320 */
1321 cb += GCPtr & PAGE_OFFSET_MASK;
1322 cb = RT_ALIGN_Z(cb, PAGE_SIZE);
1323 GCPtr = (GCPtr & PAGE_BASE_GC_MASK);
1324
1325 /*
1326 * Call worker.
1327 */
1328 int rc = PGM_GST_PFN(ModifyPage, pVCpu)(pVCpu, GCPtr, cb, fFlags, fMask);
1329
1330 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,GstModifyPage), a);
1331 return rc;
1332}
1333
1334#ifdef IN_RING3
1335
1336/**
1337 * Performs the lazy mapping of the 32-bit guest PD.
1338 *
1339 * @returns Pointer to the mapping.
1340 * @param pPGM The PGM instance data.
1341 */
1342PX86PD pgmGstLazyMap32BitPD(PPGMCPU pPGM)
1343{
1344 Assert(!pPGM->CTX_SUFF(pGst32BitPd));
1345 PVM pVM = PGMCPU2VM(pPGM);
1346 pgmLock(pVM);
1347
1348 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, pPGM->GCPhysCR3);
1349 AssertReturn(pPage, NULL);
1350
1351 RTHCPTR HCPtrGuestCR3;
1352 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pPGM->GCPhysCR3 & X86_CR3_PAGE_MASK, (void **)&HCPtrGuestCR3);
1353 AssertRCReturn(rc, NULL);
1354
1355 pPGM->pGst32BitPdR3 = (R3PTRTYPE(PX86PD))HCPtrGuestCR3;
1356# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1357 pPGM->pGst32BitPdR0 = (R0PTRTYPE(PX86PD))HCPtrGuestCR3;
1358# endif
1359
1360 pgmUnlock(pVM);
1361 return pPGM->CTX_SUFF(pGst32BitPd);
1362}
1363
1364
1365/**
1366 * Performs the lazy mapping of the PAE guest PDPT.
1367 *
1368 * @returns Pointer to the mapping.
1369 * @param pPGM The PGM instance data.
1370 */
1371PX86PDPT pgmGstLazyMapPaePDPT(PPGMCPU pPGM)
1372{
1373 Assert(!pPGM->CTX_SUFF(pGstPaePdpt));
1374 PVM pVM = PGMCPU2VM(pPGM);
1375 pgmLock(pVM);
1376
1377 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, pPGM->GCPhysCR3);
1378 AssertReturn(pPage, NULL);
1379
1380 RTHCPTR HCPtrGuestCR3;
1381 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pPGM->GCPhysCR3 & X86_CR3_PAE_PAGE_MASK, (void **)&HCPtrGuestCR3); /** @todo r=bird: This GCPhysR3 masking isn't necessary. */
1382 AssertRCReturn(rc, NULL);
1383
1384 pPGM->pGstPaePdptR3 = (R3PTRTYPE(PX86PDPT))HCPtrGuestCR3;
1385# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1386 pPGM->pGstPaePdptR0 = (R0PTRTYPE(PX86PDPT))HCPtrGuestCR3;
1387# endif
1388
1389 pgmUnlock(pVM);
1390 return pPGM->CTX_SUFF(pGstPaePdpt);
1391}
1392
1393#endif /* IN_RING3 */
1394
1395#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
1396/**
1397 * Performs the lazy mapping / updating of a PAE guest PD.
1398 *
1399 * @returns Pointer to the mapping.
1400 * @param pPGM The PGM instance data.
1401 * @param iPdpt Which PD entry to map (0..3).
1402 */
1403PX86PDPAE pgmGstLazyMapPaePD(PPGMCPU pPGM, uint32_t iPdpt)
1404{
1405 PVM pVM = PGMCPU2VM(pPGM);
1406 pgmLock(pVM);
1407
1408 PX86PDPT pGuestPDPT = pPGM->CTX_SUFF(pGstPaePdpt);
1409 Assert(pGuestPDPT);
1410 Assert(pGuestPDPT->a[iPdpt].n.u1Present);
1411 RTGCPHYS GCPhys = pGuestPDPT->a[iPdpt].u & X86_PDPE_PG_MASK;
1412 bool const fChanged = pPGM->aGCPhysGstPaePDs[iPdpt] != GCPhys;
1413
1414 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
1415 if (RT_LIKELY(pPage))
1416 {
1417 int rc = VINF_SUCCESS;
1418 RTRCPTR RCPtr = NIL_RTRCPTR;
1419 RTHCPTR HCPtr = NIL_RTHCPTR;
1420#if !defined(IN_RC) && !defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1421 rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &HCPtr);
1422 AssertRC(rc);
1423#endif
1424 if (RT_SUCCESS(rc) && fChanged)
1425 {
1426 RCPtr = (RTRCPTR)(RTRCUINTPTR)(pVM->pgm.s.GCPtrCR3Mapping + (1 + iPdpt) * PAGE_SIZE);
1427 rc = PGMMap(pVM, (RTRCUINTPTR)RCPtr, PGM_PAGE_GET_HCPHYS(pPage), PAGE_SIZE, 0);
1428 }
1429 if (RT_SUCCESS(rc))
1430 {
1431 pPGM->apGstPaePDsR3[iPdpt] = (R3PTRTYPE(PX86PDPAE))HCPtr;
1432# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1433 pPGM->apGstPaePDsR0[iPdpt] = (R0PTRTYPE(PX86PDPAE))HCPtr;
1434# endif
1435 if (fChanged)
1436 {
1437 pPGM->aGCPhysGstPaePDs[iPdpt] = GCPhys;
1438 pPGM->apGstPaePDsRC[iPdpt] = (RCPTRTYPE(PX86PDPAE))RCPtr;
1439 }
1440
1441 pgmUnlock(pVM);
1442 return pPGM->CTX_SUFF(apGstPaePDs)[iPdpt];
1443 }
1444 }
1445
1446 /* Invalid page or some failure, invalidate the entry. */
1447 pPGM->aGCPhysGstPaePDs[iPdpt] = NIL_RTGCPHYS;
1448 pPGM->apGstPaePDsR3[iPdpt] = 0;
1449# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1450 pPGM->apGstPaePDsR0[iPdpt] = 0;
1451# endif
1452 pPGM->apGstPaePDsRC[iPdpt] = 0;
1453
1454 pgmUnlock(pVM);
1455 return NULL;
1456}
1457#endif /* !VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 */
1458
1459
1460#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R3
1461/**
1462 * Performs the lazy mapping of the 32-bit guest PD.
1463 *
1464 * @returns Pointer to the mapping.
1465 * @param pPGM The PGM instance data.
1466 */
1467PX86PML4 pgmGstLazyMapPml4(PPGMCPU pPGM)
1468{
1469 Assert(!pPGM->CTX_SUFF(pGstAmd64Pml4));
1470 PVM pVM = PGMCPU2VM(pPGM);
1471 pgmLock(pVM);
1472
1473 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, pPGM->GCPhysCR3);
1474 AssertReturn(pPage, NULL);
1475
1476 RTHCPTR HCPtrGuestCR3;
1477 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pPGM->GCPhysCR3 & X86_CR3_AMD64_PAGE_MASK, (void **)&HCPtrGuestCR3); /** @todo r=bird: This GCPhysCR3 masking isn't necessary. */
1478 AssertRCReturn(rc, NULL);
1479
1480 pPGM->pGstAmd64Pml4R3 = (R3PTRTYPE(PX86PML4))HCPtrGuestCR3;
1481# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1482 pPGM->pGstAmd64Pml4R0 = (R0PTRTYPE(PX86PML4))HCPtrGuestCR3;
1483# endif
1484
1485 pgmUnlock(pVM);
1486 return pPGM->CTX_SUFF(pGstAmd64Pml4);
1487}
1488#endif /* VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R3 */
1489
1490
1491/**
1492 * Gets the specified page directory pointer table entry.
1493 *
1494 * @returns PDP entry
1495 * @param pVCpu VMCPU handle.
1496 * @param iPdpt PDPT index
1497 */
1498VMMDECL(X86PDPE) PGMGstGetPaePDPtr(PVMCPU pVCpu, unsigned iPdpt)
1499{
1500 Assert(iPdpt <= 3);
1501 return pgmGstGetPaePDPTPtr(&pVCpu->pgm.s)->a[iPdpt & 3];
1502}
1503
1504
1505/**
1506 * Gets the current CR3 register value for the shadow memory context.
1507 * @returns CR3 value.
1508 * @param pVCpu VMCPU handle.
1509 */
1510VMMDECL(RTHCPHYS) PGMGetHyperCR3(PVMCPU pVCpu)
1511{
1512 PPGMPOOLPAGE pPoolPage = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
1513 AssertPtrReturn(pPoolPage, 0);
1514 return pPoolPage->Core.Key;
1515}
1516
1517
1518/**
1519 * Gets the current CR3 register value for the nested memory context.
1520 * @returns CR3 value.
1521 * @param pVCpu VMCPU handle.
1522 */
1523VMMDECL(RTHCPHYS) PGMGetNestedCR3(PVMCPU pVCpu, PGMMODE enmShadowMode)
1524{
1525 Assert(pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
1526 return pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)->Core.Key;
1527}
1528
1529
1530/**
1531 * Gets the current CR3 register value for the HC intermediate memory context.
1532 * @returns CR3 value.
1533 * @param pVM The VM handle.
1534 */
1535VMMDECL(RTHCPHYS) PGMGetInterHCCR3(PVM pVM)
1536{
1537 switch (pVM->pgm.s.enmHostMode)
1538 {
1539 case SUPPAGINGMODE_32_BIT:
1540 case SUPPAGINGMODE_32_BIT_GLOBAL:
1541 return pVM->pgm.s.HCPhysInterPD;
1542
1543 case SUPPAGINGMODE_PAE:
1544 case SUPPAGINGMODE_PAE_GLOBAL:
1545 case SUPPAGINGMODE_PAE_NX:
1546 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1547 return pVM->pgm.s.HCPhysInterPaePDPT;
1548
1549 case SUPPAGINGMODE_AMD64:
1550 case SUPPAGINGMODE_AMD64_GLOBAL:
1551 case SUPPAGINGMODE_AMD64_NX:
1552 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1553 return pVM->pgm.s.HCPhysInterPaePDPT;
1554
1555 default:
1556 AssertMsgFailed(("enmHostMode=%d\n", pVM->pgm.s.enmHostMode));
1557 return ~0;
1558 }
1559}
1560
1561
1562/**
1563 * Gets the current CR3 register value for the RC intermediate memory context.
1564 * @returns CR3 value.
1565 * @param pVM The VM handle.
1566 * @param pVCpu VMCPU handle.
1567 */
1568VMMDECL(RTHCPHYS) PGMGetInterRCCR3(PVM pVM, PVMCPU pVCpu)
1569{
1570 switch (pVCpu->pgm.s.enmShadowMode)
1571 {
1572 case PGMMODE_32_BIT:
1573 return pVM->pgm.s.HCPhysInterPD;
1574
1575 case PGMMODE_PAE:
1576 case PGMMODE_PAE_NX:
1577 return pVM->pgm.s.HCPhysInterPaePDPT;
1578
1579 case PGMMODE_AMD64:
1580 case PGMMODE_AMD64_NX:
1581 return pVM->pgm.s.HCPhysInterPaePML4;
1582
1583 case PGMMODE_EPT:
1584 case PGMMODE_NESTED:
1585 return 0; /* not relevant */
1586
1587 default:
1588 AssertMsgFailed(("enmShadowMode=%d\n", pVCpu->pgm.s.enmShadowMode));
1589 return ~0;
1590 }
1591}
1592
1593
1594/**
1595 * Gets the CR3 register value for the 32-Bit intermediate memory context.
1596 * @returns CR3 value.
1597 * @param pVM The VM handle.
1598 */
1599VMMDECL(RTHCPHYS) PGMGetInter32BitCR3(PVM pVM)
1600{
1601 return pVM->pgm.s.HCPhysInterPD;
1602}
1603
1604
1605/**
1606 * Gets the CR3 register value for the PAE intermediate memory context.
1607 * @returns CR3 value.
1608 * @param pVM The VM handle.
1609 */
1610VMMDECL(RTHCPHYS) PGMGetInterPaeCR3(PVM pVM)
1611{
1612 return pVM->pgm.s.HCPhysInterPaePDPT;
1613}
1614
1615
1616/**
1617 * Gets the CR3 register value for the AMD64 intermediate memory context.
1618 * @returns CR3 value.
1619 * @param pVM The VM handle.
1620 */
1621VMMDECL(RTHCPHYS) PGMGetInterAmd64CR3(PVM pVM)
1622{
1623 return pVM->pgm.s.HCPhysInterPaePML4;
1624}
1625
1626
1627/**
1628 * Performs and schedules necessary updates following a CR3 load or reload.
1629 *
1630 * This will normally involve mapping the guest PD or nPDPT
1631 *
1632 * @returns VBox status code.
1633 * @retval VINF_PGM_SYNC_CR3 if monitoring requires a CR3 sync. This can
1634 * safely be ignored and overridden since the FF will be set too then.
1635 * @param pVCpu VMCPU handle.
1636 * @param cr3 The new cr3.
1637 * @param fGlobal Indicates whether this is a global flush or not.
1638 */
1639VMMDECL(int) PGMFlushTLB(PVMCPU pVCpu, uint64_t cr3, bool fGlobal)
1640{
1641 PVM pVM = pVCpu->CTX_SUFF(pVM);
1642
1643 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_MID_Z(Stat,FlushTLB), a);
1644
1645 /*
1646 * Always flag the necessary updates; necessary for hardware acceleration
1647 */
1648 /** @todo optimize this, it shouldn't always be necessary. */
1649 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
1650 if (fGlobal)
1651 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
1652 LogFlow(("PGMFlushTLB: cr3=%RX64 OldCr3=%RX64 fGlobal=%d\n", cr3, pVCpu->pgm.s.GCPhysCR3, fGlobal));
1653
1654 /*
1655 * Remap the CR3 content and adjust the monitoring if CR3 was actually changed.
1656 */
1657 int rc = VINF_SUCCESS;
1658 RTGCPHYS GCPhysCR3;
1659 switch (pVCpu->pgm.s.enmGuestMode)
1660 {
1661 case PGMMODE_PAE:
1662 case PGMMODE_PAE_NX:
1663 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAE_PAGE_MASK);
1664 break;
1665 case PGMMODE_AMD64:
1666 case PGMMODE_AMD64_NX:
1667 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_AMD64_PAGE_MASK);
1668 break;
1669 default:
1670 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAGE_MASK);
1671 break;
1672 }
1673
1674 if (pVCpu->pgm.s.GCPhysCR3 != GCPhysCR3)
1675 {
1676 RTGCPHYS GCPhysOldCR3 = pVCpu->pgm.s.GCPhysCR3;
1677 pVCpu->pgm.s.GCPhysCR3 = GCPhysCR3;
1678 rc = PGM_BTH_PFN(MapCR3, pVCpu)(pVCpu, GCPhysCR3);
1679 if (RT_LIKELY(rc == VINF_SUCCESS))
1680 {
1681 if (!pVM->pgm.s.fMappingsFixed)
1682 {
1683 pVCpu->pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3;
1684 }
1685 }
1686 else
1687 {
1688 AssertMsg(rc == VINF_PGM_SYNC_CR3, ("%Rrc\n", rc));
1689 Assert(VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL | VMCPU_FF_PGM_SYNC_CR3));
1690 pVCpu->pgm.s.GCPhysCR3 = GCPhysOldCR3;
1691 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_MAP_CR3;
1692 if (!pVM->pgm.s.fMappingsFixed)
1693 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_MONITOR_CR3;
1694 }
1695
1696 if (fGlobal)
1697 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,FlushTLBNewCR3Global));
1698 else
1699 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,FlushTLBNewCR3));
1700 }
1701 else
1702 {
1703# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
1704 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1705 if (pPool->cDirtyPages)
1706 {
1707 pgmLock(pVM);
1708 pgmPoolResetDirtyPages(pVM);
1709 pgmUnlock(pVM);
1710 }
1711# endif
1712 /*
1713 * Check if we have a pending update of the CR3 monitoring.
1714 */
1715 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3)
1716 {
1717 pVCpu->pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3;
1718 Assert(!pVM->pgm.s.fMappingsFixed);
1719 }
1720 if (fGlobal)
1721 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,FlushTLBSameCR3Global));
1722 else
1723 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,FlushTLBSameCR3));
1724 }
1725
1726 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,FlushTLB), a);
1727 return rc;
1728}
1729
1730
1731/**
1732 * Performs and schedules necessary updates following a CR3 load or reload when
1733 * using nested or extended paging.
1734 *
1735 * This API is an alterantive to PDMFlushTLB that avoids actually flushing the
1736 * TLB and triggering a SyncCR3.
1737 *
1738 * This will normally involve mapping the guest PD or nPDPT
1739 *
1740 * @returns VBox status code.
1741 * @retval VINF_SUCCESS.
1742 * @retval (If applied when not in nested mode: VINF_PGM_SYNC_CR3 if monitoring
1743 * requires a CR3 sync. This can safely be ignored and overridden since
1744 * the FF will be set too then.)
1745 * @param pVCpu VMCPU handle.
1746 * @param cr3 The new cr3.
1747 */
1748VMMDECL(int) PGMUpdateCR3(PVMCPU pVCpu, uint64_t cr3)
1749{
1750 PVM pVM = pVCpu->CTX_SUFF(pVM);
1751
1752 LogFlow(("PGMUpdateCR3: cr3=%RX64 OldCr3=%RX64\n", cr3, pVCpu->pgm.s.GCPhysCR3));
1753
1754 /* We assume we're only called in nested paging mode. */
1755 Assert(pVM->pgm.s.fMappingsFixed);
1756 Assert(!(pVCpu->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3));
1757 Assert(HWACCMIsNestedPagingActive(pVM) || pVCpu->pgm.s.enmShadowMode == PGMMODE_EPT);
1758
1759 /*
1760 * Remap the CR3 content and adjust the monitoring if CR3 was actually changed.
1761 */
1762 int rc = VINF_SUCCESS;
1763 RTGCPHYS GCPhysCR3;
1764 switch (pVCpu->pgm.s.enmGuestMode)
1765 {
1766 case PGMMODE_PAE:
1767 case PGMMODE_PAE_NX:
1768 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAE_PAGE_MASK);
1769 break;
1770 case PGMMODE_AMD64:
1771 case PGMMODE_AMD64_NX:
1772 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_AMD64_PAGE_MASK);
1773 break;
1774 default:
1775 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAGE_MASK);
1776 break;
1777 }
1778 if (pVCpu->pgm.s.GCPhysCR3 != GCPhysCR3)
1779 {
1780 pVCpu->pgm.s.GCPhysCR3 = GCPhysCR3;
1781 rc = PGM_BTH_PFN(MapCR3, pVCpu)(pVCpu, GCPhysCR3);
1782 AssertRCSuccess(rc); /* Assumes VINF_PGM_SYNC_CR3 doesn't apply to nested paging. */ /** @todo this isn't true for the mac, but we need hw to test/fix this. */
1783 }
1784 return rc;
1785}
1786
1787
1788/**
1789 * Synchronize the paging structures.
1790 *
1791 * This function is called in response to the VM_FF_PGM_SYNC_CR3 and
1792 * VM_FF_PGM_SYNC_CR3_NONGLOBAL. Those two force action flags are set
1793 * in several places, most importantly whenever the CR3 is loaded.
1794 *
1795 * @returns VBox status code.
1796 * @param pVCpu VMCPU handle.
1797 * @param cr0 Guest context CR0 register
1798 * @param cr3 Guest context CR3 register
1799 * @param cr4 Guest context CR4 register
1800 * @param fGlobal Including global page directories or not
1801 */
1802VMMDECL(int) PGMSyncCR3(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)
1803{
1804 PVM pVM = pVCpu->CTX_SUFF(pVM);
1805 int rc;
1806
1807 /*
1808 * The pool may have pending stuff and even require a return to ring-3 to
1809 * clear the whole thing.
1810 */
1811 rc = pgmPoolSyncCR3(pVCpu);
1812 if (rc != VINF_SUCCESS)
1813 return rc;
1814
1815 /*
1816 * We might be called when we shouldn't.
1817 *
1818 * The mode switching will ensure that the PD is resynced
1819 * after every mode switch. So, if we find ourselves here
1820 * when in protected or real mode we can safely disable the
1821 * FF and return immediately.
1822 */
1823 if (pVCpu->pgm.s.enmGuestMode <= PGMMODE_PROTECTED)
1824 {
1825 Assert((cr0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE));
1826 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
1827 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
1828 return VINF_SUCCESS;
1829 }
1830
1831 /* If global pages are not supported, then all flushes are global. */
1832 if (!(cr4 & X86_CR4_PGE))
1833 fGlobal = true;
1834 LogFlow(("PGMSyncCR3: cr0=%RX64 cr3=%RX64 cr4=%RX64 fGlobal=%d[%d,%d]\n", cr0, cr3, cr4, fGlobal,
1835 VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3), VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL)));
1836
1837 /*
1838 * Check if we need to finish an aborted MapCR3 call (see PGMFlushTLB).
1839 * This should be done before SyncCR3.
1840 */
1841 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_MAP_CR3)
1842 {
1843 pVCpu->pgm.s.fSyncFlags &= ~PGM_SYNC_MAP_CR3;
1844
1845 RTGCPHYS GCPhysCR3Old = pVCpu->pgm.s.GCPhysCR3;
1846 RTGCPHYS GCPhysCR3;
1847 switch (pVCpu->pgm.s.enmGuestMode)
1848 {
1849 case PGMMODE_PAE:
1850 case PGMMODE_PAE_NX:
1851 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAE_PAGE_MASK);
1852 break;
1853 case PGMMODE_AMD64:
1854 case PGMMODE_AMD64_NX:
1855 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_AMD64_PAGE_MASK);
1856 break;
1857 default:
1858 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAGE_MASK);
1859 break;
1860 }
1861
1862 if (pVCpu->pgm.s.GCPhysCR3 != GCPhysCR3)
1863 {
1864 pVCpu->pgm.s.GCPhysCR3 = GCPhysCR3;
1865 rc = PGM_BTH_PFN(MapCR3, pVCpu)(pVCpu, GCPhysCR3);
1866 }
1867#ifdef IN_RING3
1868 if (rc == VINF_PGM_SYNC_CR3)
1869 rc = pgmPoolSyncCR3(pVCpu);
1870#else
1871 if (rc == VINF_PGM_SYNC_CR3)
1872 {
1873 pVCpu->pgm.s.GCPhysCR3 = GCPhysCR3Old;
1874 return rc;
1875 }
1876#endif
1877 AssertRCReturn(rc, rc);
1878 AssertRCSuccessReturn(rc, VERR_INTERNAL_ERROR);
1879 }
1880
1881 /*
1882 * Let the 'Bth' function do the work and we'll just keep track of the flags.
1883 */
1884 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncCR3), a);
1885 rc = PGM_BTH_PFN(SyncCR3, pVCpu)(pVCpu, cr0, cr3, cr4, fGlobal);
1886 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncCR3), a);
1887 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("rc=%Rrc\n", rc));
1888 if (rc == VINF_SUCCESS)
1889 {
1890 if (!(pVCpu->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS))
1891 {
1892 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
1893 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
1894 }
1895
1896 /*
1897 * Check if we have a pending update of the CR3 monitoring.
1898 */
1899 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3)
1900 {
1901 pVCpu->pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3;
1902 Assert(!pVM->pgm.s.fMappingsFixed);
1903 }
1904 }
1905
1906 /*
1907 * Now flush the CR3 (guest context).
1908 */
1909 if (rc == VINF_SUCCESS)
1910 PGM_INVL_VCPU_TLBS(pVCpu);
1911 return rc;
1912}
1913
1914
1915/**
1916 * Called whenever CR0 or CR4 in a way which may change
1917 * the paging mode.
1918 *
1919 * @returns VBox status code, with the following informational code for
1920 * VM scheduling.
1921 * @retval VINF_SUCCESS if the was no change, or it was successfully dealt with.
1922 * @retval VINF_PGM_CHANGE_MODE if we're in RC or R0 and the mode changes.
1923 * (I.e. not in R3.)
1924 * @retval VINF_EM_SUSPEND or VINF_EM_OFF on a fatal runtime error. (R3 only)
1925 *
1926 * @param pVCpu VMCPU handle.
1927 * @param cr0 The new cr0.
1928 * @param cr4 The new cr4.
1929 * @param efer The new extended feature enable register.
1930 */
1931VMMDECL(int) PGMChangeMode(PVMCPU pVCpu, uint64_t cr0, uint64_t cr4, uint64_t efer)
1932{
1933 PVM pVM = pVCpu->CTX_SUFF(pVM);
1934 PGMMODE enmGuestMode;
1935
1936 /*
1937 * Calc the new guest mode.
1938 */
1939 if (!(cr0 & X86_CR0_PE))
1940 enmGuestMode = PGMMODE_REAL;
1941 else if (!(cr0 & X86_CR0_PG))
1942 enmGuestMode = PGMMODE_PROTECTED;
1943 else if (!(cr4 & X86_CR4_PAE))
1944 enmGuestMode = PGMMODE_32_BIT;
1945 else if (!(efer & MSR_K6_EFER_LME))
1946 {
1947 if (!(efer & MSR_K6_EFER_NXE))
1948 enmGuestMode = PGMMODE_PAE;
1949 else
1950 enmGuestMode = PGMMODE_PAE_NX;
1951 }
1952 else
1953 {
1954 if (!(efer & MSR_K6_EFER_NXE))
1955 enmGuestMode = PGMMODE_AMD64;
1956 else
1957 enmGuestMode = PGMMODE_AMD64_NX;
1958 }
1959
1960 /*
1961 * Did it change?
1962 */
1963 if (pVCpu->pgm.s.enmGuestMode == enmGuestMode)
1964 return VINF_SUCCESS;
1965
1966 /* Flush the TLB */
1967 PGM_INVL_VCPU_TLBS(pVCpu);
1968
1969#ifdef IN_RING3
1970 return PGMR3ChangeMode(pVM, pVCpu, enmGuestMode);
1971#else
1972 LogFlow(("PGMChangeMode: returns VINF_PGM_CHANGE_MODE.\n"));
1973 return VINF_PGM_CHANGE_MODE;
1974#endif
1975}
1976
1977
1978/**
1979 * Gets the current guest paging mode.
1980 *
1981 * If you just need the CPU mode (real/protected/long), use CPUMGetGuestMode().
1982 *
1983 * @returns The current paging mode.
1984 * @param pVCpu VMCPU handle.
1985 */
1986VMMDECL(PGMMODE) PGMGetGuestMode(PVMCPU pVCpu)
1987{
1988 return pVCpu->pgm.s.enmGuestMode;
1989}
1990
1991
1992/**
1993 * Gets the current shadow paging mode.
1994 *
1995 * @returns The current paging mode.
1996 * @param pVCpu VMCPU handle.
1997 */
1998VMMDECL(PGMMODE) PGMGetShadowMode(PVMCPU pVCpu)
1999{
2000 return pVCpu->pgm.s.enmShadowMode;
2001}
2002
2003/**
2004 * Gets the current host paging mode.
2005 *
2006 * @returns The current paging mode.
2007 * @param pVM The VM handle.
2008 */
2009VMMDECL(PGMMODE) PGMGetHostMode(PVM pVM)
2010{
2011 switch (pVM->pgm.s.enmHostMode)
2012 {
2013 case SUPPAGINGMODE_32_BIT:
2014 case SUPPAGINGMODE_32_BIT_GLOBAL:
2015 return PGMMODE_32_BIT;
2016
2017 case SUPPAGINGMODE_PAE:
2018 case SUPPAGINGMODE_PAE_GLOBAL:
2019 return PGMMODE_PAE;
2020
2021 case SUPPAGINGMODE_PAE_NX:
2022 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2023 return PGMMODE_PAE_NX;
2024
2025 case SUPPAGINGMODE_AMD64:
2026 case SUPPAGINGMODE_AMD64_GLOBAL:
2027 return PGMMODE_AMD64;
2028
2029 case SUPPAGINGMODE_AMD64_NX:
2030 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2031 return PGMMODE_AMD64_NX;
2032
2033 default: AssertMsgFailed(("enmHostMode=%d\n", pVM->pgm.s.enmHostMode)); break;
2034 }
2035
2036 return PGMMODE_INVALID;
2037}
2038
2039
2040/**
2041 * Get mode name.
2042 *
2043 * @returns read-only name string.
2044 * @param enmMode The mode which name is desired.
2045 */
2046VMMDECL(const char *) PGMGetModeName(PGMMODE enmMode)
2047{
2048 switch (enmMode)
2049 {
2050 case PGMMODE_REAL: return "Real";
2051 case PGMMODE_PROTECTED: return "Protected";
2052 case PGMMODE_32_BIT: return "32-bit";
2053 case PGMMODE_PAE: return "PAE";
2054 case PGMMODE_PAE_NX: return "PAE+NX";
2055 case PGMMODE_AMD64: return "AMD64";
2056 case PGMMODE_AMD64_NX: return "AMD64+NX";
2057 case PGMMODE_NESTED: return "Nested";
2058 case PGMMODE_EPT: return "EPT";
2059 default: return "unknown mode value";
2060 }
2061}
2062
2063
2064/**
2065 * Check if any pgm pool pages are marked dirty (not monitored)
2066 *
2067 * @returns bool locked/not locked
2068 * @param pVM The VM to operate on.
2069 */
2070VMMDECL(bool) PGMHasDirtyPages(PVM pVM)
2071{
2072 return pVM->pgm.s.CTX_SUFF(pPool)->cDirtyPages != 0;
2073}
2074
2075/**
2076 * Check if the PGM lock is currently taken.
2077 *
2078 * @returns bool locked/not locked
2079 * @param pVM The VM to operate on.
2080 */
2081VMMDECL(bool) PGMIsLocked(PVM pVM)
2082{
2083 return PDMCritSectIsOwned(&pVM->pgm.s.CritSect);
2084}
2085
2086
2087/**
2088 * Check if this VCPU currently owns the PGM lock.
2089 *
2090 * @returns bool owner/not owner
2091 * @param pVM The VM to operate on.
2092 */
2093VMMDECL(bool) PGMIsLockOwner(PVM pVM)
2094{
2095 return PDMCritSectIsOwner(&pVM->pgm.s.CritSect);
2096}
2097
2098
2099/**
2100 * Acquire the PGM lock.
2101 *
2102 * @returns VBox status code
2103 * @param pVM The VM to operate on.
2104 */
2105int pgmLock(PVM pVM)
2106{
2107 int rc = PDMCritSectEnter(&pVM->pgm.s.CritSect, VERR_SEM_BUSY);
2108#if defined(IN_RC) || defined(IN_RING0)
2109 if (rc == VERR_SEM_BUSY)
2110 rc = VMMRZCallRing3NoCpu(pVM, VMMCALLRING3_PGM_LOCK, 0);
2111#endif
2112 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc));
2113 return rc;
2114}
2115
2116
2117/**
2118 * Release the PGM lock.
2119 *
2120 * @returns VBox status code
2121 * @param pVM The VM to operate on.
2122 */
2123void pgmUnlock(PVM pVM)
2124{
2125 PDMCritSectLeave(&pVM->pgm.s.CritSect);
2126}
2127
2128#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
2129
2130/**
2131 * Temporarily maps one guest page specified by GC physical address.
2132 * These pages must have a physical mapping in HC, i.e. they cannot be MMIO pages.
2133 *
2134 * Be WARNED that the dynamic page mapping area is small, 8 pages, thus the space is
2135 * reused after 8 mappings (or perhaps a few more if you score with the cache).
2136 *
2137 * @returns VBox status.
2138 * @param pVM VM handle.
2139 * @param GCPhys GC Physical address of the page.
2140 * @param ppv Where to store the address of the mapping.
2141 */
2142VMMDECL(int) PGMDynMapGCPage(PVM pVM, RTGCPHYS GCPhys, void **ppv)
2143{
2144 AssertMsg(!(GCPhys & PAGE_OFFSET_MASK), ("GCPhys=%RGp\n", GCPhys));
2145
2146 /*
2147 * Get the ram range.
2148 */
2149 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
2150 while (pRam && GCPhys - pRam->GCPhys >= pRam->cb)
2151 pRam = pRam->CTX_SUFF(pNext);
2152 if (!pRam)
2153 {
2154 AssertMsgFailed(("Invalid physical address %RGp!\n", GCPhys));
2155 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
2156 }
2157
2158 /*
2159 * Pass it on to PGMDynMapHCPage.
2160 */
2161 RTHCPHYS HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT]);
2162 //Log(("PGMDynMapGCPage: GCPhys=%RGp HCPhys=%RHp\n", GCPhys, HCPhys));
2163#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2164 pgmR0DynMapHCPageInlined(&pVM->pgm.s, HCPhys, ppv);
2165#else
2166 PGMDynMapHCPage(pVM, HCPhys, ppv);
2167#endif
2168 return VINF_SUCCESS;
2169}
2170
2171
2172/**
2173 * Temporarily maps one guest page specified by unaligned GC physical address.
2174 * These pages must have a physical mapping in HC, i.e. they cannot be MMIO pages.
2175 *
2176 * Be WARNED that the dynamic page mapping area is small, 8 pages, thus the space is
2177 * reused after 8 mappings (or perhaps a few more if you score with the cache).
2178 *
2179 * The caller is aware that only the speicifed page is mapped and that really bad things
2180 * will happen if writing beyond the page!
2181 *
2182 * @returns VBox status.
2183 * @param pVM VM handle.
2184 * @param GCPhys GC Physical address within the page to be mapped.
2185 * @param ppv Where to store the address of the mapping address corresponding to GCPhys.
2186 */
2187VMMDECL(int) PGMDynMapGCPageOff(PVM pVM, RTGCPHYS GCPhys, void **ppv)
2188{
2189 /*
2190 * Get the ram range.
2191 */
2192 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
2193 while (pRam && GCPhys - pRam->GCPhys >= pRam->cb)
2194 pRam = pRam->CTX_SUFF(pNext);
2195 if (!pRam)
2196 {
2197 AssertMsgFailed(("Invalid physical address %RGp!\n", GCPhys));
2198 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
2199 }
2200
2201 /*
2202 * Pass it on to PGMDynMapHCPage.
2203 */
2204 RTHCPHYS HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT]);
2205#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2206 pgmR0DynMapHCPageInlined(&pVM->pgm.s, HCPhys, ppv);
2207#else
2208 PGMDynMapHCPage(pVM, HCPhys, ppv);
2209#endif
2210 *ppv = (void *)((uintptr_t)*ppv | (GCPhys & PAGE_OFFSET_MASK));
2211 return VINF_SUCCESS;
2212}
2213
2214# ifdef IN_RC
2215
2216/**
2217 * Temporarily maps one host page specified by HC physical address.
2218 *
2219 * Be WARNED that the dynamic page mapping area is small, 16 pages, thus the space is
2220 * reused after 16 mappings (or perhaps a few more if you score with the cache).
2221 *
2222 * @returns VINF_SUCCESS, will bail out to ring-3 on failure.
2223 * @param pVM VM handle.
2224 * @param HCPhys HC Physical address of the page.
2225 * @param ppv Where to store the address of the mapping. This is the
2226 * address of the PAGE not the exact address corresponding
2227 * to HCPhys. Use PGMDynMapHCPageOff if you care for the
2228 * page offset.
2229 */
2230VMMDECL(int) PGMDynMapHCPage(PVM pVM, RTHCPHYS HCPhys, void **ppv)
2231{
2232 AssertMsg(!(HCPhys & PAGE_OFFSET_MASK), ("HCPhys=%RHp\n", HCPhys));
2233
2234 /*
2235 * Check the cache.
2236 */
2237 register unsigned iCache;
2238 for (iCache = 0;iCache < RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache);iCache++)
2239 {
2240 static const uint8_t au8Trans[MM_HYPER_DYNAMIC_SIZE >> PAGE_SHIFT][RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache)] =
2241 {
2242 { 0, 9, 10, 11, 12, 13, 14, 15},
2243 { 0, 1, 10, 11, 12, 13, 14, 15},
2244 { 0, 1, 2, 11, 12, 13, 14, 15},
2245 { 0, 1, 2, 3, 12, 13, 14, 15},
2246 { 0, 1, 2, 3, 4, 13, 14, 15},
2247 { 0, 1, 2, 3, 4, 5, 14, 15},
2248 { 0, 1, 2, 3, 4, 5, 6, 15},
2249 { 0, 1, 2, 3, 4, 5, 6, 7},
2250 { 8, 1, 2, 3, 4, 5, 6, 7},
2251 { 8, 9, 2, 3, 4, 5, 6, 7},
2252 { 8, 9, 10, 3, 4, 5, 6, 7},
2253 { 8, 9, 10, 11, 4, 5, 6, 7},
2254 { 8, 9, 10, 11, 12, 5, 6, 7},
2255 { 8, 9, 10, 11, 12, 13, 6, 7},
2256 { 8, 9, 10, 11, 12, 13, 14, 7},
2257 { 8, 9, 10, 11, 12, 13, 14, 15},
2258 };
2259 AssertCompile(RT_ELEMENTS(au8Trans) == 16);
2260 AssertCompile(RT_ELEMENTS(au8Trans[0]) == 8);
2261
2262 if (pVM->pgm.s.aHCPhysDynPageMapCache[iCache] == HCPhys)
2263 {
2264 int iPage = au8Trans[pVM->pgm.s.iDynPageMapLast][iCache];
2265
2266 /* The cache can get out of sync with locked entries. (10 locked, 2 overwrites its cache position, last = 11, lookup 2 -> page 10 instead of 2) */
2267 if ((pVM->pgm.s.paDynPageMap32BitPTEsGC[iPage].u & X86_PTE_PG_MASK) == HCPhys)
2268 {
2269 void *pv = pVM->pgm.s.pbDynPageMapBaseGC + (iPage << PAGE_SHIFT);
2270 *ppv = pv;
2271 STAM_COUNTER_INC(&pVM->pgm.s.StatRCDynMapCacheHits);
2272 Log4(("PGMGCDynMapHCPage: HCPhys=%RHp pv=%p iPage=%d iCache=%d\n", HCPhys, pv, iPage, iCache));
2273 return VINF_SUCCESS;
2274 }
2275 LogFlow(("Out of sync entry %d\n", iPage));
2276 }
2277 }
2278 AssertCompile(RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache) == 8);
2279 AssertCompile((MM_HYPER_DYNAMIC_SIZE >> PAGE_SHIFT) == 16);
2280 STAM_COUNTER_INC(&pVM->pgm.s.StatRCDynMapCacheMisses);
2281
2282 /*
2283 * Update the page tables.
2284 */
2285 unsigned iPage = pVM->pgm.s.iDynPageMapLast;
2286 unsigned i;
2287 for (i = 0; i < (MM_HYPER_DYNAMIC_SIZE >> PAGE_SHIFT); i++)
2288 {
2289 pVM->pgm.s.iDynPageMapLast = iPage = (iPage + 1) & ((MM_HYPER_DYNAMIC_SIZE >> PAGE_SHIFT) - 1);
2290 if (!pVM->pgm.s.aLockedDynPageMapCache[iPage])
2291 break;
2292 iPage++;
2293 }
2294 AssertRelease(i != (MM_HYPER_DYNAMIC_SIZE >> PAGE_SHIFT));
2295
2296 pVM->pgm.s.aHCPhysDynPageMapCache[iPage & (RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache) - 1)] = HCPhys;
2297 pVM->pgm.s.paDynPageMap32BitPTEsGC[iPage].u = (uint32_t)HCPhys | X86_PTE_P | X86_PTE_A | X86_PTE_D;
2298 pVM->pgm.s.paDynPageMapPaePTEsGC[iPage].u = HCPhys | X86_PTE_P | X86_PTE_A | X86_PTE_D;
2299 pVM->pgm.s.aLockedDynPageMapCache[iPage] = 0;
2300
2301 void *pv = pVM->pgm.s.pbDynPageMapBaseGC + (iPage << PAGE_SHIFT);
2302 *ppv = pv;
2303 ASMInvalidatePage(pv);
2304 Log4(("PGMGCDynMapHCPage: HCPhys=%RHp pv=%p iPage=%d\n", HCPhys, pv, iPage));
2305 return VINF_SUCCESS;
2306}
2307
2308
2309/**
2310 * Temporarily lock a dynamic page to prevent it from being reused.
2311 *
2312 * @param pVM VM handle.
2313 * @param GCPage GC address of page
2314 */
2315VMMDECL(void) PGMDynLockHCPage(PVM pVM, RCPTRTYPE(uint8_t *) GCPage)
2316{
2317 unsigned iPage;
2318
2319 Assert(GCPage >= pVM->pgm.s.pbDynPageMapBaseGC && GCPage < (pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE));
2320 iPage = ((uintptr_t)(GCPage - pVM->pgm.s.pbDynPageMapBaseGC)) >> PAGE_SHIFT;
2321 ASMAtomicIncU32(&pVM->pgm.s.aLockedDynPageMapCache[iPage]);
2322 Log4(("PGMDynLockHCPage %RRv iPage=%d\n", GCPage, iPage));
2323}
2324
2325
2326/**
2327 * Unlock a dynamic page
2328 *
2329 * @param pVM VM handle.
2330 * @param GCPage GC address of page
2331 */
2332VMMDECL(void) PGMDynUnlockHCPage(PVM pVM, RCPTRTYPE(uint8_t *) GCPage)
2333{
2334 unsigned iPage;
2335
2336 AssertCompile(RT_ELEMENTS(pVM->pgm.s.aLockedDynPageMapCache) == 2* RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache));
2337 AssertCompileMemberSize(VM, pgm.s.aLockedDynPageMapCache, sizeof(uint32_t) * (MM_HYPER_DYNAMIC_SIZE >> (PAGE_SHIFT)));
2338
2339 Assert(GCPage >= pVM->pgm.s.pbDynPageMapBaseGC && GCPage < (pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE));
2340 iPage = ((uintptr_t)(GCPage - pVM->pgm.s.pbDynPageMapBaseGC)) >> PAGE_SHIFT;
2341 Assert(pVM->pgm.s.aLockedDynPageMapCache[iPage]);
2342 ASMAtomicDecU32(&pVM->pgm.s.aLockedDynPageMapCache[iPage]);
2343 Log4(("PGMDynUnlockHCPage %RRv iPage=%d\n", GCPage, iPage));
2344}
2345
2346
2347# ifdef VBOX_STRICT
2348/**
2349 * Check for lock leaks.
2350 *
2351 * @param pVM VM handle.
2352 */
2353VMMDECL(void) PGMDynCheckLocks(PVM pVM)
2354{
2355 for (unsigned i=0;i<RT_ELEMENTS(pVM->pgm.s.aLockedDynPageMapCache);i++)
2356 Assert(!pVM->pgm.s.aLockedDynPageMapCache[i]);
2357}
2358# endif /* VBOX_STRICT */
2359
2360# endif /* IN_RC */
2361#endif /* IN_RC || VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 */
2362
2363#if !defined(IN_R0) || defined(LOG_ENABLED)
2364
2365/** Format handler for PGMPAGE.
2366 * @copydoc FNRTSTRFORMATTYPE */
2367static DECLCALLBACK(size_t) pgmFormatTypeHandlerPage(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput,
2368 const char *pszType, void const *pvValue,
2369 int cchWidth, int cchPrecision, unsigned fFlags,
2370 void *pvUser)
2371{
2372 size_t cch;
2373 PCPGMPAGE pPage = (PCPGMPAGE)pvValue;
2374 if (VALID_PTR(pPage))
2375 {
2376 char szTmp[64+80];
2377
2378 cch = 0;
2379
2380 /* The single char state stuff. */
2381 static const char s_achPageStates[4] = { 'Z', 'A', 'W', 'S' };
2382 szTmp[cch++] = s_achPageStates[PGM_PAGE_GET_STATE(pPage)];
2383
2384#define IS_PART_INCLUDED(lvl) ( !(fFlags & RTSTR_F_PRECISION) || cchPrecision == (lvl) || cchPrecision >= (lvl)+10 )
2385 if (IS_PART_INCLUDED(5))
2386 {
2387 static const char s_achHandlerStates[4] = { '-', 't', 'w', 'a' };
2388 szTmp[cch++] = s_achHandlerStates[PGM_PAGE_GET_HNDL_PHYS_STATE(pPage)];
2389 szTmp[cch++] = s_achHandlerStates[PGM_PAGE_GET_HNDL_VIRT_STATE(pPage)];
2390 }
2391
2392 /* The type. */
2393 if (IS_PART_INCLUDED(4))
2394 {
2395 szTmp[cch++] = ':';
2396 static const char s_achPageTypes[8][4] = { "INV", "RAM", "MI2", "M2A", "SHA", "ROM", "MIO", "BAD" };
2397 szTmp[cch++] = s_achPageTypes[PGM_PAGE_GET_TYPE(pPage)][0];
2398 szTmp[cch++] = s_achPageTypes[PGM_PAGE_GET_TYPE(pPage)][1];
2399 szTmp[cch++] = s_achPageTypes[PGM_PAGE_GET_TYPE(pPage)][2];
2400 }
2401
2402 /* The numbers. */
2403 if (IS_PART_INCLUDED(3))
2404 {
2405 szTmp[cch++] = ':';
2406 cch += RTStrFormatNumber(&szTmp[cch], PGM_PAGE_GET_HCPHYS(pPage), 16, 12, 0, RTSTR_F_ZEROPAD | RTSTR_F_64BIT);
2407 }
2408
2409 if (IS_PART_INCLUDED(2))
2410 {
2411 szTmp[cch++] = ':';
2412 cch += RTStrFormatNumber(&szTmp[cch], PGM_PAGE_GET_PAGEID(pPage), 16, 7, 0, RTSTR_F_ZEROPAD | RTSTR_F_32BIT);
2413 }
2414
2415 if (IS_PART_INCLUDED(6))
2416 {
2417 szTmp[cch++] = ':';
2418 static const char s_achRefs[4] = { '-', 'U', '!', 'L' };
2419 szTmp[cch++] = s_achRefs[PGM_PAGE_GET_TD_CREFS(pPage)];
2420 cch += RTStrFormatNumber(&szTmp[cch], PGM_PAGE_GET_TD_IDX(pPage), 16, 4, 0, RTSTR_F_ZEROPAD | RTSTR_F_16BIT);
2421 }
2422#undef IS_PART_INCLUDED
2423
2424 cch = pfnOutput(pvArgOutput, szTmp, cch);
2425 }
2426 else
2427 cch = pfnOutput(pvArgOutput, "<bad-pgmpage-ptr>", sizeof("<bad-pgmpage-ptr>") - 1);
2428 return cch;
2429}
2430
2431
2432/** Format handler for PGMRAMRANGE.
2433 * @copydoc FNRTSTRFORMATTYPE */
2434static DECLCALLBACK(size_t) pgmFormatTypeHandlerRamRange(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput,
2435 const char *pszType, void const *pvValue,
2436 int cchWidth, int cchPrecision, unsigned fFlags,
2437 void *pvUser)
2438{
2439 size_t cch;
2440 PGMRAMRANGE const *pRam = (PGMRAMRANGE const *)pvValue;
2441 if (VALID_PTR(pRam))
2442 {
2443 char szTmp[80];
2444 cch = RTStrPrintf(szTmp, sizeof(szTmp), "%RGp-%RGp", pRam->GCPhys, pRam->GCPhysLast);
2445 cch = pfnOutput(pvArgOutput, szTmp, cch);
2446 }
2447 else
2448 cch = pfnOutput(pvArgOutput, "<bad-pgmramrange-ptr>", sizeof("<bad-pgmramrange-ptr>") - 1);
2449 return cch;
2450}
2451
2452/** Format type andlers to be registered/deregistered. */
2453static const struct
2454{
2455 char szType[24];
2456 PFNRTSTRFORMATTYPE pfnHandler;
2457} g_aPgmFormatTypes[] =
2458{
2459 { "pgmpage", pgmFormatTypeHandlerPage },
2460 { "pgmramrange", pgmFormatTypeHandlerRamRange }
2461};
2462
2463#endif /* !IN_R0 || LOG_ENABLED */
2464
2465
2466/**
2467 * Registers the global string format types.
2468 *
2469 * This should be called at module load time or in some other manner that ensure
2470 * that it's called exactly one time.
2471 *
2472 * @returns IPRT status code on RTStrFormatTypeRegister failure.
2473 */
2474VMMDECL(int) PGMRegisterStringFormatTypes(void)
2475{
2476#if !defined(IN_R0) || defined(LOG_ENABLED)
2477 int rc = VINF_SUCCESS;
2478 unsigned i;
2479 for (i = 0; RT_SUCCESS(rc) && i < RT_ELEMENTS(g_aPgmFormatTypes); i++)
2480 {
2481 rc = RTStrFormatTypeRegister(g_aPgmFormatTypes[i].szType, g_aPgmFormatTypes[i].pfnHandler, NULL);
2482# ifdef IN_RING0
2483 if (rc == VERR_ALREADY_EXISTS)
2484 {
2485 /* in case of cleanup failure in ring-0 */
2486 RTStrFormatTypeDeregister(g_aPgmFormatTypes[i].szType);
2487 rc = RTStrFormatTypeRegister(g_aPgmFormatTypes[i].szType, g_aPgmFormatTypes[i].pfnHandler, NULL);
2488 }
2489# endif
2490 }
2491 if (RT_FAILURE(rc))
2492 while (i-- > 0)
2493 RTStrFormatTypeDeregister(g_aPgmFormatTypes[i].szType);
2494
2495 return rc;
2496#else
2497 return VINF_SUCCESS;
2498#endif
2499}
2500
2501
2502/**
2503 * Deregisters the global string format types.
2504 *
2505 * This should be called at module unload time or in some other manner that
2506 * ensure that it's called exactly one time.
2507 */
2508VMMDECL(void) PGMDeregisterStringFormatTypes(void)
2509{
2510#if !defined(IN_R0) || defined(LOG_ENABLED)
2511 for (unsigned i = 0; i < RT_ELEMENTS(g_aPgmFormatTypes); i++)
2512 RTStrFormatTypeDeregister(g_aPgmFormatTypes[i].szType);
2513#endif
2514}
2515
2516#ifdef VBOX_STRICT
2517
2518/**
2519 * Asserts that there are no mapping conflicts.
2520 *
2521 * @returns Number of conflicts.
2522 * @param pVM The VM Handle.
2523 */
2524VMMDECL(unsigned) PGMAssertNoMappingConflicts(PVM pVM)
2525{
2526 unsigned cErrors = 0;
2527
2528 /* Only applies to raw mode -> 1 VPCU */
2529 Assert(pVM->cCpus == 1);
2530 PVMCPU pVCpu = &pVM->aCpus[0];
2531
2532 /*
2533 * Check for mapping conflicts.
2534 */
2535 for (PPGMMAPPING pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
2536 pMapping;
2537 pMapping = pMapping->CTX_SUFF(pNext))
2538 {
2539 /** @todo This is slow and should be optimized, but since it's just assertions I don't care now. */
2540 for (RTGCPTR GCPtr = pMapping->GCPtr;
2541 GCPtr <= pMapping->GCPtrLast;
2542 GCPtr += PAGE_SIZE)
2543 {
2544 int rc = PGMGstGetPage(pVCpu, (RTGCPTR)GCPtr, NULL, NULL);
2545 if (rc != VERR_PAGE_TABLE_NOT_PRESENT)
2546 {
2547 AssertMsgFailed(("Conflict at %RGv with %s\n", GCPtr, R3STRING(pMapping->pszDesc)));
2548 cErrors++;
2549 break;
2550 }
2551 }
2552 }
2553
2554 return cErrors;
2555}
2556
2557
2558/**
2559 * Asserts that everything related to the guest CR3 is correctly shadowed.
2560 *
2561 * This will call PGMAssertNoMappingConflicts() and PGMAssertHandlerAndFlagsInSync(),
2562 * and assert the correctness of the guest CR3 mapping before asserting that the
2563 * shadow page tables is in sync with the guest page tables.
2564 *
2565 * @returns Number of conflicts.
2566 * @param pVM The VM Handle.
2567 * @param pVCpu VMCPU handle.
2568 * @param cr3 The current guest CR3 register value.
2569 * @param cr4 The current guest CR4 register value.
2570 */
2571VMMDECL(unsigned) PGMAssertCR3(PVM pVM, PVMCPU pVCpu, uint64_t cr3, uint64_t cr4)
2572{
2573 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncCR3), a);
2574 pgmLock(pVM);
2575 unsigned cErrors = PGM_BTH_PFN(AssertCR3, pVCpu)(pVCpu, cr3, cr4, 0, ~(RTGCPTR)0);
2576 pgmUnlock(pVM);
2577 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncCR3), a);
2578 return cErrors;
2579}
2580
2581#endif /* VBOX_STRICT */
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette