VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAll.cpp@ 25912

Last change on this file since 25912 was 25912, checked in by vboxsync, 15 years ago

Ignore all irrelevant error codes out non-present pages/pds etc in PGMInvalidatePage.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 83.2 KB
Line 
1/* $Id: PGMAll.cpp 25912 2010-01-19 12:57:56Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor - All context code.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.215389.xyz. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22/*******************************************************************************
23* Header Files *
24*******************************************************************************/
25#define LOG_GROUP LOG_GROUP_PGM
26#include <VBox/pgm.h>
27#include <VBox/cpum.h>
28#include <VBox/selm.h>
29#include <VBox/iom.h>
30#include <VBox/sup.h>
31#include <VBox/mm.h>
32#include <VBox/stam.h>
33#include <VBox/csam.h>
34#include <VBox/patm.h>
35#include <VBox/trpm.h>
36#include <VBox/rem.h>
37#include <VBox/em.h>
38#include <VBox/hwaccm.h>
39#include <VBox/hwacc_vmx.h>
40#include "PGMInternal.h"
41#include <VBox/vm.h>
42#include <iprt/assert.h>
43#include <iprt/asm.h>
44#include <iprt/string.h>
45#include <VBox/log.h>
46#include <VBox/param.h>
47#include <VBox/err.h>
48
49
50/*******************************************************************************
51* Structures and Typedefs *
52*******************************************************************************/
53/**
54 * Stated structure for PGM_GST_NAME(HandlerVirtualUpdate) that's
55 * passed to PGM_GST_NAME(VirtHandlerUpdateOne) during enumeration.
56 */
57typedef struct PGMHVUSTATE
58{
59 /** The VM handle. */
60 PVM pVM;
61 /** The VMCPU handle. */
62 PVMCPU pVCpu;
63 /** The todo flags. */
64 RTUINT fTodo;
65 /** The CR4 register value. */
66 uint32_t cr4;
67} PGMHVUSTATE, *PPGMHVUSTATE;
68
69
70/*******************************************************************************
71* Internal Functions *
72*******************************************************************************/
73DECLINLINE(int) pgmShwGetLongModePDPtr(PVMCPU pVCpu, RTGCPTR64 GCPtr, PX86PML4E *ppPml4e, PX86PDPT *ppPdpt, PX86PDPAE *ppPD);
74DECLINLINE(int) pgmShwGetPaePoolPagePD(PPGMCPU pPGM, RTGCPTR GCPtr, PPGMPOOLPAGE *ppShwPde);
75
76/*
77 * Shadow - 32-bit mode
78 */
79#define PGM_SHW_TYPE PGM_TYPE_32BIT
80#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
81#include "PGMAllShw.h"
82
83/* Guest - real mode */
84#define PGM_GST_TYPE PGM_TYPE_REAL
85#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
86#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
87#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
88#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
89#include "PGMGstDefs.h"
90#include "PGMAllGst.h"
91#include "PGMAllBth.h"
92#undef BTH_PGMPOOLKIND_PT_FOR_PT
93#undef BTH_PGMPOOLKIND_ROOT
94#undef PGM_BTH_NAME
95#undef PGM_GST_TYPE
96#undef PGM_GST_NAME
97
98/* Guest - protected mode */
99#define PGM_GST_TYPE PGM_TYPE_PROT
100#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
101#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
102#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
103#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
104#include "PGMGstDefs.h"
105#include "PGMAllGst.h"
106#include "PGMAllBth.h"
107#undef BTH_PGMPOOLKIND_PT_FOR_PT
108#undef BTH_PGMPOOLKIND_ROOT
109#undef PGM_BTH_NAME
110#undef PGM_GST_TYPE
111#undef PGM_GST_NAME
112
113/* Guest - 32-bit mode */
114#define PGM_GST_TYPE PGM_TYPE_32BIT
115#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
116#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
117#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
118#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
119#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
120#include "PGMGstDefs.h"
121#include "PGMAllGst.h"
122#include "PGMAllBth.h"
123#undef BTH_PGMPOOLKIND_PT_FOR_BIG
124#undef BTH_PGMPOOLKIND_PT_FOR_PT
125#undef BTH_PGMPOOLKIND_ROOT
126#undef PGM_BTH_NAME
127#undef PGM_GST_TYPE
128#undef PGM_GST_NAME
129
130#undef PGM_SHW_TYPE
131#undef PGM_SHW_NAME
132
133
134/*
135 * Shadow - PAE mode
136 */
137#define PGM_SHW_TYPE PGM_TYPE_PAE
138#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
139#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
140#include "PGMAllShw.h"
141
142/* Guest - real mode */
143#define PGM_GST_TYPE PGM_TYPE_REAL
144#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
145#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
146#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
147#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
148#include "PGMGstDefs.h"
149#include "PGMAllBth.h"
150#undef BTH_PGMPOOLKIND_PT_FOR_PT
151#undef BTH_PGMPOOLKIND_ROOT
152#undef PGM_BTH_NAME
153#undef PGM_GST_TYPE
154#undef PGM_GST_NAME
155
156/* Guest - protected mode */
157#define PGM_GST_TYPE PGM_TYPE_PROT
158#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
159#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
160#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
161#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
162#include "PGMGstDefs.h"
163#include "PGMAllBth.h"
164#undef BTH_PGMPOOLKIND_PT_FOR_PT
165#undef BTH_PGMPOOLKIND_ROOT
166#undef PGM_BTH_NAME
167#undef PGM_GST_TYPE
168#undef PGM_GST_NAME
169
170/* Guest - 32-bit mode */
171#define PGM_GST_TYPE PGM_TYPE_32BIT
172#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
173#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
174#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
175#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
176#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
177#include "PGMGstDefs.h"
178#include "PGMAllBth.h"
179#undef BTH_PGMPOOLKIND_PT_FOR_BIG
180#undef BTH_PGMPOOLKIND_PT_FOR_PT
181#undef BTH_PGMPOOLKIND_ROOT
182#undef PGM_BTH_NAME
183#undef PGM_GST_TYPE
184#undef PGM_GST_NAME
185
186
187/* Guest - PAE mode */
188#define PGM_GST_TYPE PGM_TYPE_PAE
189#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
190#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
191#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
192#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
193#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
194#include "PGMGstDefs.h"
195#include "PGMAllGst.h"
196#include "PGMAllBth.h"
197#undef BTH_PGMPOOLKIND_PT_FOR_BIG
198#undef BTH_PGMPOOLKIND_PT_FOR_PT
199#undef BTH_PGMPOOLKIND_ROOT
200#undef PGM_BTH_NAME
201#undef PGM_GST_TYPE
202#undef PGM_GST_NAME
203
204#undef PGM_SHW_TYPE
205#undef PGM_SHW_NAME
206
207
208#ifndef IN_RC /* AMD64 implies VT-x/AMD-V */
209/*
210 * Shadow - AMD64 mode
211 */
212# define PGM_SHW_TYPE PGM_TYPE_AMD64
213# define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
214# include "PGMAllShw.h"
215
216/* Guest - protected mode (only used for AMD-V nested paging in 64 bits mode) */
217# define PGM_GST_TYPE PGM_TYPE_PROT
218# define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
219# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_PROT(name)
220# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
221# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PD_PHYS
222# include "PGMGstDefs.h"
223# include "PGMAllBth.h"
224# undef BTH_PGMPOOLKIND_PT_FOR_PT
225# undef BTH_PGMPOOLKIND_ROOT
226# undef PGM_BTH_NAME
227# undef PGM_GST_TYPE
228# undef PGM_GST_NAME
229
230# ifdef VBOX_WITH_64_BITS_GUESTS
231/* Guest - AMD64 mode */
232# define PGM_GST_TYPE PGM_TYPE_AMD64
233# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
234# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
235# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
236# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
237# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
238# include "PGMGstDefs.h"
239# include "PGMAllGst.h"
240# include "PGMAllBth.h"
241# undef BTH_PGMPOOLKIND_PT_FOR_BIG
242# undef BTH_PGMPOOLKIND_PT_FOR_PT
243# undef BTH_PGMPOOLKIND_ROOT
244# undef PGM_BTH_NAME
245# undef PGM_GST_TYPE
246# undef PGM_GST_NAME
247# endif /* VBOX_WITH_64_BITS_GUESTS */
248
249# undef PGM_SHW_TYPE
250# undef PGM_SHW_NAME
251
252
253/*
254 * Shadow - Nested paging mode
255 */
256# define PGM_SHW_TYPE PGM_TYPE_NESTED
257# define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
258# include "PGMAllShw.h"
259
260/* Guest - real mode */
261# define PGM_GST_TYPE PGM_TYPE_REAL
262# define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
263# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
264# include "PGMGstDefs.h"
265# include "PGMAllBth.h"
266# undef PGM_BTH_NAME
267# undef PGM_GST_TYPE
268# undef PGM_GST_NAME
269
270/* Guest - protected mode */
271# define PGM_GST_TYPE PGM_TYPE_PROT
272# define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
273# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
274# include "PGMGstDefs.h"
275# include "PGMAllBth.h"
276# undef PGM_BTH_NAME
277# undef PGM_GST_TYPE
278# undef PGM_GST_NAME
279
280/* Guest - 32-bit mode */
281# define PGM_GST_TYPE PGM_TYPE_32BIT
282# define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
283# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
284# include "PGMGstDefs.h"
285# include "PGMAllBth.h"
286# undef PGM_BTH_NAME
287# undef PGM_GST_TYPE
288# undef PGM_GST_NAME
289
290/* Guest - PAE mode */
291# define PGM_GST_TYPE PGM_TYPE_PAE
292# define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
293# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
294# include "PGMGstDefs.h"
295# include "PGMAllBth.h"
296# undef PGM_BTH_NAME
297# undef PGM_GST_TYPE
298# undef PGM_GST_NAME
299
300# ifdef VBOX_WITH_64_BITS_GUESTS
301/* Guest - AMD64 mode */
302# define PGM_GST_TYPE PGM_TYPE_AMD64
303# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
304# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
305# include "PGMGstDefs.h"
306# include "PGMAllBth.h"
307# undef PGM_BTH_NAME
308# undef PGM_GST_TYPE
309# undef PGM_GST_NAME
310# endif /* VBOX_WITH_64_BITS_GUESTS */
311
312# undef PGM_SHW_TYPE
313# undef PGM_SHW_NAME
314
315
316/*
317 * Shadow - EPT
318 */
319# define PGM_SHW_TYPE PGM_TYPE_EPT
320# define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
321# include "PGMAllShw.h"
322
323/* Guest - real mode */
324# define PGM_GST_TYPE PGM_TYPE_REAL
325# define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
326# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
327# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_EPT_PT_FOR_PHYS
328# include "PGMGstDefs.h"
329# include "PGMAllBth.h"
330# undef BTH_PGMPOOLKIND_PT_FOR_PT
331# undef PGM_BTH_NAME
332# undef PGM_GST_TYPE
333# undef PGM_GST_NAME
334
335/* Guest - protected mode */
336# define PGM_GST_TYPE PGM_TYPE_PROT
337# define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
338# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
339# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_EPT_PT_FOR_PHYS
340# include "PGMGstDefs.h"
341# include "PGMAllBth.h"
342# undef BTH_PGMPOOLKIND_PT_FOR_PT
343# undef PGM_BTH_NAME
344# undef PGM_GST_TYPE
345# undef PGM_GST_NAME
346
347/* Guest - 32-bit mode */
348# define PGM_GST_TYPE PGM_TYPE_32BIT
349# define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
350# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
351# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_EPT_PT_FOR_PHYS
352# include "PGMGstDefs.h"
353# include "PGMAllBth.h"
354# undef BTH_PGMPOOLKIND_PT_FOR_PT
355# undef PGM_BTH_NAME
356# undef PGM_GST_TYPE
357# undef PGM_GST_NAME
358
359/* Guest - PAE mode */
360# define PGM_GST_TYPE PGM_TYPE_PAE
361# define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
362# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
363# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_EPT_PT_FOR_PHYS
364# include "PGMGstDefs.h"
365# include "PGMAllBth.h"
366# undef BTH_PGMPOOLKIND_PT_FOR_PT
367# undef PGM_BTH_NAME
368# undef PGM_GST_TYPE
369# undef PGM_GST_NAME
370
371# ifdef VBOX_WITH_64_BITS_GUESTS
372/* Guest - AMD64 mode */
373# define PGM_GST_TYPE PGM_TYPE_AMD64
374# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
375# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
376# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_EPT_PT_FOR_PHYS
377# include "PGMGstDefs.h"
378# include "PGMAllBth.h"
379# undef BTH_PGMPOOLKIND_PT_FOR_PT
380# undef PGM_BTH_NAME
381# undef PGM_GST_TYPE
382# undef PGM_GST_NAME
383# endif /* VBOX_WITH_64_BITS_GUESTS */
384
385# undef PGM_SHW_TYPE
386# undef PGM_SHW_NAME
387
388#endif /* !IN_RC */
389
390
391#ifndef IN_RING3
392/**
393 * #PF Handler.
394 *
395 * @returns VBox status code (appropriate for trap handling and GC return).
396 * @param pVCpu VMCPU handle.
397 * @param uErr The trap error code.
398 * @param pRegFrame Trap register frame.
399 * @param pvFault The fault address.
400 */
401VMMDECL(int) PGMTrap0eHandler(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)
402{
403 PVM pVM = pVCpu->CTX_SUFF(pVM);
404
405 Log(("PGMTrap0eHandler: uErr=%RGu pvFault=%RGv eip=%04x:%RGv\n", uErr, pvFault, pRegFrame->cs, (RTGCPTR)pRegFrame->rip));
406 STAM_PROFILE_START(&pVCpu->pgm.s.StatRZTrap0e, a);
407 STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = NULL; } );
408
409
410#ifdef VBOX_WITH_STATISTICS
411 /*
412 * Error code stats.
413 */
414 if (uErr & X86_TRAP_PF_US)
415 {
416 if (!(uErr & X86_TRAP_PF_P))
417 {
418 if (uErr & X86_TRAP_PF_RW)
419 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eUSNotPresentWrite);
420 else
421 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eUSNotPresentRead);
422 }
423 else if (uErr & X86_TRAP_PF_RW)
424 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eUSWrite);
425 else if (uErr & X86_TRAP_PF_RSVD)
426 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eUSReserved);
427 else if (uErr & X86_TRAP_PF_ID)
428 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eUSNXE);
429 else
430 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eUSRead);
431 }
432 else
433 { /* Supervisor */
434 if (!(uErr & X86_TRAP_PF_P))
435 {
436 if (uErr & X86_TRAP_PF_RW)
437 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eSVNotPresentWrite);
438 else
439 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eSVNotPresentRead);
440 }
441 else if (uErr & X86_TRAP_PF_RW)
442 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eSVWrite);
443 else if (uErr & X86_TRAP_PF_ID)
444 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eSNXE);
445 else if (uErr & X86_TRAP_PF_RSVD)
446 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eSVReserved);
447 }
448#endif /* VBOX_WITH_STATISTICS */
449
450 /*
451 * Call the worker.
452 */
453 pgmLock(pVM);
454 int rc = PGM_BTH_PFN(Trap0eHandler, pVCpu)(pVCpu, uErr, pRegFrame, pvFault);
455 Assert(PGMIsLockOwner(pVM));
456 pgmUnlock(pVM);
457 if (rc == VINF_PGM_SYNCPAGE_MODIFIED_PDE)
458 rc = VINF_SUCCESS;
459
460# ifdef IN_RING0
461 /* Note: hack alert for difficult to reproduce problem. */
462 if ( rc == VERR_PAGE_NOT_PRESENT /* SMP only ; disassembly might fail. */
463 || rc == VERR_PAGE_TABLE_NOT_PRESENT /* seen with UNI & SMP */
464 || rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT /* seen with SMP */
465 || rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT) /* precaution */
466 {
467 Log(("WARNING: Unexpected VERR_PAGE_TABLE_NOT_PRESENT (%d) for page fault at %RGv error code %x (rip=%RGv)\n", rc, pvFault, uErr, pRegFrame->rip));
468 /* Some kind of inconsistency in the SMP case; it's safe to just execute the instruction again; not sure about single VCPU VMs though. */
469 rc = VINF_SUCCESS;
470 }
471# endif
472
473 STAM_STATS({ if (rc == VINF_EM_RAW_GUEST_TRAP) STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0eGuestPF); });
474 STAM_STATS({ if (!pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution))
475 pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.StatRZTrap0eTime2Misc; });
476 STAM_PROFILE_STOP_EX(&pVCpu->pgm.s.StatRZTrap0e, pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution), a);
477 return rc;
478}
479#endif /* !IN_RING3 */
480
481
482/**
483 * Prefetch a page
484 *
485 * Typically used to sync commonly used pages before entering raw mode
486 * after a CR3 reload.
487 *
488 * @returns VBox status code suitable for scheduling.
489 * @retval VINF_SUCCESS on success.
490 * @retval VINF_PGM_SYNC_CR3 if we're out of shadow pages or something like that.
491 * @param pVCpu VMCPU handle.
492 * @param GCPtrPage Page to invalidate.
493 */
494VMMDECL(int) PGMPrefetchPage(PVMCPU pVCpu, RTGCPTR GCPtrPage)
495{
496 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_MID_Z(Stat,Prefetch), a);
497 int rc = PGM_BTH_PFN(PrefetchPage, pVCpu)(pVCpu, GCPtrPage);
498 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,Prefetch), a);
499 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("rc=%Rrc\n", rc));
500 return rc;
501}
502
503
504/**
505 * Gets the mapping corresponding to the specified address (if any).
506 *
507 * @returns Pointer to the mapping.
508 * @returns NULL if not
509 *
510 * @param pVM The virtual machine.
511 * @param GCPtr The guest context pointer.
512 */
513PPGMMAPPING pgmGetMapping(PVM pVM, RTGCPTR GCPtr)
514{
515 PPGMMAPPING pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
516 while (pMapping)
517 {
518 if ((uintptr_t)GCPtr < (uintptr_t)pMapping->GCPtr)
519 break;
520 if ((uintptr_t)GCPtr - (uintptr_t)pMapping->GCPtr < pMapping->cb)
521 return pMapping;
522 pMapping = pMapping->CTX_SUFF(pNext);
523 }
524 return NULL;
525}
526
527
528/**
529 * Verifies a range of pages for read or write access
530 *
531 * Only checks the guest's page tables
532 *
533 * @returns VBox status code.
534 * @param pVCpu VMCPU handle.
535 * @param Addr Guest virtual address to check
536 * @param cbSize Access size
537 * @param fAccess Access type (r/w, user/supervisor (X86_PTE_*))
538 * @remarks Current not in use.
539 */
540VMMDECL(int) PGMIsValidAccess(PVMCPU pVCpu, RTGCPTR Addr, uint32_t cbSize, uint32_t fAccess)
541{
542 /*
543 * Validate input.
544 */
545 if (fAccess & ~(X86_PTE_US | X86_PTE_RW))
546 {
547 AssertMsgFailed(("PGMIsValidAccess: invalid access type %08x\n", fAccess));
548 return VERR_INVALID_PARAMETER;
549 }
550
551 uint64_t fPage;
552 int rc = PGMGstGetPage(pVCpu, (RTGCPTR)Addr, &fPage, NULL);
553 if (RT_FAILURE(rc))
554 {
555 Log(("PGMIsValidAccess: access violation for %RGv rc=%d\n", Addr, rc));
556 return VINF_EM_RAW_GUEST_TRAP;
557 }
558
559 /*
560 * Check if the access would cause a page fault
561 *
562 * Note that hypervisor page directories are not present in the guest's tables, so this check
563 * is sufficient.
564 */
565 bool fWrite = !!(fAccess & X86_PTE_RW);
566 bool fUser = !!(fAccess & X86_PTE_US);
567 if ( !(fPage & X86_PTE_P)
568 || (fWrite && !(fPage & X86_PTE_RW))
569 || (fUser && !(fPage & X86_PTE_US)) )
570 {
571 Log(("PGMIsValidAccess: access violation for %RGv attr %#llx vs %d:%d\n", Addr, fPage, fWrite, fUser));
572 return VINF_EM_RAW_GUEST_TRAP;
573 }
574 if ( RT_SUCCESS(rc)
575 && PAGE_ADDRESS(Addr) != PAGE_ADDRESS(Addr + cbSize))
576 return PGMIsValidAccess(pVCpu, Addr + PAGE_SIZE, (cbSize > PAGE_SIZE) ? cbSize - PAGE_SIZE : 1, fAccess);
577 return rc;
578}
579
580
581/**
582 * Verifies a range of pages for read or write access
583 *
584 * Supports handling of pages marked for dirty bit tracking and CSAM
585 *
586 * @returns VBox status code.
587 * @param pVCpu VMCPU handle.
588 * @param Addr Guest virtual address to check
589 * @param cbSize Access size
590 * @param fAccess Access type (r/w, user/supervisor (X86_PTE_*))
591 */
592VMMDECL(int) PGMVerifyAccess(PVMCPU pVCpu, RTGCPTR Addr, uint32_t cbSize, uint32_t fAccess)
593{
594 PVM pVM = pVCpu->CTX_SUFF(pVM);
595
596 AssertMsg(!(fAccess & ~(X86_PTE_US | X86_PTE_RW)), ("PGMVerifyAccess: invalid access type %08x\n", fAccess));
597
598 /*
599 * Get going.
600 */
601 uint64_t fPageGst;
602 int rc = PGMGstGetPage(pVCpu, (RTGCPTR)Addr, &fPageGst, NULL);
603 if (RT_FAILURE(rc))
604 {
605 Log(("PGMVerifyAccess: access violation for %RGv rc=%d\n", Addr, rc));
606 return VINF_EM_RAW_GUEST_TRAP;
607 }
608
609 /*
610 * Check if the access would cause a page fault
611 *
612 * Note that hypervisor page directories are not present in the guest's tables, so this check
613 * is sufficient.
614 */
615 const bool fWrite = !!(fAccess & X86_PTE_RW);
616 const bool fUser = !!(fAccess & X86_PTE_US);
617 if ( !(fPageGst & X86_PTE_P)
618 || (fWrite && !(fPageGst & X86_PTE_RW))
619 || (fUser && !(fPageGst & X86_PTE_US)) )
620 {
621 Log(("PGMVerifyAccess: access violation for %RGv attr %#llx vs %d:%d\n", Addr, fPageGst, fWrite, fUser));
622 return VINF_EM_RAW_GUEST_TRAP;
623 }
624
625 if (!HWACCMIsNestedPagingActive(pVM))
626 {
627 /*
628 * Next step is to verify if we protected this page for dirty bit tracking or for CSAM scanning
629 */
630 rc = PGMShwGetPage(pVCpu, (RTGCPTR)Addr, NULL, NULL);
631 if ( rc == VERR_PAGE_NOT_PRESENT
632 || rc == VERR_PAGE_TABLE_NOT_PRESENT)
633 {
634 /*
635 * Page is not present in our page tables.
636 * Try to sync it!
637 */
638 Assert(X86_TRAP_PF_RW == X86_PTE_RW && X86_TRAP_PF_US == X86_PTE_US);
639 uint32_t uErr = fAccess & (X86_TRAP_PF_RW | X86_TRAP_PF_US);
640 rc = PGM_BTH_PFN(VerifyAccessSyncPage, pVCpu)(pVCpu, Addr, fPageGst, uErr);
641 if (rc != VINF_SUCCESS)
642 return rc;
643 }
644 else
645 AssertMsg(rc == VINF_SUCCESS, ("PGMShwGetPage %RGv failed with %Rrc\n", Addr, rc));
646 }
647
648#if 0 /* def VBOX_STRICT; triggers too often now */
649 /*
650 * This check is a bit paranoid, but useful.
651 */
652 /** @note this will assert when writing to monitored pages (a bit annoying actually) */
653 uint64_t fPageShw;
654 rc = PGMShwGetPage(pVCpu, (RTGCPTR)Addr, &fPageShw, NULL);
655 if ( (rc == VERR_PAGE_NOT_PRESENT || RT_FAILURE(rc))
656 || (fWrite && !(fPageShw & X86_PTE_RW))
657 || (fUser && !(fPageShw & X86_PTE_US)) )
658 {
659 AssertMsgFailed(("Unexpected access violation for %RGv! rc=%Rrc write=%d user=%d\n",
660 Addr, rc, fWrite && !(fPageShw & X86_PTE_RW), fUser && !(fPageShw & X86_PTE_US)));
661 return VINF_EM_RAW_GUEST_TRAP;
662 }
663#endif
664
665 if ( RT_SUCCESS(rc)
666 && ( PAGE_ADDRESS(Addr) != PAGE_ADDRESS(Addr + cbSize - 1)
667 || Addr + cbSize < Addr))
668 {
669 /* Don't recursively call PGMVerifyAccess as we might run out of stack. */
670 for (;;)
671 {
672 Addr += PAGE_SIZE;
673 if (cbSize > PAGE_SIZE)
674 cbSize -= PAGE_SIZE;
675 else
676 cbSize = 1;
677 rc = PGMVerifyAccess(pVCpu, Addr, 1, fAccess);
678 if (rc != VINF_SUCCESS)
679 break;
680 if (PAGE_ADDRESS(Addr) == PAGE_ADDRESS(Addr + cbSize - 1))
681 break;
682 }
683 }
684 return rc;
685}
686
687
688/**
689 * Emulation of the invlpg instruction (HC only actually).
690 *
691 * @returns VBox status code, special care required.
692 * @retval VINF_PGM_SYNC_CR3 - handled.
693 * @retval VINF_EM_RAW_EMULATE_INSTR - not handled (RC only).
694 * @retval VERR_REM_FLUSHED_PAGES_OVERFLOW - not handled.
695 *
696 * @param pVCpu VMCPU handle.
697 * @param GCPtrPage Page to invalidate.
698 *
699 * @remark ASSUMES the page table entry or page directory is valid. Fairly
700 * safe, but there could be edge cases!
701 *
702 * @todo Flush page or page directory only if necessary!
703 */
704VMMDECL(int) PGMInvalidatePage(PVMCPU pVCpu, RTGCPTR GCPtrPage)
705{
706 PVM pVM = pVCpu->CTX_SUFF(pVM);
707 int rc;
708 Log3(("PGMInvalidatePage: GCPtrPage=%RGv\n", GCPtrPage));
709
710#ifndef IN_RING3
711 /*
712 * Notify the recompiler so it can record this instruction.
713 * Failure happens when it's out of space. We'll return to HC in that case.
714 */
715 rc = REMNotifyInvalidatePage(pVM, GCPtrPage);
716 if (rc != VINF_SUCCESS)
717 return rc;
718#endif /* !IN_RING3 */
719
720
721#ifdef IN_RC
722 /*
723 * Check for conflicts and pending CR3 monitoring updates.
724 */
725 if (!pVM->pgm.s.fMappingsFixed)
726 {
727 if ( pgmGetMapping(pVM, GCPtrPage)
728 && PGMGstGetPage(pVCpu, GCPtrPage, NULL, NULL) != VERR_PAGE_TABLE_NOT_PRESENT)
729 {
730 LogFlow(("PGMGCInvalidatePage: Conflict!\n"));
731 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
732 STAM_COUNTER_INC(&pVM->pgm.s.StatRCInvlPgConflict);
733 return VINF_PGM_SYNC_CR3;
734 }
735
736 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3)
737 {
738 LogFlow(("PGMGCInvalidatePage: PGM_SYNC_MONITOR_CR3 -> reinterpret instruction in R3\n"));
739 STAM_COUNTER_INC(&pVM->pgm.s.StatRCInvlPgSyncMonCR3);
740 return VINF_EM_RAW_EMULATE_INSTR;
741 }
742 }
743#endif /* IN_RC */
744
745 /*
746 * Call paging mode specific worker.
747 */
748 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePage), a);
749 pgmLock(pVM);
750 rc = PGM_BTH_PFN(InvalidatePage, pVCpu)(pVCpu, GCPtrPage);
751 pgmUnlock(pVM);
752 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,InvalidatePage), a);
753
754#ifdef IN_RING3
755 /*
756 * Check if we have a pending update of the CR3 monitoring.
757 */
758 if ( RT_SUCCESS(rc)
759 && (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3))
760 {
761 pVCpu->pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3;
762 Assert(!pVM->pgm.s.fMappingsFixed);
763 }
764
765 /*
766 * Inform CSAM about the flush
767 *
768 * Note: This is to check if monitored pages have been changed; when we implement
769 * callbacks for virtual handlers, this is no longer required.
770 */
771 CSAMR3FlushPage(pVM, GCPtrPage);
772#endif /* IN_RING3 */
773
774 /* Ignore all irrelevant error codes. */
775 if ( rc == VERR_PAGE_NOT_PRESENT
776 || rc == VERR_PAGE_TABLE_NOT_PRESENT
777 || rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT
778 || rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT)
779 rc = VINF_SUCCESS;
780
781 return rc;
782}
783
784
785/**
786 * Executes an instruction using the interpreter.
787 *
788 * @returns VBox status code (appropriate for trap handling and GC return).
789 * @param pVM VM handle.
790 * @param pVCpu VMCPU handle.
791 * @param pRegFrame Register frame.
792 * @param pvFault Fault address.
793 */
794VMMDECL(int) PGMInterpretInstruction(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)
795{
796 uint32_t cb;
797 int rc = EMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault, &cb);
798 if (rc == VERR_EM_INTERPRETER)
799 rc = VINF_EM_RAW_EMULATE_INSTR;
800 if (rc != VINF_SUCCESS)
801 Log(("PGMInterpretInstruction: returns %Rrc (pvFault=%RGv)\n", rc, pvFault));
802 return rc;
803}
804
805
806/**
807 * Gets effective page information (from the VMM page directory).
808 *
809 * @returns VBox status.
810 * @param pVCpu VMCPU handle.
811 * @param GCPtr Guest Context virtual address of the page.
812 * @param pfFlags Where to store the flags. These are X86_PTE_*.
813 * @param pHCPhys Where to store the HC physical address of the page.
814 * This is page aligned.
815 * @remark You should use PGMMapGetPage() for pages in a mapping.
816 */
817VMMDECL(int) PGMShwGetPage(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys)
818{
819 pgmLock(pVCpu->CTX_SUFF(pVM));
820 int rc = PGM_SHW_PFN(GetPage, pVCpu)(pVCpu, GCPtr, pfFlags, pHCPhys);
821 pgmUnlock(pVCpu->CTX_SUFF(pVM));
822 return rc;
823}
824
825
826/**
827 * Sets (replaces) the page flags for a range of pages in the shadow context.
828 *
829 * @returns VBox status.
830 * @param pVCpu VMCPU handle.
831 * @param GCPtr The address of the first page.
832 * @param cb The size of the range in bytes.
833 * @param fFlags Page flags X86_PTE_*, excluding the page mask of course.
834 * @remark You must use PGMMapSetPage() for pages in a mapping.
835 */
836VMMDECL(int) PGMShwSetPage(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cb, uint64_t fFlags)
837{
838 return PGMShwModifyPage(pVCpu, GCPtr, cb, fFlags, 0);
839}
840
841
842/**
843 * Modify page flags for a range of pages in the shadow context.
844 *
845 * The existing flags are ANDed with the fMask and ORed with the fFlags.
846 *
847 * @returns VBox status code.
848 * @param pVCpu VMCPU handle.
849 * @param GCPtr Virtual address of the first page in the range.
850 * @param cb Size (in bytes) of the range to apply the modification to.
851 * @param fFlags The OR mask - page flags X86_PTE_*, excluding the page mask of course.
852 * @param fMask The AND mask - page flags X86_PTE_*.
853 * Be very CAREFUL when ~'ing constants which could be 32-bit!
854 * @remark You must use PGMMapModifyPage() for pages in a mapping.
855 */
856VMMDECL(int) PGMShwModifyPage(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cb, uint64_t fFlags, uint64_t fMask)
857{
858 AssertMsg(!(fFlags & X86_PTE_PAE_PG_MASK), ("fFlags=%#llx\n", fFlags));
859 Assert(cb);
860
861 /*
862 * Align the input.
863 */
864 cb += GCPtr & PAGE_OFFSET_MASK;
865 cb = RT_ALIGN_Z(cb, PAGE_SIZE);
866 GCPtr = (GCPtr & PAGE_BASE_GC_MASK); /** @todo this ain't necessary, right... */
867
868 /*
869 * Call worker.
870 */
871 PVM pVM = pVCpu->CTX_SUFF(pVM);
872 pgmLock(pVM);
873 int rc = PGM_SHW_PFN(ModifyPage, pVCpu)(pVCpu, GCPtr, cb, fFlags, fMask);
874 pgmUnlock(pVM);
875 return rc;
876}
877
878/**
879 * Gets the shadow page directory for the specified address, PAE.
880 *
881 * @returns Pointer to the shadow PD.
882 * @param pVCpu The VMCPU handle.
883 * @param GCPtr The address.
884 * @param pGstPdpe Guest PDPT entry
885 * @param ppPD Receives address of page directory
886 */
887int pgmShwSyncPaePDPtr(PVMCPU pVCpu, RTGCPTR GCPtr, PX86PDPE pGstPdpe, PX86PDPAE *ppPD)
888{
889 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
890 PX86PDPT pPdpt = pgmShwGetPaePDPTPtr(&pVCpu->pgm.s);
891 PX86PDPE pPdpe = &pPdpt->a[iPdPt];
892 PVM pVM = pVCpu->CTX_SUFF(pVM);
893 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
894 PPGMPOOLPAGE pShwPage;
895 int rc;
896
897 Assert(PGMIsLockOwner(pVM));
898
899 /* Allocate page directory if not present. */
900 if ( !pPdpe->n.u1Present
901 && !(pPdpe->u & X86_PDPE_PG_MASK))
902 {
903 RTGCPTR64 GCPdPt;
904 PGMPOOLKIND enmKind;
905
906# if defined(IN_RC)
907 /* Make sure the dynamic pPdeDst mapping will not be reused during this function. */
908 PGMDynLockHCPage(pVM, (uint8_t *)pPdpe);
909# endif
910
911 if (HWACCMIsNestedPagingActive(pVM) || !CPUMIsGuestPagingEnabled(pVCpu))
912 {
913 /* AMD-V nested paging or real/protected mode without paging */
914 GCPdPt = (RTGCPTR64)iPdPt << X86_PDPT_SHIFT;
915 enmKind = PGMPOOLKIND_PAE_PD_PHYS;
916 }
917 else
918 {
919 Assert(pGstPdpe);
920
921 if (CPUMGetGuestCR4(pVCpu) & X86_CR4_PAE)
922 {
923 if (!pGstPdpe->n.u1Present)
924 {
925 /* PD not present; guest must reload CR3 to change it.
926 * No need to monitor anything in this case.
927 */
928 Assert(!HWACCMIsEnabled(pVM));
929
930 GCPdPt = pGstPdpe->u & X86_PDPE_PG_MASK;
931 enmKind = PGMPOOLKIND_PAE_PD_PHYS;
932 pGstPdpe->n.u1Present = 1;
933 }
934 else
935 {
936 GCPdPt = pGstPdpe->u & X86_PDPE_PG_MASK;
937 enmKind = PGMPOOLKIND_PAE_PD_FOR_PAE_PD;
938 }
939 }
940 else
941 {
942 GCPdPt = CPUMGetGuestCR3(pVCpu);
943 enmKind = (PGMPOOLKIND)(PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD + iPdPt);
944 }
945 }
946
947 /* Create a reference back to the PDPT by using the index in its shadow page. */
948 rc = pgmPoolAlloc(pVM, GCPdPt, enmKind, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)->idx, iPdPt, &pShwPage);
949 AssertRCReturn(rc, rc);
950
951 /* The PD was cached or created; hook it up now. */
952 pPdpe->u |= pShwPage->Core.Key
953 | (pGstPdpe->u & ~(X86_PDPE_PG_MASK | X86_PDPE_AVL_MASK | X86_PDPE_PCD | X86_PDPE_PWT));
954
955# if defined(IN_RC)
956 /* In 32 bits PAE mode we *must* invalidate the TLB when changing a PDPT entry; the CPU fetches them only during cr3 load, so any
957 * non-present PDPT will continue to cause page faults.
958 */
959 ASMReloadCR3();
960 PGMDynUnlockHCPage(pVM, (uint8_t *)pPdpe);
961# endif
962 }
963 else
964 {
965 pShwPage = pgmPoolGetPage(pPool, pPdpe->u & X86_PDPE_PG_MASK);
966 AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
967 Assert((pPdpe->u & X86_PDPE_PG_MASK) == pShwPage->Core.Key);
968
969 pgmPoolCacheUsed(pPool, pShwPage);
970 }
971 *ppPD = (PX86PDPAE)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
972 return VINF_SUCCESS;
973}
974
975
976/**
977 * Gets the pointer to the shadow page directory entry for an address, PAE.
978 *
979 * @returns Pointer to the PDE.
980 * @param pPGM Pointer to the PGMCPU instance data.
981 * @param GCPtr The address.
982 * @param ppShwPde Receives the address of the pgm pool page for the shadow page directory
983 */
984DECLINLINE(int) pgmShwGetPaePoolPagePD(PPGMCPU pPGM, RTGCPTR GCPtr, PPGMPOOLPAGE *ppShwPde)
985{
986 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
987 PX86PDPT pPdpt = pgmShwGetPaePDPTPtr(pPGM);
988
989 Assert(PGMIsLockOwner(PGMCPU2VM(pPGM)));
990
991 AssertReturn(pPdpt, VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT); /* can't happen */
992 if (!pPdpt->a[iPdPt].n.u1Present)
993 {
994 LogFlow(("pgmShwGetPaePoolPagePD: PD %d not present (%RX64)\n", iPdPt, pPdpt->a[iPdPt].u));
995 return VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT;
996 }
997 AssertMsg(pPdpt->a[iPdPt].u & X86_PDPE_PG_MASK, ("GCPtr=%RGv\n", GCPtr));
998
999 /* Fetch the pgm pool shadow descriptor. */
1000 PPGMPOOLPAGE pShwPde = pgmPoolGetPage(PGMCPU2PGM(pPGM)->CTX_SUFF(pPool), pPdpt->a[iPdPt].u & X86_PDPE_PG_MASK);
1001 AssertReturn(pShwPde, VERR_INTERNAL_ERROR);
1002
1003 *ppShwPde = pShwPde;
1004 return VINF_SUCCESS;
1005}
1006
1007#ifndef IN_RC
1008
1009/**
1010 * Syncs the SHADOW page directory pointer for the specified address.
1011 *
1012 * Allocates backing pages in case the PDPT or PML4 entry is missing.
1013 *
1014 * The caller is responsible for making sure the guest has a valid PD before
1015 * calling this function.
1016 *
1017 * @returns VBox status.
1018 * @param pVCpu VMCPU handle.
1019 * @param GCPtr The address.
1020 * @param pGstPml4e Guest PML4 entry
1021 * @param pGstPdpe Guest PDPT entry
1022 * @param ppPD Receives address of page directory
1023 */
1024int pgmShwSyncLongModePDPtr(PVMCPU pVCpu, RTGCPTR64 GCPtr, PX86PML4E pGstPml4e, PX86PDPE pGstPdpe, PX86PDPAE *ppPD)
1025{
1026 PPGMCPU pPGM = &pVCpu->pgm.s;
1027 PVM pVM = pVCpu->CTX_SUFF(pVM);
1028 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1029 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
1030 PX86PML4E pPml4e = pgmShwGetLongModePML4EPtr(pPGM, iPml4);
1031 bool fNestedPagingOrNoGstPaging = HWACCMIsNestedPagingActive(pVM) || !CPUMIsGuestPagingEnabled(pVCpu);
1032 PPGMPOOLPAGE pShwPage;
1033 int rc;
1034
1035 Assert(PGMIsLockOwner(pVM));
1036
1037 /* Allocate page directory pointer table if not present. */
1038 if ( !pPml4e->n.u1Present
1039 && !(pPml4e->u & X86_PML4E_PG_MASK))
1040 {
1041 RTGCPTR64 GCPml4;
1042 PGMPOOLKIND enmKind;
1043
1044 Assert(pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
1045
1046 if (fNestedPagingOrNoGstPaging)
1047 {
1048 /* AMD-V nested paging or real/protected mode without paging */
1049 GCPml4 = (RTGCPTR64)iPml4 << X86_PML4_SHIFT;
1050 enmKind = PGMPOOLKIND_64BIT_PDPT_FOR_PHYS;
1051 }
1052 else
1053 {
1054 Assert(pGstPml4e && pGstPdpe);
1055
1056 GCPml4 = pGstPml4e->u & X86_PML4E_PG_MASK;
1057 enmKind = PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT;
1058 }
1059
1060 /* Create a reference back to the PDPT by using the index in its shadow page. */
1061 rc = pgmPoolAlloc(pVM, GCPml4, enmKind, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)->idx, iPml4, &pShwPage);
1062 AssertRCReturn(rc, rc);
1063 }
1064 else
1065 {
1066 pShwPage = pgmPoolGetPage(pPool, pPml4e->u & X86_PML4E_PG_MASK);
1067 AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
1068
1069 pgmPoolCacheUsed(pPool, pShwPage);
1070 }
1071 /* The PDPT was cached or created; hook it up now. */
1072 pPml4e->u |= pShwPage->Core.Key
1073 | (pGstPml4e->u & ~(X86_PML4E_PG_MASK | X86_PML4E_AVL_MASK | X86_PML4E_PCD | X86_PML4E_PWT));
1074
1075 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1076 PX86PDPT pPdpt = (PX86PDPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1077 PX86PDPE pPdpe = &pPdpt->a[iPdPt];
1078
1079 /* Allocate page directory if not present. */
1080 if ( !pPdpe->n.u1Present
1081 && !(pPdpe->u & X86_PDPE_PG_MASK))
1082 {
1083 RTGCPTR64 GCPdPt;
1084 PGMPOOLKIND enmKind;
1085
1086 if (fNestedPagingOrNoGstPaging)
1087 {
1088 /* AMD-V nested paging or real/protected mode without paging */
1089 GCPdPt = (RTGCPTR64)iPdPt << X86_PDPT_SHIFT;
1090 enmKind = PGMPOOLKIND_64BIT_PD_FOR_PHYS;
1091 }
1092 else
1093 {
1094 Assert(pGstPdpe);
1095
1096 GCPdPt = pGstPdpe->u & X86_PDPE_PG_MASK;
1097 enmKind = PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD;
1098 }
1099
1100 /* Create a reference back to the PDPT by using the index in its shadow page. */
1101 rc = pgmPoolAlloc(pVM, GCPdPt, enmKind, pShwPage->idx, iPdPt, &pShwPage);
1102 AssertRCReturn(rc, rc);
1103 }
1104 else
1105 {
1106 pShwPage = pgmPoolGetPage(pPool, pPdpe->u & X86_PDPE_PG_MASK);
1107 AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
1108
1109 pgmPoolCacheUsed(pPool, pShwPage);
1110 }
1111 /* The PD was cached or created; hook it up now. */
1112 pPdpe->u |= pShwPage->Core.Key
1113 | (pGstPdpe->u & ~(X86_PDPE_PG_MASK | X86_PDPE_AVL_MASK | X86_PDPE_PCD | X86_PDPE_PWT));
1114
1115 *ppPD = (PX86PDPAE)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1116 return VINF_SUCCESS;
1117}
1118
1119
1120/**
1121 * Gets the SHADOW page directory pointer for the specified address (long mode).
1122 *
1123 * @returns VBox status.
1124 * @param pVCpu VMCPU handle.
1125 * @param GCPtr The address.
1126 * @param ppPdpt Receives address of pdpt
1127 * @param ppPD Receives address of page directory
1128 */
1129DECLINLINE(int) pgmShwGetLongModePDPtr(PVMCPU pVCpu, RTGCPTR64 GCPtr, PX86PML4E *ppPml4e, PX86PDPT *ppPdpt, PX86PDPAE *ppPD)
1130{
1131 PPGMCPU pPGM = &pVCpu->pgm.s;
1132 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
1133 PCX86PML4E pPml4e = pgmShwGetLongModePML4EPtr(pPGM, iPml4);
1134
1135 Assert(PGMIsLockOwner(PGMCPU2VM(pPGM)));
1136
1137 AssertReturn(pPml4e, VERR_INTERNAL_ERROR);
1138 if (ppPml4e)
1139 *ppPml4e = (PX86PML4E)pPml4e;
1140
1141 Log4(("pgmShwGetLongModePDPtr %VGv (%VHv) %RX64\n", GCPtr, pPml4e, pPml4e->u));
1142
1143 if (!pPml4e->n.u1Present)
1144 return VERR_PAGE_MAP_LEVEL4_NOT_PRESENT;
1145
1146 PVM pVM = pVCpu->CTX_SUFF(pVM);
1147 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1148 PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPml4e->u & X86_PML4E_PG_MASK);
1149 AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
1150
1151 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
1152 PCX86PDPT pPdpt = *ppPdpt = (PX86PDPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1153 if (!pPdpt->a[iPdPt].n.u1Present)
1154 return VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT;
1155
1156 pShwPage = pgmPoolGetPage(pPool, pPdpt->a[iPdPt].u & X86_PDPE_PG_MASK);
1157 AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
1158
1159 *ppPD = (PX86PDPAE)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1160 return VINF_SUCCESS;
1161}
1162
1163
1164/**
1165 * Syncs the SHADOW EPT page directory pointer for the specified address. Allocates
1166 * backing pages in case the PDPT or PML4 entry is missing.
1167 *
1168 * @returns VBox status.
1169 * @param pVCpu VMCPU handle.
1170 * @param GCPtr The address.
1171 * @param ppPdpt Receives address of pdpt
1172 * @param ppPD Receives address of page directory
1173 */
1174int pgmShwGetEPTPDPtr(PVMCPU pVCpu, RTGCPTR64 GCPtr, PEPTPDPT *ppPdpt, PEPTPD *ppPD)
1175{
1176 PPGMCPU pPGM = &pVCpu->pgm.s;
1177 PVM pVM = pVCpu->CTX_SUFF(pVM);
1178 const unsigned iPml4 = (GCPtr >> EPT_PML4_SHIFT) & EPT_PML4_MASK;
1179 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1180 PEPTPML4 pPml4;
1181 PEPTPML4E pPml4e;
1182 PPGMPOOLPAGE pShwPage;
1183 int rc;
1184
1185 Assert(HWACCMIsNestedPagingActive(pVM));
1186 Assert(PGMIsLockOwner(pVM));
1187
1188 pPml4 = (PEPTPML4)PGMPOOL_PAGE_2_PTR_BY_PGMCPU(pPGM, pPGM->CTX_SUFF(pShwPageCR3));
1189 Assert(pPml4);
1190
1191 /* Allocate page directory pointer table if not present. */
1192 pPml4e = &pPml4->a[iPml4];
1193 if ( !pPml4e->n.u1Present
1194 && !(pPml4e->u & EPT_PML4E_PG_MASK))
1195 {
1196 Assert(!(pPml4e->u & EPT_PML4E_PG_MASK));
1197 RTGCPTR64 GCPml4 = (RTGCPTR64)iPml4 << EPT_PML4_SHIFT;
1198
1199 rc = pgmPoolAlloc(pVM, GCPml4, PGMPOOLKIND_EPT_PDPT_FOR_PHYS, PGMPOOL_IDX_NESTED_ROOT, iPml4, &pShwPage);
1200 AssertRCReturn(rc, rc);
1201 }
1202 else
1203 {
1204 pShwPage = pgmPoolGetPage(pPool, pPml4e->u & EPT_PML4E_PG_MASK);
1205 AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
1206
1207 pgmPoolCacheUsed(pPool, pShwPage);
1208 }
1209 /* The PDPT was cached or created; hook it up now and fill with the default value. */
1210 pPml4e->u = pShwPage->Core.Key;
1211 pPml4e->n.u1Present = 1;
1212 pPml4e->n.u1Write = 1;
1213 pPml4e->n.u1Execute = 1;
1214
1215 const unsigned iPdPt = (GCPtr >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK;
1216 PEPTPDPT pPdpt = (PEPTPDPT)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1217 PEPTPDPTE pPdpe = &pPdpt->a[iPdPt];
1218
1219 if (ppPdpt)
1220 *ppPdpt = pPdpt;
1221
1222 /* Allocate page directory if not present. */
1223 if ( !pPdpe->n.u1Present
1224 && !(pPdpe->u & EPT_PDPTE_PG_MASK))
1225 {
1226 RTGCPTR64 GCPdPt = (RTGCPTR64)iPdPt << EPT_PDPT_SHIFT;
1227
1228 rc = pgmPoolAlloc(pVM, GCPdPt, PGMPOOLKIND_64BIT_PD_FOR_PHYS, pShwPage->idx, iPdPt, &pShwPage);
1229 AssertRCReturn(rc, rc);
1230 }
1231 else
1232 {
1233 pShwPage = pgmPoolGetPage(pPool, pPdpe->u & EPT_PDPTE_PG_MASK);
1234 AssertReturn(pShwPage, VERR_INTERNAL_ERROR);
1235
1236 pgmPoolCacheUsed(pPool, pShwPage);
1237 }
1238 /* The PD was cached or created; hook it up now and fill with the default value. */
1239 pPdpe->u = pShwPage->Core.Key;
1240 pPdpe->n.u1Present = 1;
1241 pPdpe->n.u1Write = 1;
1242 pPdpe->n.u1Execute = 1;
1243
1244 *ppPD = (PEPTPD)PGMPOOL_PAGE_2_PTR(pVM, pShwPage);
1245 return VINF_SUCCESS;
1246}
1247
1248#endif /* IN_RC */
1249
1250/**
1251 * Gets effective Guest OS page information.
1252 *
1253 * When GCPtr is in a big page, the function will return as if it was a normal
1254 * 4KB page. If the need for distinguishing between big and normal page becomes
1255 * necessary at a later point, a PGMGstGetPage() will be created for that
1256 * purpose.
1257 *
1258 * @returns VBox status.
1259 * @param pVCpu VMCPU handle.
1260 * @param GCPtr Guest Context virtual address of the page.
1261 * @param pfFlags Where to store the flags. These are X86_PTE_*, even for big pages.
1262 * @param pGCPhys Where to store the GC physical address of the page.
1263 * This is page aligned. The fact that the
1264 */
1265VMMDECL(int) PGMGstGetPage(PVMCPU pVCpu, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys)
1266{
1267 return PGM_GST_PFN(GetPage, pVCpu)(pVCpu, GCPtr, pfFlags, pGCPhys);
1268}
1269
1270
1271/**
1272 * Checks if the page is present.
1273 *
1274 * @returns true if the page is present.
1275 * @returns false if the page is not present.
1276 * @param pVCpu VMCPU handle.
1277 * @param GCPtr Address within the page.
1278 */
1279VMMDECL(bool) PGMGstIsPagePresent(PVMCPU pVCpu, RTGCPTR GCPtr)
1280{
1281 int rc = PGMGstGetPage(pVCpu, GCPtr, NULL, NULL);
1282 return RT_SUCCESS(rc);
1283}
1284
1285
1286/**
1287 * Sets (replaces) the page flags for a range of pages in the guest's tables.
1288 *
1289 * @returns VBox status.
1290 * @param pVCpu VMCPU handle.
1291 * @param GCPtr The address of the first page.
1292 * @param cb The size of the range in bytes.
1293 * @param fFlags Page flags X86_PTE_*, excluding the page mask of course.
1294 */
1295VMMDECL(int) PGMGstSetPage(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cb, uint64_t fFlags)
1296{
1297 return PGMGstModifyPage(pVCpu, GCPtr, cb, fFlags, 0);
1298}
1299
1300
1301/**
1302 * Modify page flags for a range of pages in the guest's tables
1303 *
1304 * The existing flags are ANDed with the fMask and ORed with the fFlags.
1305 *
1306 * @returns VBox status code.
1307 * @param pVCpu VMCPU handle.
1308 * @param GCPtr Virtual address of the first page in the range.
1309 * @param cb Size (in bytes) of the range to apply the modification to.
1310 * @param fFlags The OR mask - page flags X86_PTE_*, excluding the page mask of course.
1311 * @param fMask The AND mask - page flags X86_PTE_*, excluding the page mask of course.
1312 * Be very CAREFUL when ~'ing constants which could be 32-bit!
1313 */
1314VMMDECL(int) PGMGstModifyPage(PVMCPU pVCpu, RTGCPTR GCPtr, size_t cb, uint64_t fFlags, uint64_t fMask)
1315{
1316 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_MID_Z(Stat,GstModifyPage), a);
1317
1318 /*
1319 * Validate input.
1320 */
1321 AssertMsg(!(fFlags & X86_PTE_PAE_PG_MASK), ("fFlags=%#llx\n", fFlags));
1322 Assert(cb);
1323
1324 LogFlow(("PGMGstModifyPage %RGv %d bytes fFlags=%08llx fMask=%08llx\n", GCPtr, cb, fFlags, fMask));
1325
1326 /*
1327 * Adjust input.
1328 */
1329 cb += GCPtr & PAGE_OFFSET_MASK;
1330 cb = RT_ALIGN_Z(cb, PAGE_SIZE);
1331 GCPtr = (GCPtr & PAGE_BASE_GC_MASK);
1332
1333 /*
1334 * Call worker.
1335 */
1336 int rc = PGM_GST_PFN(ModifyPage, pVCpu)(pVCpu, GCPtr, cb, fFlags, fMask);
1337
1338 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,GstModifyPage), a);
1339 return rc;
1340}
1341
1342#ifdef IN_RING3
1343
1344/**
1345 * Performs the lazy mapping of the 32-bit guest PD.
1346 *
1347 * @returns Pointer to the mapping.
1348 * @param pPGM The PGM instance data.
1349 */
1350PX86PD pgmGstLazyMap32BitPD(PPGMCPU pPGM)
1351{
1352 Assert(!pPGM->CTX_SUFF(pGst32BitPd));
1353 PVM pVM = PGMCPU2VM(pPGM);
1354 pgmLock(pVM);
1355
1356 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, pPGM->GCPhysCR3);
1357 AssertReturn(pPage, NULL);
1358
1359 RTHCPTR HCPtrGuestCR3;
1360 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pPGM->GCPhysCR3 & X86_CR3_PAGE_MASK, (void **)&HCPtrGuestCR3);
1361 AssertRCReturn(rc, NULL);
1362
1363 pPGM->pGst32BitPdR3 = (R3PTRTYPE(PX86PD))HCPtrGuestCR3;
1364# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1365 pPGM->pGst32BitPdR0 = (R0PTRTYPE(PX86PD))HCPtrGuestCR3;
1366# endif
1367
1368 pgmUnlock(pVM);
1369 return pPGM->CTX_SUFF(pGst32BitPd);
1370}
1371
1372
1373/**
1374 * Performs the lazy mapping of the PAE guest PDPT.
1375 *
1376 * @returns Pointer to the mapping.
1377 * @param pPGM The PGM instance data.
1378 */
1379PX86PDPT pgmGstLazyMapPaePDPT(PPGMCPU pPGM)
1380{
1381 Assert(!pPGM->CTX_SUFF(pGstPaePdpt));
1382 PVM pVM = PGMCPU2VM(pPGM);
1383 pgmLock(pVM);
1384
1385 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, pPGM->GCPhysCR3);
1386 AssertReturn(pPage, NULL);
1387
1388 RTHCPTR HCPtrGuestCR3;
1389 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pPGM->GCPhysCR3 & X86_CR3_PAE_PAGE_MASK, (void **)&HCPtrGuestCR3); /** @todo r=bird: This GCPhysR3 masking isn't necessary. */
1390 AssertRCReturn(rc, NULL);
1391
1392 pPGM->pGstPaePdptR3 = (R3PTRTYPE(PX86PDPT))HCPtrGuestCR3;
1393# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1394 pPGM->pGstPaePdptR0 = (R0PTRTYPE(PX86PDPT))HCPtrGuestCR3;
1395# endif
1396
1397 pgmUnlock(pVM);
1398 return pPGM->CTX_SUFF(pGstPaePdpt);
1399}
1400
1401#endif /* IN_RING3 */
1402
1403#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
1404/**
1405 * Performs the lazy mapping / updating of a PAE guest PD.
1406 *
1407 * @returns Pointer to the mapping.
1408 * @param pPGM The PGM instance data.
1409 * @param iPdpt Which PD entry to map (0..3).
1410 */
1411PX86PDPAE pgmGstLazyMapPaePD(PPGMCPU pPGM, uint32_t iPdpt)
1412{
1413 PVM pVM = PGMCPU2VM(pPGM);
1414 pgmLock(pVM);
1415
1416 PX86PDPT pGuestPDPT = pPGM->CTX_SUFF(pGstPaePdpt);
1417 Assert(pGuestPDPT);
1418 Assert(pGuestPDPT->a[iPdpt].n.u1Present);
1419 RTGCPHYS GCPhys = pGuestPDPT->a[iPdpt].u & X86_PDPE_PG_MASK;
1420 bool const fChanged = pPGM->aGCPhysGstPaePDs[iPdpt] != GCPhys;
1421
1422 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
1423 if (RT_LIKELY(pPage))
1424 {
1425 int rc = VINF_SUCCESS;
1426 RTRCPTR RCPtr = NIL_RTRCPTR;
1427 RTHCPTR HCPtr = NIL_RTHCPTR;
1428#if !defined(IN_RC) && !defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1429 rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &HCPtr);
1430 AssertRC(rc);
1431#endif
1432 if (RT_SUCCESS(rc) && fChanged)
1433 {
1434 RCPtr = (RTRCPTR)(RTRCUINTPTR)(pVM->pgm.s.GCPtrCR3Mapping + (1 + iPdpt) * PAGE_SIZE);
1435 rc = PGMMap(pVM, (RTRCUINTPTR)RCPtr, PGM_PAGE_GET_HCPHYS(pPage), PAGE_SIZE, 0);
1436 }
1437 if (RT_SUCCESS(rc))
1438 {
1439 pPGM->apGstPaePDsR3[iPdpt] = (R3PTRTYPE(PX86PDPAE))HCPtr;
1440# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1441 pPGM->apGstPaePDsR0[iPdpt] = (R0PTRTYPE(PX86PDPAE))HCPtr;
1442# endif
1443 if (fChanged)
1444 {
1445 pPGM->aGCPhysGstPaePDs[iPdpt] = GCPhys;
1446 pPGM->apGstPaePDsRC[iPdpt] = (RCPTRTYPE(PX86PDPAE))RCPtr;
1447 }
1448
1449 pgmUnlock(pVM);
1450 return pPGM->CTX_SUFF(apGstPaePDs)[iPdpt];
1451 }
1452 }
1453
1454 /* Invalid page or some failure, invalidate the entry. */
1455 pPGM->aGCPhysGstPaePDs[iPdpt] = NIL_RTGCPHYS;
1456 pPGM->apGstPaePDsR3[iPdpt] = 0;
1457# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1458 pPGM->apGstPaePDsR0[iPdpt] = 0;
1459# endif
1460 pPGM->apGstPaePDsRC[iPdpt] = 0;
1461
1462 pgmUnlock(pVM);
1463 return NULL;
1464}
1465#endif /* !VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 */
1466
1467
1468#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R3
1469/**
1470 * Performs the lazy mapping of the 32-bit guest PD.
1471 *
1472 * @returns Pointer to the mapping.
1473 * @param pPGM The PGM instance data.
1474 */
1475PX86PML4 pgmGstLazyMapPml4(PPGMCPU pPGM)
1476{
1477 Assert(!pPGM->CTX_SUFF(pGstAmd64Pml4));
1478 PVM pVM = PGMCPU2VM(pPGM);
1479 pgmLock(pVM);
1480
1481 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, pPGM->GCPhysCR3);
1482 AssertReturn(pPage, NULL);
1483
1484 RTHCPTR HCPtrGuestCR3;
1485 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pPGM->GCPhysCR3 & X86_CR3_AMD64_PAGE_MASK, (void **)&HCPtrGuestCR3); /** @todo r=bird: This GCPhysCR3 masking isn't necessary. */
1486 AssertRCReturn(rc, NULL);
1487
1488 pPGM->pGstAmd64Pml4R3 = (R3PTRTYPE(PX86PML4))HCPtrGuestCR3;
1489# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1490 pPGM->pGstAmd64Pml4R0 = (R0PTRTYPE(PX86PML4))HCPtrGuestCR3;
1491# endif
1492
1493 pgmUnlock(pVM);
1494 return pPGM->CTX_SUFF(pGstAmd64Pml4);
1495}
1496#endif /* VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R3 */
1497
1498
1499/**
1500 * Gets the specified page directory pointer table entry.
1501 *
1502 * @returns PDP entry
1503 * @param pVCpu VMCPU handle.
1504 * @param iPdpt PDPT index
1505 */
1506VMMDECL(X86PDPE) PGMGstGetPaePDPtr(PVMCPU pVCpu, unsigned iPdpt)
1507{
1508 Assert(iPdpt <= 3);
1509 return pgmGstGetPaePDPTPtr(&pVCpu->pgm.s)->a[iPdpt & 3];
1510}
1511
1512
1513/**
1514 * Gets the current CR3 register value for the shadow memory context.
1515 * @returns CR3 value.
1516 * @param pVCpu VMCPU handle.
1517 */
1518VMMDECL(RTHCPHYS) PGMGetHyperCR3(PVMCPU pVCpu)
1519{
1520 PPGMPOOLPAGE pPoolPage = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3);
1521 AssertPtrReturn(pPoolPage, 0);
1522 return pPoolPage->Core.Key;
1523}
1524
1525
1526/**
1527 * Gets the current CR3 register value for the nested memory context.
1528 * @returns CR3 value.
1529 * @param pVCpu VMCPU handle.
1530 */
1531VMMDECL(RTHCPHYS) PGMGetNestedCR3(PVMCPU pVCpu, PGMMODE enmShadowMode)
1532{
1533 Assert(pVCpu->pgm.s.CTX_SUFF(pShwPageCR3));
1534 return pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)->Core.Key;
1535}
1536
1537
1538/**
1539 * Gets the current CR3 register value for the HC intermediate memory context.
1540 * @returns CR3 value.
1541 * @param pVM The VM handle.
1542 */
1543VMMDECL(RTHCPHYS) PGMGetInterHCCR3(PVM pVM)
1544{
1545 switch (pVM->pgm.s.enmHostMode)
1546 {
1547 case SUPPAGINGMODE_32_BIT:
1548 case SUPPAGINGMODE_32_BIT_GLOBAL:
1549 return pVM->pgm.s.HCPhysInterPD;
1550
1551 case SUPPAGINGMODE_PAE:
1552 case SUPPAGINGMODE_PAE_GLOBAL:
1553 case SUPPAGINGMODE_PAE_NX:
1554 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1555 return pVM->pgm.s.HCPhysInterPaePDPT;
1556
1557 case SUPPAGINGMODE_AMD64:
1558 case SUPPAGINGMODE_AMD64_GLOBAL:
1559 case SUPPAGINGMODE_AMD64_NX:
1560 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1561 return pVM->pgm.s.HCPhysInterPaePDPT;
1562
1563 default:
1564 AssertMsgFailed(("enmHostMode=%d\n", pVM->pgm.s.enmHostMode));
1565 return ~0;
1566 }
1567}
1568
1569
1570/**
1571 * Gets the current CR3 register value for the RC intermediate memory context.
1572 * @returns CR3 value.
1573 * @param pVM The VM handle.
1574 * @param pVCpu VMCPU handle.
1575 */
1576VMMDECL(RTHCPHYS) PGMGetInterRCCR3(PVM pVM, PVMCPU pVCpu)
1577{
1578 switch (pVCpu->pgm.s.enmShadowMode)
1579 {
1580 case PGMMODE_32_BIT:
1581 return pVM->pgm.s.HCPhysInterPD;
1582
1583 case PGMMODE_PAE:
1584 case PGMMODE_PAE_NX:
1585 return pVM->pgm.s.HCPhysInterPaePDPT;
1586
1587 case PGMMODE_AMD64:
1588 case PGMMODE_AMD64_NX:
1589 return pVM->pgm.s.HCPhysInterPaePML4;
1590
1591 case PGMMODE_EPT:
1592 case PGMMODE_NESTED:
1593 return 0; /* not relevant */
1594
1595 default:
1596 AssertMsgFailed(("enmShadowMode=%d\n", pVCpu->pgm.s.enmShadowMode));
1597 return ~0;
1598 }
1599}
1600
1601
1602/**
1603 * Gets the CR3 register value for the 32-Bit intermediate memory context.
1604 * @returns CR3 value.
1605 * @param pVM The VM handle.
1606 */
1607VMMDECL(RTHCPHYS) PGMGetInter32BitCR3(PVM pVM)
1608{
1609 return pVM->pgm.s.HCPhysInterPD;
1610}
1611
1612
1613/**
1614 * Gets the CR3 register value for the PAE intermediate memory context.
1615 * @returns CR3 value.
1616 * @param pVM The VM handle.
1617 */
1618VMMDECL(RTHCPHYS) PGMGetInterPaeCR3(PVM pVM)
1619{
1620 return pVM->pgm.s.HCPhysInterPaePDPT;
1621}
1622
1623
1624/**
1625 * Gets the CR3 register value for the AMD64 intermediate memory context.
1626 * @returns CR3 value.
1627 * @param pVM The VM handle.
1628 */
1629VMMDECL(RTHCPHYS) PGMGetInterAmd64CR3(PVM pVM)
1630{
1631 return pVM->pgm.s.HCPhysInterPaePML4;
1632}
1633
1634
1635/**
1636 * Performs and schedules necessary updates following a CR3 load or reload.
1637 *
1638 * This will normally involve mapping the guest PD or nPDPT
1639 *
1640 * @returns VBox status code.
1641 * @retval VINF_PGM_SYNC_CR3 if monitoring requires a CR3 sync. This can
1642 * safely be ignored and overridden since the FF will be set too then.
1643 * @param pVCpu VMCPU handle.
1644 * @param cr3 The new cr3.
1645 * @param fGlobal Indicates whether this is a global flush or not.
1646 */
1647VMMDECL(int) PGMFlushTLB(PVMCPU pVCpu, uint64_t cr3, bool fGlobal)
1648{
1649 PVM pVM = pVCpu->CTX_SUFF(pVM);
1650
1651 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_MID_Z(Stat,FlushTLB), a);
1652
1653 /*
1654 * Always flag the necessary updates; necessary for hardware acceleration
1655 */
1656 /** @todo optimize this, it shouldn't always be necessary. */
1657 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
1658 if (fGlobal)
1659 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
1660 LogFlow(("PGMFlushTLB: cr3=%RX64 OldCr3=%RX64 fGlobal=%d\n", cr3, pVCpu->pgm.s.GCPhysCR3, fGlobal));
1661
1662 /*
1663 * Remap the CR3 content and adjust the monitoring if CR3 was actually changed.
1664 */
1665 int rc = VINF_SUCCESS;
1666 RTGCPHYS GCPhysCR3;
1667 switch (pVCpu->pgm.s.enmGuestMode)
1668 {
1669 case PGMMODE_PAE:
1670 case PGMMODE_PAE_NX:
1671 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAE_PAGE_MASK);
1672 break;
1673 case PGMMODE_AMD64:
1674 case PGMMODE_AMD64_NX:
1675 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_AMD64_PAGE_MASK);
1676 break;
1677 default:
1678 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAGE_MASK);
1679 break;
1680 }
1681
1682 if (pVCpu->pgm.s.GCPhysCR3 != GCPhysCR3)
1683 {
1684 RTGCPHYS GCPhysOldCR3 = pVCpu->pgm.s.GCPhysCR3;
1685 pVCpu->pgm.s.GCPhysCR3 = GCPhysCR3;
1686 rc = PGM_BTH_PFN(MapCR3, pVCpu)(pVCpu, GCPhysCR3);
1687 if (RT_LIKELY(rc == VINF_SUCCESS))
1688 {
1689 if (!pVM->pgm.s.fMappingsFixed)
1690 {
1691 pVCpu->pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3;
1692 }
1693 }
1694 else
1695 {
1696 AssertMsg(rc == VINF_PGM_SYNC_CR3, ("%Rrc\n", rc));
1697 Assert(VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL | VMCPU_FF_PGM_SYNC_CR3));
1698 pVCpu->pgm.s.GCPhysCR3 = GCPhysOldCR3;
1699 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_MAP_CR3;
1700 if (!pVM->pgm.s.fMappingsFixed)
1701 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_MONITOR_CR3;
1702 }
1703
1704 if (fGlobal)
1705 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,FlushTLBNewCR3Global));
1706 else
1707 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,FlushTLBNewCR3));
1708 }
1709 else
1710 {
1711# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
1712 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1713 if (pPool->cDirtyPages)
1714 {
1715 pgmLock(pVM);
1716 pgmPoolResetDirtyPages(pVM);
1717 pgmUnlock(pVM);
1718 }
1719# endif
1720 /*
1721 * Check if we have a pending update of the CR3 monitoring.
1722 */
1723 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3)
1724 {
1725 pVCpu->pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3;
1726 Assert(!pVM->pgm.s.fMappingsFixed);
1727 }
1728 if (fGlobal)
1729 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,FlushTLBSameCR3Global));
1730 else
1731 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,FlushTLBSameCR3));
1732 }
1733
1734 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,FlushTLB), a);
1735 return rc;
1736}
1737
1738
1739/**
1740 * Performs and schedules necessary updates following a CR3 load or reload when
1741 * using nested or extended paging.
1742 *
1743 * This API is an alterantive to PDMFlushTLB that avoids actually flushing the
1744 * TLB and triggering a SyncCR3.
1745 *
1746 * This will normally involve mapping the guest PD or nPDPT
1747 *
1748 * @returns VBox status code.
1749 * @retval VINF_SUCCESS.
1750 * @retval (If applied when not in nested mode: VINF_PGM_SYNC_CR3 if monitoring
1751 * requires a CR3 sync. This can safely be ignored and overridden since
1752 * the FF will be set too then.)
1753 * @param pVCpu VMCPU handle.
1754 * @param cr3 The new cr3.
1755 */
1756VMMDECL(int) PGMUpdateCR3(PVMCPU pVCpu, uint64_t cr3)
1757{
1758 PVM pVM = pVCpu->CTX_SUFF(pVM);
1759
1760 LogFlow(("PGMUpdateCR3: cr3=%RX64 OldCr3=%RX64\n", cr3, pVCpu->pgm.s.GCPhysCR3));
1761
1762 /* We assume we're only called in nested paging mode. */
1763 Assert(pVM->pgm.s.fMappingsFixed);
1764 Assert(!(pVCpu->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3));
1765 Assert(HWACCMIsNestedPagingActive(pVM) || pVCpu->pgm.s.enmShadowMode == PGMMODE_EPT);
1766
1767 /*
1768 * Remap the CR3 content and adjust the monitoring if CR3 was actually changed.
1769 */
1770 int rc = VINF_SUCCESS;
1771 RTGCPHYS GCPhysCR3;
1772 switch (pVCpu->pgm.s.enmGuestMode)
1773 {
1774 case PGMMODE_PAE:
1775 case PGMMODE_PAE_NX:
1776 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAE_PAGE_MASK);
1777 break;
1778 case PGMMODE_AMD64:
1779 case PGMMODE_AMD64_NX:
1780 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_AMD64_PAGE_MASK);
1781 break;
1782 default:
1783 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAGE_MASK);
1784 break;
1785 }
1786 if (pVCpu->pgm.s.GCPhysCR3 != GCPhysCR3)
1787 {
1788 pVCpu->pgm.s.GCPhysCR3 = GCPhysCR3;
1789 rc = PGM_BTH_PFN(MapCR3, pVCpu)(pVCpu, GCPhysCR3);
1790 AssertRCSuccess(rc); /* Assumes VINF_PGM_SYNC_CR3 doesn't apply to nested paging. */ /** @todo this isn't true for the mac, but we need hw to test/fix this. */
1791 }
1792 return rc;
1793}
1794
1795
1796/**
1797 * Synchronize the paging structures.
1798 *
1799 * This function is called in response to the VM_FF_PGM_SYNC_CR3 and
1800 * VM_FF_PGM_SYNC_CR3_NONGLOBAL. Those two force action flags are set
1801 * in several places, most importantly whenever the CR3 is loaded.
1802 *
1803 * @returns VBox status code.
1804 * @param pVCpu VMCPU handle.
1805 * @param cr0 Guest context CR0 register
1806 * @param cr3 Guest context CR3 register
1807 * @param cr4 Guest context CR4 register
1808 * @param fGlobal Including global page directories or not
1809 */
1810VMMDECL(int) PGMSyncCR3(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal)
1811{
1812 PVM pVM = pVCpu->CTX_SUFF(pVM);
1813 int rc;
1814
1815 /*
1816 * The pool may have pending stuff and even require a return to ring-3 to
1817 * clear the whole thing.
1818 */
1819 rc = pgmPoolSyncCR3(pVCpu);
1820 if (rc != VINF_SUCCESS)
1821 return rc;
1822
1823 /*
1824 * We might be called when we shouldn't.
1825 *
1826 * The mode switching will ensure that the PD is resynced
1827 * after every mode switch. So, if we find ourselves here
1828 * when in protected or real mode we can safely disable the
1829 * FF and return immediately.
1830 */
1831 if (pVCpu->pgm.s.enmGuestMode <= PGMMODE_PROTECTED)
1832 {
1833 Assert((cr0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE));
1834 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
1835 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
1836 return VINF_SUCCESS;
1837 }
1838
1839 /* If global pages are not supported, then all flushes are global. */
1840 if (!(cr4 & X86_CR4_PGE))
1841 fGlobal = true;
1842 LogFlow(("PGMSyncCR3: cr0=%RX64 cr3=%RX64 cr4=%RX64 fGlobal=%d[%d,%d]\n", cr0, cr3, cr4, fGlobal,
1843 VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3), VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL)));
1844
1845 /*
1846 * Check if we need to finish an aborted MapCR3 call (see PGMFlushTLB).
1847 * This should be done before SyncCR3.
1848 */
1849 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_MAP_CR3)
1850 {
1851 pVCpu->pgm.s.fSyncFlags &= ~PGM_SYNC_MAP_CR3;
1852
1853 RTGCPHYS GCPhysCR3Old = pVCpu->pgm.s.GCPhysCR3;
1854 RTGCPHYS GCPhysCR3;
1855 switch (pVCpu->pgm.s.enmGuestMode)
1856 {
1857 case PGMMODE_PAE:
1858 case PGMMODE_PAE_NX:
1859 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAE_PAGE_MASK);
1860 break;
1861 case PGMMODE_AMD64:
1862 case PGMMODE_AMD64_NX:
1863 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_AMD64_PAGE_MASK);
1864 break;
1865 default:
1866 GCPhysCR3 = (RTGCPHYS)(cr3 & X86_CR3_PAGE_MASK);
1867 break;
1868 }
1869
1870 if (pVCpu->pgm.s.GCPhysCR3 != GCPhysCR3)
1871 {
1872 pVCpu->pgm.s.GCPhysCR3 = GCPhysCR3;
1873 rc = PGM_BTH_PFN(MapCR3, pVCpu)(pVCpu, GCPhysCR3);
1874 }
1875#ifdef IN_RING3
1876 if (rc == VINF_PGM_SYNC_CR3)
1877 rc = pgmPoolSyncCR3(pVCpu);
1878#else
1879 if (rc == VINF_PGM_SYNC_CR3)
1880 {
1881 pVCpu->pgm.s.GCPhysCR3 = GCPhysCR3Old;
1882 return rc;
1883 }
1884#endif
1885 AssertRCReturn(rc, rc);
1886 AssertRCSuccessReturn(rc, VERR_INTERNAL_ERROR);
1887 }
1888
1889 /*
1890 * Let the 'Bth' function do the work and we'll just keep track of the flags.
1891 */
1892 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncCR3), a);
1893 rc = PGM_BTH_PFN(SyncCR3, pVCpu)(pVCpu, cr0, cr3, cr4, fGlobal);
1894 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncCR3), a);
1895 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("rc=%Rrc\n", rc));
1896 if (rc == VINF_SUCCESS)
1897 {
1898 if (!(pVCpu->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS))
1899 {
1900 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
1901 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
1902 }
1903
1904 /*
1905 * Check if we have a pending update of the CR3 monitoring.
1906 */
1907 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_MONITOR_CR3)
1908 {
1909 pVCpu->pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3;
1910 Assert(!pVM->pgm.s.fMappingsFixed);
1911 }
1912 }
1913
1914 /*
1915 * Now flush the CR3 (guest context).
1916 */
1917 if (rc == VINF_SUCCESS)
1918 PGM_INVL_VCPU_TLBS(pVCpu);
1919 return rc;
1920}
1921
1922
1923/**
1924 * Called whenever CR0 or CR4 in a way which may change
1925 * the paging mode.
1926 *
1927 * @returns VBox status code, with the following informational code for
1928 * VM scheduling.
1929 * @retval VINF_SUCCESS if the was no change, or it was successfully dealt with.
1930 * @retval VINF_PGM_CHANGE_MODE if we're in RC or R0 and the mode changes.
1931 * (I.e. not in R3.)
1932 * @retval VINF_EM_SUSPEND or VINF_EM_OFF on a fatal runtime error. (R3 only)
1933 *
1934 * @param pVCpu VMCPU handle.
1935 * @param cr0 The new cr0.
1936 * @param cr4 The new cr4.
1937 * @param efer The new extended feature enable register.
1938 */
1939VMMDECL(int) PGMChangeMode(PVMCPU pVCpu, uint64_t cr0, uint64_t cr4, uint64_t efer)
1940{
1941 PVM pVM = pVCpu->CTX_SUFF(pVM);
1942 PGMMODE enmGuestMode;
1943
1944 /*
1945 * Calc the new guest mode.
1946 */
1947 if (!(cr0 & X86_CR0_PE))
1948 enmGuestMode = PGMMODE_REAL;
1949 else if (!(cr0 & X86_CR0_PG))
1950 enmGuestMode = PGMMODE_PROTECTED;
1951 else if (!(cr4 & X86_CR4_PAE))
1952 enmGuestMode = PGMMODE_32_BIT;
1953 else if (!(efer & MSR_K6_EFER_LME))
1954 {
1955 if (!(efer & MSR_K6_EFER_NXE))
1956 enmGuestMode = PGMMODE_PAE;
1957 else
1958 enmGuestMode = PGMMODE_PAE_NX;
1959 }
1960 else
1961 {
1962 if (!(efer & MSR_K6_EFER_NXE))
1963 enmGuestMode = PGMMODE_AMD64;
1964 else
1965 enmGuestMode = PGMMODE_AMD64_NX;
1966 }
1967
1968 /*
1969 * Did it change?
1970 */
1971 if (pVCpu->pgm.s.enmGuestMode == enmGuestMode)
1972 return VINF_SUCCESS;
1973
1974 /* Flush the TLB */
1975 PGM_INVL_VCPU_TLBS(pVCpu);
1976
1977#ifdef IN_RING3
1978 return PGMR3ChangeMode(pVM, pVCpu, enmGuestMode);
1979#else
1980 LogFlow(("PGMChangeMode: returns VINF_PGM_CHANGE_MODE.\n"));
1981 return VINF_PGM_CHANGE_MODE;
1982#endif
1983}
1984
1985
1986/**
1987 * Gets the current guest paging mode.
1988 *
1989 * If you just need the CPU mode (real/protected/long), use CPUMGetGuestMode().
1990 *
1991 * @returns The current paging mode.
1992 * @param pVCpu VMCPU handle.
1993 */
1994VMMDECL(PGMMODE) PGMGetGuestMode(PVMCPU pVCpu)
1995{
1996 return pVCpu->pgm.s.enmGuestMode;
1997}
1998
1999
2000/**
2001 * Gets the current shadow paging mode.
2002 *
2003 * @returns The current paging mode.
2004 * @param pVCpu VMCPU handle.
2005 */
2006VMMDECL(PGMMODE) PGMGetShadowMode(PVMCPU pVCpu)
2007{
2008 return pVCpu->pgm.s.enmShadowMode;
2009}
2010
2011/**
2012 * Gets the current host paging mode.
2013 *
2014 * @returns The current paging mode.
2015 * @param pVM The VM handle.
2016 */
2017VMMDECL(PGMMODE) PGMGetHostMode(PVM pVM)
2018{
2019 switch (pVM->pgm.s.enmHostMode)
2020 {
2021 case SUPPAGINGMODE_32_BIT:
2022 case SUPPAGINGMODE_32_BIT_GLOBAL:
2023 return PGMMODE_32_BIT;
2024
2025 case SUPPAGINGMODE_PAE:
2026 case SUPPAGINGMODE_PAE_GLOBAL:
2027 return PGMMODE_PAE;
2028
2029 case SUPPAGINGMODE_PAE_NX:
2030 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2031 return PGMMODE_PAE_NX;
2032
2033 case SUPPAGINGMODE_AMD64:
2034 case SUPPAGINGMODE_AMD64_GLOBAL:
2035 return PGMMODE_AMD64;
2036
2037 case SUPPAGINGMODE_AMD64_NX:
2038 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2039 return PGMMODE_AMD64_NX;
2040
2041 default: AssertMsgFailed(("enmHostMode=%d\n", pVM->pgm.s.enmHostMode)); break;
2042 }
2043
2044 return PGMMODE_INVALID;
2045}
2046
2047
2048/**
2049 * Get mode name.
2050 *
2051 * @returns read-only name string.
2052 * @param enmMode The mode which name is desired.
2053 */
2054VMMDECL(const char *) PGMGetModeName(PGMMODE enmMode)
2055{
2056 switch (enmMode)
2057 {
2058 case PGMMODE_REAL: return "Real";
2059 case PGMMODE_PROTECTED: return "Protected";
2060 case PGMMODE_32_BIT: return "32-bit";
2061 case PGMMODE_PAE: return "PAE";
2062 case PGMMODE_PAE_NX: return "PAE+NX";
2063 case PGMMODE_AMD64: return "AMD64";
2064 case PGMMODE_AMD64_NX: return "AMD64+NX";
2065 case PGMMODE_NESTED: return "Nested";
2066 case PGMMODE_EPT: return "EPT";
2067 default: return "unknown mode value";
2068 }
2069}
2070
2071
2072/**
2073 * Check if any pgm pool pages are marked dirty (not monitored)
2074 *
2075 * @returns bool locked/not locked
2076 * @param pVM The VM to operate on.
2077 */
2078VMMDECL(bool) PGMHasDirtyPages(PVM pVM)
2079{
2080 return pVM->pgm.s.CTX_SUFF(pPool)->cDirtyPages != 0;
2081}
2082
2083/**
2084 * Check if the PGM lock is currently taken.
2085 *
2086 * @returns bool locked/not locked
2087 * @param pVM The VM to operate on.
2088 */
2089VMMDECL(bool) PGMIsLocked(PVM pVM)
2090{
2091 return PDMCritSectIsOwned(&pVM->pgm.s.CritSect);
2092}
2093
2094
2095/**
2096 * Check if this VCPU currently owns the PGM lock.
2097 *
2098 * @returns bool owner/not owner
2099 * @param pVM The VM to operate on.
2100 */
2101VMMDECL(bool) PGMIsLockOwner(PVM pVM)
2102{
2103 return PDMCritSectIsOwner(&pVM->pgm.s.CritSect);
2104}
2105
2106
2107/**
2108 * Acquire the PGM lock.
2109 *
2110 * @returns VBox status code
2111 * @param pVM The VM to operate on.
2112 */
2113int pgmLock(PVM pVM)
2114{
2115 int rc = PDMCritSectEnter(&pVM->pgm.s.CritSect, VERR_SEM_BUSY);
2116#if defined(IN_RC) || defined(IN_RING0)
2117 if (rc == VERR_SEM_BUSY)
2118 rc = VMMRZCallRing3NoCpu(pVM, VMMCALLRING3_PGM_LOCK, 0);
2119#endif
2120 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc));
2121 return rc;
2122}
2123
2124
2125/**
2126 * Release the PGM lock.
2127 *
2128 * @returns VBox status code
2129 * @param pVM The VM to operate on.
2130 */
2131void pgmUnlock(PVM pVM)
2132{
2133 PDMCritSectLeave(&pVM->pgm.s.CritSect);
2134}
2135
2136#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
2137
2138/**
2139 * Temporarily maps one guest page specified by GC physical address.
2140 * These pages must have a physical mapping in HC, i.e. they cannot be MMIO pages.
2141 *
2142 * Be WARNED that the dynamic page mapping area is small, 8 pages, thus the space is
2143 * reused after 8 mappings (or perhaps a few more if you score with the cache).
2144 *
2145 * @returns VBox status.
2146 * @param pVM VM handle.
2147 * @param GCPhys GC Physical address of the page.
2148 * @param ppv Where to store the address of the mapping.
2149 */
2150VMMDECL(int) PGMDynMapGCPage(PVM pVM, RTGCPHYS GCPhys, void **ppv)
2151{
2152 AssertMsg(!(GCPhys & PAGE_OFFSET_MASK), ("GCPhys=%RGp\n", GCPhys));
2153
2154 /*
2155 * Get the ram range.
2156 */
2157 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
2158 while (pRam && GCPhys - pRam->GCPhys >= pRam->cb)
2159 pRam = pRam->CTX_SUFF(pNext);
2160 if (!pRam)
2161 {
2162 AssertMsgFailed(("Invalid physical address %RGp!\n", GCPhys));
2163 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
2164 }
2165
2166 /*
2167 * Pass it on to PGMDynMapHCPage.
2168 */
2169 RTHCPHYS HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT]);
2170 //Log(("PGMDynMapGCPage: GCPhys=%RGp HCPhys=%RHp\n", GCPhys, HCPhys));
2171#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2172 pgmR0DynMapHCPageInlined(&pVM->pgm.s, HCPhys, ppv);
2173#else
2174 PGMDynMapHCPage(pVM, HCPhys, ppv);
2175#endif
2176 return VINF_SUCCESS;
2177}
2178
2179
2180/**
2181 * Temporarily maps one guest page specified by unaligned GC physical address.
2182 * These pages must have a physical mapping in HC, i.e. they cannot be MMIO pages.
2183 *
2184 * Be WARNED that the dynamic page mapping area is small, 8 pages, thus the space is
2185 * reused after 8 mappings (or perhaps a few more if you score with the cache).
2186 *
2187 * The caller is aware that only the speicifed page is mapped and that really bad things
2188 * will happen if writing beyond the page!
2189 *
2190 * @returns VBox status.
2191 * @param pVM VM handle.
2192 * @param GCPhys GC Physical address within the page to be mapped.
2193 * @param ppv Where to store the address of the mapping address corresponding to GCPhys.
2194 */
2195VMMDECL(int) PGMDynMapGCPageOff(PVM pVM, RTGCPHYS GCPhys, void **ppv)
2196{
2197 /*
2198 * Get the ram range.
2199 */
2200 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
2201 while (pRam && GCPhys - pRam->GCPhys >= pRam->cb)
2202 pRam = pRam->CTX_SUFF(pNext);
2203 if (!pRam)
2204 {
2205 AssertMsgFailed(("Invalid physical address %RGp!\n", GCPhys));
2206 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
2207 }
2208
2209 /*
2210 * Pass it on to PGMDynMapHCPage.
2211 */
2212 RTHCPHYS HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT]);
2213#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2214 pgmR0DynMapHCPageInlined(&pVM->pgm.s, HCPhys, ppv);
2215#else
2216 PGMDynMapHCPage(pVM, HCPhys, ppv);
2217#endif
2218 *ppv = (void *)((uintptr_t)*ppv | (GCPhys & PAGE_OFFSET_MASK));
2219 return VINF_SUCCESS;
2220}
2221
2222# ifdef IN_RC
2223
2224/**
2225 * Temporarily maps one host page specified by HC physical address.
2226 *
2227 * Be WARNED that the dynamic page mapping area is small, 16 pages, thus the space is
2228 * reused after 16 mappings (or perhaps a few more if you score with the cache).
2229 *
2230 * @returns VINF_SUCCESS, will bail out to ring-3 on failure.
2231 * @param pVM VM handle.
2232 * @param HCPhys HC Physical address of the page.
2233 * @param ppv Where to store the address of the mapping. This is the
2234 * address of the PAGE not the exact address corresponding
2235 * to HCPhys. Use PGMDynMapHCPageOff if you care for the
2236 * page offset.
2237 */
2238VMMDECL(int) PGMDynMapHCPage(PVM pVM, RTHCPHYS HCPhys, void **ppv)
2239{
2240 AssertMsg(!(HCPhys & PAGE_OFFSET_MASK), ("HCPhys=%RHp\n", HCPhys));
2241
2242 /*
2243 * Check the cache.
2244 */
2245 register unsigned iCache;
2246 for (iCache = 0;iCache < RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache);iCache++)
2247 {
2248 static const uint8_t au8Trans[MM_HYPER_DYNAMIC_SIZE >> PAGE_SHIFT][RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache)] =
2249 {
2250 { 0, 9, 10, 11, 12, 13, 14, 15},
2251 { 0, 1, 10, 11, 12, 13, 14, 15},
2252 { 0, 1, 2, 11, 12, 13, 14, 15},
2253 { 0, 1, 2, 3, 12, 13, 14, 15},
2254 { 0, 1, 2, 3, 4, 13, 14, 15},
2255 { 0, 1, 2, 3, 4, 5, 14, 15},
2256 { 0, 1, 2, 3, 4, 5, 6, 15},
2257 { 0, 1, 2, 3, 4, 5, 6, 7},
2258 { 8, 1, 2, 3, 4, 5, 6, 7},
2259 { 8, 9, 2, 3, 4, 5, 6, 7},
2260 { 8, 9, 10, 3, 4, 5, 6, 7},
2261 { 8, 9, 10, 11, 4, 5, 6, 7},
2262 { 8, 9, 10, 11, 12, 5, 6, 7},
2263 { 8, 9, 10, 11, 12, 13, 6, 7},
2264 { 8, 9, 10, 11, 12, 13, 14, 7},
2265 { 8, 9, 10, 11, 12, 13, 14, 15},
2266 };
2267 AssertCompile(RT_ELEMENTS(au8Trans) == 16);
2268 AssertCompile(RT_ELEMENTS(au8Trans[0]) == 8);
2269
2270 if (pVM->pgm.s.aHCPhysDynPageMapCache[iCache] == HCPhys)
2271 {
2272 int iPage = au8Trans[pVM->pgm.s.iDynPageMapLast][iCache];
2273
2274 /* The cache can get out of sync with locked entries. (10 locked, 2 overwrites its cache position, last = 11, lookup 2 -> page 10 instead of 2) */
2275 if ((pVM->pgm.s.paDynPageMap32BitPTEsGC[iPage].u & X86_PTE_PG_MASK) == HCPhys)
2276 {
2277 void *pv = pVM->pgm.s.pbDynPageMapBaseGC + (iPage << PAGE_SHIFT);
2278 *ppv = pv;
2279 STAM_COUNTER_INC(&pVM->pgm.s.StatRCDynMapCacheHits);
2280 Log4(("PGMGCDynMapHCPage: HCPhys=%RHp pv=%p iPage=%d iCache=%d\n", HCPhys, pv, iPage, iCache));
2281 return VINF_SUCCESS;
2282 }
2283 LogFlow(("Out of sync entry %d\n", iPage));
2284 }
2285 }
2286 AssertCompile(RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache) == 8);
2287 AssertCompile((MM_HYPER_DYNAMIC_SIZE >> PAGE_SHIFT) == 16);
2288 STAM_COUNTER_INC(&pVM->pgm.s.StatRCDynMapCacheMisses);
2289
2290 /*
2291 * Update the page tables.
2292 */
2293 unsigned iPage = pVM->pgm.s.iDynPageMapLast;
2294 unsigned i;
2295 for (i = 0; i < (MM_HYPER_DYNAMIC_SIZE >> PAGE_SHIFT); i++)
2296 {
2297 pVM->pgm.s.iDynPageMapLast = iPage = (iPage + 1) & ((MM_HYPER_DYNAMIC_SIZE >> PAGE_SHIFT) - 1);
2298 if (!pVM->pgm.s.aLockedDynPageMapCache[iPage])
2299 break;
2300 iPage++;
2301 }
2302 AssertRelease(i != (MM_HYPER_DYNAMIC_SIZE >> PAGE_SHIFT));
2303
2304 pVM->pgm.s.aHCPhysDynPageMapCache[iPage & (RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache) - 1)] = HCPhys;
2305 pVM->pgm.s.paDynPageMap32BitPTEsGC[iPage].u = (uint32_t)HCPhys | X86_PTE_P | X86_PTE_A | X86_PTE_D;
2306 pVM->pgm.s.paDynPageMapPaePTEsGC[iPage].u = HCPhys | X86_PTE_P | X86_PTE_A | X86_PTE_D;
2307 pVM->pgm.s.aLockedDynPageMapCache[iPage] = 0;
2308
2309 void *pv = pVM->pgm.s.pbDynPageMapBaseGC + (iPage << PAGE_SHIFT);
2310 *ppv = pv;
2311 ASMInvalidatePage(pv);
2312 Log4(("PGMGCDynMapHCPage: HCPhys=%RHp pv=%p iPage=%d\n", HCPhys, pv, iPage));
2313 return VINF_SUCCESS;
2314}
2315
2316
2317/**
2318 * Temporarily lock a dynamic page to prevent it from being reused.
2319 *
2320 * @param pVM VM handle.
2321 * @param GCPage GC address of page
2322 */
2323VMMDECL(void) PGMDynLockHCPage(PVM pVM, RCPTRTYPE(uint8_t *) GCPage)
2324{
2325 unsigned iPage;
2326
2327 Assert(GCPage >= pVM->pgm.s.pbDynPageMapBaseGC && GCPage < (pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE));
2328 iPage = ((uintptr_t)(GCPage - pVM->pgm.s.pbDynPageMapBaseGC)) >> PAGE_SHIFT;
2329 ASMAtomicIncU32(&pVM->pgm.s.aLockedDynPageMapCache[iPage]);
2330 Log4(("PGMDynLockHCPage %RRv iPage=%d\n", GCPage, iPage));
2331}
2332
2333
2334/**
2335 * Unlock a dynamic page
2336 *
2337 * @param pVM VM handle.
2338 * @param GCPage GC address of page
2339 */
2340VMMDECL(void) PGMDynUnlockHCPage(PVM pVM, RCPTRTYPE(uint8_t *) GCPage)
2341{
2342 unsigned iPage;
2343
2344 AssertCompile(RT_ELEMENTS(pVM->pgm.s.aLockedDynPageMapCache) == 2* RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache));
2345 AssertCompileMemberSize(VM, pgm.s.aLockedDynPageMapCache, sizeof(uint32_t) * (MM_HYPER_DYNAMIC_SIZE >> (PAGE_SHIFT)));
2346
2347 Assert(GCPage >= pVM->pgm.s.pbDynPageMapBaseGC && GCPage < (pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE));
2348 iPage = ((uintptr_t)(GCPage - pVM->pgm.s.pbDynPageMapBaseGC)) >> PAGE_SHIFT;
2349 Assert(pVM->pgm.s.aLockedDynPageMapCache[iPage]);
2350 ASMAtomicDecU32(&pVM->pgm.s.aLockedDynPageMapCache[iPage]);
2351 Log4(("PGMDynUnlockHCPage %RRv iPage=%d\n", GCPage, iPage));
2352}
2353
2354
2355# ifdef VBOX_STRICT
2356/**
2357 * Check for lock leaks.
2358 *
2359 * @param pVM VM handle.
2360 */
2361VMMDECL(void) PGMDynCheckLocks(PVM pVM)
2362{
2363 for (unsigned i=0;i<RT_ELEMENTS(pVM->pgm.s.aLockedDynPageMapCache);i++)
2364 Assert(!pVM->pgm.s.aLockedDynPageMapCache[i]);
2365}
2366# endif /* VBOX_STRICT */
2367
2368# endif /* IN_RC */
2369#endif /* IN_RC || VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 */
2370
2371#if !defined(IN_R0) || defined(LOG_ENABLED)
2372
2373/** Format handler for PGMPAGE.
2374 * @copydoc FNRTSTRFORMATTYPE */
2375static DECLCALLBACK(size_t) pgmFormatTypeHandlerPage(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput,
2376 const char *pszType, void const *pvValue,
2377 int cchWidth, int cchPrecision, unsigned fFlags,
2378 void *pvUser)
2379{
2380 size_t cch;
2381 PCPGMPAGE pPage = (PCPGMPAGE)pvValue;
2382 if (VALID_PTR(pPage))
2383 {
2384 char szTmp[64+80];
2385
2386 cch = 0;
2387
2388 /* The single char state stuff. */
2389 static const char s_achPageStates[4] = { 'Z', 'A', 'W', 'S' };
2390 szTmp[cch++] = s_achPageStates[PGM_PAGE_GET_STATE(pPage)];
2391
2392#define IS_PART_INCLUDED(lvl) ( !(fFlags & RTSTR_F_PRECISION) || cchPrecision == (lvl) || cchPrecision >= (lvl)+10 )
2393 if (IS_PART_INCLUDED(5))
2394 {
2395 static const char s_achHandlerStates[4] = { '-', 't', 'w', 'a' };
2396 szTmp[cch++] = s_achHandlerStates[PGM_PAGE_GET_HNDL_PHYS_STATE(pPage)];
2397 szTmp[cch++] = s_achHandlerStates[PGM_PAGE_GET_HNDL_VIRT_STATE(pPage)];
2398 }
2399
2400 /* The type. */
2401 if (IS_PART_INCLUDED(4))
2402 {
2403 szTmp[cch++] = ':';
2404 static const char s_achPageTypes[8][4] = { "INV", "RAM", "MI2", "M2A", "SHA", "ROM", "MIO", "BAD" };
2405 szTmp[cch++] = s_achPageTypes[PGM_PAGE_GET_TYPE(pPage)][0];
2406 szTmp[cch++] = s_achPageTypes[PGM_PAGE_GET_TYPE(pPage)][1];
2407 szTmp[cch++] = s_achPageTypes[PGM_PAGE_GET_TYPE(pPage)][2];
2408 }
2409
2410 /* The numbers. */
2411 if (IS_PART_INCLUDED(3))
2412 {
2413 szTmp[cch++] = ':';
2414 cch += RTStrFormatNumber(&szTmp[cch], PGM_PAGE_GET_HCPHYS(pPage), 16, 12, 0, RTSTR_F_ZEROPAD | RTSTR_F_64BIT);
2415 }
2416
2417 if (IS_PART_INCLUDED(2))
2418 {
2419 szTmp[cch++] = ':';
2420 cch += RTStrFormatNumber(&szTmp[cch], PGM_PAGE_GET_PAGEID(pPage), 16, 7, 0, RTSTR_F_ZEROPAD | RTSTR_F_32BIT);
2421 }
2422
2423 if (IS_PART_INCLUDED(6))
2424 {
2425 szTmp[cch++] = ':';
2426 static const char s_achRefs[4] = { '-', 'U', '!', 'L' };
2427 szTmp[cch++] = s_achRefs[PGM_PAGE_GET_TD_CREFS(pPage)];
2428 cch += RTStrFormatNumber(&szTmp[cch], PGM_PAGE_GET_TD_IDX(pPage), 16, 4, 0, RTSTR_F_ZEROPAD | RTSTR_F_16BIT);
2429 }
2430#undef IS_PART_INCLUDED
2431
2432 cch = pfnOutput(pvArgOutput, szTmp, cch);
2433 }
2434 else
2435 cch = pfnOutput(pvArgOutput, "<bad-pgmpage-ptr>", sizeof("<bad-pgmpage-ptr>") - 1);
2436 return cch;
2437}
2438
2439
2440/** Format handler for PGMRAMRANGE.
2441 * @copydoc FNRTSTRFORMATTYPE */
2442static DECLCALLBACK(size_t) pgmFormatTypeHandlerRamRange(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput,
2443 const char *pszType, void const *pvValue,
2444 int cchWidth, int cchPrecision, unsigned fFlags,
2445 void *pvUser)
2446{
2447 size_t cch;
2448 PGMRAMRANGE const *pRam = (PGMRAMRANGE const *)pvValue;
2449 if (VALID_PTR(pRam))
2450 {
2451 char szTmp[80];
2452 cch = RTStrPrintf(szTmp, sizeof(szTmp), "%RGp-%RGp", pRam->GCPhys, pRam->GCPhysLast);
2453 cch = pfnOutput(pvArgOutput, szTmp, cch);
2454 }
2455 else
2456 cch = pfnOutput(pvArgOutput, "<bad-pgmramrange-ptr>", sizeof("<bad-pgmramrange-ptr>") - 1);
2457 return cch;
2458}
2459
2460/** Format type andlers to be registered/deregistered. */
2461static const struct
2462{
2463 char szType[24];
2464 PFNRTSTRFORMATTYPE pfnHandler;
2465} g_aPgmFormatTypes[] =
2466{
2467 { "pgmpage", pgmFormatTypeHandlerPage },
2468 { "pgmramrange", pgmFormatTypeHandlerRamRange }
2469};
2470
2471#endif /* !IN_R0 || LOG_ENABLED */
2472
2473
2474/**
2475 * Registers the global string format types.
2476 *
2477 * This should be called at module load time or in some other manner that ensure
2478 * that it's called exactly one time.
2479 *
2480 * @returns IPRT status code on RTStrFormatTypeRegister failure.
2481 */
2482VMMDECL(int) PGMRegisterStringFormatTypes(void)
2483{
2484#if !defined(IN_R0) || defined(LOG_ENABLED)
2485 int rc = VINF_SUCCESS;
2486 unsigned i;
2487 for (i = 0; RT_SUCCESS(rc) && i < RT_ELEMENTS(g_aPgmFormatTypes); i++)
2488 {
2489 rc = RTStrFormatTypeRegister(g_aPgmFormatTypes[i].szType, g_aPgmFormatTypes[i].pfnHandler, NULL);
2490# ifdef IN_RING0
2491 if (rc == VERR_ALREADY_EXISTS)
2492 {
2493 /* in case of cleanup failure in ring-0 */
2494 RTStrFormatTypeDeregister(g_aPgmFormatTypes[i].szType);
2495 rc = RTStrFormatTypeRegister(g_aPgmFormatTypes[i].szType, g_aPgmFormatTypes[i].pfnHandler, NULL);
2496 }
2497# endif
2498 }
2499 if (RT_FAILURE(rc))
2500 while (i-- > 0)
2501 RTStrFormatTypeDeregister(g_aPgmFormatTypes[i].szType);
2502
2503 return rc;
2504#else
2505 return VINF_SUCCESS;
2506#endif
2507}
2508
2509
2510/**
2511 * Deregisters the global string format types.
2512 *
2513 * This should be called at module unload time or in some other manner that
2514 * ensure that it's called exactly one time.
2515 */
2516VMMDECL(void) PGMDeregisterStringFormatTypes(void)
2517{
2518#if !defined(IN_R0) || defined(LOG_ENABLED)
2519 for (unsigned i = 0; i < RT_ELEMENTS(g_aPgmFormatTypes); i++)
2520 RTStrFormatTypeDeregister(g_aPgmFormatTypes[i].szType);
2521#endif
2522}
2523
2524#ifdef VBOX_STRICT
2525
2526/**
2527 * Asserts that there are no mapping conflicts.
2528 *
2529 * @returns Number of conflicts.
2530 * @param pVM The VM Handle.
2531 */
2532VMMDECL(unsigned) PGMAssertNoMappingConflicts(PVM pVM)
2533{
2534 unsigned cErrors = 0;
2535
2536 /* Only applies to raw mode -> 1 VPCU */
2537 Assert(pVM->cCpus == 1);
2538 PVMCPU pVCpu = &pVM->aCpus[0];
2539
2540 /*
2541 * Check for mapping conflicts.
2542 */
2543 for (PPGMMAPPING pMapping = pVM->pgm.s.CTX_SUFF(pMappings);
2544 pMapping;
2545 pMapping = pMapping->CTX_SUFF(pNext))
2546 {
2547 /** @todo This is slow and should be optimized, but since it's just assertions I don't care now. */
2548 for (RTGCPTR GCPtr = pMapping->GCPtr;
2549 GCPtr <= pMapping->GCPtrLast;
2550 GCPtr += PAGE_SIZE)
2551 {
2552 int rc = PGMGstGetPage(pVCpu, (RTGCPTR)GCPtr, NULL, NULL);
2553 if (rc != VERR_PAGE_TABLE_NOT_PRESENT)
2554 {
2555 AssertMsgFailed(("Conflict at %RGv with %s\n", GCPtr, R3STRING(pMapping->pszDesc)));
2556 cErrors++;
2557 break;
2558 }
2559 }
2560 }
2561
2562 return cErrors;
2563}
2564
2565
2566/**
2567 * Asserts that everything related to the guest CR3 is correctly shadowed.
2568 *
2569 * This will call PGMAssertNoMappingConflicts() and PGMAssertHandlerAndFlagsInSync(),
2570 * and assert the correctness of the guest CR3 mapping before asserting that the
2571 * shadow page tables is in sync with the guest page tables.
2572 *
2573 * @returns Number of conflicts.
2574 * @param pVM The VM Handle.
2575 * @param pVCpu VMCPU handle.
2576 * @param cr3 The current guest CR3 register value.
2577 * @param cr4 The current guest CR4 register value.
2578 */
2579VMMDECL(unsigned) PGMAssertCR3(PVM pVM, PVMCPU pVCpu, uint64_t cr3, uint64_t cr4)
2580{
2581 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncCR3), a);
2582 pgmLock(pVM);
2583 unsigned cErrors = PGM_BTH_PFN(AssertCR3, pVCpu)(pVCpu, cr3, cr4, 0, ~(RTGCPTR)0);
2584 pgmUnlock(pVM);
2585 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncCR3), a);
2586 return cErrors;
2587}
2588
2589#endif /* VBOX_STRICT */
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette