VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMVMXR0.cpp@ 62340

Last change on this file since 62340 was 62340, checked in by vboxsync, 9 years ago

VMM/HMVMXR0: nits and spaces.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 583.2 KB
Line 
1/* $Id: HMVMXR0.cpp 62340 2016-07-20 08:21:19Z vboxsync $ */
2/** @file
3 * HM VMX (Intel VT-x) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2012-2015 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.215389.xyz. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#include <iprt/x86.h>
24#include <iprt/asm-amd64-x86.h>
25#include <iprt/thread.h>
26
27#include <VBox/vmm/pdmapi.h>
28#include <VBox/vmm/dbgf.h>
29#include <VBox/vmm/iem.h>
30#include <VBox/vmm/iom.h>
31#include <VBox/vmm/selm.h>
32#include <VBox/vmm/tm.h>
33#include <VBox/vmm/gim.h>
34#ifdef VBOX_WITH_REM
35# include <VBox/vmm/rem.h>
36#endif
37#ifdef VBOX_WITH_NEW_APIC
38# include <VBox/vmm/apic.h>
39#endif
40#include "HMInternal.h"
41#include <VBox/vmm/vm.h>
42#include "HMVMXR0.h"
43#include "dtrace/VBoxVMM.h"
44
45#ifdef DEBUG_ramshankar
46# define HMVMX_ALWAYS_SAVE_GUEST_RFLAGS
47# define HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE
48# define HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
49# define HMVMX_ALWAYS_CHECK_GUEST_STATE
50# define HMVMX_ALWAYS_TRAP_ALL_XCPTS
51# define HMVMX_ALWAYS_TRAP_PF
52# define HMVMX_ALWAYS_SWAP_FPU_STATE
53# define HMVMX_ALWAYS_FLUSH_TLB
54# define HMVMX_ALWAYS_SWAP_EFER
55#endif
56
57
58/*********************************************************************************************************************************
59* Defined Constants And Macros *
60*********************************************************************************************************************************/
61/** Use the function table. */
62#define HMVMX_USE_FUNCTION_TABLE
63
64/** Determine which tagged-TLB flush handler to use. */
65#define HMVMX_FLUSH_TAGGED_TLB_EPT_VPID 0
66#define HMVMX_FLUSH_TAGGED_TLB_EPT 1
67#define HMVMX_FLUSH_TAGGED_TLB_VPID 2
68#define HMVMX_FLUSH_TAGGED_TLB_NONE 3
69
70/** @name Updated-guest-state flags.
71 * @{ */
72#define HMVMX_UPDATED_GUEST_RIP RT_BIT(0)
73#define HMVMX_UPDATED_GUEST_RSP RT_BIT(1)
74#define HMVMX_UPDATED_GUEST_RFLAGS RT_BIT(2)
75#define HMVMX_UPDATED_GUEST_CR0 RT_BIT(3)
76#define HMVMX_UPDATED_GUEST_CR3 RT_BIT(4)
77#define HMVMX_UPDATED_GUEST_CR4 RT_BIT(5)
78#define HMVMX_UPDATED_GUEST_GDTR RT_BIT(6)
79#define HMVMX_UPDATED_GUEST_IDTR RT_BIT(7)
80#define HMVMX_UPDATED_GUEST_LDTR RT_BIT(8)
81#define HMVMX_UPDATED_GUEST_TR RT_BIT(9)
82#define HMVMX_UPDATED_GUEST_SEGMENT_REGS RT_BIT(10)
83#define HMVMX_UPDATED_GUEST_DEBUG RT_BIT(11)
84#define HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR RT_BIT(12)
85#define HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR RT_BIT(13)
86#define HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR RT_BIT(14)
87#define HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS RT_BIT(15)
88#define HMVMX_UPDATED_GUEST_LAZY_MSRS RT_BIT(16)
89#define HMVMX_UPDATED_GUEST_ACTIVITY_STATE RT_BIT(17)
90#define HMVMX_UPDATED_GUEST_INTR_STATE RT_BIT(18)
91#define HMVMX_UPDATED_GUEST_APIC_STATE RT_BIT(19)
92#define HMVMX_UPDATED_GUEST_ALL ( HMVMX_UPDATED_GUEST_RIP \
93 | HMVMX_UPDATED_GUEST_RSP \
94 | HMVMX_UPDATED_GUEST_RFLAGS \
95 | HMVMX_UPDATED_GUEST_CR0 \
96 | HMVMX_UPDATED_GUEST_CR3 \
97 | HMVMX_UPDATED_GUEST_CR4 \
98 | HMVMX_UPDATED_GUEST_GDTR \
99 | HMVMX_UPDATED_GUEST_IDTR \
100 | HMVMX_UPDATED_GUEST_LDTR \
101 | HMVMX_UPDATED_GUEST_TR \
102 | HMVMX_UPDATED_GUEST_SEGMENT_REGS \
103 | HMVMX_UPDATED_GUEST_DEBUG \
104 | HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR \
105 | HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR \
106 | HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR \
107 | HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS \
108 | HMVMX_UPDATED_GUEST_LAZY_MSRS \
109 | HMVMX_UPDATED_GUEST_ACTIVITY_STATE \
110 | HMVMX_UPDATED_GUEST_INTR_STATE \
111 | HMVMX_UPDATED_GUEST_APIC_STATE)
112/** @} */
113
114/** @name
115 * Flags to skip redundant reads of some common VMCS fields that are not part of
116 * the guest-CPU state but are in the transient structure.
117 */
118#define HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO RT_BIT(0)
119#define HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE RT_BIT(1)
120#define HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION RT_BIT(2)
121#define HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN RT_BIT(3)
122#define HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO RT_BIT(4)
123#define HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE RT_BIT(5)
124#define HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_INFO RT_BIT(6)
125/** @} */
126
127/** @name
128 * States of the VMCS.
129 *
130 * This does not reflect all possible VMCS states but currently only those
131 * needed for maintaining the VMCS consistently even when thread-context hooks
132 * are used. Maybe later this can be extended (i.e. Nested Virtualization).
133 */
134#define HMVMX_VMCS_STATE_CLEAR RT_BIT(0)
135#define HMVMX_VMCS_STATE_ACTIVE RT_BIT(1)
136#define HMVMX_VMCS_STATE_LAUNCHED RT_BIT(2)
137/** @} */
138
139/**
140 * Exception bitmap mask for real-mode guests (real-on-v86).
141 *
142 * We need to intercept all exceptions manually except:
143 * - \#NM, \#MF handled in hmR0VmxLoadSharedCR0().
144 * - \#AC and \#DB are always intercepted to prevent the CPU from deadlocking
145 * due to bugs in Intel CPUs.
146 * - \#PF need not be intercepted even in real-mode if we have Nested Paging
147 * support.
148 */
149#define HMVMX_REAL_MODE_XCPT_MASK ( RT_BIT(X86_XCPT_DE) /* always: | RT_BIT(X86_XCPT_DB) */ | RT_BIT(X86_XCPT_NMI) \
150 | RT_BIT(X86_XCPT_BP) | RT_BIT(X86_XCPT_OF) | RT_BIT(X86_XCPT_BR) \
151 | RT_BIT(X86_XCPT_UD) /* RT_BIT(X86_XCPT_NM) */ | RT_BIT(X86_XCPT_DF) \
152 | RT_BIT(X86_XCPT_CO_SEG_OVERRUN) | RT_BIT(X86_XCPT_TS) | RT_BIT(X86_XCPT_NP) \
153 | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_GP) /* RT_BIT(X86_XCPT_PF) */ \
154 /* RT_BIT(X86_XCPT_MF) always: | RT_BIT(X86_XCPT_AC) */ | RT_BIT(X86_XCPT_MC) \
155 | RT_BIT(X86_XCPT_XF))
156
157/**
158 * Exception bitmap mask for all contributory exceptions.
159 *
160 * Page fault is deliberately excluded here as it's conditional as to whether
161 * it's contributory or benign. Page faults are handled separately.
162 */
163#define HMVMX_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
164 | RT_BIT(X86_XCPT_DE))
165
166/** Maximum VM-instruction error number. */
167#define HMVMX_INSTR_ERROR_MAX 28
168
169/** Profiling macro. */
170#ifdef HM_PROFILE_EXIT_DISPATCH
171# define HMVMX_START_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitDispatch, ed)
172# define HMVMX_STOP_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitDispatch, ed)
173#else
174# define HMVMX_START_EXIT_DISPATCH_PROF() do { } while (0)
175# define HMVMX_STOP_EXIT_DISPATCH_PROF() do { } while (0)
176#endif
177
178/** Assert that preemption is disabled or covered by thread-context hooks. */
179#define HMVMX_ASSERT_PREEMPT_SAFE() Assert( VMMR0ThreadCtxHookIsEnabled(pVCpu) \
180 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
181
182/** Assert that we haven't migrated CPUs when thread-context hooks are not
183 * used. */
184#define HMVMX_ASSERT_CPU_SAFE() AssertMsg( VMMR0ThreadCtxHookIsEnabled(pVCpu) \
185 || pVCpu->hm.s.idEnteredCpu == RTMpCpuId(), \
186 ("Illegal migration! Entered on CPU %u Current %u\n", \
187 pVCpu->hm.s.idEnteredCpu, RTMpCpuId())); \
188
189/** Helper macro for VM-exit handlers called unexpectedly. */
190#define HMVMX_RETURN_UNEXPECTED_EXIT() \
191 do { \
192 pVCpu->hm.s.u32HMError = pVmxTransient->uExitReason; \
193 return VERR_VMX_UNEXPECTED_EXIT; \
194 } while (0)
195
196
197/*********************************************************************************************************************************
198* Structures and Typedefs *
199*********************************************************************************************************************************/
200/**
201 * VMX transient state.
202 *
203 * A state structure for holding miscellaneous information across
204 * VMX non-root operation and restored after the transition.
205 */
206typedef struct VMXTRANSIENT
207{
208 /** The host's rflags/eflags. */
209 RTCCUINTREG fEFlags;
210#if HC_ARCH_BITS == 32
211 uint32_t u32Alignment0;
212#endif
213 /** The guest's TPR value used for TPR shadowing. */
214 uint8_t u8GuestTpr;
215 /** Alignment. */
216 uint8_t abAlignment0[7];
217
218 /** The basic VM-exit reason. */
219 uint16_t uExitReason;
220 /** Alignment. */
221 uint16_t u16Alignment0;
222 /** The VM-exit interruption error code. */
223 uint32_t uExitIntErrorCode;
224 /** The VM-exit exit code qualification. */
225 uint64_t uExitQualification;
226
227 /** The VM-exit interruption-information field. */
228 uint32_t uExitIntInfo;
229 /** The VM-exit instruction-length field. */
230 uint32_t cbInstr;
231 /** The VM-exit instruction-information field. */
232 union
233 {
234 /** Plain unsigned int representation. */
235 uint32_t u;
236 /** INS and OUTS information. */
237 struct
238 {
239 uint32_t u7Reserved0 : 7;
240 /** The address size; 0=16-bit, 1=32-bit, 2=64-bit, rest undefined. */
241 uint32_t u3AddrSize : 3;
242 uint32_t u5Reserved1 : 5;
243 /** The segment register (X86_SREG_XXX). */
244 uint32_t iSegReg : 3;
245 uint32_t uReserved2 : 14;
246 } StrIo;
247 } ExitInstrInfo;
248 /** Whether the VM-entry failed or not. */
249 bool fVMEntryFailed;
250 /** Alignment. */
251 uint8_t abAlignment1[3];
252
253 /** The VM-entry interruption-information field. */
254 uint32_t uEntryIntInfo;
255 /** The VM-entry exception error code field. */
256 uint32_t uEntryXcptErrorCode;
257 /** The VM-entry instruction length field. */
258 uint32_t cbEntryInstr;
259
260 /** IDT-vectoring information field. */
261 uint32_t uIdtVectoringInfo;
262 /** IDT-vectoring error code. */
263 uint32_t uIdtVectoringErrorCode;
264
265 /** Mask of currently read VMCS fields; HMVMX_UPDATED_TRANSIENT_*. */
266 uint32_t fVmcsFieldsRead;
267
268 /** Whether the guest FPU was active at the time of VM-exit. */
269 bool fWasGuestFPUStateActive;
270 /** Whether the guest debug state was active at the time of VM-exit. */
271 bool fWasGuestDebugStateActive;
272 /** Whether the hyper debug state was active at the time of VM-exit. */
273 bool fWasHyperDebugStateActive;
274 /** Whether TSC-offsetting should be setup before VM-entry. */
275 bool fUpdateTscOffsettingAndPreemptTimer;
276 /** Whether the VM-exit was caused by a page-fault during delivery of a
277 * contributory exception or a page-fault. */
278 bool fVectoringDoublePF;
279 /** Whether the VM-exit was caused by a page-fault during delivery of an
280 * external interrupt or NMI. */
281 bool fVectoringPF;
282} VMXTRANSIENT;
283AssertCompileMemberAlignment(VMXTRANSIENT, uExitReason, sizeof(uint64_t));
284AssertCompileMemberAlignment(VMXTRANSIENT, uExitIntInfo, sizeof(uint64_t));
285AssertCompileMemberAlignment(VMXTRANSIENT, uEntryIntInfo, sizeof(uint64_t));
286AssertCompileMemberAlignment(VMXTRANSIENT, fWasGuestFPUStateActive, sizeof(uint64_t));
287AssertCompileMemberSize(VMXTRANSIENT, ExitInstrInfo, sizeof(uint32_t));
288/** Pointer to VMX transient state. */
289typedef VMXTRANSIENT *PVMXTRANSIENT;
290
291
292/**
293 * MSR-bitmap read permissions.
294 */
295typedef enum VMXMSREXITREAD
296{
297 /** Reading this MSR causes a VM-exit. */
298 VMXMSREXIT_INTERCEPT_READ = 0xb,
299 /** Reading this MSR does not cause a VM-exit. */
300 VMXMSREXIT_PASSTHRU_READ
301} VMXMSREXITREAD;
302/** Pointer to MSR-bitmap read permissions. */
303typedef VMXMSREXITREAD* PVMXMSREXITREAD;
304
305/**
306 * MSR-bitmap write permissions.
307 */
308typedef enum VMXMSREXITWRITE
309{
310 /** Writing to this MSR causes a VM-exit. */
311 VMXMSREXIT_INTERCEPT_WRITE = 0xd,
312 /** Writing to this MSR does not cause a VM-exit. */
313 VMXMSREXIT_PASSTHRU_WRITE
314} VMXMSREXITWRITE;
315/** Pointer to MSR-bitmap write permissions. */
316typedef VMXMSREXITWRITE* PVMXMSREXITWRITE;
317
318
319/**
320 * VMX VM-exit handler.
321 *
322 * @returns Strict VBox status code (i.e. informational status codes too).
323 * @param pVCpu The cross context virtual CPU structure.
324 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
325 * out-of-sync. Make sure to update the required
326 * fields before using them.
327 * @param pVmxTransient Pointer to the VMX-transient structure.
328 */
329#ifndef HMVMX_USE_FUNCTION_TABLE
330typedef DECLINLINE(VBOXSTRICTRC) FNVMXEXITHANDLER(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
331#else
332typedef DECLCALLBACK(VBOXSTRICTRC) FNVMXEXITHANDLER(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
333/** Pointer to VM-exit handler. */
334typedef FNVMXEXITHANDLER *PFNVMXEXITHANDLER;
335#endif
336
337/**
338 * VMX VM-exit handler, non-strict status code.
339 *
340 * This is generally the same as FNVMXEXITHANDLER, the NSRC bit is just FYI.
341 *
342 * @returns VBox status code, no informational status code returned.
343 * @param pVCpu The cross context virtual CPU structure.
344 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
345 * out-of-sync. Make sure to update the required
346 * fields before using them.
347 * @param pVmxTransient Pointer to the VMX-transient structure.
348 *
349 * @remarks This is not used on anything returning VERR_EM_INTERPRETER as the
350 * use of that status code will be replaced with VINF_EM_SOMETHING
351 * later when switching over to IEM.
352 */
353#ifndef HMVMX_USE_FUNCTION_TABLE
354typedef DECLINLINE(int) FNVMXEXITHANDLERNSRC(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
355#else
356typedef FNVMXEXITHANDLER FNVMXEXITHANDLERNSRC;
357#endif
358
359
360/*********************************************************************************************************************************
361* Internal Functions *
362*********************************************************************************************************************************/
363static void hmR0VmxFlushEpt(PVMCPU pVCpu, VMXFLUSHEPT enmFlush);
364static void hmR0VmxFlushVpid(PVM pVM, PVMCPU pVCpu, VMXFLUSHVPID enmFlush, RTGCPTR GCPtr);
365static void hmR0VmxClearIntNmiWindowsVmcs(PVMCPU pVCpu);
366static VBOXSTRICTRC hmR0VmxInjectEventVmcs(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint64_t u64IntInfo, uint32_t cbInstr,
367 uint32_t u32ErrCode, RTGCUINTREG GCPtrFaultAddress,
368 bool fStepping, uint32_t *puIntState);
369#if HC_ARCH_BITS == 32
370static int hmR0VmxInitVmcsReadCache(PVM pVM, PVMCPU pVCpu);
371#endif
372#ifndef HMVMX_USE_FUNCTION_TABLE
373DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, uint32_t rcReason);
374# define HMVMX_EXIT_DECL DECLINLINE(VBOXSTRICTRC)
375# define HMVMX_EXIT_NSRC_DECL DECLINLINE(int)
376#else
377# define HMVMX_EXIT_DECL static DECLCALLBACK(VBOXSTRICTRC)
378# define HMVMX_EXIT_NSRC_DECL HMVMX_EXIT_DECL
379#endif
380
381
382/** @name VM-exit handlers.
383 * @{
384 */
385static FNVMXEXITHANDLER hmR0VmxExitXcptOrNmi;
386static FNVMXEXITHANDLER hmR0VmxExitExtInt;
387static FNVMXEXITHANDLER hmR0VmxExitTripleFault;
388static FNVMXEXITHANDLERNSRC hmR0VmxExitInitSignal;
389static FNVMXEXITHANDLERNSRC hmR0VmxExitSipi;
390static FNVMXEXITHANDLERNSRC hmR0VmxExitIoSmi;
391static FNVMXEXITHANDLERNSRC hmR0VmxExitSmi;
392static FNVMXEXITHANDLERNSRC hmR0VmxExitIntWindow;
393static FNVMXEXITHANDLERNSRC hmR0VmxExitNmiWindow;
394static FNVMXEXITHANDLER hmR0VmxExitTaskSwitch;
395static FNVMXEXITHANDLER hmR0VmxExitCpuid;
396static FNVMXEXITHANDLER hmR0VmxExitGetsec;
397static FNVMXEXITHANDLER hmR0VmxExitHlt;
398static FNVMXEXITHANDLERNSRC hmR0VmxExitInvd;
399static FNVMXEXITHANDLER hmR0VmxExitInvlpg;
400static FNVMXEXITHANDLER hmR0VmxExitRdpmc;
401static FNVMXEXITHANDLER hmR0VmxExitVmcall;
402static FNVMXEXITHANDLER hmR0VmxExitRdtsc;
403static FNVMXEXITHANDLERNSRC hmR0VmxExitRsm;
404static FNVMXEXITHANDLERNSRC hmR0VmxExitSetPendingXcptUD;
405static FNVMXEXITHANDLER hmR0VmxExitMovCRx;
406static FNVMXEXITHANDLER hmR0VmxExitMovDRx;
407static FNVMXEXITHANDLER hmR0VmxExitIoInstr;
408static FNVMXEXITHANDLER hmR0VmxExitRdmsr;
409static FNVMXEXITHANDLER hmR0VmxExitWrmsr;
410static FNVMXEXITHANDLERNSRC hmR0VmxExitErrInvalidGuestState;
411static FNVMXEXITHANDLERNSRC hmR0VmxExitErrMsrLoad;
412static FNVMXEXITHANDLERNSRC hmR0VmxExitErrUndefined;
413static FNVMXEXITHANDLER hmR0VmxExitMwait;
414static FNVMXEXITHANDLER hmR0VmxExitMtf;
415static FNVMXEXITHANDLER hmR0VmxExitMonitor;
416static FNVMXEXITHANDLER hmR0VmxExitPause;
417static FNVMXEXITHANDLERNSRC hmR0VmxExitErrMachineCheck;
418static FNVMXEXITHANDLERNSRC hmR0VmxExitTprBelowThreshold;
419static FNVMXEXITHANDLER hmR0VmxExitApicAccess;
420static FNVMXEXITHANDLER hmR0VmxExitXdtrAccess;
421static FNVMXEXITHANDLER hmR0VmxExitXdtrAccess;
422static FNVMXEXITHANDLER hmR0VmxExitEptViolation;
423static FNVMXEXITHANDLER hmR0VmxExitEptMisconfig;
424static FNVMXEXITHANDLER hmR0VmxExitRdtscp;
425static FNVMXEXITHANDLER hmR0VmxExitPreemptTimer;
426static FNVMXEXITHANDLERNSRC hmR0VmxExitWbinvd;
427static FNVMXEXITHANDLER hmR0VmxExitXsetbv;
428static FNVMXEXITHANDLER hmR0VmxExitRdrand;
429static FNVMXEXITHANDLER hmR0VmxExitInvpcid;
430/** @} */
431
432static int hmR0VmxExitXcptNM(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
433static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
434static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
435static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
436static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
437static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
438static int hmR0VmxExitXcptAC(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
439static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
440static uint32_t hmR0VmxCheckGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx);
441
442
443/*********************************************************************************************************************************
444* Global Variables *
445*********************************************************************************************************************************/
446#ifdef HMVMX_USE_FUNCTION_TABLE
447
448/**
449 * VMX_EXIT dispatch table.
450 */
451static const PFNVMXEXITHANDLER g_apfnVMExitHandlers[VMX_EXIT_MAX + 1] =
452{
453 /* 00 VMX_EXIT_XCPT_OR_NMI */ hmR0VmxExitXcptOrNmi,
454 /* 01 VMX_EXIT_EXT_INT */ hmR0VmxExitExtInt,
455 /* 02 VMX_EXIT_TRIPLE_FAULT */ hmR0VmxExitTripleFault,
456 /* 03 VMX_EXIT_INIT_SIGNAL */ hmR0VmxExitInitSignal,
457 /* 04 VMX_EXIT_SIPI */ hmR0VmxExitSipi,
458 /* 05 VMX_EXIT_IO_SMI */ hmR0VmxExitIoSmi,
459 /* 06 VMX_EXIT_SMI */ hmR0VmxExitSmi,
460 /* 07 VMX_EXIT_INT_WINDOW */ hmR0VmxExitIntWindow,
461 /* 08 VMX_EXIT_NMI_WINDOW */ hmR0VmxExitNmiWindow,
462 /* 09 VMX_EXIT_TASK_SWITCH */ hmR0VmxExitTaskSwitch,
463 /* 10 VMX_EXIT_CPUID */ hmR0VmxExitCpuid,
464 /* 11 VMX_EXIT_GETSEC */ hmR0VmxExitGetsec,
465 /* 12 VMX_EXIT_HLT */ hmR0VmxExitHlt,
466 /* 13 VMX_EXIT_INVD */ hmR0VmxExitInvd,
467 /* 14 VMX_EXIT_INVLPG */ hmR0VmxExitInvlpg,
468 /* 15 VMX_EXIT_RDPMC */ hmR0VmxExitRdpmc,
469 /* 16 VMX_EXIT_RDTSC */ hmR0VmxExitRdtsc,
470 /* 17 VMX_EXIT_RSM */ hmR0VmxExitRsm,
471 /* 18 VMX_EXIT_VMCALL */ hmR0VmxExitVmcall,
472 /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitSetPendingXcptUD,
473 /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitSetPendingXcptUD,
474 /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitSetPendingXcptUD,
475 /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitSetPendingXcptUD,
476 /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitSetPendingXcptUD,
477 /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitSetPendingXcptUD,
478 /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitSetPendingXcptUD,
479 /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitSetPendingXcptUD,
480 /* 27 VMX_EXIT_VMXON */ hmR0VmxExitSetPendingXcptUD,
481 /* 28 VMX_EXIT_MOV_CRX */ hmR0VmxExitMovCRx,
482 /* 29 VMX_EXIT_MOV_DRX */ hmR0VmxExitMovDRx,
483 /* 30 VMX_EXIT_IO_INSTR */ hmR0VmxExitIoInstr,
484 /* 31 VMX_EXIT_RDMSR */ hmR0VmxExitRdmsr,
485 /* 32 VMX_EXIT_WRMSR */ hmR0VmxExitWrmsr,
486 /* 33 VMX_EXIT_ERR_INVALID_GUEST_STATE */ hmR0VmxExitErrInvalidGuestState,
487 /* 34 VMX_EXIT_ERR_MSR_LOAD */ hmR0VmxExitErrMsrLoad,
488 /* 35 UNDEFINED */ hmR0VmxExitErrUndefined,
489 /* 36 VMX_EXIT_MWAIT */ hmR0VmxExitMwait,
490 /* 37 VMX_EXIT_MTF */ hmR0VmxExitMtf,
491 /* 38 UNDEFINED */ hmR0VmxExitErrUndefined,
492 /* 39 VMX_EXIT_MONITOR */ hmR0VmxExitMonitor,
493 /* 40 UNDEFINED */ hmR0VmxExitPause,
494 /* 41 VMX_EXIT_PAUSE */ hmR0VmxExitErrMachineCheck,
495 /* 42 VMX_EXIT_ERR_MACHINE_CHECK */ hmR0VmxExitErrUndefined,
496 /* 43 VMX_EXIT_TPR_BELOW_THRESHOLD */ hmR0VmxExitTprBelowThreshold,
497 /* 44 VMX_EXIT_APIC_ACCESS */ hmR0VmxExitApicAccess,
498 /* 45 UNDEFINED */ hmR0VmxExitErrUndefined,
499 /* 46 VMX_EXIT_XDTR_ACCESS */ hmR0VmxExitXdtrAccess,
500 /* 47 VMX_EXIT_TR_ACCESS */ hmR0VmxExitXdtrAccess,
501 /* 48 VMX_EXIT_EPT_VIOLATION */ hmR0VmxExitEptViolation,
502 /* 49 VMX_EXIT_EPT_MISCONFIG */ hmR0VmxExitEptMisconfig,
503 /* 50 VMX_EXIT_INVEPT */ hmR0VmxExitSetPendingXcptUD,
504 /* 51 VMX_EXIT_RDTSCP */ hmR0VmxExitRdtscp,
505 /* 52 VMX_EXIT_PREEMPT_TIMER */ hmR0VmxExitPreemptTimer,
506 /* 53 VMX_EXIT_INVVPID */ hmR0VmxExitSetPendingXcptUD,
507 /* 54 VMX_EXIT_WBINVD */ hmR0VmxExitWbinvd,
508 /* 55 VMX_EXIT_XSETBV */ hmR0VmxExitXsetbv,
509 /* 56 VMX_EXIT_APIC_WRITE */ hmR0VmxExitErrUndefined,
510 /* 57 VMX_EXIT_RDRAND */ hmR0VmxExitRdrand,
511 /* 58 VMX_EXIT_INVPCID */ hmR0VmxExitInvpcid,
512 /* 59 VMX_EXIT_VMFUNC */ hmR0VmxExitSetPendingXcptUD,
513 /* 60 VMX_EXIT_RESERVED_60 */ hmR0VmxExitErrUndefined,
514 /* 61 VMX_EXIT_RDSEED */ hmR0VmxExitErrUndefined, /* only spurious exits, so undefined */
515 /* 62 VMX_EXIT_RESERVED_62 */ hmR0VmxExitErrUndefined,
516 /* 63 VMX_EXIT_XSAVES */ hmR0VmxExitSetPendingXcptUD,
517 /* 64 VMX_EXIT_XRSTORS */ hmR0VmxExitSetPendingXcptUD,
518};
519#endif /* HMVMX_USE_FUNCTION_TABLE */
520
521#ifdef VBOX_STRICT
522static const char * const g_apszVmxInstrErrors[HMVMX_INSTR_ERROR_MAX + 1] =
523{
524 /* 0 */ "(Not Used)",
525 /* 1 */ "VMCALL executed in VMX root operation.",
526 /* 2 */ "VMCLEAR with invalid physical address.",
527 /* 3 */ "VMCLEAR with VMXON pointer.",
528 /* 4 */ "VMLAUNCH with non-clear VMCS.",
529 /* 5 */ "VMRESUME with non-launched VMCS.",
530 /* 6 */ "VMRESUME after VMXOFF",
531 /* 7 */ "VM-entry with invalid control fields.",
532 /* 8 */ "VM-entry with invalid host state fields.",
533 /* 9 */ "VMPTRLD with invalid physical address.",
534 /* 10 */ "VMPTRLD with VMXON pointer.",
535 /* 11 */ "VMPTRLD with incorrect revision identifier.",
536 /* 12 */ "VMREAD/VMWRITE from/to unsupported VMCS component.",
537 /* 13 */ "VMWRITE to read-only VMCS component.",
538 /* 14 */ "(Not Used)",
539 /* 15 */ "VMXON executed in VMX root operation.",
540 /* 16 */ "VM-entry with invalid executive-VMCS pointer.",
541 /* 17 */ "VM-entry with non-launched executing VMCS.",
542 /* 18 */ "VM-entry with executive-VMCS pointer not VMXON pointer.",
543 /* 19 */ "VMCALL with non-clear VMCS.",
544 /* 20 */ "VMCALL with invalid VM-exit control fields.",
545 /* 21 */ "(Not Used)",
546 /* 22 */ "VMCALL with incorrect MSEG revision identifier.",
547 /* 23 */ "VMXOFF under dual monitor treatment of SMIs and SMM.",
548 /* 24 */ "VMCALL with invalid SMM-monitor features.",
549 /* 25 */ "VM-entry with invalid VM-execution control fields in executive VMCS.",
550 /* 26 */ "VM-entry with events blocked by MOV SS.",
551 /* 27 */ "(Not Used)",
552 /* 28 */ "Invalid operand to INVEPT/INVVPID."
553};
554#endif /* VBOX_STRICT */
555
556
557
558/**
559 * Updates the VM's last error record.
560 *
561 * If there was a VMX instruction error, reads the error data from the VMCS and
562 * updates VCPU's last error record as well.
563 *
564 * @param pVM The cross context VM structure.
565 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
566 * Can be NULL if @a rc is not VERR_VMX_UNABLE_TO_START_VM or
567 * VERR_VMX_INVALID_VMCS_FIELD.
568 * @param rc The error code.
569 */
570static void hmR0VmxUpdateErrorRecord(PVM pVM, PVMCPU pVCpu, int rc)
571{
572 AssertPtr(pVM);
573 if ( rc == VERR_VMX_INVALID_VMCS_FIELD
574 || rc == VERR_VMX_UNABLE_TO_START_VM)
575 {
576 AssertPtrReturnVoid(pVCpu);
577 VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
578 }
579 pVM->hm.s.lLastError = rc;
580}
581
582
583/**
584 * Reads the VM-entry interruption-information field from the VMCS into the VMX
585 * transient structure.
586 *
587 * @returns VBox status code.
588 * @param pVmxTransient Pointer to the VMX transient structure.
589 *
590 * @remarks No-long-jump zone!!!
591 */
592DECLINLINE(int) hmR0VmxReadEntryIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
593{
594 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &pVmxTransient->uEntryIntInfo);
595 AssertRCReturn(rc, rc);
596 return VINF_SUCCESS;
597}
598
599
600/**
601 * Reads the VM-entry exception error code field from the VMCS into
602 * the VMX transient structure.
603 *
604 * @returns VBox status code.
605 * @param pVmxTransient Pointer to the VMX transient structure.
606 *
607 * @remarks No-long-jump zone!!!
608 */
609DECLINLINE(int) hmR0VmxReadEntryXcptErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
610{
611 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &pVmxTransient->uEntryXcptErrorCode);
612 AssertRCReturn(rc, rc);
613 return VINF_SUCCESS;
614}
615
616
617/**
618 * Reads the VM-entry exception error code field from the VMCS into
619 * the VMX transient structure.
620 *
621 * @returns VBox status code.
622 * @param pVmxTransient Pointer to the VMX transient structure.
623 *
624 * @remarks No-long-jump zone!!!
625 */
626DECLINLINE(int) hmR0VmxReadEntryInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
627{
628 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &pVmxTransient->cbEntryInstr);
629 AssertRCReturn(rc, rc);
630 return VINF_SUCCESS;
631}
632
633
634/**
635 * Reads the VM-exit interruption-information field from the VMCS into the VMX
636 * transient structure.
637 *
638 * @returns VBox status code.
639 * @param pVmxTransient Pointer to the VMX transient structure.
640 */
641DECLINLINE(int) hmR0VmxReadExitIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
642{
643 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO))
644 {
645 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &pVmxTransient->uExitIntInfo);
646 AssertRCReturn(rc, rc);
647 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO;
648 }
649 return VINF_SUCCESS;
650}
651
652
653/**
654 * Reads the VM-exit interruption error code from the VMCS into the VMX
655 * transient structure.
656 *
657 * @returns VBox status code.
658 * @param pVmxTransient Pointer to the VMX transient structure.
659 */
660DECLINLINE(int) hmR0VmxReadExitIntErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
661{
662 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE))
663 {
664 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &pVmxTransient->uExitIntErrorCode);
665 AssertRCReturn(rc, rc);
666 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE;
667 }
668 return VINF_SUCCESS;
669}
670
671
672/**
673 * Reads the VM-exit instruction length field from the VMCS into the VMX
674 * transient structure.
675 *
676 * @returns VBox status code.
677 * @param pVmxTransient Pointer to the VMX transient structure.
678 */
679DECLINLINE(int) hmR0VmxReadExitInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
680{
681 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN))
682 {
683 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &pVmxTransient->cbInstr);
684 AssertRCReturn(rc, rc);
685 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN;
686 }
687 return VINF_SUCCESS;
688}
689
690
691/**
692 * Reads the VM-exit instruction-information field from the VMCS into
693 * the VMX transient structure.
694 *
695 * @returns VBox status code.
696 * @param pVmxTransient Pointer to the VMX transient structure.
697 */
698DECLINLINE(int) hmR0VmxReadExitInstrInfoVmcs(PVMXTRANSIENT pVmxTransient)
699{
700 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_INFO))
701 {
702 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_INFO, &pVmxTransient->ExitInstrInfo.u);
703 AssertRCReturn(rc, rc);
704 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_INFO;
705 }
706 return VINF_SUCCESS;
707}
708
709
710/**
711 * Reads the exit code qualification from the VMCS into the VMX transient
712 * structure.
713 *
714 * @returns VBox status code.
715 * @param pVCpu The cross context virtual CPU structure of the
716 * calling EMT. (Required for the VMCS cache case.)
717 * @param pVmxTransient Pointer to the VMX transient structure.
718 */
719DECLINLINE(int) hmR0VmxReadExitQualificationVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
720{
721 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION))
722 {
723 int rc = VMXReadVmcsGstN(VMX_VMCS_RO_EXIT_QUALIFICATION, &pVmxTransient->uExitQualification); NOREF(pVCpu);
724 AssertRCReturn(rc, rc);
725 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION;
726 }
727 return VINF_SUCCESS;
728}
729
730
731/**
732 * Reads the IDT-vectoring information field from the VMCS into the VMX
733 * transient structure.
734 *
735 * @returns VBox status code.
736 * @param pVmxTransient Pointer to the VMX transient structure.
737 *
738 * @remarks No-long-jump zone!!!
739 */
740DECLINLINE(int) hmR0VmxReadIdtVectoringInfoVmcs(PVMXTRANSIENT pVmxTransient)
741{
742 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO))
743 {
744 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_INFO, &pVmxTransient->uIdtVectoringInfo);
745 AssertRCReturn(rc, rc);
746 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO;
747 }
748 return VINF_SUCCESS;
749}
750
751
752/**
753 * Reads the IDT-vectoring error code from the VMCS into the VMX
754 * transient structure.
755 *
756 * @returns VBox status code.
757 * @param pVmxTransient Pointer to the VMX transient structure.
758 */
759DECLINLINE(int) hmR0VmxReadIdtVectoringErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
760{
761 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE))
762 {
763 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_ERROR_CODE, &pVmxTransient->uIdtVectoringErrorCode);
764 AssertRCReturn(rc, rc);
765 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE;
766 }
767 return VINF_SUCCESS;
768}
769
770
771/**
772 * Enters VMX root mode operation on the current CPU.
773 *
774 * @returns VBox status code.
775 * @param pVM The cross context VM structure. Can be
776 * NULL, after a resume.
777 * @param HCPhysCpuPage Physical address of the VMXON region.
778 * @param pvCpuPage Pointer to the VMXON region.
779 */
780static int hmR0VmxEnterRootMode(PVM pVM, RTHCPHYS HCPhysCpuPage, void *pvCpuPage)
781{
782 Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
783 Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
784 Assert(pvCpuPage);
785 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
786
787 if (pVM)
788 {
789 /* Write the VMCS revision dword to the VMXON region. */
790 *(uint32_t *)pvCpuPage = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hm.s.vmx.Msrs.u64BasicInfo);
791 }
792
793 /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with CR4. */
794 RTCCUINTREG fEFlags = ASMIntDisableFlags();
795
796 /* Enable the VMX bit in CR4 if necessary. */
797 RTCCUINTREG uOldCr4 = SUPR0ChangeCR4(X86_CR4_VMXE, ~0);
798
799 /* Enter VMX root mode. */
800 int rc = VMXEnable(HCPhysCpuPage);
801 if (RT_FAILURE(rc))
802 {
803 if (!(uOldCr4 & X86_CR4_VMXE))
804 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
805
806 if (pVM)
807 pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
808 }
809
810 /* Restore interrupts. */
811 ASMSetFlags(fEFlags);
812 return rc;
813}
814
815
816/**
817 * Exits VMX root mode operation on the current CPU.
818 *
819 * @returns VBox status code.
820 */
821static int hmR0VmxLeaveRootMode(void)
822{
823 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
824
825 /* Paranoid: Disable interrupts as, in theory, interrupts handlers might mess with CR4. */
826 RTCCUINTREG fEFlags = ASMIntDisableFlags();
827
828 /* If we're for some reason not in VMX root mode, then don't leave it. */
829 RTCCUINTREG uHostCR4 = ASMGetCR4();
830
831 int rc;
832 if (uHostCR4 & X86_CR4_VMXE)
833 {
834 /* Exit VMX root mode and clear the VMX bit in CR4. */
835 VMXDisable();
836 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
837 rc = VINF_SUCCESS;
838 }
839 else
840 rc = VERR_VMX_NOT_IN_VMX_ROOT_MODE;
841
842 /* Restore interrupts. */
843 ASMSetFlags(fEFlags);
844 return rc;
845}
846
847
848/**
849 * Allocates and maps one physically contiguous page. The allocated page is
850 * zero'd out. (Used by various VT-x structures).
851 *
852 * @returns IPRT status code.
853 * @param pMemObj Pointer to the ring-0 memory object.
854 * @param ppVirt Where to store the virtual address of the
855 * allocation.
856 * @param pHCPhys Where to store the physical address of the
857 * allocation.
858 */
859DECLINLINE(int) hmR0VmxPageAllocZ(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
860{
861 AssertPtrReturn(pMemObj, VERR_INVALID_PARAMETER);
862 AssertPtrReturn(ppVirt, VERR_INVALID_PARAMETER);
863 AssertPtrReturn(pHCPhys, VERR_INVALID_PARAMETER);
864
865 int rc = RTR0MemObjAllocCont(pMemObj, PAGE_SIZE, false /* fExecutable */);
866 if (RT_FAILURE(rc))
867 return rc;
868 *ppVirt = RTR0MemObjAddress(*pMemObj);
869 *pHCPhys = RTR0MemObjGetPagePhysAddr(*pMemObj, 0 /* iPage */);
870 ASMMemZero32(*ppVirt, PAGE_SIZE);
871 return VINF_SUCCESS;
872}
873
874
875/**
876 * Frees and unmaps an allocated physical page.
877 *
878 * @param pMemObj Pointer to the ring-0 memory object.
879 * @param ppVirt Where to re-initialize the virtual address of
880 * allocation as 0.
881 * @param pHCPhys Where to re-initialize the physical address of the
882 * allocation as 0.
883 */
884DECLINLINE(void) hmR0VmxPageFree(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
885{
886 AssertPtr(pMemObj);
887 AssertPtr(ppVirt);
888 AssertPtr(pHCPhys);
889 if (*pMemObj != NIL_RTR0MEMOBJ)
890 {
891 int rc = RTR0MemObjFree(*pMemObj, true /* fFreeMappings */);
892 AssertRC(rc);
893 *pMemObj = NIL_RTR0MEMOBJ;
894 *ppVirt = 0;
895 *pHCPhys = 0;
896 }
897}
898
899
900/**
901 * Worker function to free VT-x related structures.
902 *
903 * @returns IPRT status code.
904 * @param pVM The cross context VM structure.
905 */
906static void hmR0VmxStructsFree(PVM pVM)
907{
908 for (VMCPUID i = 0; i < pVM->cCpus; i++)
909 {
910 PVMCPU pVCpu = &pVM->aCpus[i];
911 AssertPtr(pVCpu);
912
913 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
914 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
915
916 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
917 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap, &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
918
919 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjVirtApic, (PRTR0PTR)&pVCpu->hm.s.vmx.pbVirtApic, &pVCpu->hm.s.vmx.HCPhysVirtApic);
920 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
921 }
922
923 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess, &pVM->hm.s.vmx.HCPhysApicAccess);
924#ifdef VBOX_WITH_CRASHDUMP_MAGIC
925 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
926#endif
927}
928
929
930/**
931 * Worker function to allocate VT-x related VM structures.
932 *
933 * @returns IPRT status code.
934 * @param pVM The cross context VM structure.
935 */
936static int hmR0VmxStructsAlloc(PVM pVM)
937{
938 /*
939 * Initialize members up-front so we can cleanup properly on allocation failure.
940 */
941#define VMXLOCAL_INIT_VM_MEMOBJ(a_Name, a_VirtPrefix) \
942 pVM->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
943 pVM->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
944 pVM->hm.s.vmx.HCPhys##a_Name = 0;
945
946#define VMXLOCAL_INIT_VMCPU_MEMOBJ(a_Name, a_VirtPrefix) \
947 pVCpu->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
948 pVCpu->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
949 pVCpu->hm.s.vmx.HCPhys##a_Name = 0;
950
951#ifdef VBOX_WITH_CRASHDUMP_MAGIC
952 VMXLOCAL_INIT_VM_MEMOBJ(Scratch, pv);
953#endif
954 VMXLOCAL_INIT_VM_MEMOBJ(ApicAccess, pb);
955
956 AssertCompile(sizeof(VMCPUID) == sizeof(pVM->cCpus));
957 for (VMCPUID i = 0; i < pVM->cCpus; i++)
958 {
959 PVMCPU pVCpu = &pVM->aCpus[i];
960 VMXLOCAL_INIT_VMCPU_MEMOBJ(Vmcs, pv);
961 VMXLOCAL_INIT_VMCPU_MEMOBJ(VirtApic, pb);
962 VMXLOCAL_INIT_VMCPU_MEMOBJ(MsrBitmap, pv);
963 VMXLOCAL_INIT_VMCPU_MEMOBJ(GuestMsr, pv);
964 VMXLOCAL_INIT_VMCPU_MEMOBJ(HostMsr, pv);
965 }
966#undef VMXLOCAL_INIT_VMCPU_MEMOBJ
967#undef VMXLOCAL_INIT_VM_MEMOBJ
968
969 /* The VMCS size cannot be more than 4096 bytes. See Intel spec. Appendix A.1 "Basic VMX Information". */
970 AssertReturnStmt(MSR_IA32_VMX_BASIC_INFO_VMCS_SIZE(pVM->hm.s.vmx.Msrs.u64BasicInfo) <= PAGE_SIZE,
971 (&pVM->aCpus[0])->hm.s.u32HMError = VMX_UFC_INVALID_VMCS_SIZE,
972 VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO);
973
974 /*
975 * Allocate all the VT-x structures.
976 */
977 int rc = VINF_SUCCESS;
978#ifdef VBOX_WITH_CRASHDUMP_MAGIC
979 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
980 if (RT_FAILURE(rc))
981 goto cleanup;
982 strcpy((char *)pVM->hm.s.vmx.pbScratch, "SCRATCH Magic");
983 *(uint64_t *)(pVM->hm.s.vmx.pbScratch + 16) = UINT64_C(0xdeadbeefdeadbeef);
984#endif
985
986 /* Allocate the APIC-access page for trapping APIC accesses from the guest. */
987 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)
988 {
989 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess,
990 &pVM->hm.s.vmx.HCPhysApicAccess);
991 if (RT_FAILURE(rc))
992 goto cleanup;
993 }
994
995 /*
996 * Initialize per-VCPU VT-x structures.
997 */
998 for (VMCPUID i = 0; i < pVM->cCpus; i++)
999 {
1000 PVMCPU pVCpu = &pVM->aCpus[i];
1001 AssertPtr(pVCpu);
1002
1003 /* Allocate the VM control structure (VMCS). */
1004 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
1005 if (RT_FAILURE(rc))
1006 goto cleanup;
1007
1008 /* Allocate the Virtual-APIC page for transparent TPR accesses. */
1009 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
1010 {
1011 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjVirtApic, (PRTR0PTR)&pVCpu->hm.s.vmx.pbVirtApic,
1012 &pVCpu->hm.s.vmx.HCPhysVirtApic);
1013 if (RT_FAILURE(rc))
1014 goto cleanup;
1015 }
1016
1017 /*
1018 * Allocate the MSR-bitmap if supported by the CPU. The MSR-bitmap is for
1019 * transparent accesses of specific MSRs.
1020 *
1021 * If the condition for enabling MSR bitmaps changes here, don't forget to
1022 * update HMAreMsrBitmapsAvailable().
1023 */
1024 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1025 {
1026 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap,
1027 &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
1028 if (RT_FAILURE(rc))
1029 goto cleanup;
1030 ASMMemFill32(pVCpu->hm.s.vmx.pvMsrBitmap, PAGE_SIZE, UINT32_C(0xffffffff));
1031 }
1032
1033 /* Allocate the VM-entry MSR-load and VM-exit MSR-store page for the guest MSRs. */
1034 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
1035 if (RT_FAILURE(rc))
1036 goto cleanup;
1037
1038 /* Allocate the VM-exit MSR-load page for the host MSRs. */
1039 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
1040 if (RT_FAILURE(rc))
1041 goto cleanup;
1042 }
1043
1044 return VINF_SUCCESS;
1045
1046cleanup:
1047 hmR0VmxStructsFree(pVM);
1048 return rc;
1049}
1050
1051
1052/**
1053 * Does global VT-x initialization (called during module initialization).
1054 *
1055 * @returns VBox status code.
1056 */
1057VMMR0DECL(int) VMXR0GlobalInit(void)
1058{
1059#ifdef HMVMX_USE_FUNCTION_TABLE
1060 AssertCompile(VMX_EXIT_MAX + 1 == RT_ELEMENTS(g_apfnVMExitHandlers));
1061# ifdef VBOX_STRICT
1062 for (unsigned i = 0; i < RT_ELEMENTS(g_apfnVMExitHandlers); i++)
1063 Assert(g_apfnVMExitHandlers[i]);
1064# endif
1065#endif
1066 return VINF_SUCCESS;
1067}
1068
1069
1070/**
1071 * Does global VT-x termination (called during module termination).
1072 */
1073VMMR0DECL(void) VMXR0GlobalTerm()
1074{
1075 /* Nothing to do currently. */
1076}
1077
1078
1079/**
1080 * Sets up and activates VT-x on the current CPU.
1081 *
1082 * @returns VBox status code.
1083 * @param pCpu Pointer to the global CPU info struct.
1084 * @param pVM The cross context VM structure. Can be
1085 * NULL after a host resume operation.
1086 * @param pvCpuPage Pointer to the VMXON region (can be NULL if @a
1087 * fEnabledByHost is @c true).
1088 * @param HCPhysCpuPage Physical address of the VMXON region (can be 0 if
1089 * @a fEnabledByHost is @c true).
1090 * @param fEnabledByHost Set if SUPR0EnableVTx() or similar was used to
1091 * enable VT-x on the host.
1092 * @param pvMsrs Opaque pointer to VMXMSRS struct.
1093 */
1094VMMR0DECL(int) VMXR0EnableCpu(PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
1095 void *pvMsrs)
1096{
1097 Assert(pCpu);
1098 Assert(pvMsrs);
1099 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1100
1101 /* Enable VT-x if it's not already enabled by the host. */
1102 if (!fEnabledByHost)
1103 {
1104 int rc = hmR0VmxEnterRootMode(pVM, HCPhysCpuPage, pvCpuPage);
1105 if (RT_FAILURE(rc))
1106 return rc;
1107 }
1108
1109 /*
1110 * Flush all EPT tagged-TLB entries (in case VirtualBox or any other hypervisor have been using EPTPs) so
1111 * we don't retain any stale guest-physical mappings which won't get invalidated when flushing by VPID.
1112 */
1113 PVMXMSRS pMsrs = (PVMXMSRS)pvMsrs;
1114 if (pMsrs->u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
1115 {
1116 hmR0VmxFlushEpt(NULL /* pVCpu */, VMXFLUSHEPT_ALL_CONTEXTS);
1117 pCpu->fFlushAsidBeforeUse = false;
1118 }
1119 else
1120 pCpu->fFlushAsidBeforeUse = true;
1121
1122 /* Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}. */
1123 ++pCpu->cTlbFlushes;
1124
1125 return VINF_SUCCESS;
1126}
1127
1128
1129/**
1130 * Deactivates VT-x on the current CPU.
1131 *
1132 * @returns VBox status code.
1133 * @param pCpu Pointer to the global CPU info struct.
1134 * @param pvCpuPage Pointer to the VMXON region.
1135 * @param HCPhysCpuPage Physical address of the VMXON region.
1136 *
1137 * @remarks This function should never be called when SUPR0EnableVTx() or
1138 * similar was used to enable VT-x on the host.
1139 */
1140VMMR0DECL(int) VMXR0DisableCpu(PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
1141{
1142 NOREF(pCpu);
1143 NOREF(pvCpuPage);
1144 NOREF(HCPhysCpuPage);
1145
1146 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1147 return hmR0VmxLeaveRootMode();
1148}
1149
1150
1151/**
1152 * Sets the permission bits for the specified MSR in the MSR bitmap.
1153 *
1154 * @param pVCpu The cross context virtual CPU structure.
1155 * @param uMsr The MSR value.
1156 * @param enmRead Whether reading this MSR causes a VM-exit.
1157 * @param enmWrite Whether writing this MSR causes a VM-exit.
1158 */
1159static void hmR0VmxSetMsrPermission(PVMCPU pVCpu, uint32_t uMsr, VMXMSREXITREAD enmRead, VMXMSREXITWRITE enmWrite)
1160{
1161 int32_t iBit;
1162 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.vmx.pvMsrBitmap;
1163
1164 /*
1165 * Layout:
1166 * 0x000 - 0x3ff - Low MSR read bits
1167 * 0x400 - 0x7ff - High MSR read bits
1168 * 0x800 - 0xbff - Low MSR write bits
1169 * 0xc00 - 0xfff - High MSR write bits
1170 */
1171 if (uMsr <= 0x00001FFF)
1172 iBit = uMsr;
1173 else if (uMsr - UINT32_C(0xC0000000) <= UINT32_C(0x00001FFF))
1174 {
1175 iBit = uMsr - UINT32_C(0xC0000000);
1176 pbMsrBitmap += 0x400;
1177 }
1178 else
1179 AssertMsgFailedReturnVoid(("hmR0VmxSetMsrPermission: Invalid MSR %#RX32\n", uMsr));
1180
1181 Assert(iBit <= 0x1fff);
1182 if (enmRead == VMXMSREXIT_INTERCEPT_READ)
1183 ASMBitSet(pbMsrBitmap, iBit);
1184 else
1185 ASMBitClear(pbMsrBitmap, iBit);
1186
1187 if (enmWrite == VMXMSREXIT_INTERCEPT_WRITE)
1188 ASMBitSet(pbMsrBitmap + 0x800, iBit);
1189 else
1190 ASMBitClear(pbMsrBitmap + 0x800, iBit);
1191}
1192
1193
1194#ifdef VBOX_STRICT
1195/**
1196 * Gets the permission bits for the specified MSR in the MSR bitmap.
1197 *
1198 * @returns VBox status code.
1199 * @retval VINF_SUCCESS if the specified MSR is found.
1200 * @retval VERR_NOT_FOUND if the specified MSR is not found.
1201 * @retval VERR_NOT_SUPPORTED if VT-x doesn't allow the MSR.
1202 *
1203 * @param pVCpu The cross context virtual CPU structure.
1204 * @param uMsr The MSR.
1205 * @param penmRead Where to store the read permissions.
1206 * @param penmWrite Where to store the write permissions.
1207 */
1208static int hmR0VmxGetMsrPermission(PVMCPU pVCpu, uint32_t uMsr, PVMXMSREXITREAD penmRead, PVMXMSREXITWRITE penmWrite)
1209{
1210 AssertPtrReturn(penmRead, VERR_INVALID_PARAMETER);
1211 AssertPtrReturn(penmWrite, VERR_INVALID_PARAMETER);
1212 int32_t iBit;
1213 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.vmx.pvMsrBitmap;
1214
1215 /* See hmR0VmxSetMsrPermission() for the layout. */
1216 if (uMsr <= 0x00001FFF)
1217 iBit = uMsr;
1218 else if ( uMsr >= 0xC0000000
1219 && uMsr <= 0xC0001FFF)
1220 {
1221 iBit = (uMsr - 0xC0000000);
1222 pbMsrBitmap += 0x400;
1223 }
1224 else
1225 AssertMsgFailedReturn(("hmR0VmxGetMsrPermission: Invalid MSR %#RX32\n", uMsr), VERR_NOT_SUPPORTED);
1226
1227 Assert(iBit <= 0x1fff);
1228 if (ASMBitTest(pbMsrBitmap, iBit))
1229 *penmRead = VMXMSREXIT_INTERCEPT_READ;
1230 else
1231 *penmRead = VMXMSREXIT_PASSTHRU_READ;
1232
1233 if (ASMBitTest(pbMsrBitmap + 0x800, iBit))
1234 *penmWrite = VMXMSREXIT_INTERCEPT_WRITE;
1235 else
1236 *penmWrite = VMXMSREXIT_PASSTHRU_WRITE;
1237 return VINF_SUCCESS;
1238}
1239#endif /* VBOX_STRICT */
1240
1241
1242/**
1243 * Updates the VMCS with the number of effective MSRs in the auto-load/store MSR
1244 * area.
1245 *
1246 * @returns VBox status code.
1247 * @param pVCpu The cross context virtual CPU structure.
1248 * @param cMsrs The number of MSRs.
1249 */
1250DECLINLINE(int) hmR0VmxSetAutoLoadStoreMsrCount(PVMCPU pVCpu, uint32_t cMsrs)
1251{
1252 /* Shouldn't ever happen but there -is- a number. We're well within the recommended 512. */
1253 uint32_t const cMaxSupportedMsrs = MSR_IA32_VMX_MISC_MAX_MSR(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.u64Misc);
1254 if (RT_UNLIKELY(cMsrs > cMaxSupportedMsrs))
1255 {
1256 LogRel(("CPU auto-load/store MSR count in VMCS exceeded cMsrs=%u Supported=%u.\n", cMsrs, cMaxSupportedMsrs));
1257 pVCpu->hm.s.u32HMError = VMX_UFC_INSUFFICIENT_GUEST_MSR_STORAGE;
1258 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1259 }
1260
1261 /* Update number of guest MSRs to load/store across the world-switch. */
1262 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, cMsrs);
1263 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, cMsrs);
1264
1265 /* Update number of host MSRs to load after the world-switch. Identical to guest-MSR count as it's always paired. */
1266 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, cMsrs);
1267 AssertRCReturn(rc, rc);
1268
1269 /* Update the VCPU's copy of the MSR count. */
1270 pVCpu->hm.s.vmx.cMsrs = cMsrs;
1271
1272 return VINF_SUCCESS;
1273}
1274
1275
1276/**
1277 * Adds a new (or updates the value of an existing) guest/host MSR
1278 * pair to be swapped during the world-switch as part of the
1279 * auto-load/store MSR area in the VMCS.
1280 *
1281 * @returns VBox status code.
1282 * @param pVCpu The cross context virtual CPU structure.
1283 * @param uMsr The MSR.
1284 * @param uGuestMsrValue Value of the guest MSR.
1285 * @param fUpdateHostMsr Whether to update the value of the host MSR if
1286 * necessary.
1287 * @param pfAddedAndUpdated Where to store whether the MSR was added -and-
1288 * its value was updated. Optional, can be NULL.
1289 */
1290static int hmR0VmxAddAutoLoadStoreMsr(PVMCPU pVCpu, uint32_t uMsr, uint64_t uGuestMsrValue, bool fUpdateHostMsr,
1291 bool *pfAddedAndUpdated)
1292{
1293 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1294 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1295 uint32_t i;
1296 for (i = 0; i < cMsrs; i++)
1297 {
1298 if (pGuestMsr->u32Msr == uMsr)
1299 break;
1300 pGuestMsr++;
1301 }
1302
1303 bool fAdded = false;
1304 if (i == cMsrs)
1305 {
1306 ++cMsrs;
1307 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, cMsrs);
1308 AssertMsgRCReturn(rc, ("hmR0VmxAddAutoLoadStoreMsr: Insufficient space to add MSR %u\n", uMsr), rc);
1309
1310 /* Now that we're swapping MSRs during the world-switch, allow the guest to read/write them without causing VM-exits. */
1311 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1312 hmR0VmxSetMsrPermission(pVCpu, uMsr, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
1313
1314 fAdded = true;
1315 }
1316
1317 /* Update the MSR values in the auto-load/store MSR area. */
1318 pGuestMsr->u32Msr = uMsr;
1319 pGuestMsr->u64Value = uGuestMsrValue;
1320
1321 /* Create/update the MSR slot in the host MSR area. */
1322 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1323 pHostMsr += i;
1324 pHostMsr->u32Msr = uMsr;
1325
1326 /*
1327 * Update the host MSR only when requested by the caller AND when we're
1328 * adding it to the auto-load/store area. Otherwise, it would have been
1329 * updated by hmR0VmxSaveHostMsrs(). We do this for performance reasons.
1330 */
1331 bool fUpdatedMsrValue = false;
1332 if ( fAdded
1333 && fUpdateHostMsr)
1334 {
1335 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1336 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1337 pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
1338 fUpdatedMsrValue = true;
1339 }
1340
1341 if (pfAddedAndUpdated)
1342 *pfAddedAndUpdated = fUpdatedMsrValue;
1343 return VINF_SUCCESS;
1344}
1345
1346
1347/**
1348 * Removes a guest/host MSR pair to be swapped during the world-switch from the
1349 * auto-load/store MSR area in the VMCS.
1350 *
1351 * @returns VBox status code.
1352 * @param pVCpu The cross context virtual CPU structure.
1353 * @param uMsr The MSR.
1354 */
1355static int hmR0VmxRemoveAutoLoadStoreMsr(PVMCPU pVCpu, uint32_t uMsr)
1356{
1357 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1358 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1359 for (uint32_t i = 0; i < cMsrs; i++)
1360 {
1361 /* Find the MSR. */
1362 if (pGuestMsr->u32Msr == uMsr)
1363 {
1364 /* If it's the last MSR, simply reduce the count. */
1365 if (i == cMsrs - 1)
1366 {
1367 --cMsrs;
1368 break;
1369 }
1370
1371 /* Remove it by swapping the last MSR in place of it, and reducing the count. */
1372 PVMXAUTOMSR pLastGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1373 pLastGuestMsr += cMsrs - 1;
1374 pGuestMsr->u32Msr = pLastGuestMsr->u32Msr;
1375 pGuestMsr->u64Value = pLastGuestMsr->u64Value;
1376
1377 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1378 PVMXAUTOMSR pLastHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1379 pLastHostMsr += cMsrs - 1;
1380 pHostMsr->u32Msr = pLastHostMsr->u32Msr;
1381 pHostMsr->u64Value = pLastHostMsr->u64Value;
1382 --cMsrs;
1383 break;
1384 }
1385 pGuestMsr++;
1386 }
1387
1388 /* Update the VMCS if the count changed (meaning the MSR was found). */
1389 if (cMsrs != pVCpu->hm.s.vmx.cMsrs)
1390 {
1391 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, cMsrs);
1392 AssertRCReturn(rc, rc);
1393
1394 /* We're no longer swapping MSRs during the world-switch, intercept guest read/writes to them. */
1395 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1396 hmR0VmxSetMsrPermission(pVCpu, uMsr, VMXMSREXIT_INTERCEPT_READ, VMXMSREXIT_INTERCEPT_WRITE);
1397
1398 Log4(("Removed MSR %#RX32 new cMsrs=%u\n", uMsr, pVCpu->hm.s.vmx.cMsrs));
1399 return VINF_SUCCESS;
1400 }
1401
1402 return VERR_NOT_FOUND;
1403}
1404
1405
1406/**
1407 * Checks if the specified guest MSR is part of the auto-load/store area in
1408 * the VMCS.
1409 *
1410 * @returns true if found, false otherwise.
1411 * @param pVCpu The cross context virtual CPU structure.
1412 * @param uMsr The MSR to find.
1413 */
1414static bool hmR0VmxIsAutoLoadStoreGuestMsr(PVMCPU pVCpu, uint32_t uMsr)
1415{
1416 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1417 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1418
1419 for (uint32_t i = 0; i < cMsrs; i++, pGuestMsr++)
1420 {
1421 if (pGuestMsr->u32Msr == uMsr)
1422 return true;
1423 }
1424 return false;
1425}
1426
1427
1428/**
1429 * Updates the value of all host MSRs in the auto-load/store area in the VMCS.
1430 *
1431 * @param pVCpu The cross context virtual CPU structure.
1432 *
1433 * @remarks No-long-jump zone!!!
1434 */
1435static void hmR0VmxUpdateAutoLoadStoreHostMsrs(PVMCPU pVCpu)
1436{
1437 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1438 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1439 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1440 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1441
1442 for (uint32_t i = 0; i < cMsrs; i++, pHostMsr++, pGuestMsr++)
1443 {
1444 AssertReturnVoid(pHostMsr->u32Msr == pGuestMsr->u32Msr);
1445
1446 /*
1447 * Performance hack for the host EFER MSR. We use the cached value rather than re-read it.
1448 * Strict builds will catch mismatches in hmR0VmxCheckAutoLoadStoreMsrs(). See @bugref{7368}.
1449 */
1450 if (pHostMsr->u32Msr == MSR_K6_EFER)
1451 pHostMsr->u64Value = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.u64HostEfer;
1452 else
1453 pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
1454 }
1455
1456 pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
1457}
1458
1459
1460/**
1461 * Saves a set of host MSRs to allow read/write passthru access to the guest and
1462 * perform lazy restoration of the host MSRs while leaving VT-x.
1463 *
1464 * @param pVCpu The cross context virtual CPU structure.
1465 *
1466 * @remarks No-long-jump zone!!!
1467 */
1468static void hmR0VmxLazySaveHostMsrs(PVMCPU pVCpu)
1469{
1470 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1471
1472 /*
1473 * Note: If you're adding MSRs here, make sure to update the MSR-bitmap permissions in hmR0VmxSetupProcCtls().
1474 */
1475 if (!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST))
1476 {
1477 Assert(!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)); /* Guest MSRs better not be loaded now. */
1478#if HC_ARCH_BITS == 64
1479 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1480 {
1481 pVCpu->hm.s.vmx.u64HostLStarMsr = ASMRdMsr(MSR_K8_LSTAR);
1482 pVCpu->hm.s.vmx.u64HostStarMsr = ASMRdMsr(MSR_K6_STAR);
1483 pVCpu->hm.s.vmx.u64HostSFMaskMsr = ASMRdMsr(MSR_K8_SF_MASK);
1484 pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
1485 }
1486#endif
1487 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_SAVED_HOST;
1488 }
1489}
1490
1491
1492/**
1493 * Checks whether the MSR belongs to the set of guest MSRs that we restore
1494 * lazily while leaving VT-x.
1495 *
1496 * @returns true if it does, false otherwise.
1497 * @param pVCpu The cross context virtual CPU structure.
1498 * @param uMsr The MSR to check.
1499 */
1500static bool hmR0VmxIsLazyGuestMsr(PVMCPU pVCpu, uint32_t uMsr)
1501{
1502 NOREF(pVCpu);
1503#if HC_ARCH_BITS == 64
1504 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1505 {
1506 switch (uMsr)
1507 {
1508 case MSR_K8_LSTAR:
1509 case MSR_K6_STAR:
1510 case MSR_K8_SF_MASK:
1511 case MSR_K8_KERNEL_GS_BASE:
1512 return true;
1513 }
1514 }
1515#endif
1516 return false;
1517}
1518
1519
1520/**
1521 * Saves a set of guest MSRs back into the guest-CPU context.
1522 *
1523 * @param pVCpu The cross context virtual CPU structure.
1524 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
1525 * out-of-sync. Make sure to update the required fields
1526 * before using them.
1527 *
1528 * @remarks No-long-jump zone!!!
1529 */
1530static void hmR0VmxLazySaveGuestMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
1531{
1532 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1533 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1534
1535 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
1536 {
1537 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1538#if HC_ARCH_BITS == 64
1539 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1540 {
1541 pMixedCtx->msrLSTAR = ASMRdMsr(MSR_K8_LSTAR);
1542 pMixedCtx->msrSTAR = ASMRdMsr(MSR_K6_STAR);
1543 pMixedCtx->msrSFMASK = ASMRdMsr(MSR_K8_SF_MASK);
1544 pMixedCtx->msrKERNELGSBASE = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
1545 }
1546#endif
1547 }
1548}
1549
1550
1551/**
1552 * Loads a set of guests MSRs to allow read/passthru to the guest.
1553 *
1554 * The name of this function is slightly confusing. This function does NOT
1555 * postpone loading, but loads the MSR right now. "hmR0VmxLazy" is simply a
1556 * common prefix for functions dealing with "lazy restoration" of the shared
1557 * MSRs.
1558 *
1559 * @param pVCpu The cross context virtual CPU structure.
1560 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
1561 * out-of-sync. Make sure to update the required fields
1562 * before using them.
1563 *
1564 * @remarks No-long-jump zone!!!
1565 */
1566static void hmR0VmxLazyLoadGuestMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
1567{
1568 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1569 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1570
1571#define VMXLOCAL_LAZY_LOAD_GUEST_MSR(uMsr, a_GuestMsr, a_HostMsr) \
1572 do { \
1573 if (pMixedCtx->msr##a_GuestMsr != pVCpu->hm.s.vmx.u64Host##a_HostMsr##Msr) \
1574 ASMWrMsr(uMsr, pMixedCtx->msr##a_GuestMsr); \
1575 else \
1576 Assert(ASMRdMsr(uMsr) == pVCpu->hm.s.vmx.u64Host##a_HostMsr##Msr); \
1577 } while (0)
1578
1579 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1580 if (!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
1581 {
1582#if HC_ARCH_BITS == 64
1583 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1584 {
1585 VMXLOCAL_LAZY_LOAD_GUEST_MSR(MSR_K8_LSTAR, LSTAR, LStar);
1586 VMXLOCAL_LAZY_LOAD_GUEST_MSR(MSR_K6_STAR, STAR, Star);
1587 VMXLOCAL_LAZY_LOAD_GUEST_MSR(MSR_K8_SF_MASK, SFMASK, SFMask);
1588 VMXLOCAL_LAZY_LOAD_GUEST_MSR(MSR_K8_KERNEL_GS_BASE, KERNELGSBASE, KernelGSBase);
1589 }
1590#endif
1591 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_LOADED_GUEST;
1592 }
1593
1594#undef VMXLOCAL_LAZY_LOAD_GUEST_MSR
1595}
1596
1597
1598/**
1599 * Performs lazy restoration of the set of host MSRs if they were previously
1600 * loaded with guest MSR values.
1601 *
1602 * @param pVCpu The cross context virtual CPU structure.
1603 *
1604 * @remarks No-long-jump zone!!!
1605 * @remarks The guest MSRs should have been saved back into the guest-CPU
1606 * context by hmR0VmxSaveGuestLazyMsrs()!!!
1607 */
1608static void hmR0VmxLazyRestoreHostMsrs(PVMCPU pVCpu)
1609{
1610 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1611 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1612
1613 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
1614 {
1615 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1616#if HC_ARCH_BITS == 64
1617 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1618 {
1619 ASMWrMsr(MSR_K8_LSTAR, pVCpu->hm.s.vmx.u64HostLStarMsr);
1620 ASMWrMsr(MSR_K6_STAR, pVCpu->hm.s.vmx.u64HostStarMsr);
1621 ASMWrMsr(MSR_K8_SF_MASK, pVCpu->hm.s.vmx.u64HostSFMaskMsr);
1622 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr);
1623 }
1624#endif
1625 }
1626 pVCpu->hm.s.vmx.fLazyMsrs &= ~(VMX_LAZY_MSRS_LOADED_GUEST | VMX_LAZY_MSRS_SAVED_HOST);
1627}
1628
1629
1630/**
1631 * Verifies that our cached values of the VMCS controls are all
1632 * consistent with what's actually present in the VMCS.
1633 *
1634 * @returns VBox status code.
1635 * @param pVCpu The cross context virtual CPU structure.
1636 */
1637static int hmR0VmxCheckVmcsCtls(PVMCPU pVCpu)
1638{
1639 uint32_t u32Val;
1640 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
1641 AssertRCReturn(rc, rc);
1642 AssertMsgReturn(pVCpu->hm.s.vmx.u32EntryCtls == u32Val, ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32EntryCtls, u32Val),
1643 VERR_VMX_ENTRY_CTLS_CACHE_INVALID);
1644
1645 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val);
1646 AssertRCReturn(rc, rc);
1647 AssertMsgReturn(pVCpu->hm.s.vmx.u32ExitCtls == u32Val, ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32ExitCtls, u32Val),
1648 VERR_VMX_EXIT_CTLS_CACHE_INVALID);
1649
1650 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val);
1651 AssertRCReturn(rc, rc);
1652 AssertMsgReturn(pVCpu->hm.s.vmx.u32PinCtls == u32Val, ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32PinCtls, u32Val),
1653 VERR_VMX_PIN_EXEC_CTLS_CACHE_INVALID);
1654
1655 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val);
1656 AssertRCReturn(rc, rc);
1657 AssertMsgReturn(pVCpu->hm.s.vmx.u32ProcCtls == u32Val, ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32ProcCtls, u32Val),
1658 VERR_VMX_PROC_EXEC_CTLS_CACHE_INVALID);
1659
1660 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
1661 {
1662 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val);
1663 AssertRCReturn(rc, rc);
1664 AssertMsgReturn(pVCpu->hm.s.vmx.u32ProcCtls2 == u32Val,
1665 ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32ProcCtls2, u32Val),
1666 VERR_VMX_PROC_EXEC2_CTLS_CACHE_INVALID);
1667 }
1668
1669 return VINF_SUCCESS;
1670}
1671
1672
1673#ifdef VBOX_STRICT
1674/**
1675 * Verifies that our cached host EFER value has not changed
1676 * since we cached it.
1677 *
1678 * @param pVCpu The cross context virtual CPU structure.
1679 */
1680static void hmR0VmxCheckHostEferMsr(PVMCPU pVCpu)
1681{
1682 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1683
1684 if (pVCpu->hm.s.vmx.u32ExitCtls & VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR)
1685 {
1686 uint64_t u64Val;
1687 int rc = VMXReadVmcs64(VMX_VMCS64_HOST_EFER_FULL, &u64Val);
1688 AssertRC(rc);
1689
1690 uint64_t u64HostEferMsr = ASMRdMsr(MSR_K6_EFER);
1691 AssertMsgReturnVoid(u64HostEferMsr == u64Val, ("u64HostEferMsr=%#RX64 u64Val=%#RX64\n", u64HostEferMsr, u64Val));
1692 }
1693}
1694
1695
1696/**
1697 * Verifies whether the guest/host MSR pairs in the auto-load/store area in the
1698 * VMCS are correct.
1699 *
1700 * @param pVCpu The cross context virtual CPU structure.
1701 */
1702static void hmR0VmxCheckAutoLoadStoreMsrs(PVMCPU pVCpu)
1703{
1704 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1705
1706 /* Verify MSR counts in the VMCS are what we think it should be. */
1707 uint32_t cMsrs;
1708 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &cMsrs); AssertRC(rc);
1709 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1710
1711 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &cMsrs); AssertRC(rc);
1712 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1713
1714 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &cMsrs); AssertRC(rc);
1715 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1716
1717 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1718 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1719 for (uint32_t i = 0; i < cMsrs; i++, pHostMsr++, pGuestMsr++)
1720 {
1721 /* Verify that the MSRs are paired properly and that the host MSR has the correct value. */
1722 AssertMsgReturnVoid(pHostMsr->u32Msr == pGuestMsr->u32Msr, ("HostMsr=%#RX32 GuestMsr=%#RX32 cMsrs=%u\n", pHostMsr->u32Msr,
1723 pGuestMsr->u32Msr, cMsrs));
1724
1725 uint64_t u64Msr = ASMRdMsr(pHostMsr->u32Msr);
1726 AssertMsgReturnVoid(pHostMsr->u64Value == u64Msr, ("u32Msr=%#RX32 VMCS Value=%#RX64 ASMRdMsr=%#RX64 cMsrs=%u\n",
1727 pHostMsr->u32Msr, pHostMsr->u64Value, u64Msr, cMsrs));
1728
1729 /* Verify that the permissions are as expected in the MSR bitmap. */
1730 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1731 {
1732 VMXMSREXITREAD enmRead;
1733 VMXMSREXITWRITE enmWrite;
1734 rc = hmR0VmxGetMsrPermission(pVCpu, pGuestMsr->u32Msr, &enmRead, &enmWrite);
1735 AssertMsgReturnVoid(rc == VINF_SUCCESS, ("hmR0VmxGetMsrPermission! failed. rc=%Rrc\n", rc));
1736 if (pGuestMsr->u32Msr == MSR_K6_EFER)
1737 {
1738 AssertMsgReturnVoid(enmRead == VMXMSREXIT_INTERCEPT_READ, ("Passthru read for EFER!?\n"));
1739 AssertMsgReturnVoid(enmWrite == VMXMSREXIT_INTERCEPT_WRITE, ("Passthru write for EFER!?\n"));
1740 }
1741 else
1742 {
1743 AssertMsgReturnVoid(enmRead == VMXMSREXIT_PASSTHRU_READ, ("u32Msr=%#RX32 cMsrs=%u No passthru read!\n",
1744 pGuestMsr->u32Msr, cMsrs));
1745 AssertMsgReturnVoid(enmWrite == VMXMSREXIT_PASSTHRU_WRITE, ("u32Msr=%#RX32 cMsrs=%u No passthru write!\n",
1746 pGuestMsr->u32Msr, cMsrs));
1747 }
1748 }
1749 }
1750}
1751#endif /* VBOX_STRICT */
1752
1753
1754/**
1755 * Flushes the TLB using EPT.
1756 *
1757 * @returns VBox status code.
1758 * @param pVCpu The cross context virtual CPU structure of the calling
1759 * EMT. Can be NULL depending on @a enmFlush.
1760 * @param enmFlush Type of flush.
1761 *
1762 * @remarks Caller is responsible for making sure this function is called only
1763 * when NestedPaging is supported and providing @a enmFlush that is
1764 * supported by the CPU.
1765 * @remarks Can be called with interrupts disabled.
1766 */
1767static void hmR0VmxFlushEpt(PVMCPU pVCpu, VMXFLUSHEPT enmFlush)
1768{
1769 uint64_t au64Descriptor[2];
1770 if (enmFlush == VMXFLUSHEPT_ALL_CONTEXTS)
1771 au64Descriptor[0] = 0;
1772 else
1773 {
1774 Assert(pVCpu);
1775 au64Descriptor[0] = pVCpu->hm.s.vmx.HCPhysEPTP;
1776 }
1777 au64Descriptor[1] = 0; /* MBZ. Intel spec. 33.3 "VMX Instructions" */
1778
1779 int rc = VMXR0InvEPT(enmFlush, &au64Descriptor[0]);
1780 AssertMsg(rc == VINF_SUCCESS, ("VMXR0InvEPT %#x %RGv failed with %Rrc\n", enmFlush, pVCpu ? pVCpu->hm.s.vmx.HCPhysEPTP : 0,
1781 rc));
1782 if ( RT_SUCCESS(rc)
1783 && pVCpu)
1784 {
1785 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushNestedPaging);
1786 }
1787}
1788
1789
1790/**
1791 * Flushes the TLB using VPID.
1792 *
1793 * @returns VBox status code.
1794 * @param pVM The cross context VM structure.
1795 * @param pVCpu The cross context virtual CPU structure of the calling
1796 * EMT. Can be NULL depending on @a enmFlush.
1797 * @param enmFlush Type of flush.
1798 * @param GCPtr Virtual address of the page to flush (can be 0 depending
1799 * on @a enmFlush).
1800 *
1801 * @remarks Can be called with interrupts disabled.
1802 */
1803static void hmR0VmxFlushVpid(PVM pVM, PVMCPU pVCpu, VMXFLUSHVPID enmFlush, RTGCPTR GCPtr)
1804{
1805 NOREF(pVM);
1806 AssertPtr(pVM);
1807 Assert(pVM->hm.s.vmx.fVpid);
1808
1809 uint64_t au64Descriptor[2];
1810 if (enmFlush == VMXFLUSHVPID_ALL_CONTEXTS)
1811 {
1812 au64Descriptor[0] = 0;
1813 au64Descriptor[1] = 0;
1814 }
1815 else
1816 {
1817 AssertPtr(pVCpu);
1818 AssertMsg(pVCpu->hm.s.uCurrentAsid != 0, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
1819 AssertMsg(pVCpu->hm.s.uCurrentAsid <= UINT16_MAX, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
1820 au64Descriptor[0] = pVCpu->hm.s.uCurrentAsid;
1821 au64Descriptor[1] = GCPtr;
1822 }
1823
1824 int rc = VMXR0InvVPID(enmFlush, &au64Descriptor[0]); NOREF(rc);
1825 AssertMsg(rc == VINF_SUCCESS,
1826 ("VMXR0InvVPID %#x %u %RGv failed with %d\n", enmFlush, pVCpu ? pVCpu->hm.s.uCurrentAsid : 0, GCPtr, rc));
1827 if ( RT_SUCCESS(rc)
1828 && pVCpu)
1829 {
1830 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
1831 }
1832}
1833
1834
1835/**
1836 * Invalidates a guest page by guest virtual address. Only relevant for
1837 * EPT/VPID, otherwise there is nothing really to invalidate.
1838 *
1839 * @returns VBox status code.
1840 * @param pVM The cross context VM structure.
1841 * @param pVCpu The cross context virtual CPU structure.
1842 * @param GCVirt Guest virtual address of the page to invalidate.
1843 */
1844VMMR0DECL(int) VMXR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
1845{
1846 AssertPtr(pVM);
1847 AssertPtr(pVCpu);
1848 LogFlowFunc(("pVM=%p pVCpu=%p GCVirt=%RGv\n", pVM, pVCpu, GCVirt));
1849
1850 bool fFlushPending = VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_FLUSH);
1851 if (!fFlushPending)
1852 {
1853 /*
1854 * We must invalidate the guest TLB entry in either case, we cannot ignore it even for the EPT case
1855 * See @bugref{6043} and @bugref{6177}.
1856 *
1857 * Set the VMCPU_FF_TLB_FLUSH force flag and flush before VM-entry in hmR0VmxFlushTLB*() as this
1858 * function maybe called in a loop with individual addresses.
1859 */
1860 if (pVM->hm.s.vmx.fVpid)
1861 {
1862 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
1863 {
1864 hmR0VmxFlushVpid(pVM, pVCpu, VMXFLUSHVPID_INDIV_ADDR, GCVirt);
1865 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
1866 }
1867 else
1868 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1869 }
1870 else if (pVM->hm.s.fNestedPaging)
1871 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1872 }
1873
1874 return VINF_SUCCESS;
1875}
1876
1877
1878/**
1879 * Invalidates a guest page by physical address. Only relevant for EPT/VPID,
1880 * otherwise there is nothing really to invalidate.
1881 *
1882 * @returns VBox status code.
1883 * @param pVM The cross context VM structure.
1884 * @param pVCpu The cross context virtual CPU structure.
1885 * @param GCPhys Guest physical address of the page to invalidate.
1886 */
1887VMMR0DECL(int) VMXR0InvalidatePhysPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
1888{
1889 NOREF(pVM); NOREF(GCPhys);
1890 LogFlowFunc(("%RGp\n", GCPhys));
1891
1892 /*
1893 * We cannot flush a page by guest-physical address. invvpid takes only a linear address while invept only flushes
1894 * by EPT not individual addresses. We update the force flag here and flush before the next VM-entry in hmR0VmxFlushTLB*().
1895 * This function might be called in a loop. This should cause a flush-by-EPT if EPT is in use. See @bugref{6568}.
1896 */
1897 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1898 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgPhys);
1899 return VINF_SUCCESS;
1900}
1901
1902
1903/**
1904 * Dummy placeholder for tagged-TLB flush handling before VM-entry. Used in the
1905 * case where neither EPT nor VPID is supported by the CPU.
1906 *
1907 * @param pVM The cross context VM structure.
1908 * @param pVCpu The cross context virtual CPU structure.
1909 * @param pCpu Pointer to the global HM struct.
1910 *
1911 * @remarks Called with interrupts disabled.
1912 */
1913static void hmR0VmxFlushTaggedTlbNone(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1914{
1915 AssertPtr(pVCpu);
1916 AssertPtr(pCpu);
1917 NOREF(pVM);
1918
1919 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
1920
1921 Assert(pCpu->idCpu != NIL_RTCPUID);
1922 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1923 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1924 pVCpu->hm.s.fForceTLBFlush = false;
1925 return;
1926}
1927
1928
1929/**
1930 * Flushes the tagged-TLB entries for EPT+VPID CPUs as necessary.
1931 *
1932 * @param pVM The cross context VM structure.
1933 * @param pVCpu The cross context virtual CPU structure.
1934 * @param pCpu Pointer to the global HM CPU struct.
1935 * @remarks All references to "ASID" in this function pertains to "VPID" in
1936 * Intel's nomenclature. The reason is, to avoid confusion in compare
1937 * statements since the host-CPU copies are named "ASID".
1938 *
1939 * @remarks Called with interrupts disabled.
1940 */
1941static void hmR0VmxFlushTaggedTlbBoth(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1942{
1943#ifdef VBOX_WITH_STATISTICS
1944 bool fTlbFlushed = false;
1945# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { fTlbFlushed = true; } while (0)
1946# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { \
1947 if (!fTlbFlushed) \
1948 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch); \
1949 } while (0)
1950#else
1951# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { } while (0)
1952# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { } while (0)
1953#endif
1954
1955 AssertPtr(pVM);
1956 AssertPtr(pCpu);
1957 AssertPtr(pVCpu);
1958 Assert(pCpu->idCpu != NIL_RTCPUID);
1959
1960 AssertMsg(pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid,
1961 ("hmR0VmxFlushTaggedTlbBoth cannot be invoked unless NestedPaging & VPID are enabled."
1962 "fNestedPaging=%RTbool fVpid=%RTbool", pVM->hm.s.fNestedPaging, pVM->hm.s.vmx.fVpid));
1963
1964 /*
1965 * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
1966 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB
1967 * or the host CPU is online after a suspend/resume, so we cannot reuse the current ASID anymore.
1968 */
1969 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
1970 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
1971 {
1972 ++pCpu->uCurrentAsid;
1973 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
1974 {
1975 pCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0. */
1976 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
1977 pCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
1978 }
1979
1980 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
1981 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1982 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1983
1984 /*
1985 * Flush by EPT when we get rescheduled to a new host CPU to ensure EPT-only tagged mappings are also
1986 * invalidated. We don't need to flush-by-VPID here as flushing by EPT covers it. See @bugref{6568}.
1987 */
1988 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
1989 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
1990 HMVMX_SET_TAGGED_TLB_FLUSHED();
1991 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH); /* Already flushed-by-EPT, skip doing it again below. */
1992 }
1993
1994 /* Check for explicit TLB flushes. */
1995 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
1996 {
1997 /*
1998 * Changes to the EPT paging structure by VMM requires flushing by EPT as the CPU creates
1999 * guest-physical (only EPT-tagged) mappings while traversing the EPT tables when EPT is in use.
2000 * Flushing by VPID will only flush linear (only VPID-tagged) and combined (EPT+VPID tagged) mappings
2001 * but not guest-physical mappings.
2002 * See Intel spec. 28.3.2 "Creating and Using Cached Translation Information". See @bugref{6568}.
2003 */
2004 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
2005 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2006 HMVMX_SET_TAGGED_TLB_FLUSHED();
2007 }
2008
2009 pVCpu->hm.s.fForceTLBFlush = false;
2010 HMVMX_UPDATE_FLUSH_SKIPPED_STAT();
2011
2012 Assert(pVCpu->hm.s.idLastCpu == pCpu->idCpu);
2013 Assert(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes);
2014 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
2015 ("Flush count mismatch for cpu %d (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
2016 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
2017 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pCpu->idCpu,
2018 pCpu->uCurrentAsid, pCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
2019 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
2020 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
2021
2022 /* Update VMCS with the VPID. */
2023 int rc = VMXWriteVmcs32(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
2024 AssertRC(rc);
2025
2026#undef HMVMX_SET_TAGGED_TLB_FLUSHED
2027}
2028
2029
2030/**
2031 * Flushes the tagged-TLB entries for EPT CPUs as necessary.
2032 *
2033 * @returns VBox status code.
2034 * @param pVM The cross context VM structure.
2035 * @param pVCpu The cross context virtual CPU structure.
2036 * @param pCpu Pointer to the global HM CPU struct.
2037 *
2038 * @remarks Called with interrupts disabled.
2039 */
2040static void hmR0VmxFlushTaggedTlbEpt(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2041{
2042 AssertPtr(pVM);
2043 AssertPtr(pVCpu);
2044 AssertPtr(pCpu);
2045 Assert(pCpu->idCpu != NIL_RTCPUID);
2046 AssertMsg(pVM->hm.s.fNestedPaging, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with NestedPaging disabled."));
2047 AssertMsg(!pVM->hm.s.vmx.fVpid, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with VPID enabled."));
2048
2049 /*
2050 * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
2051 * A change in the TLB flush count implies the host CPU is online after a suspend/resume.
2052 */
2053 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
2054 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
2055 {
2056 pVCpu->hm.s.fForceTLBFlush = true;
2057 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2058 }
2059
2060 /* Check for explicit TLB flushes. */
2061 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2062 {
2063 pVCpu->hm.s.fForceTLBFlush = true;
2064 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2065 }
2066
2067 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
2068 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
2069
2070 if (pVCpu->hm.s.fForceTLBFlush)
2071 {
2072 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
2073 pVCpu->hm.s.fForceTLBFlush = false;
2074 }
2075}
2076
2077
2078/**
2079 * Flushes the tagged-TLB entries for VPID CPUs as necessary.
2080 *
2081 * @returns VBox status code.
2082 * @param pVM The cross context VM structure.
2083 * @param pVCpu The cross context virtual CPU structure.
2084 * @param pCpu Pointer to the global HM CPU struct.
2085 *
2086 * @remarks Called with interrupts disabled.
2087 */
2088static void hmR0VmxFlushTaggedTlbVpid(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2089{
2090 AssertPtr(pVM);
2091 AssertPtr(pVCpu);
2092 AssertPtr(pCpu);
2093 Assert(pCpu->idCpu != NIL_RTCPUID);
2094 AssertMsg(pVM->hm.s.vmx.fVpid, ("hmR0VmxFlushTlbVpid cannot be invoked with VPID disabled."));
2095 AssertMsg(!pVM->hm.s.fNestedPaging, ("hmR0VmxFlushTlbVpid cannot be invoked with NestedPaging enabled"));
2096
2097 /*
2098 * Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last.
2099 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB
2100 * or the host CPU is online after a suspend/resume, so we cannot reuse the current ASID anymore.
2101 */
2102 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
2103 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
2104 {
2105 pVCpu->hm.s.fForceTLBFlush = true;
2106 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2107 }
2108
2109 /* Check for explicit TLB flushes. */
2110 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2111 {
2112 /*
2113 * If we ever support VPID flush combinations other than ALL or SINGLE-context (see hmR0VmxSetupTaggedTlb())
2114 * we would need to explicitly flush in this case (add an fExplicitFlush = true here and change the
2115 * pCpu->fFlushAsidBeforeUse check below to include fExplicitFlush's too) - an obscure corner case.
2116 */
2117 pVCpu->hm.s.fForceTLBFlush = true;
2118 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2119 }
2120
2121 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
2122 if (pVCpu->hm.s.fForceTLBFlush)
2123 {
2124 ++pCpu->uCurrentAsid;
2125 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
2126 {
2127 pCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0 */
2128 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
2129 pCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
2130 }
2131
2132 pVCpu->hm.s.fForceTLBFlush = false;
2133 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
2134 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
2135 if (pCpu->fFlushAsidBeforeUse)
2136 {
2137 if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_SINGLE_CONTEXT)
2138 hmR0VmxFlushVpid(pVM, pVCpu, VMXFLUSHVPID_SINGLE_CONTEXT, 0 /* GCPtr */);
2139 else if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_ALL_CONTEXTS)
2140 {
2141 hmR0VmxFlushVpid(pVM, pVCpu, VMXFLUSHVPID_ALL_CONTEXTS, 0 /* GCPtr */);
2142 pCpu->fFlushAsidBeforeUse = false;
2143 }
2144 else
2145 {
2146 /* hmR0VmxSetupTaggedTlb() ensures we never get here. Paranoia. */
2147 AssertMsgFailed(("Unsupported VPID-flush context type.\n"));
2148 }
2149 }
2150 }
2151
2152 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
2153 ("Flush count mismatch for cpu %d (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
2154 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
2155 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pCpu->idCpu,
2156 pCpu->uCurrentAsid, pCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
2157 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
2158 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
2159
2160 int rc = VMXWriteVmcs32(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
2161 AssertRC(rc);
2162}
2163
2164
2165/**
2166 * Flushes the guest TLB entry based on CPU capabilities.
2167 *
2168 * @param pVCpu The cross context virtual CPU structure.
2169 * @param pCpu Pointer to the global HM CPU struct.
2170 */
2171DECLINLINE(void) hmR0VmxFlushTaggedTlb(PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2172{
2173#ifdef HMVMX_ALWAYS_FLUSH_TLB
2174 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
2175#endif
2176 PVM pVM = pVCpu->CTX_SUFF(pVM);
2177 switch (pVM->hm.s.vmx.uFlushTaggedTlb)
2178 {
2179 case HMVMX_FLUSH_TAGGED_TLB_EPT_VPID: hmR0VmxFlushTaggedTlbBoth(pVM, pVCpu, pCpu); break;
2180 case HMVMX_FLUSH_TAGGED_TLB_EPT: hmR0VmxFlushTaggedTlbEpt(pVM, pVCpu, pCpu); break;
2181 case HMVMX_FLUSH_TAGGED_TLB_VPID: hmR0VmxFlushTaggedTlbVpid(pVM, pVCpu, pCpu); break;
2182 case HMVMX_FLUSH_TAGGED_TLB_NONE: hmR0VmxFlushTaggedTlbNone(pVM, pVCpu, pCpu); break;
2183 default:
2184 AssertMsgFailed(("Invalid flush-tag function identifier\n"));
2185 break;
2186 }
2187
2188 /* Don't assert that VMCPU_FF_TLB_FLUSH should no longer be pending. It can be set by other EMTs. */
2189}
2190
2191
2192/**
2193 * Sets up the appropriate tagged TLB-flush level and handler for flushing guest
2194 * TLB entries from the host TLB before VM-entry.
2195 *
2196 * @returns VBox status code.
2197 * @param pVM The cross context VM structure.
2198 */
2199static int hmR0VmxSetupTaggedTlb(PVM pVM)
2200{
2201 /*
2202 * Determine optimal flush type for Nested Paging.
2203 * We cannot ignore EPT if no suitable flush-types is supported by the CPU as we've already setup unrestricted
2204 * guest execution (see hmR3InitFinalizeR0()).
2205 */
2206 if (pVM->hm.s.fNestedPaging)
2207 {
2208 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT)
2209 {
2210 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT)
2211 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_SINGLE_CONTEXT;
2212 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
2213 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_ALL_CONTEXTS;
2214 else
2215 {
2216 /* Shouldn't happen. EPT is supported but no suitable flush-types supported. */
2217 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NOT_SUPPORTED;
2218 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_FLUSH_TYPE_UNSUPPORTED;
2219 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2220 }
2221
2222 /* Make sure the write-back cacheable memory type for EPT is supported. */
2223 if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB)))
2224 {
2225 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NOT_SUPPORTED;
2226 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_MEM_TYPE_NOT_WB;
2227 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2228 }
2229
2230 /* EPT requires a page-walk length of 4. */
2231 if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_4)))
2232 {
2233 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NOT_SUPPORTED;
2234 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_PAGE_WALK_LENGTH_UNSUPPORTED;
2235 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2236 }
2237 }
2238 else
2239 {
2240 /* Shouldn't happen. EPT is supported but INVEPT instruction is not supported. */
2241 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NOT_SUPPORTED;
2242 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_INVEPT_UNAVAILABLE;
2243 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2244 }
2245 }
2246
2247 /*
2248 * Determine optimal flush type for VPID.
2249 */
2250 if (pVM->hm.s.vmx.fVpid)
2251 {
2252 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID)
2253 {
2254 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT)
2255 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_SINGLE_CONTEXT;
2256 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS)
2257 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_ALL_CONTEXTS;
2258 else
2259 {
2260 /* Neither SINGLE nor ALL-context flush types for VPID is supported by the CPU. Ignore VPID capability. */
2261 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
2262 LogRel(("hmR0VmxSetupTaggedTlb: Only INDIV_ADDR supported. Ignoring VPID.\n"));
2263 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
2264 LogRel(("hmR0VmxSetupTaggedTlb: Only SINGLE_CONTEXT_RETAIN_GLOBALS supported. Ignoring VPID.\n"));
2265 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_NOT_SUPPORTED;
2266 pVM->hm.s.vmx.fVpid = false;
2267 }
2268 }
2269 else
2270 {
2271 /* Shouldn't happen. VPID is supported but INVVPID is not supported by the CPU. Ignore VPID capability. */
2272 Log4(("hmR0VmxSetupTaggedTlb: VPID supported without INVEPT support. Ignoring VPID.\n"));
2273 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_NOT_SUPPORTED;
2274 pVM->hm.s.vmx.fVpid = false;
2275 }
2276 }
2277
2278 /*
2279 * Setup the handler for flushing tagged-TLBs.
2280 */
2281 if (pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid)
2282 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_EPT_VPID;
2283 else if (pVM->hm.s.fNestedPaging)
2284 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_EPT;
2285 else if (pVM->hm.s.vmx.fVpid)
2286 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_VPID;
2287 else
2288 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_NONE;
2289 return VINF_SUCCESS;
2290}
2291
2292
2293/**
2294 * Sets up pin-based VM-execution controls in the VMCS.
2295 *
2296 * @returns VBox status code.
2297 * @param pVM The cross context VM structure.
2298 * @param pVCpu The cross context virtual CPU structure.
2299 */
2300static int hmR0VmxSetupPinCtls(PVM pVM, PVMCPU pVCpu)
2301{
2302 AssertPtr(pVM);
2303 AssertPtr(pVCpu);
2304
2305 uint32_t val = pVM->hm.s.vmx.Msrs.VmxPinCtls.n.disallowed0; /* Bits set here must always be set. */
2306 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1; /* Bits cleared here must always be cleared. */
2307
2308 val |= VMX_VMCS_CTRL_PIN_EXEC_EXT_INT_EXIT /* External interrupts cause a VM-exit. */
2309 | VMX_VMCS_CTRL_PIN_EXEC_NMI_EXIT; /* Non-maskable interrupts (NMIs) cause a VM-exit. */
2310
2311 if (pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI)
2312 val |= VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI; /* Use virtual NMIs and virtual-NMI blocking features. */
2313
2314 /* Enable the VMX preemption timer. */
2315 if (pVM->hm.s.vmx.fUsePreemptTimer)
2316 {
2317 Assert(pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER);
2318 val |= VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER;
2319 }
2320
2321#ifdef VBOX_WITH_NEW_APIC
2322#if 0
2323 /* Enable posted-interrupt processing. */
2324 if (pVM->hm.s.fPostedIntrs)
2325 {
2326 Assert(pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_POSTED_INTR);
2327 Assert(pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_ACK_EXT_INT);
2328 val |= VMX_VMCS_CTRL_PIN_EXEC_POSTED_INTR;
2329 }
2330#endif
2331#endif
2332
2333 if ((val & zap) != val)
2334 {
2335 LogRel(("hmR0VmxSetupPinCtls: Invalid pin-based VM-execution controls combo! cpu=%#RX64 val=%#RX64 zap=%#RX64\n",
2336 pVM->hm.s.vmx.Msrs.VmxPinCtls.n.disallowed0, val, zap));
2337 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PIN_EXEC;
2338 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2339 }
2340
2341 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, val);
2342 AssertRCReturn(rc, rc);
2343
2344 pVCpu->hm.s.vmx.u32PinCtls = val;
2345 return rc;
2346}
2347
2348
2349/**
2350 * Sets up processor-based VM-execution controls in the VMCS.
2351 *
2352 * @returns VBox status code.
2353 * @param pVM The cross context VM structure.
2354 * @param pVCpu The cross context virtual CPU structure.
2355 */
2356static int hmR0VmxSetupProcCtls(PVM pVM, PVMCPU pVCpu)
2357{
2358 AssertPtr(pVM);
2359 AssertPtr(pVCpu);
2360
2361 int rc = VERR_INTERNAL_ERROR_5;
2362 uint32_t val = pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0; /* Bits set here must be set in the VMCS. */
2363 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2364
2365 val |= VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT /* HLT causes a VM-exit. */
2366 | VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING /* Use TSC-offsetting. */
2367 | VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT /* MOV DRx causes a VM-exit. */
2368 | VMX_VMCS_CTRL_PROC_EXEC_UNCOND_IO_EXIT /* All IO instructions cause a VM-exit. */
2369 | VMX_VMCS_CTRL_PROC_EXEC_RDPMC_EXIT /* RDPMC causes a VM-exit. */
2370 | VMX_VMCS_CTRL_PROC_EXEC_MONITOR_EXIT /* MONITOR causes a VM-exit. */
2371 | VMX_VMCS_CTRL_PROC_EXEC_MWAIT_EXIT; /* MWAIT causes a VM-exit. */
2372
2373 /* We toggle VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT later, check if it's not -always- needed to be set or clear. */
2374 if ( !(pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT)
2375 || (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0 & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT))
2376 {
2377 LogRel(("hmR0VmxSetupProcCtls: Unsupported VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT combo!"));
2378 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_MOV_DRX_EXIT;
2379 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2380 }
2381
2382 /* Without Nested Paging, INVLPG (also affects INVPCID) and MOV CR3 instructions should cause VM-exits. */
2383 if (!pVM->hm.s.fNestedPaging)
2384 {
2385 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest); /* Paranoia. */
2386 val |= VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT
2387 | VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT
2388 | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT;
2389 }
2390
2391 /* Use TPR shadowing if supported by the CPU. */
2392 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
2393 {
2394 Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
2395 Assert(!(pVCpu->hm.s.vmx.HCPhysVirtApic & 0xfff)); /* Bits 11:0 MBZ. */
2396 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, 0);
2397 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_VAPIC_PAGEADDR_FULL, pVCpu->hm.s.vmx.HCPhysVirtApic);
2398 AssertRCReturn(rc, rc);
2399
2400 val |= VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW; /* CR8 reads from the Virtual-APIC page. */
2401 /* CR8 writes cause a VM-exit based on TPR threshold. */
2402 Assert(!(val & VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT));
2403 Assert(!(val & VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT));
2404 }
2405 else
2406 {
2407 /*
2408 * Some 32-bit CPUs do not support CR8 load/store exiting as MOV CR8 is invalid on 32-bit Intel CPUs.
2409 * Set this control only for 64-bit guests.
2410 */
2411 if (pVM->hm.s.fAllow64BitGuests)
2412 {
2413 val |= VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT /* CR8 reads cause a VM-exit. */
2414 | VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT; /* CR8 writes cause a VM-exit. */
2415 }
2416 }
2417
2418 /* Use MSR-bitmaps if supported by the CPU. */
2419 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
2420 {
2421 val |= VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS;
2422
2423 Assert(pVCpu->hm.s.vmx.HCPhysMsrBitmap);
2424 Assert(!(pVCpu->hm.s.vmx.HCPhysMsrBitmap & 0xfff)); /* Bits 11:0 MBZ. */
2425 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_MSR_BITMAP_FULL, pVCpu->hm.s.vmx.HCPhysMsrBitmap);
2426 AssertRCReturn(rc, rc);
2427
2428 /*
2429 * The guest can access the following MSRs (read, write) without causing VM-exits; they are loaded/stored
2430 * automatically using dedicated fields in the VMCS.
2431 */
2432 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_CS, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2433 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_ESP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2434 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_EIP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2435 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2436 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_FS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2437
2438#if HC_ARCH_BITS == 64
2439 /*
2440 * Set passthru permissions for the following MSRs (mandatory for VT-x) required for 64-bit guests.
2441 */
2442 if (pVM->hm.s.fAllow64BitGuests)
2443 {
2444 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_LSTAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2445 hmR0VmxSetMsrPermission(pVCpu, MSR_K6_STAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2446 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_SF_MASK, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2447 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2448 }
2449#endif
2450 /* Though MSR_IA32_PERF_GLOBAL_CTRL is saved/restored lazily, we want intercept reads/write to it for now. */
2451 }
2452
2453 /* Use the secondary processor-based VM-execution controls if supported by the CPU. */
2454 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
2455 val |= VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL;
2456
2457 if ((val & zap) != val)
2458 {
2459 LogRel(("hmR0VmxSetupProcCtls: Invalid processor-based VM-execution controls combo! cpu=%#RX64 val=%#RX64 zap=%#RX64\n",
2460 pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0, val, zap));
2461 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC;
2462 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2463 }
2464
2465 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, val);
2466 AssertRCReturn(rc, rc);
2467
2468 pVCpu->hm.s.vmx.u32ProcCtls = val;
2469
2470 /*
2471 * Secondary processor-based VM-execution controls.
2472 */
2473 if (RT_LIKELY(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL))
2474 {
2475 val = pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.disallowed0; /* Bits set here must be set in the VMCS. */
2476 zap = pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2477
2478 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT)
2479 val |= VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT; /* WBINVD causes a VM-exit. */
2480
2481 if (pVM->hm.s.fNestedPaging)
2482 val |= VMX_VMCS_CTRL_PROC_EXEC2_EPT; /* Enable EPT. */
2483 else
2484 {
2485 /*
2486 * Without Nested Paging, INVPCID should cause a VM-exit. Enabling this bit causes the CPU to refer to
2487 * VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT when INVPCID is executed by the guest.
2488 * See Intel spec. 25.4 "Changes to instruction behaviour in VMX non-root operation".
2489 */
2490 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_INVPCID)
2491 val |= VMX_VMCS_CTRL_PROC_EXEC2_INVPCID;
2492 }
2493
2494 if (pVM->hm.s.vmx.fVpid)
2495 val |= VMX_VMCS_CTRL_PROC_EXEC2_VPID; /* Enable VPID. */
2496
2497 if (pVM->hm.s.vmx.fUnrestrictedGuest)
2498 val |= VMX_VMCS_CTRL_PROC_EXEC2_UNRESTRICTED_GUEST; /* Enable Unrestricted Execution. */
2499
2500#ifdef VBOX_WITH_NEW_APIC
2501#if 0
2502 if (pVM->hm.s.fVirtApicRegs)
2503 {
2504 Assert(pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_APIC_REG_VIRT);
2505 val |= VMX_VMCS_CTRL_PROC_EXEC2_APIC_REG_VIRT; /* Enable APIC-register virtualization. */
2506
2507 Assert(pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_INTR_DELIVERY);
2508 val |= VMX_VMCS_CTRL_PROC_EXEC2_VIRT_INTR_DELIVERY; /* Enable virtual-interrupt delivery. */
2509 }
2510#endif
2511#endif
2512
2513 /* Enable Virtual-APIC page accesses if supported by the CPU. This is essentially where the TPR shadow resides. */
2514 /** @todo VIRT_X2APIC support, it's mutually exclusive with this. So must be
2515 * done dynamically. */
2516 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)
2517 {
2518 Assert(pVM->hm.s.vmx.HCPhysApicAccess);
2519 Assert(!(pVM->hm.s.vmx.HCPhysApicAccess & 0xfff)); /* Bits 11:0 MBZ. */
2520 val |= VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC; /* Virtualize APIC accesses. */
2521 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL, pVM->hm.s.vmx.HCPhysApicAccess);
2522 AssertRCReturn(rc, rc);
2523 }
2524
2525 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP)
2526 val |= VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP; /* Enable RDTSCP support. */
2527
2528 if ( pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_PAUSE_LOOP_EXIT
2529 && pVM->hm.s.vmx.cPleGapTicks
2530 && pVM->hm.s.vmx.cPleWindowTicks)
2531 {
2532 val |= VMX_VMCS_CTRL_PROC_EXEC2_PAUSE_LOOP_EXIT; /* Enable pause-loop exiting. */
2533
2534 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_GAP, pVM->hm.s.vmx.cPleGapTicks);
2535 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_WINDOW, pVM->hm.s.vmx.cPleWindowTicks);
2536 AssertRCReturn(rc, rc);
2537 }
2538
2539 if ((val & zap) != val)
2540 {
2541 LogRel(("hmR0VmxSetupProcCtls: Invalid secondary processor-based VM-execution controls combo! "
2542 "cpu=%#RX64 val=%#RX64 zap=%#RX64\n", pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.disallowed0, val, zap));
2543 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC2;
2544 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2545 }
2546
2547 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, val);
2548 AssertRCReturn(rc, rc);
2549
2550 pVCpu->hm.s.vmx.u32ProcCtls2 = val;
2551 }
2552 else if (RT_UNLIKELY(pVM->hm.s.vmx.fUnrestrictedGuest))
2553 {
2554 LogRel(("hmR0VmxSetupProcCtls: Unrestricted Guest set as true when secondary processor-based VM-execution controls not "
2555 "available\n"));
2556 pVCpu->hm.s.u32HMError = VMX_UFC_INVALID_UX_COMBO;
2557 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2558 }
2559
2560 return VINF_SUCCESS;
2561}
2562
2563
2564/**
2565 * Sets up miscellaneous (everything other than Pin & Processor-based
2566 * VM-execution) control fields in the VMCS.
2567 *
2568 * @returns VBox status code.
2569 * @param pVM The cross context VM structure.
2570 * @param pVCpu The cross context virtual CPU structure.
2571 */
2572static int hmR0VmxSetupMiscCtls(PVM pVM, PVMCPU pVCpu)
2573{
2574 NOREF(pVM);
2575 AssertPtr(pVM);
2576 AssertPtr(pVCpu);
2577
2578 int rc = VERR_GENERAL_FAILURE;
2579
2580 /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
2581#if 0
2582 /* All CR3 accesses cause VM-exits. Later we optimize CR3 accesses (see hmR0VmxLoadGuestCR3AndCR4())*/
2583 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, 0);
2584 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, 0);
2585
2586 /*
2587 * Set MASK & MATCH to 0. VMX checks if GuestPFErrCode & MASK == MATCH. If equal (in our case it always is)
2588 * and if the X86_XCPT_PF bit in the exception bitmap is set it causes a VM-exit, if clear doesn't cause an exit.
2589 * We thus use the exception bitmap to control it rather than use both.
2590 */
2591 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, 0);
2592 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, 0);
2593
2594 /** @todo Explore possibility of using IO-bitmaps. */
2595 /* All IO & IOIO instructions cause VM-exits. */
2596 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_A_FULL, 0);
2597 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_B_FULL, 0);
2598
2599 /* Initialize the MSR-bitmap area. */
2600 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, 0);
2601 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, 0);
2602 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, 0);
2603 AssertRCReturn(rc, rc);
2604#endif
2605
2606 /* Setup MSR auto-load/store area. */
2607 Assert(pVCpu->hm.s.vmx.HCPhysGuestMsr);
2608 Assert(!(pVCpu->hm.s.vmx.HCPhysGuestMsr & 0xf)); /* Lower 4 bits MBZ. */
2609 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
2610 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
2611 AssertRCReturn(rc, rc);
2612
2613 Assert(pVCpu->hm.s.vmx.HCPhysHostMsr);
2614 Assert(!(pVCpu->hm.s.vmx.HCPhysHostMsr & 0xf)); /* Lower 4 bits MBZ. */
2615 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysHostMsr);
2616 AssertRCReturn(rc, rc);
2617
2618 /* Set VMCS link pointer. Reserved for future use, must be -1. Intel spec. 24.4 "Guest-State Area". */
2619 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, UINT64_C(0xffffffffffffffff));
2620 AssertRCReturn(rc, rc);
2621
2622 /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
2623#if 0
2624 /* Setup debug controls */
2625 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, 0); /** @todo We don't support IA32_DEBUGCTL MSR. Should we? */
2626 rc |= VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, 0);
2627 AssertRCReturn(rc, rc);
2628#endif
2629
2630 return rc;
2631}
2632
2633
2634/**
2635 * Sets up the initial exception bitmap in the VMCS based on static conditions.
2636 *
2637 * @returns VBox status code.
2638 * @param pVM The cross context VM structure.
2639 * @param pVCpu The cross context virtual CPU structure.
2640 */
2641static int hmR0VmxInitXcptBitmap(PVM pVM, PVMCPU pVCpu)
2642{
2643 AssertPtr(pVM);
2644 AssertPtr(pVCpu);
2645
2646 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
2647
2648 uint32_t u32XcptBitmap = pVCpu->hm.s.fGIMTrapXcptUD ? RT_BIT(X86_XCPT_UD) : 0;
2649
2650 /* Must always intercept #AC to prevent the guest from hanging the CPU. */
2651 u32XcptBitmap |= RT_BIT_32(X86_XCPT_AC);
2652
2653 /* Because we need to maintain the DR6 state even when intercepting DRx reads
2654 and writes, and because recursive #DBs can cause the CPU hang, we must always
2655 intercept #DB. */
2656 u32XcptBitmap |= RT_BIT_32(X86_XCPT_DB);
2657
2658 /* Without Nested Paging, #PF must cause a VM-exit so we can sync our shadow page tables. */
2659 if (!pVM->hm.s.fNestedPaging)
2660 u32XcptBitmap |= RT_BIT(X86_XCPT_PF);
2661
2662 pVCpu->hm.s.vmx.u32XcptBitmap = u32XcptBitmap;
2663 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, u32XcptBitmap);
2664 AssertRCReturn(rc, rc);
2665 return rc;
2666}
2667
2668
2669/**
2670 * Sets up the initial guest-state mask. The guest-state mask is consulted
2671 * before reading guest-state fields from the VMCS as VMREADs can be expensive
2672 * for the nested virtualization case (as it would cause a VM-exit).
2673 *
2674 * @param pVCpu The cross context virtual CPU structure.
2675 */
2676static int hmR0VmxInitUpdatedGuestStateMask(PVMCPU pVCpu)
2677{
2678 /* Initially the guest-state is up-to-date as there is nothing in the VMCS. */
2679 HMVMXCPU_GST_RESET_TO(pVCpu, HMVMX_UPDATED_GUEST_ALL);
2680 return VINF_SUCCESS;
2681}
2682
2683
2684/**
2685 * Does per-VM VT-x initialization.
2686 *
2687 * @returns VBox status code.
2688 * @param pVM The cross context VM structure.
2689 */
2690VMMR0DECL(int) VMXR0InitVM(PVM pVM)
2691{
2692 LogFlowFunc(("pVM=%p\n", pVM));
2693
2694 int rc = hmR0VmxStructsAlloc(pVM);
2695 if (RT_FAILURE(rc))
2696 {
2697 LogRel(("VMXR0InitVM: hmR0VmxStructsAlloc failed! rc=%Rrc\n", rc));
2698 return rc;
2699 }
2700
2701 return VINF_SUCCESS;
2702}
2703
2704
2705/**
2706 * Does per-VM VT-x termination.
2707 *
2708 * @returns VBox status code.
2709 * @param pVM The cross context VM structure.
2710 */
2711VMMR0DECL(int) VMXR0TermVM(PVM pVM)
2712{
2713 LogFlowFunc(("pVM=%p\n", pVM));
2714
2715#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2716 if (pVM->hm.s.vmx.hMemObjScratch != NIL_RTR0MEMOBJ)
2717 ASMMemZero32(pVM->hm.s.vmx.pvScratch, PAGE_SIZE);
2718#endif
2719 hmR0VmxStructsFree(pVM);
2720 return VINF_SUCCESS;
2721}
2722
2723
2724/**
2725 * Sets up the VM for execution under VT-x.
2726 * This function is only called once per-VM during initialization.
2727 *
2728 * @returns VBox status code.
2729 * @param pVM The cross context VM structure.
2730 */
2731VMMR0DECL(int) VMXR0SetupVM(PVM pVM)
2732{
2733 AssertPtrReturn(pVM, VERR_INVALID_PARAMETER);
2734 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2735
2736 LogFlowFunc(("pVM=%p\n", pVM));
2737
2738 /*
2739 * Without UnrestrictedGuest, pRealModeTSS and pNonPagingModeEPTPageTable *must* always be allocated.
2740 * We no longer support the highly unlikely case of UnrestrictedGuest without pRealModeTSS. See hmR3InitFinalizeR0Intel().
2741 */
2742 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
2743 && ( !pVM->hm.s.vmx.pNonPagingModeEPTPageTable
2744 || !pVM->hm.s.vmx.pRealModeTSS))
2745 {
2746 LogRel(("VMXR0SetupVM: Invalid real-on-v86 state.\n"));
2747 return VERR_INTERNAL_ERROR;
2748 }
2749
2750 /* Initialize these always, see hmR3InitFinalizeR0().*/
2751 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NONE;
2752 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_NONE;
2753
2754 /* Setup the tagged-TLB flush handlers. */
2755 int rc = hmR0VmxSetupTaggedTlb(pVM);
2756 if (RT_FAILURE(rc))
2757 {
2758 LogRel(("VMXR0SetupVM: hmR0VmxSetupTaggedTlb failed! rc=%Rrc\n", rc));
2759 return rc;
2760 }
2761
2762 /* Check if we can use the VMCS controls for swapping the EFER MSR. */
2763 Assert(!pVM->hm.s.vmx.fSupportsVmcsEfer);
2764#if HC_ARCH_BITS == 64
2765 if ( (pVM->hm.s.vmx.Msrs.VmxEntry.n.allowed1 & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR)
2766 && (pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR)
2767 && (pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_SAVE_GUEST_EFER_MSR))
2768 {
2769 pVM->hm.s.vmx.fSupportsVmcsEfer = true;
2770 }
2771#endif
2772
2773 /* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
2774 RTCCUINTREG uHostCR4 = ASMGetCR4();
2775 if (RT_UNLIKELY(!(uHostCR4 & X86_CR4_VMXE)))
2776 return VERR_VMX_NOT_IN_VMX_ROOT_MODE;
2777
2778 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2779 {
2780 PVMCPU pVCpu = &pVM->aCpus[i];
2781 AssertPtr(pVCpu);
2782 AssertPtr(pVCpu->hm.s.vmx.pvVmcs);
2783
2784 /* Log the VCPU pointers, useful for debugging SMP VMs. */
2785 Log4(("VMXR0SetupVM: pVCpu=%p idCpu=%RU32\n", pVCpu, pVCpu->idCpu));
2786
2787 /* Initialize the VM-exit history array with end-of-array markers (UINT16_MAX). */
2788 Assert(!pVCpu->hm.s.idxExitHistoryFree);
2789 HMCPU_EXIT_HISTORY_RESET(pVCpu);
2790
2791 /* Set revision dword at the beginning of the VMCS structure. */
2792 *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hm.s.vmx.Msrs.u64BasicInfo);
2793
2794 /* Initialize our VMCS region in memory, set the VMCS launch state to "clear". */
2795 rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2796 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVmcs failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2797 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2798
2799 /* Load this VMCS as the current VMCS. */
2800 rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2801 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXActivateVmcs failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2802 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2803
2804 rc = hmR0VmxSetupPinCtls(pVM, pVCpu);
2805 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupPinCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2806 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2807
2808 rc = hmR0VmxSetupProcCtls(pVM, pVCpu);
2809 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupProcCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2810 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2811
2812 rc = hmR0VmxSetupMiscCtls(pVM, pVCpu);
2813 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupMiscCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2814 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2815
2816 rc = hmR0VmxInitXcptBitmap(pVM, pVCpu);
2817 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitXcptBitmap failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2818 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2819
2820 rc = hmR0VmxInitUpdatedGuestStateMask(pVCpu);
2821 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitUpdatedGuestStateMask failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2822 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2823
2824#if HC_ARCH_BITS == 32
2825 rc = hmR0VmxInitVmcsReadCache(pVM, pVCpu);
2826 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitVmcsReadCache failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2827 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2828#endif
2829
2830 /* Re-sync the CPU's internal data into our VMCS memory region & reset the launch state to "clear". */
2831 rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2832 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVmcs(2) failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2833 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2834
2835 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
2836
2837 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc);
2838 }
2839
2840 return VINF_SUCCESS;
2841}
2842
2843
2844/**
2845 * Saves the host control registers (CR0, CR3, CR4) into the host-state area in
2846 * the VMCS.
2847 *
2848 * @returns VBox status code.
2849 * @param pVM The cross context VM structure.
2850 * @param pVCpu The cross context virtual CPU structure.
2851 */
2852DECLINLINE(int) hmR0VmxSaveHostControlRegs(PVM pVM, PVMCPU pVCpu)
2853{
2854 NOREF(pVM); NOREF(pVCpu);
2855
2856 RTCCUINTREG uReg = ASMGetCR0();
2857 int rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR0, uReg);
2858 AssertRCReturn(rc, rc);
2859
2860 uReg = ASMGetCR3();
2861 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR3, uReg);
2862 AssertRCReturn(rc, rc);
2863
2864 uReg = ASMGetCR4();
2865 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR4, uReg);
2866 AssertRCReturn(rc, rc);
2867 return rc;
2868}
2869
2870
2871#if HC_ARCH_BITS == 64
2872/**
2873 * Macro for adjusting host segment selectors to satisfy VT-x's VM-entry
2874 * requirements. See hmR0VmxSaveHostSegmentRegs().
2875 */
2876# define VMXLOCAL_ADJUST_HOST_SEG(seg, selValue) \
2877 if ((selValue) & (X86_SEL_RPL | X86_SEL_LDT)) \
2878 { \
2879 bool fValidSelector = true; \
2880 if ((selValue) & X86_SEL_LDT) \
2881 { \
2882 uint32_t uAttr = ASMGetSegAttr((selValue)); \
2883 fValidSelector = RT_BOOL(uAttr != UINT32_MAX && (uAttr & X86_DESC_P)); \
2884 } \
2885 if (fValidSelector) \
2886 { \
2887 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_##seg; \
2888 pVCpu->hm.s.vmx.RestoreHost.uHostSel##seg = (selValue); \
2889 } \
2890 (selValue) = 0; \
2891 }
2892#endif
2893
2894
2895/**
2896 * Saves the host segment registers and GDTR, IDTR, (TR, GS and FS bases) into
2897 * the host-state area in the VMCS.
2898 *
2899 * @returns VBox status code.
2900 * @param pVM The cross context VM structure.
2901 * @param pVCpu The cross context virtual CPU structure.
2902 */
2903DECLINLINE(int) hmR0VmxSaveHostSegmentRegs(PVM pVM, PVMCPU pVCpu)
2904{
2905 int rc = VERR_INTERNAL_ERROR_5;
2906
2907#if HC_ARCH_BITS == 64
2908 /*
2909 * If we've executed guest code using VT-x, the host-state bits will be messed up. We
2910 * should -not- save the messed up state without restoring the original host-state. See @bugref{7240}.
2911 *
2912 * This apparently can happen (most likely the FPU changes), deal with it rather than asserting.
2913 * Was observed booting Solaris10u10 32-bit guest.
2914 */
2915 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
2916 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
2917 {
2918 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags,
2919 pVCpu->idCpu));
2920 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
2921 }
2922 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
2923#endif
2924
2925 /*
2926 * Host DS, ES, FS and GS segment registers.
2927 */
2928#if HC_ARCH_BITS == 64
2929 RTSEL uSelDS = ASMGetDS();
2930 RTSEL uSelES = ASMGetES();
2931 RTSEL uSelFS = ASMGetFS();
2932 RTSEL uSelGS = ASMGetGS();
2933#else
2934 RTSEL uSelDS = 0;
2935 RTSEL uSelES = 0;
2936 RTSEL uSelFS = 0;
2937 RTSEL uSelGS = 0;
2938#endif
2939
2940 /*
2941 * Host CS and SS segment registers.
2942 */
2943 RTSEL uSelCS = ASMGetCS();
2944 RTSEL uSelSS = ASMGetSS();
2945
2946 /*
2947 * Host TR segment register.
2948 */
2949 RTSEL uSelTR = ASMGetTR();
2950
2951#if HC_ARCH_BITS == 64
2952 /*
2953 * Determine if the host segment registers are suitable for VT-x. Otherwise use zero to gain VM-entry and restore them
2954 * before we get preempted. See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers".
2955 */
2956 VMXLOCAL_ADJUST_HOST_SEG(DS, uSelDS);
2957 VMXLOCAL_ADJUST_HOST_SEG(ES, uSelES);
2958 VMXLOCAL_ADJUST_HOST_SEG(FS, uSelFS);
2959 VMXLOCAL_ADJUST_HOST_SEG(GS, uSelGS);
2960# undef VMXLOCAL_ADJUST_HOST_SEG
2961#endif
2962
2963 /* Verification based on Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers" */
2964 Assert(!(uSelCS & X86_SEL_RPL)); Assert(!(uSelCS & X86_SEL_LDT));
2965 Assert(!(uSelSS & X86_SEL_RPL)); Assert(!(uSelSS & X86_SEL_LDT));
2966 Assert(!(uSelDS & X86_SEL_RPL)); Assert(!(uSelDS & X86_SEL_LDT));
2967 Assert(!(uSelES & X86_SEL_RPL)); Assert(!(uSelES & X86_SEL_LDT));
2968 Assert(!(uSelFS & X86_SEL_RPL)); Assert(!(uSelFS & X86_SEL_LDT));
2969 Assert(!(uSelGS & X86_SEL_RPL)); Assert(!(uSelGS & X86_SEL_LDT));
2970 Assert(!(uSelTR & X86_SEL_RPL)); Assert(!(uSelTR & X86_SEL_LDT));
2971 Assert(uSelCS);
2972 Assert(uSelTR);
2973
2974 /* Assertion is right but we would not have updated u32ExitCtls yet. */
2975#if 0
2976 if (!(pVCpu->hm.s.vmx.u32ExitCtls & VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE))
2977 Assert(uSelSS != 0);
2978#endif
2979
2980 /* Write these host selector fields into the host-state area in the VMCS. */
2981 rc = VMXWriteVmcs32(VMX_VMCS16_HOST_CS_SEL, uSelCS);
2982 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_SS_SEL, uSelSS);
2983#if HC_ARCH_BITS == 64
2984 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_DS_SEL, uSelDS);
2985 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_ES_SEL, uSelES);
2986 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_FS_SEL, uSelFS);
2987 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_GS_SEL, uSelGS);
2988#else
2989 NOREF(uSelDS);
2990 NOREF(uSelES);
2991 NOREF(uSelFS);
2992 NOREF(uSelGS);
2993#endif
2994 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_TR_SEL, uSelTR);
2995 AssertRCReturn(rc, rc);
2996
2997 /*
2998 * Host GDTR and IDTR.
2999 */
3000 RTGDTR Gdtr;
3001 RTIDTR Idtr;
3002 RT_ZERO(Gdtr);
3003 RT_ZERO(Idtr);
3004 ASMGetGDTR(&Gdtr);
3005 ASMGetIDTR(&Idtr);
3006 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, Gdtr.pGdt);
3007 rc |= VMXWriteVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, Idtr.pIdt);
3008 AssertRCReturn(rc, rc);
3009
3010#if HC_ARCH_BITS == 64
3011 /*
3012 * Determine if we need to manually need to restore the GDTR and IDTR limits as VT-x zaps them to the
3013 * maximum limit (0xffff) on every VM-exit.
3014 */
3015 if (Gdtr.cbGdt != 0xffff)
3016 {
3017 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDTR;
3018 AssertCompile(sizeof(Gdtr) == sizeof(X86XDTR64));
3019 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostGdtr, &Gdtr, sizeof(X86XDTR64));
3020 }
3021
3022 /*
3023 * IDT limit is effectively capped at 0xfff. (See Intel spec. 6.14.1 "64-Bit Mode IDT"
3024 * and Intel spec. 6.2 "Exception and Interrupt Vectors".) Therefore if the host has the limit as 0xfff, VT-x
3025 * bloating the limit to 0xffff shouldn't cause any different CPU behavior. However, several hosts either insists
3026 * on 0xfff being the limit (Windows Patch Guard) or uses the limit for other purposes (darwin puts the CPU ID in there
3027 * but botches sidt alignment in at least one consumer). So, we're only allowing IDTR.LIMIT to be left at 0xffff on
3028 * hosts where we are pretty sure it won't cause trouble.
3029 */
3030# if defined(RT_OS_LINUX) || defined(RT_OS_SOLARIS)
3031 if (Idtr.cbIdt < 0x0fff)
3032# else
3033 if (Idtr.cbIdt != 0xffff)
3034# endif
3035 {
3036 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_IDTR;
3037 AssertCompile(sizeof(Idtr) == sizeof(X86XDTR64));
3038 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostIdtr, &Idtr, sizeof(X86XDTR64));
3039 }
3040#endif
3041
3042 /*
3043 * Host TR base. Verify that TR selector doesn't point past the GDT. Masking off the TI and RPL bits
3044 * is effectively what the CPU does for "scaling by 8". TI is always 0 and RPL should be too in most cases.
3045 */
3046 AssertMsgReturn((uSelTR | X86_SEL_RPL_LDT) <= Gdtr.cbGdt,
3047 ("hmR0VmxSaveHostSegmentRegs: TR selector exceeds limit. TR=%RTsel cbGdt=%#x\n", uSelTR, Gdtr.cbGdt),
3048 VERR_VMX_INVALID_HOST_STATE);
3049
3050 PCX86DESCHC pDesc = (PCX86DESCHC)(Gdtr.pGdt + (uSelTR & X86_SEL_MASK));
3051#if HC_ARCH_BITS == 64
3052 uintptr_t uTRBase = X86DESC64_BASE(pDesc);
3053
3054 /*
3055 * VT-x unconditionally restores the TR limit to 0x67 and type to 11 (32-bit busy TSS) on all VM-exits.
3056 * The type is the same for 64-bit busy TSS[1]. The limit needs manual restoration if the host has something else.
3057 * Task switching is not supported in 64-bit mode[2], but the limit still matters as IOPM is supported in 64-bit mode.
3058 * Restoring the limit lazily while returning to ring-3 is safe because IOPM is not applicable in ring-0.
3059 *
3060 * [1] See Intel spec. 3.5 "System Descriptor Types".
3061 * [2] See Intel spec. 7.2.3 "TSS Descriptor in 64-bit mode".
3062 */
3063 Assert(pDesc->System.u4Type == 11);
3064 if ( pDesc->System.u16LimitLow != 0x67
3065 || pDesc->System.u4LimitHigh)
3066 {
3067 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_TR;
3068 /* If the host has made GDT read-only, we would need to temporarily toggle CR0.WP before writing the GDT. */
3069 if (pVM->hm.s.fHostKernelFeatures & SUPKERNELFEATURES_GDT_READ_ONLY)
3070 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_READ_ONLY;
3071 pVCpu->hm.s.vmx.RestoreHost.uHostSelTR = uSelTR;
3072
3073 /* Store the GDTR here as we need it while restoring TR. */
3074 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostGdtr, &Gdtr, sizeof(X86XDTR64));
3075 }
3076#else
3077 NOREF(pVM);
3078 uintptr_t uTRBase = X86DESC_BASE(pDesc);
3079#endif
3080 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_TR_BASE, uTRBase);
3081 AssertRCReturn(rc, rc);
3082
3083 /*
3084 * Host FS base and GS base.
3085 */
3086#if HC_ARCH_BITS == 64
3087 uint64_t u64FSBase = ASMRdMsr(MSR_K8_FS_BASE);
3088 uint64_t u64GSBase = ASMRdMsr(MSR_K8_GS_BASE);
3089 rc = VMXWriteVmcs64(VMX_VMCS_HOST_FS_BASE, u64FSBase);
3090 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_GS_BASE, u64GSBase);
3091 AssertRCReturn(rc, rc);
3092
3093 /* Store the base if we have to restore FS or GS manually as we need to restore the base as well. */
3094 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_FS)
3095 pVCpu->hm.s.vmx.RestoreHost.uHostFSBase = u64FSBase;
3096 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_GS)
3097 pVCpu->hm.s.vmx.RestoreHost.uHostGSBase = u64GSBase;
3098#endif
3099 return rc;
3100}
3101
3102
3103/**
3104 * Saves certain host MSRs in the VM-Exit MSR-load area and some in the
3105 * host-state area of the VMCS. Theses MSRs will be automatically restored on
3106 * the host after every successful VM-exit.
3107 *
3108 * @returns VBox status code.
3109 * @param pVM The cross context VM structure.
3110 * @param pVCpu The cross context virtual CPU structure.
3111 *
3112 * @remarks No-long-jump zone!!!
3113 */
3114DECLINLINE(int) hmR0VmxSaveHostMsrs(PVM pVM, PVMCPU pVCpu)
3115{
3116 NOREF(pVM);
3117
3118 AssertPtr(pVCpu);
3119 AssertPtr(pVCpu->hm.s.vmx.pvHostMsr);
3120
3121 /*
3122 * Save MSRs that we restore lazily (due to preemption or transition to ring-3)
3123 * rather than swapping them on every VM-entry.
3124 */
3125 hmR0VmxLazySaveHostMsrs(pVCpu);
3126
3127 /*
3128 * Host Sysenter MSRs.
3129 */
3130 int rc = VMXWriteVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, ASMRdMsr_Low(MSR_IA32_SYSENTER_CS));
3131#if HC_ARCH_BITS == 32
3132 rc |= VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP));
3133 rc |= VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP));
3134#else
3135 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP));
3136 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP));
3137#endif
3138 AssertRCReturn(rc, rc);
3139
3140 /*
3141 * Host EFER MSR.
3142 * If the CPU supports the newer VMCS controls for managing EFER, use it.
3143 * Otherwise it's done as part of auto-load/store MSR area in the VMCS, see hmR0VmxLoadGuestMsrs().
3144 */
3145 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
3146 {
3147 rc = VMXWriteVmcs64(VMX_VMCS64_HOST_EFER_FULL, pVM->hm.s.vmx.u64HostEfer);
3148 AssertRCReturn(rc, rc);
3149 }
3150
3151 /** @todo IA32_PERF_GLOBALCTRL, IA32_PAT also see
3152 * hmR0VmxLoadGuestExitCtls() !! */
3153
3154 return rc;
3155}
3156
3157
3158/**
3159 * Figures out if we need to swap the EFER MSR which is particularly expensive.
3160 *
3161 * We check all relevant bits. For now, that's everything besides LMA/LME, as
3162 * these two bits are handled by VM-entry, see hmR0VmxLoadGuestExitCtls() and
3163 * hmR0VMxLoadGuestEntryCtls().
3164 *
3165 * @returns true if we need to load guest EFER, false otherwise.
3166 * @param pVCpu The cross context virtual CPU structure.
3167 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3168 * out-of-sync. Make sure to update the required fields
3169 * before using them.
3170 *
3171 * @remarks Requires EFER, CR4.
3172 * @remarks No-long-jump zone!!!
3173 */
3174static bool hmR0VmxShouldSwapEferMsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3175{
3176#ifdef HMVMX_ALWAYS_SWAP_EFER
3177 return true;
3178#endif
3179
3180#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
3181 /* For 32-bit hosts running 64-bit guests, we always swap EFER in the world-switcher. Nothing to do here. */
3182 if (CPUMIsGuestInLongMode(pVCpu))
3183 return false;
3184#endif
3185
3186 PVM pVM = pVCpu->CTX_SUFF(pVM);
3187 uint64_t u64HostEfer = pVM->hm.s.vmx.u64HostEfer;
3188 uint64_t u64GuestEfer = pMixedCtx->msrEFER;
3189
3190 /*
3191 * For 64-bit guests, if EFER.SCE bit differs, we need to swap to ensure that the
3192 * guest's SYSCALL behaviour isn't screwed. See @bugref{7386}.
3193 */
3194 if ( CPUMIsGuestInLongMode(pVCpu)
3195 && (u64GuestEfer & MSR_K6_EFER_SCE) != (u64HostEfer & MSR_K6_EFER_SCE))
3196 {
3197 return true;
3198 }
3199
3200 /*
3201 * If the guest uses PAE and EFER.NXE bit differs, we need to swap EFER as it
3202 * affects guest paging. 64-bit paging implies CR4.PAE as well.
3203 * See Intel spec. 4.5 "IA-32e Paging" and Intel spec. 4.1.1 "Three Paging Modes".
3204 */
3205 if ( (pMixedCtx->cr4 & X86_CR4_PAE)
3206 && (pMixedCtx->cr0 & X86_CR0_PG)
3207 && (u64GuestEfer & MSR_K6_EFER_NXE) != (u64HostEfer & MSR_K6_EFER_NXE))
3208 {
3209 /* Assert that host is PAE capable. */
3210 Assert(pVM->hm.s.cpuid.u32AMDFeatureEDX & X86_CPUID_EXT_FEATURE_EDX_NX);
3211 return true;
3212 }
3213
3214 /** @todo Check the latest Intel spec. for any other bits,
3215 * like SMEP/SMAP? */
3216 return false;
3217}
3218
3219
3220/**
3221 * Sets up VM-entry controls in the VMCS. These controls can affect things done
3222 * on VM-exit; e.g. "load debug controls", see Intel spec. 24.8.1 "VM-entry
3223 * controls".
3224 *
3225 * @returns VBox status code.
3226 * @param pVCpu The cross context virtual CPU structure.
3227 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3228 * out-of-sync. Make sure to update the required fields
3229 * before using them.
3230 *
3231 * @remarks Requires EFER.
3232 * @remarks No-long-jump zone!!!
3233 */
3234DECLINLINE(int) hmR0VmxLoadGuestEntryCtls(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3235{
3236 int rc = VINF_SUCCESS;
3237 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_ENTRY_CTLS))
3238 {
3239 PVM pVM = pVCpu->CTX_SUFF(pVM);
3240 uint32_t val = pVM->hm.s.vmx.Msrs.VmxEntry.n.disallowed0; /* Bits set here must be set in the VMCS. */
3241 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxEntry.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3242
3243 /* Load debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x capable CPUs only supports the 1-setting of this bit. */
3244 val |= VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG;
3245
3246 /* Set if the guest is in long mode. This will set/clear the EFER.LMA bit on VM-entry. */
3247 if (CPUMIsGuestInLongModeEx(pMixedCtx))
3248 {
3249 val |= VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST;
3250 Log4(("Load[%RU32]: VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST\n", pVCpu->idCpu));
3251 }
3252 else
3253 Assert(!(val & VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST));
3254
3255 /* If the CPU supports the newer VMCS controls for managing guest/host EFER, use it. */
3256 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
3257 && hmR0VmxShouldSwapEferMsr(pVCpu, pMixedCtx))
3258 {
3259 val |= VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR;
3260 Log4(("Load[%RU32]: VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR\n", pVCpu->idCpu));
3261 }
3262
3263 /*
3264 * The following should -not- be set (since we're not in SMM mode):
3265 * - VMX_VMCS_CTRL_ENTRY_ENTRY_SMM
3266 * - VMX_VMCS_CTRL_ENTRY_DEACTIVATE_DUALMON
3267 */
3268
3269 /** @todo VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PERF_MSR,
3270 * VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PAT_MSR. */
3271
3272 if ((val & zap) != val)
3273 {
3274 LogRel(("hmR0VmxLoadGuestEntryCtls: Invalid VM-entry controls combo! cpu=%RX64 val=%RX64 zap=%RX64\n",
3275 pVM->hm.s.vmx.Msrs.VmxEntry.n.disallowed0, val, zap));
3276 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_ENTRY;
3277 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3278 }
3279
3280 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY, val);
3281 AssertRCReturn(rc, rc);
3282
3283 pVCpu->hm.s.vmx.u32EntryCtls = val;
3284 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_ENTRY_CTLS);
3285 }
3286 return rc;
3287}
3288
3289
3290/**
3291 * Sets up the VM-exit controls in the VMCS.
3292 *
3293 * @returns VBox status code.
3294 * @param pVCpu The cross context virtual CPU structure.
3295 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3296 * out-of-sync. Make sure to update the required fields
3297 * before using them.
3298 *
3299 * @remarks Requires EFER.
3300 */
3301DECLINLINE(int) hmR0VmxLoadGuestExitCtls(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3302{
3303 NOREF(pMixedCtx);
3304
3305 int rc = VINF_SUCCESS;
3306 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_EXIT_CTLS))
3307 {
3308 PVM pVM = pVCpu->CTX_SUFF(pVM);
3309 uint32_t val = pVM->hm.s.vmx.Msrs.VmxExit.n.disallowed0; /* Bits set here must be set in the VMCS. */
3310 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3311
3312 /* Save debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x CPUs only supported the 1-setting of this bit. */
3313 val |= VMX_VMCS_CTRL_EXIT_SAVE_DEBUG;
3314
3315 /*
3316 * Set the host long mode active (EFER.LMA) bit (which Intel calls "Host address-space size") if necessary.
3317 * On VM-exit, VT-x sets both the host EFER.LMA and EFER.LME bit to this value. See assertion in hmR0VmxSaveHostMsrs().
3318 */
3319#if HC_ARCH_BITS == 64
3320 val |= VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE;
3321 Log4(("Load[%RU32]: VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE\n", pVCpu->idCpu));
3322#else
3323 Assert( pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64
3324 || pVCpu->hm.s.vmx.pfnStartVM == VMXR0StartVM32);
3325 /* Set the host address-space size based on the switcher, not guest state. See @bugref{8432}. */
3326 if (pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64)
3327 {
3328 /* The switcher returns to long mode, EFER is managed by the switcher. */
3329 val |= VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE;
3330 Log4(("Load[%RU32]: VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE\n", pVCpu->idCpu));
3331 }
3332 else
3333 Assert(!(val & VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE));
3334#endif
3335
3336 /* If the newer VMCS fields for managing EFER exists, use it. */
3337 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
3338 && hmR0VmxShouldSwapEferMsr(pVCpu, pMixedCtx))
3339 {
3340 val |= VMX_VMCS_CTRL_EXIT_SAVE_GUEST_EFER_MSR
3341 | VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR;
3342 Log4(("Load[%RU32]: VMX_VMCS_CTRL_EXIT_SAVE_GUEST_EFER_MSR, VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR\n", pVCpu->idCpu));
3343 }
3344
3345 /* Don't acknowledge external interrupts on VM-exit. We want to let the host do that. */
3346 Assert(!(val & VMX_VMCS_CTRL_EXIT_ACK_EXT_INT));
3347
3348 /** @todo VMX_VMCS_CTRL_EXIT_LOAD_PERF_MSR,
3349 * VMX_VMCS_CTRL_EXIT_SAVE_GUEST_PAT_MSR,
3350 * VMX_VMCS_CTRL_EXIT_LOAD_HOST_PAT_MSR. */
3351
3352 if ( pVM->hm.s.vmx.fUsePreemptTimer
3353 && (pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_SAVE_VMX_PREEMPT_TIMER))
3354 val |= VMX_VMCS_CTRL_EXIT_SAVE_VMX_PREEMPT_TIMER;
3355
3356 if ((val & zap) != val)
3357 {
3358 LogRel(("hmR0VmxSetupProcCtls: Invalid VM-exit controls combo! cpu=%RX64 val=%RX64 zap=%RX64\n",
3359 pVM->hm.s.vmx.Msrs.VmxExit.n.disallowed0, val, zap));
3360 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_EXIT;
3361 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3362 }
3363
3364 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT, val);
3365 AssertRCReturn(rc, rc);
3366
3367 pVCpu->hm.s.vmx.u32ExitCtls = val;
3368 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_EXIT_CTLS);
3369 }
3370 return rc;
3371}
3372
3373
3374/**
3375 * Sets the TPR threshold in the VMCS.
3376 *
3377 * @returns VBox status code.
3378 * @param pVCpu The cross context virtual CPU structure.
3379 * @param u32TprThreshold The TPR threshold (task-priority class only).
3380 */
3381DECLINLINE(int) hmR0VmxApicSetTprThreshold(PVMCPU pVCpu, uint32_t u32TprThreshold)
3382{
3383 Assert(!(u32TprThreshold & 0xfffffff0)); /* Bits 31:4 MBZ. */
3384 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW);
3385 return VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
3386}
3387
3388
3389/**
3390 * Loads the guest APIC and related state.
3391 *
3392 * @returns VBox status code.
3393 * @param pVCpu The cross context virtual CPU structure.
3394 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3395 * out-of-sync. Make sure to update the required fields
3396 * before using them.
3397 */
3398DECLINLINE(int) hmR0VmxLoadGuestApicState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3399{
3400 NOREF(pMixedCtx);
3401
3402 int rc = VINF_SUCCESS;
3403 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE))
3404 {
3405 /* Setup TPR shadowing. Also setup TPR patching for 32-bit guests. */
3406 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
3407 {
3408 Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
3409
3410 bool fPendingIntr = false;
3411 uint8_t u8Tpr = 0;
3412 uint8_t u8PendingIntr = 0;
3413 rc = PDMApicGetTPR(pVCpu, &u8Tpr, &fPendingIntr, &u8PendingIntr);
3414 AssertRCReturn(rc, rc);
3415
3416 /*
3417 * If there are external interrupts pending but masked by the TPR value, instruct VT-x to cause a VM-exit when
3418 * the guest lowers its TPR below the highest-priority pending interrupt and we can deliver the interrupt.
3419 * If there are no external interrupts pending, set threshold to 0 to not cause a VM-exit. We will eventually deliver
3420 * the interrupt when we VM-exit for other reasons.
3421 */
3422 pVCpu->hm.s.vmx.pbVirtApic[0x80] = u8Tpr; /* Offset 0x80 is TPR in the APIC MMIO range. */
3423 uint32_t u32TprThreshold = 0;
3424 if (fPendingIntr)
3425 {
3426 /* Bits 3:0 of the TPR threshold field correspond to bits 7:4 of the TPR (which is the Task-Priority Class). */
3427 const uint8_t u8PendingPriority = (u8PendingIntr >> 4) & 0xf;
3428 const uint8_t u8TprPriority = (u8Tpr >> 4) & 0xf;
3429 if (u8PendingPriority <= u8TprPriority)
3430 u32TprThreshold = u8PendingPriority;
3431 else
3432 u32TprThreshold = u8TprPriority; /* Required for Vista 64-bit guest, see @bugref{6398}. */
3433 }
3434
3435 rc = hmR0VmxApicSetTprThreshold(pVCpu, u32TprThreshold);
3436 AssertRCReturn(rc, rc);
3437 }
3438
3439 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
3440 }
3441 return rc;
3442}
3443
3444
3445/**
3446 * Gets the guest's interruptibility-state ("interrupt shadow" as AMD calls it).
3447 *
3448 * @returns Guest's interruptibility-state.
3449 * @param pVCpu The cross context virtual CPU structure.
3450 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3451 * out-of-sync. Make sure to update the required fields
3452 * before using them.
3453 *
3454 * @remarks No-long-jump zone!!!
3455 */
3456DECLINLINE(uint32_t) hmR0VmxGetGuestIntrState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3457{
3458 /*
3459 * Check if we should inhibit interrupt delivery due to instructions like STI and MOV SS.
3460 */
3461 uint32_t uIntrState = 0;
3462 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3463 {
3464 /* If inhibition is active, RIP & RFLAGS should've been accessed (i.e. read previously from the VMCS or from ring-3). */
3465 AssertMsg(HMVMXCPU_GST_IS_SET(pVCpu, HMVMX_UPDATED_GUEST_RIP | HMVMX_UPDATED_GUEST_RFLAGS),
3466 ("%#x\n", HMVMXCPU_GST_VALUE(pVCpu)));
3467 if (pMixedCtx->rip == EMGetInhibitInterruptsPC(pVCpu))
3468 {
3469 if (pMixedCtx->eflags.Bits.u1IF)
3470 uIntrState = VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI;
3471 else
3472 uIntrState = VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS;
3473 }
3474 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3475 {
3476 /*
3477 * We can clear the inhibit force flag as even if we go back to the recompiler without executing guest code in
3478 * VT-x, the flag's condition to be cleared is met and thus the cleared state is correct.
3479 */
3480 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
3481 }
3482 }
3483
3484 /*
3485 * NMIs to the guest are blocked after an NMI is injected until the guest executes an IRET. We only
3486 * bother with virtual-NMI blocking when we have support for virtual NMIs in the CPU, otherwise
3487 * setting this would block host-NMIs and IRET will not clear the blocking.
3488 *
3489 * See Intel spec. 26.6.1 "Interruptibility state". See @bugref{7445}.
3490 */
3491 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS)
3492 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI))
3493 {
3494 uIntrState |= VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI;
3495 }
3496
3497 return uIntrState;
3498}
3499
3500
3501/**
3502 * Loads the guest's interruptibility-state into the guest-state area in the
3503 * VMCS.
3504 *
3505 * @returns VBox status code.
3506 * @param pVCpu The cross context virtual CPU structure.
3507 * @param uIntrState The interruptibility-state to set.
3508 */
3509static int hmR0VmxLoadGuestIntrState(PVMCPU pVCpu, uint32_t uIntrState)
3510{
3511 NOREF(pVCpu);
3512 AssertMsg(!(uIntrState & 0xfffffff0), ("%#x\n", uIntrState)); /* Bits 31:4 MBZ. */
3513 Assert((uIntrState & 0x3) != 0x3); /* Block-by-STI and MOV SS cannot be simultaneously set. */
3514 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, uIntrState);
3515 AssertRC(rc);
3516 return rc;
3517}
3518
3519
3520/**
3521 * Loads the exception intercepts required for guest execution in the VMCS.
3522 *
3523 * @returns VBox status code.
3524 * @param pVCpu The cross context virtual CPU structure.
3525 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3526 * out-of-sync. Make sure to update the required fields
3527 * before using them.
3528 */
3529static int hmR0VmxLoadGuestXcptIntercepts(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3530{
3531 NOREF(pMixedCtx);
3532 int rc = VINF_SUCCESS;
3533 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS))
3534 {
3535 /* The remaining exception intercepts are handled elsewhere, e.g. in hmR0VmxLoadSharedCR0(). */
3536 if (pVCpu->hm.s.fGIMTrapXcptUD)
3537 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_UD);
3538#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
3539 else
3540 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_UD);
3541#endif
3542
3543 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_AC));
3544 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_DB));
3545
3546 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
3547 AssertRCReturn(rc, rc);
3548
3549 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS);
3550 Log4(("Load[%RU32]: VMX_VMCS32_CTRL_EXCEPTION_BITMAP=%#RX64 fContextUseFlags=%#RX32\n", pVCpu->idCpu,
3551 pVCpu->hm.s.vmx.u32XcptBitmap, HMCPU_CF_VALUE(pVCpu)));
3552 }
3553 return rc;
3554}
3555
3556
3557/**
3558 * Loads the guest's RIP into the guest-state area in the VMCS.
3559 *
3560 * @returns VBox status code.
3561 * @param pVCpu The cross context virtual CPU structure.
3562 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3563 * out-of-sync. Make sure to update the required fields
3564 * before using them.
3565 *
3566 * @remarks No-long-jump zone!!!
3567 */
3568static int hmR0VmxLoadGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3569{
3570 int rc = VINF_SUCCESS;
3571 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RIP))
3572 {
3573 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RIP, pMixedCtx->rip);
3574 AssertRCReturn(rc, rc);
3575
3576 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RIP);
3577 Log4(("Load[%RU32]: VMX_VMCS_GUEST_RIP=%#RX64 fContextUseFlags=%#RX32\n", pVCpu->idCpu, pMixedCtx->rip,
3578 HMCPU_CF_VALUE(pVCpu)));
3579 }
3580 return rc;
3581}
3582
3583
3584/**
3585 * Loads the guest's RSP into the guest-state area in the VMCS.
3586 *
3587 * @returns VBox status code.
3588 * @param pVCpu The cross context virtual CPU structure.
3589 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3590 * out-of-sync. Make sure to update the required fields
3591 * before using them.
3592 *
3593 * @remarks No-long-jump zone!!!
3594 */
3595static int hmR0VmxLoadGuestRsp(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3596{
3597 int rc = VINF_SUCCESS;
3598 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RSP))
3599 {
3600 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RSP, pMixedCtx->rsp);
3601 AssertRCReturn(rc, rc);
3602
3603 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RSP);
3604 Log4(("Load[%RU32]: VMX_VMCS_GUEST_RSP=%#RX64\n", pVCpu->idCpu, pMixedCtx->rsp));
3605 }
3606 return rc;
3607}
3608
3609
3610/**
3611 * Loads the guest's RFLAGS into the guest-state area in the VMCS.
3612 *
3613 * @returns VBox status code.
3614 * @param pVCpu The cross context virtual CPU structure.
3615 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3616 * out-of-sync. Make sure to update the required fields
3617 * before using them.
3618 *
3619 * @remarks No-long-jump zone!!!
3620 */
3621static int hmR0VmxLoadGuestRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3622{
3623 int rc = VINF_SUCCESS;
3624 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RFLAGS))
3625 {
3626 /* Intel spec. 2.3.1 "System Flags and Fields in IA-32e Mode" claims the upper 32-bits of RFLAGS are reserved (MBZ).
3627 Let us assert it as such and use 32-bit VMWRITE. */
3628 Assert(!(pMixedCtx->rflags.u64 >> 32));
3629 X86EFLAGS Eflags = pMixedCtx->eflags;
3630 /** @todo r=bird: There shall be no need to OR in X86_EFL_1 here, nor
3631 * shall there be any reason for clearing bits 63:22, 15, 5 and 3.
3632 * These will never be cleared/set, unless some other part of the VMM
3633 * code is buggy - in which case we're better of finding and fixing
3634 * those bugs than hiding them. */
3635 Assert(Eflags.u32 & X86_EFL_RA1_MASK);
3636 Assert(!(Eflags.u32 & ~(X86_EFL_1 | X86_EFL_LIVE_MASK)));
3637 Eflags.u32 &= VMX_EFLAGS_RESERVED_0; /* Bits 22-31, 15, 5 & 3 MBZ. */
3638 Eflags.u32 |= VMX_EFLAGS_RESERVED_1; /* Bit 1 MB1. */
3639
3640 /*
3641 * If we're emulating real-mode using Virtual 8086 mode, save the real-mode eflags so we can restore them on VM-exit.
3642 * Modify the real-mode guest's eflags so that VT-x can run the real-mode guest code under Virtual 8086 mode.
3643 */
3644 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3645 {
3646 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
3647 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
3648 pVCpu->hm.s.vmx.RealMode.Eflags.u32 = Eflags.u32; /* Save the original eflags of the real-mode guest. */
3649 Eflags.Bits.u1VM = 1; /* Set the Virtual 8086 mode bit. */
3650 Eflags.Bits.u2IOPL = 0; /* Change IOPL to 0, otherwise certain instructions won't fault. */
3651 }
3652
3653 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_RFLAGS, Eflags.u32);
3654 AssertRCReturn(rc, rc);
3655
3656 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RFLAGS);
3657 Log4(("Load[%RU32]: VMX_VMCS_GUEST_RFLAGS=%#RX32\n", pVCpu->idCpu, Eflags.u32));
3658 }
3659 return rc;
3660}
3661
3662
3663/**
3664 * Loads the guest RIP, RSP and RFLAGS into the guest-state area in the VMCS.
3665 *
3666 * @returns VBox status code.
3667 * @param pVCpu The cross context virtual CPU structure.
3668 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3669 * out-of-sync. Make sure to update the required fields
3670 * before using them.
3671 *
3672 * @remarks No-long-jump zone!!!
3673 */
3674DECLINLINE(int) hmR0VmxLoadGuestRipRspRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3675{
3676 int rc = hmR0VmxLoadGuestRip(pVCpu, pMixedCtx);
3677 rc |= hmR0VmxLoadGuestRsp(pVCpu, pMixedCtx);
3678 rc |= hmR0VmxLoadGuestRflags(pVCpu, pMixedCtx);
3679 AssertRCReturn(rc, rc);
3680 return rc;
3681}
3682
3683
3684/**
3685 * Loads the guest CR0 control register into the guest-state area in the VMCS.
3686 * CR0 is partially shared with the host and we have to consider the FPU bits.
3687 *
3688 * @returns VBox status code.
3689 * @param pVCpu The cross context virtual CPU structure.
3690 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3691 * out-of-sync. Make sure to update the required fields
3692 * before using them.
3693 *
3694 * @remarks No-long-jump zone!!!
3695 */
3696static int hmR0VmxLoadSharedCR0(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3697{
3698 /*
3699 * Guest CR0.
3700 * Guest FPU.
3701 */
3702 int rc = VINF_SUCCESS;
3703 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0))
3704 {
3705 Assert(!(pMixedCtx->cr0 >> 32));
3706 uint32_t u32GuestCR0 = pMixedCtx->cr0;
3707 PVM pVM = pVCpu->CTX_SUFF(pVM);
3708
3709 /* The guest's view (read access) of its CR0 is unblemished. */
3710 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, u32GuestCR0);
3711 AssertRCReturn(rc, rc);
3712 Log4(("Load[%RU32]: VMX_VMCS_CTRL_CR0_READ_SHADOW=%#RX32\n", pVCpu->idCpu, u32GuestCR0));
3713
3714 /* Setup VT-x's view of the guest CR0. */
3715 /* Minimize VM-exits due to CR3 changes when we have NestedPaging. */
3716 if (pVM->hm.s.fNestedPaging)
3717 {
3718 if (CPUMIsGuestPagingEnabledEx(pMixedCtx))
3719 {
3720 /* The guest has paging enabled, let it access CR3 without causing a VM-exit if supported. */
3721 pVCpu->hm.s.vmx.u32ProcCtls &= ~( VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT
3722 | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT);
3723 }
3724 else
3725 {
3726 /* The guest doesn't have paging enabled, make CR3 access cause a VM-exit to update our shadow. */
3727 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT
3728 | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT;
3729 }
3730
3731 /* If we have unrestricted guest execution, we never have to intercept CR3 reads. */
3732 if (pVM->hm.s.vmx.fUnrestrictedGuest)
3733 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT;
3734
3735 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
3736 AssertRCReturn(rc, rc);
3737 }
3738 else
3739 u32GuestCR0 |= X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
3740
3741 /*
3742 * Guest FPU bits.
3743 * Intel spec. 23.8 "Restrictions on VMX operation" mentions that CR0.NE bit must always be set on the first
3744 * CPUs to support VT-x and no mention of with regards to UX in VM-entry checks.
3745 */
3746 u32GuestCR0 |= X86_CR0_NE;
3747 bool fInterceptNM = false;
3748 if (CPUMIsGuestFPUStateActive(pVCpu))
3749 {
3750 fInterceptNM = false; /* Guest FPU active, no need to VM-exit on #NM. */
3751 /* The guest should still get #NM exceptions when it expects it to, so we should not clear TS & MP bits here.
3752 We're only concerned about -us- not intercepting #NMs when the guest-FPU is active. Not the guest itself! */
3753 }
3754 else
3755 {
3756 fInterceptNM = true; /* Guest FPU inactive, VM-exit on #NM for lazy FPU loading. */
3757 u32GuestCR0 |= X86_CR0_TS /* Guest can task switch quickly and do lazy FPU syncing. */
3758 | X86_CR0_MP; /* FWAIT/WAIT should not ignore CR0.TS and should generate #NM. */
3759 }
3760
3761 /* Catch floating point exceptions if we need to report them to the guest in a different way. */
3762 bool fInterceptMF = false;
3763 if (!(pMixedCtx->cr0 & X86_CR0_NE))
3764 fInterceptMF = true;
3765
3766 /* Finally, intercept all exceptions as we cannot directly inject them in real-mode, see hmR0VmxInjectEventVmcs(). */
3767 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3768 {
3769 Assert(PDMVmmDevHeapIsEnabled(pVM));
3770 Assert(pVM->hm.s.vmx.pRealModeTSS);
3771 pVCpu->hm.s.vmx.u32XcptBitmap |= HMVMX_REAL_MODE_XCPT_MASK;
3772 fInterceptNM = true;
3773 fInterceptMF = true;
3774 }
3775 else
3776 {
3777 /* For now, cleared here as mode-switches can happen outside HM/VT-x. See @bugref{7626#c11}. */
3778 pVCpu->hm.s.vmx.u32XcptBitmap &= ~HMVMX_REAL_MODE_XCPT_MASK;
3779 }
3780 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS);
3781
3782 if (fInterceptNM)
3783 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_NM);
3784 else
3785 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_NM);
3786
3787 if (fInterceptMF)
3788 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_MF);
3789 else
3790 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_MF);
3791
3792 /* Additional intercepts for debugging, define these yourself explicitly. */
3793#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
3794 pVCpu->hm.s.vmx.u32XcptBitmap |= 0
3795 | RT_BIT(X86_XCPT_BP)
3796 | RT_BIT(X86_XCPT_DE)
3797 | RT_BIT(X86_XCPT_NM)
3798 | RT_BIT(X86_XCPT_TS)
3799 | RT_BIT(X86_XCPT_UD)
3800 | RT_BIT(X86_XCPT_NP)
3801 | RT_BIT(X86_XCPT_SS)
3802 | RT_BIT(X86_XCPT_GP)
3803 | RT_BIT(X86_XCPT_PF)
3804 | RT_BIT(X86_XCPT_MF)
3805 ;
3806#elif defined(HMVMX_ALWAYS_TRAP_PF)
3807 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_PF);
3808#endif
3809
3810 Assert(pVM->hm.s.fNestedPaging || (pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT(X86_XCPT_PF)));
3811
3812 /* Set/clear the CR0 specific bits along with their exceptions (PE, PG, CD, NW). */
3813 uint32_t uSetCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
3814 uint32_t uZapCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
3815 if (pVM->hm.s.vmx.fUnrestrictedGuest) /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG). */
3816 uSetCR0 &= ~(X86_CR0_PE | X86_CR0_PG);
3817 else
3818 Assert((uSetCR0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG));
3819
3820 u32GuestCR0 |= uSetCR0;
3821 u32GuestCR0 &= uZapCR0;
3822 u32GuestCR0 &= ~(X86_CR0_CD | X86_CR0_NW); /* Always enable caching. */
3823
3824 /* Write VT-x's view of the guest CR0 into the VMCS. */
3825 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR0, u32GuestCR0);
3826 AssertRCReturn(rc, rc);
3827 Log4(("Load[%RU32]: VMX_VMCS_GUEST_CR0=%#RX32 (uSetCR0=%#RX32 uZapCR0=%#RX32)\n", pVCpu->idCpu, u32GuestCR0, uSetCR0,
3828 uZapCR0));
3829
3830 /*
3831 * CR0 is shared between host and guest along with a CR0 read shadow. Therefore, certain bits must not be changed
3832 * by the guest because VT-x ignores saving/restoring them (namely CD, ET, NW) and for certain other bits
3833 * we want to be notified immediately of guest CR0 changes (e.g. PG to update our shadow page tables).
3834 */
3835 uint32_t u32CR0Mask = 0;
3836 u32CR0Mask = X86_CR0_PE
3837 | X86_CR0_NE
3838 | X86_CR0_WP
3839 | X86_CR0_PG
3840 | X86_CR0_ET /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.ET */
3841 | X86_CR0_CD /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.CD */
3842 | X86_CR0_NW; /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.NW */
3843
3844 /** @todo Avoid intercepting CR0.PE with unrestricted guests. Fix PGM
3845 * enmGuestMode to be in-sync with the current mode. See @bugref{6398}
3846 * and @bugref{6944}. */
3847#if 0
3848 if (pVM->hm.s.vmx.fUnrestrictedGuest)
3849 u32CR0Mask &= ~X86_CR0_PE;
3850#endif
3851 if (pVM->hm.s.fNestedPaging)
3852 u32CR0Mask &= ~X86_CR0_WP;
3853
3854 /* If the guest FPU state is active, don't need to VM-exit on writes to FPU related bits in CR0. */
3855 if (fInterceptNM)
3856 {
3857 u32CR0Mask |= X86_CR0_TS
3858 | X86_CR0_MP;
3859 }
3860
3861 /* Write the CR0 mask into the VMCS and update the VCPU's copy of the current CR0 mask. */
3862 pVCpu->hm.s.vmx.u32CR0Mask = u32CR0Mask;
3863 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_MASK, u32CR0Mask);
3864 AssertRCReturn(rc, rc);
3865 Log4(("Load[%RU32]: VMX_VMCS_CTRL_CR0_MASK=%#RX32\n", pVCpu->idCpu, u32CR0Mask));
3866
3867 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR0);
3868 }
3869 return rc;
3870}
3871
3872
3873/**
3874 * Loads the guest control registers (CR3, CR4) into the guest-state area
3875 * in the VMCS.
3876 *
3877 * @returns VBox strict status code.
3878 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
3879 * without unrestricted guest access and the VMMDev is not presently
3880 * mapped (e.g. EFI32).
3881 *
3882 * @param pVCpu The cross context virtual CPU structure.
3883 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3884 * out-of-sync. Make sure to update the required fields
3885 * before using them.
3886 *
3887 * @remarks No-long-jump zone!!!
3888 */
3889static VBOXSTRICTRC hmR0VmxLoadGuestCR3AndCR4(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3890{
3891 int rc = VINF_SUCCESS;
3892 PVM pVM = pVCpu->CTX_SUFF(pVM);
3893
3894 /*
3895 * Guest CR2.
3896 * It's always loaded in the assembler code. Nothing to do here.
3897 */
3898
3899 /*
3900 * Guest CR3.
3901 */
3902 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR3))
3903 {
3904 RTGCPHYS GCPhysGuestCR3 = NIL_RTGCPHYS;
3905 if (pVM->hm.s.fNestedPaging)
3906 {
3907 pVCpu->hm.s.vmx.HCPhysEPTP = PGMGetHyperCR3(pVCpu);
3908
3909 /* Validate. See Intel spec. 28.2.2 "EPT Translation Mechanism" and 24.6.11 "Extended-Page-Table Pointer (EPTP)" */
3910 Assert(pVCpu->hm.s.vmx.HCPhysEPTP);
3911 Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & UINT64_C(0xfff0000000000000)));
3912 Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & 0xfff));
3913
3914 /* VMX_EPT_MEMTYPE_WB support is already checked in hmR0VmxSetupTaggedTlb(). */
3915 pVCpu->hm.s.vmx.HCPhysEPTP |= VMX_EPT_MEMTYPE_WB
3916 | (VMX_EPT_PAGE_WALK_LENGTH_DEFAULT << VMX_EPT_PAGE_WALK_LENGTH_SHIFT);
3917
3918 /* Validate. See Intel spec. 26.2.1 "Checks on VMX Controls" */
3919 AssertMsg( ((pVCpu->hm.s.vmx.HCPhysEPTP >> 3) & 0x07) == 3 /* Bits 3:5 (EPT page walk length - 1) must be 3. */
3920 && ((pVCpu->hm.s.vmx.HCPhysEPTP >> 7) & 0x1f) == 0, /* Bits 7:11 MBZ. */
3921 ("EPTP %#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
3922 AssertMsg( !((pVCpu->hm.s.vmx.HCPhysEPTP >> 6) & 0x01) /* Bit 6 (EPT accessed & dirty bit). */
3923 || (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EPT_ACCESS_DIRTY),
3924 ("EPTP accessed/dirty bit not supported by CPU but set %#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
3925
3926 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, pVCpu->hm.s.vmx.HCPhysEPTP);
3927 AssertRCReturn(rc, rc);
3928 Log4(("Load[%RU32]: VMX_VMCS64_CTRL_EPTP_FULL=%#RX64\n", pVCpu->idCpu, pVCpu->hm.s.vmx.HCPhysEPTP));
3929
3930 if ( pVM->hm.s.vmx.fUnrestrictedGuest
3931 || CPUMIsGuestPagingEnabledEx(pMixedCtx))
3932 {
3933 /* If the guest is in PAE mode, pass the PDPEs to VT-x using the VMCS fields. */
3934 if (CPUMIsGuestInPAEModeEx(pMixedCtx))
3935 {
3936 rc = PGMGstGetPaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
3937 AssertRCReturn(rc, rc);
3938 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, pVCpu->hm.s.aPdpes[0].u);
3939 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, pVCpu->hm.s.aPdpes[1].u);
3940 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, pVCpu->hm.s.aPdpes[2].u);
3941 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, pVCpu->hm.s.aPdpes[3].u);
3942 AssertRCReturn(rc, rc);
3943 }
3944
3945 /* The guest's view of its CR3 is unblemished with Nested Paging when the guest is using paging or we
3946 have Unrestricted Execution to handle the guest when it's not using paging. */
3947 GCPhysGuestCR3 = pMixedCtx->cr3;
3948 }
3949 else
3950 {
3951 /*
3952 * The guest is not using paging, but the CPU (VT-x) has to. While the guest thinks it accesses physical memory
3953 * directly, we use our identity-mapped page table to map guest-linear to guest-physical addresses.
3954 * EPT takes care of translating it to host-physical addresses.
3955 */
3956 RTGCPHYS GCPhys;
3957 Assert(pVM->hm.s.vmx.pNonPagingModeEPTPageTable);
3958
3959 /* We obtain it here every time as the guest could have relocated this PCI region. */
3960 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
3961 if (RT_SUCCESS(rc))
3962 { /* likely */ }
3963 else if (rc == VERR_PDM_DEV_HEAP_R3_TO_GCPHYS)
3964 {
3965 Log4(("Load[%RU32]: VERR_PDM_DEV_HEAP_R3_TO_GCPHYS -> VINF_EM_RESCHEDULE_REM\n", pVCpu->idCpu));
3966 return VINF_EM_RESCHEDULE_REM; /* We cannot execute now, switch to REM/IEM till the guest maps in VMMDev. */
3967 }
3968 else
3969 AssertMsgFailedReturn(("%Rrc\n", rc), rc);
3970
3971 GCPhysGuestCR3 = GCPhys;
3972 }
3973
3974 Log4(("Load[%RU32]: VMX_VMCS_GUEST_CR3=%#RGp (GstN)\n", pVCpu->idCpu, GCPhysGuestCR3));
3975 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_CR3, GCPhysGuestCR3);
3976 }
3977 else
3978 {
3979 /* Non-nested paging case, just use the hypervisor's CR3. */
3980 RTHCPHYS HCPhysGuestCR3 = PGMGetHyperCR3(pVCpu);
3981
3982 Log4(("Load[%RU32]: VMX_VMCS_GUEST_CR3=%#RHv (HstN)\n", pVCpu->idCpu, HCPhysGuestCR3));
3983 rc = VMXWriteVmcsHstN(VMX_VMCS_GUEST_CR3, HCPhysGuestCR3);
3984 }
3985 AssertRCReturn(rc, rc);
3986
3987 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR3);
3988 }
3989
3990 /*
3991 * Guest CR4.
3992 * ASSUMES this is done everytime we get in from ring-3! (XCR0)
3993 */
3994 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR4))
3995 {
3996 Assert(!(pMixedCtx->cr4 >> 32));
3997 uint32_t u32GuestCR4 = pMixedCtx->cr4;
3998
3999 /* The guest's view of its CR4 is unblemished. */
4000 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, u32GuestCR4);
4001 AssertRCReturn(rc, rc);
4002 Log4(("Load[%RU32]: VMX_VMCS_CTRL_CR4_READ_SHADOW=%#RX32\n", pVCpu->idCpu, u32GuestCR4));
4003
4004 /* Setup VT-x's view of the guest CR4. */
4005 /*
4006 * If we're emulating real-mode using virtual-8086 mode, we want to redirect software interrupts to the 8086 program
4007 * interrupt handler. Clear the VME bit (the interrupt redirection bitmap is already all 0, see hmR3InitFinalizeR0())
4008 * See Intel spec. 20.2 "Software Interrupt Handling Methods While in Virtual-8086 Mode".
4009 */
4010 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4011 {
4012 Assert(pVM->hm.s.vmx.pRealModeTSS);
4013 Assert(PDMVmmDevHeapIsEnabled(pVM));
4014 u32GuestCR4 &= ~X86_CR4_VME;
4015 }
4016
4017 if (pVM->hm.s.fNestedPaging)
4018 {
4019 if ( !CPUMIsGuestPagingEnabledEx(pMixedCtx)
4020 && !pVM->hm.s.vmx.fUnrestrictedGuest)
4021 {
4022 /* We use 4 MB pages in our identity mapping page table when the guest doesn't have paging. */
4023 u32GuestCR4 |= X86_CR4_PSE;
4024 /* Our identity mapping is a 32-bit page directory. */
4025 u32GuestCR4 &= ~X86_CR4_PAE;
4026 }
4027 /* else use guest CR4.*/
4028 }
4029 else
4030 {
4031 /*
4032 * The shadow paging modes and guest paging modes are different, the shadow is in accordance with the host
4033 * paging mode and thus we need to adjust VT-x's view of CR4 depending on our shadow page tables.
4034 */
4035 switch (pVCpu->hm.s.enmShadowMode)
4036 {
4037 case PGMMODE_REAL: /* Real-mode. */
4038 case PGMMODE_PROTECTED: /* Protected mode without paging. */
4039 case PGMMODE_32_BIT: /* 32-bit paging. */
4040 {
4041 u32GuestCR4 &= ~X86_CR4_PAE;
4042 break;
4043 }
4044
4045 case PGMMODE_PAE: /* PAE paging. */
4046 case PGMMODE_PAE_NX: /* PAE paging with NX. */
4047 {
4048 u32GuestCR4 |= X86_CR4_PAE;
4049 break;
4050 }
4051
4052 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
4053 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
4054#ifdef VBOX_ENABLE_64_BITS_GUESTS
4055 break;
4056#endif
4057 default:
4058 AssertFailed();
4059 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
4060 }
4061 }
4062
4063 /* We need to set and clear the CR4 specific bits here (mainly the X86_CR4_VMXE bit). */
4064 uint64_t uSetCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
4065 uint64_t uZapCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
4066 u32GuestCR4 |= uSetCR4;
4067 u32GuestCR4 &= uZapCR4;
4068
4069 /* Write VT-x's view of the guest CR4 into the VMCS. */
4070 Log4(("Load[%RU32]: VMX_VMCS_GUEST_CR4=%#RX32 (Set=%#RX32 Zap=%#RX32)\n", pVCpu->idCpu, u32GuestCR4, uSetCR4, uZapCR4));
4071 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR4, u32GuestCR4);
4072 AssertRCReturn(rc, rc);
4073
4074 /* Setup CR4 mask. CR4 flags owned by the host, if the guest attempts to change them, that would cause a VM-exit. */
4075 uint32_t u32CR4Mask = X86_CR4_VME
4076 | X86_CR4_PAE
4077 | X86_CR4_PGE
4078 | X86_CR4_PSE
4079 | X86_CR4_VMXE;
4080 if (pVM->cpum.ro.HostFeatures.fXSaveRstor)
4081 u32CR4Mask |= X86_CR4_OSXSAVE;
4082 pVCpu->hm.s.vmx.u32CR4Mask = u32CR4Mask;
4083 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_MASK, u32CR4Mask);
4084 AssertRCReturn(rc, rc);
4085
4086 /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
4087 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pMixedCtx->cr4 & X86_CR4_OSXSAVE) && pMixedCtx->aXcr[0] != ASMGetXcr0();
4088
4089 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR4);
4090 }
4091 return rc;
4092}
4093
4094
4095/**
4096 * Loads the guest debug registers into the guest-state area in the VMCS.
4097 *
4098 * This also sets up whether \#DB and MOV DRx accesses cause VM-exits.
4099 *
4100 * The guest debug bits are partially shared with the host (e.g. DR6, DR0-3).
4101 *
4102 * @returns VBox status code.
4103 * @param pVCpu The cross context virtual CPU structure.
4104 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4105 * out-of-sync. Make sure to update the required fields
4106 * before using them.
4107 *
4108 * @remarks No-long-jump zone!!!
4109 */
4110static int hmR0VmxLoadSharedDebugState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4111{
4112 if (!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_DEBUG))
4113 return VINF_SUCCESS;
4114
4115#ifdef VBOX_STRICT
4116 /* Validate. Intel spec. 26.3.1.1 "Checks on Guest Controls Registers, Debug Registers, MSRs" */
4117 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG)
4118 {
4119 /* Validate. Intel spec. 17.2 "Debug Registers", recompiler paranoia checks. */
4120 Assert((pMixedCtx->dr[7] & (X86_DR7_MBZ_MASK | X86_DR7_RAZ_MASK)) == 0); /* Bits 63:32, 15, 14, 12, 11 are reserved. */
4121 Assert((pMixedCtx->dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK); /* Bit 10 is reserved (RA1). */
4122 }
4123#endif
4124
4125 int rc;
4126 PVM pVM = pVCpu->CTX_SUFF(pVM);
4127 bool fSteppingDB = false;
4128 bool fInterceptMovDRx = false;
4129 if (pVCpu->hm.s.fSingleInstruction)
4130 {
4131 /* If the CPU supports the monitor trap flag, use it for single stepping in DBGF and avoid intercepting #DB. */
4132 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG)
4133 {
4134 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG;
4135 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
4136 AssertRCReturn(rc, rc);
4137 Assert(fSteppingDB == false);
4138 }
4139 else
4140 {
4141 pMixedCtx->eflags.u32 |= X86_EFL_TF;
4142 pVCpu->hm.s.fClearTrapFlag = true;
4143 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RFLAGS);
4144 fSteppingDB = true;
4145 }
4146 }
4147
4148 if ( fSteppingDB
4149 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
4150 {
4151 /*
4152 * Use the combined guest and host DRx values found in the hypervisor
4153 * register set because the debugger has breakpoints active or someone
4154 * is single stepping on the host side without a monitor trap flag.
4155 *
4156 * Note! DBGF expects a clean DR6 state before executing guest code.
4157 */
4158#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4159 if ( CPUMIsGuestInLongModeEx(pMixedCtx)
4160 && !CPUMIsHyperDebugStateActivePending(pVCpu))
4161 {
4162 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
4163 Assert(CPUMIsHyperDebugStateActivePending(pVCpu));
4164 Assert(!CPUMIsGuestDebugStateActivePending(pVCpu));
4165 }
4166 else
4167#endif
4168 if (!CPUMIsHyperDebugStateActive(pVCpu))
4169 {
4170 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
4171 Assert(CPUMIsHyperDebugStateActive(pVCpu));
4172 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
4173 }
4174
4175 /* Update DR7. (The other DRx values are handled by CPUM one way or the other.) */
4176 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, (uint32_t)CPUMGetHyperDR7(pVCpu));
4177 AssertRCReturn(rc, rc);
4178
4179 pVCpu->hm.s.fUsingHyperDR7 = true;
4180 fInterceptMovDRx = true;
4181 }
4182 else
4183 {
4184 /*
4185 * If the guest has enabled debug registers, we need to load them prior to
4186 * executing guest code so they'll trigger at the right time.
4187 */
4188 if (pMixedCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD)) /** @todo Why GD? */
4189 {
4190#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4191 if ( CPUMIsGuestInLongModeEx(pMixedCtx)
4192 && !CPUMIsGuestDebugStateActivePending(pVCpu))
4193 {
4194 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
4195 Assert(CPUMIsGuestDebugStateActivePending(pVCpu));
4196 Assert(!CPUMIsHyperDebugStateActivePending(pVCpu));
4197 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
4198 }
4199 else
4200#endif
4201 if (!CPUMIsGuestDebugStateActive(pVCpu))
4202 {
4203 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
4204 Assert(CPUMIsGuestDebugStateActive(pVCpu));
4205 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
4206 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
4207 }
4208 Assert(!fInterceptMovDRx);
4209 }
4210 /*
4211 * If no debugging enabled, we'll lazy load DR0-3. Unlike on AMD-V, we
4212 * must intercept #DB in order to maintain a correct DR6 guest value, and
4213 * because we need to intercept it to prevent nested #DBs from hanging the
4214 * CPU, we end up always having to intercept it. See hmR0VmxInitXcptBitmap.
4215 */
4216#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4217 else if ( !CPUMIsGuestDebugStateActivePending(pVCpu)
4218 && !CPUMIsGuestDebugStateActive(pVCpu))
4219#else
4220 else if (!CPUMIsGuestDebugStateActive(pVCpu))
4221#endif
4222 {
4223 fInterceptMovDRx = true;
4224 }
4225
4226 /* Update guest DR7. */
4227 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, pMixedCtx->dr[7]);
4228 AssertRCReturn(rc, rc);
4229
4230 pVCpu->hm.s.fUsingHyperDR7 = false;
4231 }
4232
4233 /*
4234 * Update the processor-based VM-execution controls regarding intercepting MOV DRx instructions.
4235 */
4236 if (fInterceptMovDRx)
4237 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT;
4238 else
4239 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT;
4240 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
4241 AssertRCReturn(rc, rc);
4242
4243 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_DEBUG);
4244 return VINF_SUCCESS;
4245}
4246
4247
4248#ifdef VBOX_STRICT
4249/**
4250 * Strict function to validate segment registers.
4251 *
4252 * @remarks ASSUMES CR0 is up to date.
4253 */
4254static void hmR0VmxValidateSegmentRegs(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
4255{
4256 /* Validate segment registers. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers". */
4257 /* NOTE: The reason we check for attribute value 0 and not just the unusable bit here is because hmR0VmxWriteSegmentReg()
4258 * only updates the VMCS' copy of the value with the unusable bit and doesn't change the guest-context value. */
4259 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
4260 && ( !CPUMIsGuestInRealModeEx(pCtx)
4261 && !CPUMIsGuestInV86ModeEx(pCtx)))
4262 {
4263 /* Protected mode checks */
4264 /* CS */
4265 Assert(pCtx->cs.Attr.n.u1Present);
4266 Assert(!(pCtx->cs.Attr.u & 0xf00));
4267 Assert(!(pCtx->cs.Attr.u & 0xfffe0000));
4268 Assert( (pCtx->cs.u32Limit & 0xfff) == 0xfff
4269 || !(pCtx->cs.Attr.n.u1Granularity));
4270 Assert( !(pCtx->cs.u32Limit & 0xfff00000)
4271 || (pCtx->cs.Attr.n.u1Granularity));
4272 /* CS cannot be loaded with NULL in protected mode. */
4273 Assert(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE)); /** @todo is this really true even for 64-bit CS? */
4274 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
4275 Assert(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl);
4276 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
4277 Assert(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl);
4278 else
4279 AssertMsgFailed(("Invalid CS Type %#x\n", pCtx->cs.Attr.n.u2Dpl));
4280 /* SS */
4281 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
4282 Assert(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL));
4283 if ( !(pCtx->cr0 & X86_CR0_PE)
4284 || pCtx->cs.Attr.n.u4Type == 3)
4285 {
4286 Assert(!pCtx->ss.Attr.n.u2Dpl);
4287 }
4288 if (pCtx->ss.Attr.u && !(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
4289 {
4290 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
4291 Assert(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7);
4292 Assert(pCtx->ss.Attr.n.u1Present);
4293 Assert(!(pCtx->ss.Attr.u & 0xf00));
4294 Assert(!(pCtx->ss.Attr.u & 0xfffe0000));
4295 Assert( (pCtx->ss.u32Limit & 0xfff) == 0xfff
4296 || !(pCtx->ss.Attr.n.u1Granularity));
4297 Assert( !(pCtx->ss.u32Limit & 0xfff00000)
4298 || (pCtx->ss.Attr.n.u1Granularity));
4299 }
4300 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxWriteSegmentReg(). */
4301 if (pCtx->ds.Attr.u && !(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
4302 {
4303 Assert(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4304 Assert(pCtx->ds.Attr.n.u1Present);
4305 Assert(pCtx->ds.Attr.n.u4Type > 11 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL));
4306 Assert(!(pCtx->ds.Attr.u & 0xf00));
4307 Assert(!(pCtx->ds.Attr.u & 0xfffe0000));
4308 Assert( (pCtx->ds.u32Limit & 0xfff) == 0xfff
4309 || !(pCtx->ds.Attr.n.u1Granularity));
4310 Assert( !(pCtx->ds.u32Limit & 0xfff00000)
4311 || (pCtx->ds.Attr.n.u1Granularity));
4312 Assert( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4313 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ));
4314 }
4315 if (pCtx->es.Attr.u && !(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
4316 {
4317 Assert(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4318 Assert(pCtx->es.Attr.n.u1Present);
4319 Assert(pCtx->es.Attr.n.u4Type > 11 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL));
4320 Assert(!(pCtx->es.Attr.u & 0xf00));
4321 Assert(!(pCtx->es.Attr.u & 0xfffe0000));
4322 Assert( (pCtx->es.u32Limit & 0xfff) == 0xfff
4323 || !(pCtx->es.Attr.n.u1Granularity));
4324 Assert( !(pCtx->es.u32Limit & 0xfff00000)
4325 || (pCtx->es.Attr.n.u1Granularity));
4326 Assert( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4327 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ));
4328 }
4329 if (pCtx->fs.Attr.u && !(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
4330 {
4331 Assert(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4332 Assert(pCtx->fs.Attr.n.u1Present);
4333 Assert(pCtx->fs.Attr.n.u4Type > 11 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL));
4334 Assert(!(pCtx->fs.Attr.u & 0xf00));
4335 Assert(!(pCtx->fs.Attr.u & 0xfffe0000));
4336 Assert( (pCtx->fs.u32Limit & 0xfff) == 0xfff
4337 || !(pCtx->fs.Attr.n.u1Granularity));
4338 Assert( !(pCtx->fs.u32Limit & 0xfff00000)
4339 || (pCtx->fs.Attr.n.u1Granularity));
4340 Assert( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4341 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ));
4342 }
4343 if (pCtx->gs.Attr.u && !(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
4344 {
4345 Assert(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4346 Assert(pCtx->gs.Attr.n.u1Present);
4347 Assert(pCtx->gs.Attr.n.u4Type > 11 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL));
4348 Assert(!(pCtx->gs.Attr.u & 0xf00));
4349 Assert(!(pCtx->gs.Attr.u & 0xfffe0000));
4350 Assert( (pCtx->gs.u32Limit & 0xfff) == 0xfff
4351 || !(pCtx->gs.Attr.n.u1Granularity));
4352 Assert( !(pCtx->gs.u32Limit & 0xfff00000)
4353 || (pCtx->gs.Attr.n.u1Granularity));
4354 Assert( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4355 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ));
4356 }
4357 /* 64-bit capable CPUs. */
4358# if HC_ARCH_BITS == 64
4359 Assert(!(pCtx->cs.u64Base >> 32));
4360 Assert(!pCtx->ss.Attr.u || !(pCtx->ss.u64Base >> 32));
4361 Assert(!pCtx->ds.Attr.u || !(pCtx->ds.u64Base >> 32));
4362 Assert(!pCtx->es.Attr.u || !(pCtx->es.u64Base >> 32));
4363# endif
4364 }
4365 else if ( CPUMIsGuestInV86ModeEx(pCtx)
4366 || ( CPUMIsGuestInRealModeEx(pCtx)
4367 && !pVM->hm.s.vmx.fUnrestrictedGuest))
4368 {
4369 /* Real and v86 mode checks. */
4370 /* hmR0VmxWriteSegmentReg() writes the modified in VMCS. We want what we're feeding to VT-x. */
4371 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
4372 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4373 {
4374 u32CSAttr = 0xf3; u32SSAttr = 0xf3; u32DSAttr = 0xf3; u32ESAttr = 0xf3; u32FSAttr = 0xf3; u32GSAttr = 0xf3;
4375 }
4376 else
4377 {
4378 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u; u32DSAttr = pCtx->ds.Attr.u;
4379 u32ESAttr = pCtx->es.Attr.u; u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
4380 }
4381
4382 /* CS */
4383 AssertMsg((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), ("CS base %#x %#x\n", pCtx->cs.u64Base, pCtx->cs.Sel));
4384 Assert(pCtx->cs.u32Limit == 0xffff);
4385 Assert(u32CSAttr == 0xf3);
4386 /* SS */
4387 Assert(pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4);
4388 Assert(pCtx->ss.u32Limit == 0xffff);
4389 Assert(u32SSAttr == 0xf3);
4390 /* DS */
4391 Assert(pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4);
4392 Assert(pCtx->ds.u32Limit == 0xffff);
4393 Assert(u32DSAttr == 0xf3);
4394 /* ES */
4395 Assert(pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4);
4396 Assert(pCtx->es.u32Limit == 0xffff);
4397 Assert(u32ESAttr == 0xf3);
4398 /* FS */
4399 Assert(pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4);
4400 Assert(pCtx->fs.u32Limit == 0xffff);
4401 Assert(u32FSAttr == 0xf3);
4402 /* GS */
4403 Assert(pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4);
4404 Assert(pCtx->gs.u32Limit == 0xffff);
4405 Assert(u32GSAttr == 0xf3);
4406 /* 64-bit capable CPUs. */
4407# if HC_ARCH_BITS == 64
4408 Assert(!(pCtx->cs.u64Base >> 32));
4409 Assert(!u32SSAttr || !(pCtx->ss.u64Base >> 32));
4410 Assert(!u32DSAttr || !(pCtx->ds.u64Base >> 32));
4411 Assert(!u32ESAttr || !(pCtx->es.u64Base >> 32));
4412# endif
4413 }
4414}
4415#endif /* VBOX_STRICT */
4416
4417
4418/**
4419 * Writes a guest segment register into the guest-state area in the VMCS.
4420 *
4421 * @returns VBox status code.
4422 * @param pVCpu The cross context virtual CPU structure.
4423 * @param idxSel Index of the selector in the VMCS.
4424 * @param idxLimit Index of the segment limit in the VMCS.
4425 * @param idxBase Index of the segment base in the VMCS.
4426 * @param idxAccess Index of the access rights of the segment in the VMCS.
4427 * @param pSelReg Pointer to the segment selector.
4428 *
4429 * @remarks No-long-jump zone!!!
4430 */
4431static int hmR0VmxWriteSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase,
4432 uint32_t idxAccess, PCPUMSELREG pSelReg)
4433{
4434 int rc = VMXWriteVmcs32(idxSel, pSelReg->Sel); /* 16-bit guest selector field. */
4435 rc |= VMXWriteVmcs32(idxLimit, pSelReg->u32Limit); /* 32-bit guest segment limit field. */
4436 rc |= VMXWriteVmcsGstN(idxBase, pSelReg->u64Base); /* Natural width guest segment base field.*/
4437 AssertRCReturn(rc, rc);
4438
4439 uint32_t u32Access = pSelReg->Attr.u;
4440 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4441 {
4442 /* VT-x requires our real-using-v86 mode hack to override the segment access-right bits. */
4443 u32Access = 0xf3;
4444 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
4445 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
4446 }
4447 else
4448 {
4449 /*
4450 * The way to differentiate between whether this is really a null selector or was just a selector loaded with 0 in
4451 * real-mode is using the segment attributes. A selector loaded in real-mode with the value 0 is valid and usable in
4452 * protected-mode and we should -not- mark it as an unusable segment. Both the recompiler & VT-x ensures NULL selectors
4453 * loaded in protected-mode have their attribute as 0.
4454 */
4455 if (!u32Access)
4456 u32Access = X86DESCATTR_UNUSABLE;
4457 }
4458
4459 /* Validate segment access rights. Refer to Intel spec. "26.3.1.2 Checks on Guest Segment Registers". */
4460 AssertMsg((u32Access & X86DESCATTR_UNUSABLE) || (u32Access & X86_SEL_TYPE_ACCESSED),
4461 ("Access bit not set for usable segment. idx=%#x sel=%#x attr %#x\n", idxBase, pSelReg, pSelReg->Attr.u));
4462
4463 rc = VMXWriteVmcs32(idxAccess, u32Access); /* 32-bit guest segment access-rights field. */
4464 AssertRCReturn(rc, rc);
4465 return rc;
4466}
4467
4468
4469/**
4470 * Loads the guest segment registers, GDTR, IDTR, LDTR, (TR, FS and GS bases)
4471 * into the guest-state area in the VMCS.
4472 *
4473 * @returns VBox status code.
4474 * @param pVCpu The cross context virtual CPU structure.
4475 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4476 * out-of-sync. Make sure to update the required fields
4477 * before using them.
4478 *
4479 * @remarks ASSUMES pMixedCtx->cr0 is up to date (strict builds validation).
4480 * @remarks No-long-jump zone!!!
4481 */
4482static int hmR0VmxLoadGuestSegmentRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4483{
4484 int rc = VERR_INTERNAL_ERROR_5;
4485 PVM pVM = pVCpu->CTX_SUFF(pVM);
4486
4487 /*
4488 * Guest Segment registers: CS, SS, DS, ES, FS, GS.
4489 */
4490 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS))
4491 {
4492 /* Save the segment attributes for real-on-v86 mode hack, so we can restore them on VM-exit. */
4493 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4494 {
4495 pVCpu->hm.s.vmx.RealMode.AttrCS.u = pMixedCtx->cs.Attr.u;
4496 pVCpu->hm.s.vmx.RealMode.AttrSS.u = pMixedCtx->ss.Attr.u;
4497 pVCpu->hm.s.vmx.RealMode.AttrDS.u = pMixedCtx->ds.Attr.u;
4498 pVCpu->hm.s.vmx.RealMode.AttrES.u = pMixedCtx->es.Attr.u;
4499 pVCpu->hm.s.vmx.RealMode.AttrFS.u = pMixedCtx->fs.Attr.u;
4500 pVCpu->hm.s.vmx.RealMode.AttrGS.u = pMixedCtx->gs.Attr.u;
4501 }
4502
4503#ifdef VBOX_WITH_REM
4504 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
4505 {
4506 Assert(pVM->hm.s.vmx.pRealModeTSS);
4507 AssertCompile(PGMMODE_REAL < PGMMODE_PROTECTED);
4508 if ( pVCpu->hm.s.vmx.fWasInRealMode
4509 && PGMGetGuestMode(pVCpu) >= PGMMODE_PROTECTED)
4510 {
4511 /* Signal that the recompiler must flush its code-cache as the guest -may- rewrite code it will later execute
4512 in real-mode (e.g. OpenBSD 4.0) */
4513 REMFlushTBs(pVM);
4514 Log4(("Load[%RU32]: Switch to protected mode detected!\n", pVCpu->idCpu));
4515 pVCpu->hm.s.vmx.fWasInRealMode = false;
4516 }
4517 }
4518#endif
4519 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_CS_SEL, VMX_VMCS32_GUEST_CS_LIMIT, VMX_VMCS_GUEST_CS_BASE,
4520 VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS, &pMixedCtx->cs);
4521 AssertRCReturn(rc, rc);
4522 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_SS_SEL, VMX_VMCS32_GUEST_SS_LIMIT, VMX_VMCS_GUEST_SS_BASE,
4523 VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS, &pMixedCtx->ss);
4524 AssertRCReturn(rc, rc);
4525 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_DS_SEL, VMX_VMCS32_GUEST_DS_LIMIT, VMX_VMCS_GUEST_DS_BASE,
4526 VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS, &pMixedCtx->ds);
4527 AssertRCReturn(rc, rc);
4528 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_ES_SEL, VMX_VMCS32_GUEST_ES_LIMIT, VMX_VMCS_GUEST_ES_BASE,
4529 VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS, &pMixedCtx->es);
4530 AssertRCReturn(rc, rc);
4531 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FS_SEL, VMX_VMCS32_GUEST_FS_LIMIT, VMX_VMCS_GUEST_FS_BASE,
4532 VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS, &pMixedCtx->fs);
4533 AssertRCReturn(rc, rc);
4534 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_GS_SEL, VMX_VMCS32_GUEST_GS_LIMIT, VMX_VMCS_GUEST_GS_BASE,
4535 VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS, &pMixedCtx->gs);
4536 AssertRCReturn(rc, rc);
4537
4538#ifdef VBOX_STRICT
4539 /* Validate. */
4540 hmR0VmxValidateSegmentRegs(pVM, pVCpu, pMixedCtx);
4541#endif
4542
4543 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS);
4544 Log4(("Load[%RU32]: CS=%#RX16 Base=%#RX64 Limit=%#RX32 Attr=%#RX32\n", pVCpu->idCpu, pMixedCtx->cs.Sel,
4545 pMixedCtx->cs.u64Base, pMixedCtx->cs.u32Limit, pMixedCtx->cs.Attr.u));
4546 }
4547
4548 /*
4549 * Guest TR.
4550 */
4551 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_TR))
4552 {
4553 /*
4554 * Real-mode emulation using virtual-8086 mode with CR4.VME. Interrupt redirection is achieved
4555 * using the interrupt redirection bitmap (all bits cleared to let the guest handle INT-n's) in the TSS.
4556 * See hmR3InitFinalizeR0() to see how pRealModeTSS is setup.
4557 */
4558 uint16_t u16Sel = 0;
4559 uint32_t u32Limit = 0;
4560 uint64_t u64Base = 0;
4561 uint32_t u32AccessRights = 0;
4562
4563 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4564 {
4565 u16Sel = pMixedCtx->tr.Sel;
4566 u32Limit = pMixedCtx->tr.u32Limit;
4567 u64Base = pMixedCtx->tr.u64Base;
4568 u32AccessRights = pMixedCtx->tr.Attr.u;
4569 }
4570 else
4571 {
4572 Assert(pVM->hm.s.vmx.pRealModeTSS);
4573 Assert(PDMVmmDevHeapIsEnabled(pVM)); /* Guaranteed by HMR3CanExecuteGuest() -XXX- what about inner loop changes? */
4574
4575 /* We obtain it here every time as PCI regions could be reconfigured in the guest, changing the VMMDev base. */
4576 RTGCPHYS GCPhys;
4577 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
4578 AssertRCReturn(rc, rc);
4579
4580 X86DESCATTR DescAttr;
4581 DescAttr.u = 0;
4582 DescAttr.n.u1Present = 1;
4583 DescAttr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
4584
4585 u16Sel = 0;
4586 u32Limit = HM_VTX_TSS_SIZE;
4587 u64Base = GCPhys; /* in real-mode phys = virt. */
4588 u32AccessRights = DescAttr.u;
4589 }
4590
4591 /* Validate. */
4592 Assert(!(u16Sel & RT_BIT(2)));
4593 AssertMsg( (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_386_TSS_BUSY
4594 || (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_286_TSS_BUSY, ("TSS is not busy!? %#x\n", u32AccessRights));
4595 AssertMsg(!(u32AccessRights & X86DESCATTR_UNUSABLE), ("TR unusable bit is not clear!? %#x\n", u32AccessRights));
4596 Assert(!(u32AccessRights & RT_BIT(4))); /* System MBZ.*/
4597 Assert(u32AccessRights & RT_BIT(7)); /* Present MB1.*/
4598 Assert(!(u32AccessRights & 0xf00)); /* 11:8 MBZ. */
4599 Assert(!(u32AccessRights & 0xfffe0000)); /* 31:17 MBZ. */
4600 Assert( (u32Limit & 0xfff) == 0xfff
4601 || !(u32AccessRights & RT_BIT(15))); /* Granularity MBZ. */
4602 Assert( !(pMixedCtx->tr.u32Limit & 0xfff00000)
4603 || (u32AccessRights & RT_BIT(15))); /* Granularity MB1. */
4604
4605 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_TR_SEL, u16Sel);
4606 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_LIMIT, u32Limit);
4607 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_TR_BASE, u64Base);
4608 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, u32AccessRights);
4609 AssertRCReturn(rc, rc);
4610
4611 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_TR);
4612 Log4(("Load[%RU32]: VMX_VMCS_GUEST_TR_BASE=%#RX64\n", pVCpu->idCpu, u64Base));
4613 }
4614
4615 /*
4616 * Guest GDTR.
4617 */
4618 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_GDTR))
4619 {
4620 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, pMixedCtx->gdtr.cbGdt);
4621 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, pMixedCtx->gdtr.pGdt);
4622 AssertRCReturn(rc, rc);
4623
4624 /* Validate. */
4625 Assert(!(pMixedCtx->gdtr.cbGdt & 0xffff0000)); /* Bits 31:16 MBZ. */
4626
4627 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_GDTR);
4628 Log4(("Load[%RU32]: VMX_VMCS_GUEST_GDTR_BASE=%#RX64\n", pVCpu->idCpu, pMixedCtx->gdtr.pGdt));
4629 }
4630
4631 /*
4632 * Guest LDTR.
4633 */
4634 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LDTR))
4635 {
4636 /* The unusable bit is specific to VT-x, if it's a null selector mark it as an unusable segment. */
4637 uint32_t u32Access = 0;
4638 if (!pMixedCtx->ldtr.Attr.u)
4639 u32Access = X86DESCATTR_UNUSABLE;
4640 else
4641 u32Access = pMixedCtx->ldtr.Attr.u;
4642
4643 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_LDTR_SEL, pMixedCtx->ldtr.Sel);
4644 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_LIMIT, pMixedCtx->ldtr.u32Limit);
4645 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_LDTR_BASE, pMixedCtx->ldtr.u64Base);
4646 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, u32Access);
4647 AssertRCReturn(rc, rc);
4648
4649 /* Validate. */
4650 if (!(u32Access & X86DESCATTR_UNUSABLE))
4651 {
4652 Assert(!(pMixedCtx->ldtr.Sel & RT_BIT(2))); /* TI MBZ. */
4653 Assert(pMixedCtx->ldtr.Attr.n.u4Type == 2); /* Type MB2 (LDT). */
4654 Assert(!pMixedCtx->ldtr.Attr.n.u1DescType); /* System MBZ. */
4655 Assert(pMixedCtx->ldtr.Attr.n.u1Present == 1); /* Present MB1. */
4656 Assert(!pMixedCtx->ldtr.Attr.n.u4LimitHigh); /* 11:8 MBZ. */
4657 Assert(!(pMixedCtx->ldtr.Attr.u & 0xfffe0000)); /* 31:17 MBZ. */
4658 Assert( (pMixedCtx->ldtr.u32Limit & 0xfff) == 0xfff
4659 || !pMixedCtx->ldtr.Attr.n.u1Granularity); /* Granularity MBZ. */
4660 Assert( !(pMixedCtx->ldtr.u32Limit & 0xfff00000)
4661 || pMixedCtx->ldtr.Attr.n.u1Granularity); /* Granularity MB1. */
4662 }
4663
4664 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_LDTR);
4665 Log4(("Load[%RU32]: VMX_VMCS_GUEST_LDTR_BASE=%#RX64\n", pVCpu->idCpu, pMixedCtx->ldtr.u64Base));
4666 }
4667
4668 /*
4669 * Guest IDTR.
4670 */
4671 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_IDTR))
4672 {
4673 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, pMixedCtx->idtr.cbIdt);
4674 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, pMixedCtx->idtr.pIdt);
4675 AssertRCReturn(rc, rc);
4676
4677 /* Validate. */
4678 Assert(!(pMixedCtx->idtr.cbIdt & 0xffff0000)); /* Bits 31:16 MBZ. */
4679
4680 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_IDTR);
4681 Log4(("Load[%RU32]: VMX_VMCS_GUEST_IDTR_BASE=%#RX64\n", pVCpu->idCpu, pMixedCtx->idtr.pIdt));
4682 }
4683
4684 return VINF_SUCCESS;
4685}
4686
4687
4688/**
4689 * Loads certain guest MSRs into the VM-entry MSR-load and VM-exit MSR-store
4690 * areas.
4691 *
4692 * These MSRs will automatically be loaded to the host CPU on every successful
4693 * VM-entry and stored from the host CPU on every successful VM-exit. This also
4694 * creates/updates MSR slots for the host MSRs. The actual host MSR values are
4695 * -not- updated here for performance reasons. See hmR0VmxSaveHostMsrs().
4696 *
4697 * Also loads the sysenter MSRs into the guest-state area in the VMCS.
4698 *
4699 * @returns VBox status code.
4700 * @param pVCpu The cross context virtual CPU structure.
4701 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4702 * out-of-sync. Make sure to update the required fields
4703 * before using them.
4704 *
4705 * @remarks No-long-jump zone!!!
4706 */
4707static int hmR0VmxLoadGuestMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4708{
4709 AssertPtr(pVCpu);
4710 AssertPtr(pVCpu->hm.s.vmx.pvGuestMsr);
4711
4712 /*
4713 * MSRs that we use the auto-load/store MSR area in the VMCS.
4714 */
4715 PVM pVM = pVCpu->CTX_SUFF(pVM);
4716 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_GUEST_AUTO_MSRS))
4717 {
4718 /* For 64-bit hosts, we load/restore them lazily, see hmR0VmxLazyLoadGuestMsrs(). */
4719#if HC_ARCH_BITS == 32
4720 if (pVM->hm.s.fAllow64BitGuests)
4721 {
4722 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_LSTAR, pMixedCtx->msrLSTAR, false, NULL);
4723 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K6_STAR, pMixedCtx->msrSTAR, false, NULL);
4724 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_SF_MASK, pMixedCtx->msrSFMASK, false, NULL);
4725 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_KERNEL_GS_BASE, pMixedCtx->msrKERNELGSBASE, false, NULL);
4726 AssertRCReturn(rc, rc);
4727# ifdef LOG_ENABLED
4728 PVMXAUTOMSR pMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
4729 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.cMsrs; i++, pMsr++)
4730 {
4731 Log4(("Load[%RU32]: MSR[%RU32]: u32Msr=%#RX32 u64Value=%#RX64\n", pVCpu->idCpu, i, pMsr->u32Msr,
4732 pMsr->u64Value));
4733 }
4734# endif
4735 }
4736#endif
4737 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_GUEST_AUTO_MSRS);
4738 }
4739
4740 /*
4741 * Guest Sysenter MSRs.
4742 * These flags are only set when MSR-bitmaps are not supported by the CPU and we cause
4743 * VM-exits on WRMSRs for these MSRs.
4744 */
4745 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR))
4746 {
4747 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, pMixedCtx->SysEnter.cs); AssertRCReturn(rc, rc);
4748 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR);
4749 }
4750
4751 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR))
4752 {
4753 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, pMixedCtx->SysEnter.eip); AssertRCReturn(rc, rc);
4754 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR);
4755 }
4756
4757 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR))
4758 {
4759 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, pMixedCtx->SysEnter.esp); AssertRCReturn(rc, rc);
4760 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR);
4761 }
4762
4763 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_EFER_MSR))
4764 {
4765 if (hmR0VmxShouldSwapEferMsr(pVCpu, pMixedCtx))
4766 {
4767 /*
4768 * If the CPU supports VMCS controls for swapping EFER, use it. Otherwise, we have no option
4769 * but to use the auto-load store MSR area in the VMCS for swapping EFER. See @bugref{7368}.
4770 */
4771 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
4772 {
4773 int rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_EFER_FULL, pMixedCtx->msrEFER);
4774 AssertRCReturn(rc,rc);
4775 Log4(("Load[%RU32]: VMX_VMCS64_GUEST_EFER_FULL=%#RX64\n", pVCpu->idCpu, pMixedCtx->msrEFER));
4776 }
4777 else
4778 {
4779 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K6_EFER, pMixedCtx->msrEFER, false /* fUpdateHostMsr */,
4780 NULL /* pfAddedAndUpdated */);
4781 AssertRCReturn(rc, rc);
4782
4783 /* We need to intercept reads too, see @bugref{7386#c16}. */
4784 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
4785 hmR0VmxSetMsrPermission(pVCpu, MSR_K6_EFER, VMXMSREXIT_INTERCEPT_READ, VMXMSREXIT_INTERCEPT_WRITE);
4786 Log4(("Load[%RU32]: MSR[--]: u32Msr=%#RX32 u64Value=%#RX64 cMsrs=%u\n", pVCpu->idCpu, MSR_K6_EFER,
4787 pMixedCtx->msrEFER, pVCpu->hm.s.vmx.cMsrs));
4788 }
4789 }
4790 else if (!pVM->hm.s.vmx.fSupportsVmcsEfer)
4791 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, MSR_K6_EFER);
4792 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_EFER_MSR);
4793 }
4794
4795 return VINF_SUCCESS;
4796}
4797
4798
4799/**
4800 * Loads the guest activity state into the guest-state area in the VMCS.
4801 *
4802 * @returns VBox status code.
4803 * @param pVCpu The cross context virtual CPU structure.
4804 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4805 * out-of-sync. Make sure to update the required fields
4806 * before using them.
4807 *
4808 * @remarks No-long-jump zone!!!
4809 */
4810static int hmR0VmxLoadGuestActivityState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4811{
4812 NOREF(pMixedCtx);
4813 /** @todo See if we can make use of other states, e.g.
4814 * VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN or HLT. */
4815 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_GUEST_ACTIVITY_STATE))
4816 {
4817 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, VMX_VMCS_GUEST_ACTIVITY_ACTIVE);
4818 AssertRCReturn(rc, rc);
4819
4820 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_GUEST_ACTIVITY_STATE);
4821 }
4822 return VINF_SUCCESS;
4823}
4824
4825
4826#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
4827/**
4828 * Check if guest state allows safe use of 32-bit switcher again.
4829 *
4830 * Segment bases and protected mode structures must be 32-bit addressable
4831 * because the 32-bit switcher will ignore high dword when writing these VMCS
4832 * fields. See @bugref{8432} for details.
4833 *
4834 * @returns true if safe, false if must continue to use the 64-bit switcher.
4835 * @param pVCpu The cross context virtual CPU structure.
4836 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4837 * out-of-sync. Make sure to update the required fields
4838 * before using them.
4839 *
4840 * @remarks No-long-jump zone!!!
4841 */
4842static bool hmR0VmxIs32BitSwitcherSafe(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4843{
4844 if (pMixedCtx->gdtr.pGdt & UINT64_C(0xffffffff00000000))
4845 return false;
4846 if (pMixedCtx->idtr.pIdt & UINT64_C(0xffffffff00000000))
4847 return false;
4848 if (pMixedCtx->ldtr.u64Base & UINT64_C(0xffffffff00000000))
4849 return false;
4850 if (pMixedCtx->tr.u64Base & UINT64_C(0xffffffff00000000))
4851 return false;
4852 if (pMixedCtx->es.u64Base & UINT64_C(0xffffffff00000000))
4853 return false;
4854 if (pMixedCtx->cs.u64Base & UINT64_C(0xffffffff00000000))
4855 return false;
4856 if (pMixedCtx->ss.u64Base & UINT64_C(0xffffffff00000000))
4857 return false;
4858 if (pMixedCtx->ds.u64Base & UINT64_C(0xffffffff00000000))
4859 return false;
4860 if (pMixedCtx->fs.u64Base & UINT64_C(0xffffffff00000000))
4861 return false;
4862 if (pMixedCtx->gs.u64Base & UINT64_C(0xffffffff00000000))
4863 return false;
4864 /* All good, bases are 32-bit. */
4865 return true;
4866}
4867#endif
4868
4869
4870/**
4871 * Sets up the appropriate function to run guest code.
4872 *
4873 * @returns VBox status code.
4874 * @param pVCpu The cross context virtual CPU structure.
4875 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4876 * out-of-sync. Make sure to update the required fields
4877 * before using them.
4878 *
4879 * @remarks No-long-jump zone!!!
4880 */
4881static int hmR0VmxSetupVMRunHandler(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4882{
4883 if (CPUMIsGuestInLongModeEx(pMixedCtx))
4884 {
4885#ifndef VBOX_ENABLE_64_BITS_GUESTS
4886 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
4887#endif
4888 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
4889#if HC_ARCH_BITS == 32
4890 /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
4891 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0SwitcherStartVM64)
4892 {
4893 if (pVCpu->hm.s.vmx.pfnStartVM != NULL) /* Very first entry would have saved host-state already, ignore it. */
4894 {
4895 /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
4896 AssertMsg(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_VMX_EXIT_CTLS
4897 | HM_CHANGED_VMX_ENTRY_CTLS
4898 | HM_CHANGED_GUEST_EFER_MSR), ("flags=%#x\n", HMCPU_CF_VALUE(pVCpu)));
4899 }
4900 pVCpu->hm.s.vmx.pfnStartVM = VMXR0SwitcherStartVM64;
4901
4902 /* Mark that we've switched to 64-bit handler, we can't safely switch back to 32-bit for
4903 the rest of the VM run (until VM reset). See @bugref{8432#c7}. */
4904 pVCpu->hm.s.vmx.fSwitchedTo64on32 = true;
4905 Log4(("Load[%RU32]: hmR0VmxSetupVMRunHandler: selected 64-bit switcher\n", pVCpu->idCpu));
4906 }
4907#else
4908 /* 64-bit host. */
4909 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM64;
4910#endif
4911 }
4912 else
4913 {
4914 /* Guest is not in long mode, use the 32-bit handler. */
4915#if HC_ARCH_BITS == 32
4916 if ( pVCpu->hm.s.vmx.pfnStartVM != VMXR0StartVM32
4917 && !pVCpu->hm.s.vmx.fSwitchedTo64on32 /* If set, guest mode change does not imply switcher change. */
4918 && pVCpu->hm.s.vmx.pfnStartVM != NULL) /* Very first entry would have saved host-state already, ignore it. */
4919 {
4920 /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
4921 AssertMsg(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_VMX_EXIT_CTLS
4922 | HM_CHANGED_VMX_ENTRY_CTLS
4923 | HM_CHANGED_GUEST_EFER_MSR), ("flags=%#x\n", HMCPU_CF_VALUE(pVCpu)));
4924 }
4925# ifdef VBOX_ENABLE_64_BITS_GUESTS
4926 /*
4927 * Keep using the 64-bit switcher even though we're in 32-bit because of bad Intel design, see @bugref{8432#c7}.
4928 * If real-on-v86 mode is active, clear the 64-bit switcher flag because now we know the guest is in a sane
4929 * state where it's safe to use the 32-bit switcher. Otherwise check the guest state if it's safe to use
4930 * the much faster 32-bit switcher again.
4931 */
4932 if (!pVCpu->hm.s.vmx.fSwitchedTo64on32)
4933 {
4934 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0StartVM32)
4935 Log4(("Load[%RU32]: hmR0VmxSetupVMRunHandler: selected 32-bit switcher\n", pVCpu->idCpu));
4936 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4937 }
4938 else
4939 {
4940 Assert(pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64);
4941 if ( pVCpu->hm.s.vmx.RealMode.fRealOnV86Active
4942 || hmR0VmxIs32BitSwitcherSafe(pVCpu, pMixedCtx))
4943 {
4944 pVCpu->hm.s.vmx.fSwitchedTo64on32 = false;
4945 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4946 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_EFER_MSR | HM_CHANGED_VMX_ENTRY_CTLS | HM_CHANGED_VMX_EXIT_CTLS | HM_CHANGED_HOST_CONTEXT);
4947 Log4(("Load[%RU32]: hmR0VmxSetupVMRunHandler: selected 32-bit switcher (safe)\n", pVCpu->idCpu));
4948 }
4949 }
4950# else
4951 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4952# endif
4953#else
4954 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4955#endif
4956 }
4957 Assert(pVCpu->hm.s.vmx.pfnStartVM);
4958 return VINF_SUCCESS;
4959}
4960
4961
4962/**
4963 * Wrapper for running the guest code in VT-x.
4964 *
4965 * @returns VBox status code, no informational status codes.
4966 * @param pVM The cross context VM structure.
4967 * @param pVCpu The cross context virtual CPU structure.
4968 * @param pCtx Pointer to the guest-CPU context.
4969 *
4970 * @remarks No-long-jump zone!!!
4971 */
4972DECLINLINE(int) hmR0VmxRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
4973{
4974 /*
4975 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses floating-point operations
4976 * using SSE instructions. Some XMM registers (XMM6-XMM15) are callee-saved and thus the need for this XMM wrapper.
4977 * Refer MSDN docs. "Configuring Programs for 64-bit / x64 Software Conventions / Register Usage" for details.
4978 */
4979 bool const fResumeVM = RT_BOOL(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_LAUNCHED);
4980 /** @todo Add stats for resume vs launch. */
4981#ifdef VBOX_WITH_KERNEL_USING_XMM
4982 int rc = HMR0VMXStartVMWrapXMM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu, pVCpu->hm.s.vmx.pfnStartVM);
4983#else
4984 int rc = pVCpu->hm.s.vmx.pfnStartVM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu);
4985#endif
4986 AssertMsg(rc <= VINF_SUCCESS, ("%Rrc\n", rc));
4987 return rc;
4988}
4989
4990
4991/**
4992 * Reports world-switch error and dumps some useful debug info.
4993 *
4994 * @param pVM The cross context VM structure.
4995 * @param pVCpu The cross context virtual CPU structure.
4996 * @param rcVMRun The return code from VMLAUNCH/VMRESUME.
4997 * @param pCtx Pointer to the guest-CPU context.
4998 * @param pVmxTransient Pointer to the VMX transient structure (only
4999 * exitReason updated).
5000 */
5001static void hmR0VmxReportWorldSwitchError(PVM pVM, PVMCPU pVCpu, int rcVMRun, PCPUMCTX pCtx, PVMXTRANSIENT pVmxTransient)
5002{
5003 Assert(pVM);
5004 Assert(pVCpu);
5005 Assert(pCtx);
5006 Assert(pVmxTransient);
5007 HMVMX_ASSERT_PREEMPT_SAFE();
5008
5009 Log4(("VM-entry failure: %Rrc\n", rcVMRun));
5010 switch (rcVMRun)
5011 {
5012 case VERR_VMX_INVALID_VMXON_PTR:
5013 AssertFailed();
5014 break;
5015 case VINF_SUCCESS: /* VMLAUNCH/VMRESUME succeeded but VM-entry failed... yeah, true story. */
5016 case VERR_VMX_UNABLE_TO_START_VM: /* VMLAUNCH/VMRESUME itself failed. */
5017 {
5018 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &pVCpu->hm.s.vmx.LastError.u32ExitReason);
5019 rc |= VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
5020 rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
5021 AssertRC(rc);
5022
5023 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
5024 /* LastError.idCurrentCpu was already updated in hmR0VmxPreRunGuestCommitted().
5025 Cannot do it here as we may have been long preempted. */
5026
5027#ifdef VBOX_STRICT
5028 Log4(("uExitReason %#RX32 (VmxTransient %#RX16)\n", pVCpu->hm.s.vmx.LastError.u32ExitReason,
5029 pVmxTransient->uExitReason));
5030 Log4(("Exit Qualification %#RX64\n", pVmxTransient->uExitQualification));
5031 Log4(("InstrError %#RX32\n", pVCpu->hm.s.vmx.LastError.u32InstrError));
5032 if (pVCpu->hm.s.vmx.LastError.u32InstrError <= HMVMX_INSTR_ERROR_MAX)
5033 Log4(("InstrError Desc. \"%s\"\n", g_apszVmxInstrErrors[pVCpu->hm.s.vmx.LastError.u32InstrError]));
5034 else
5035 Log4(("InstrError Desc. Range exceeded %u\n", HMVMX_INSTR_ERROR_MAX));
5036 Log4(("Entered host CPU %u\n", pVCpu->hm.s.vmx.LastError.idEnteredCpu));
5037 Log4(("Current host CPU %u\n", pVCpu->hm.s.vmx.LastError.idCurrentCpu));
5038
5039 /* VMX control bits. */
5040 uint32_t u32Val;
5041 uint64_t u64Val;
5042 RTHCUINTREG uHCReg;
5043 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val); AssertRC(rc);
5044 Log4(("VMX_VMCS32_CTRL_PIN_EXEC %#RX32\n", u32Val));
5045 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val); AssertRC(rc);
5046 Log4(("VMX_VMCS32_CTRL_PROC_EXEC %#RX32\n", u32Val));
5047 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
5048 {
5049 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val); AssertRC(rc);
5050 Log4(("VMX_VMCS32_CTRL_PROC_EXEC2 %#RX32\n", u32Val));
5051 }
5052 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val); AssertRC(rc);
5053 Log4(("VMX_VMCS32_CTRL_ENTRY %#RX32\n", u32Val));
5054 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val); AssertRC(rc);
5055 Log4(("VMX_VMCS32_CTRL_EXIT %#RX32\n", u32Val));
5056 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, &u32Val); AssertRC(rc);
5057 Log4(("VMX_VMCS32_CTRL_CR3_TARGET_COUNT %#RX32\n", u32Val));
5058 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32Val); AssertRC(rc);
5059 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", u32Val));
5060 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &u32Val); AssertRC(rc);
5061 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", u32Val));
5062 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &u32Val); AssertRC(rc);
5063 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %u\n", u32Val));
5064 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, &u32Val); AssertRC(rc);
5065 Log4(("VMX_VMCS32_CTRL_TPR_THRESHOLD %u\n", u32Val));
5066 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &u32Val); AssertRC(rc);
5067 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT %u (guest MSRs)\n", u32Val));
5068 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
5069 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT %u (host MSRs)\n", u32Val));
5070 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
5071 Log4(("VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT %u (guest MSRs)\n", u32Val));
5072 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val); AssertRC(rc);
5073 Log4(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP %#RX32\n", u32Val));
5074 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, &u32Val); AssertRC(rc);
5075 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK %#RX32\n", u32Val));
5076 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, &u32Val); AssertRC(rc);
5077 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH %#RX32\n", u32Val));
5078 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
5079 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
5080 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
5081 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
5082 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
5083 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
5084 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
5085 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
5086 if (pVM->hm.s.fNestedPaging)
5087 {
5088 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
5089 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
5090 }
5091
5092 /* Guest bits. */
5093 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val); AssertRC(rc);
5094 Log4(("Old Guest Rip %#RX64 New %#RX64\n", pCtx->rip, u64Val));
5095 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val); AssertRC(rc);
5096 Log4(("Old Guest Rsp %#RX64 New %#RX64\n", pCtx->rsp, u64Val));
5097 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Val); AssertRC(rc);
5098 Log4(("Old Guest Rflags %#RX32 New %#RX32\n", pCtx->eflags.u32, u32Val));
5099 if (pVM->hm.s.vmx.fVpid)
5100 {
5101 rc = VMXReadVmcs32(VMX_VMCS16_VPID, &u32Val); AssertRC(rc);
5102 Log4(("VMX_VMCS16_VPID %u\n", u32Val));
5103 }
5104
5105 /* Host bits. */
5106 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR0, &uHCReg); AssertRC(rc);
5107 Log4(("Host CR0 %#RHr\n", uHCReg));
5108 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR3, &uHCReg); AssertRC(rc);
5109 Log4(("Host CR3 %#RHr\n", uHCReg));
5110 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR4, &uHCReg); AssertRC(rc);
5111 Log4(("Host CR4 %#RHr\n", uHCReg));
5112
5113 RTGDTR HostGdtr;
5114 PCX86DESCHC pDesc;
5115 ASMGetGDTR(&HostGdtr);
5116 rc = VMXReadVmcs32(VMX_VMCS16_HOST_CS_SEL, &u32Val); AssertRC(rc);
5117 Log4(("Host CS %#08x\n", u32Val));
5118 if (u32Val < HostGdtr.cbGdt)
5119 {
5120 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5121 HMR0DumpDescriptor(pDesc, u32Val, "CS: ");
5122 }
5123
5124 rc = VMXReadVmcs32(VMX_VMCS16_HOST_DS_SEL, &u32Val); AssertRC(rc);
5125 Log4(("Host DS %#08x\n", u32Val));
5126 if (u32Val < HostGdtr.cbGdt)
5127 {
5128 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5129 HMR0DumpDescriptor(pDesc, u32Val, "DS: ");
5130 }
5131
5132 rc = VMXReadVmcs32(VMX_VMCS16_HOST_ES_SEL, &u32Val); AssertRC(rc);
5133 Log4(("Host ES %#08x\n", u32Val));
5134 if (u32Val < HostGdtr.cbGdt)
5135 {
5136 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5137 HMR0DumpDescriptor(pDesc, u32Val, "ES: ");
5138 }
5139
5140 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FS_SEL, &u32Val); AssertRC(rc);
5141 Log4(("Host FS %#08x\n", u32Val));
5142 if (u32Val < HostGdtr.cbGdt)
5143 {
5144 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5145 HMR0DumpDescriptor(pDesc, u32Val, "FS: ");
5146 }
5147
5148 rc = VMXReadVmcs32(VMX_VMCS16_HOST_GS_SEL, &u32Val); AssertRC(rc);
5149 Log4(("Host GS %#08x\n", u32Val));
5150 if (u32Val < HostGdtr.cbGdt)
5151 {
5152 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5153 HMR0DumpDescriptor(pDesc, u32Val, "GS: ");
5154 }
5155
5156 rc = VMXReadVmcs32(VMX_VMCS16_HOST_SS_SEL, &u32Val); AssertRC(rc);
5157 Log4(("Host SS %#08x\n", u32Val));
5158 if (u32Val < HostGdtr.cbGdt)
5159 {
5160 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5161 HMR0DumpDescriptor(pDesc, u32Val, "SS: ");
5162 }
5163
5164 rc = VMXReadVmcs32(VMX_VMCS16_HOST_TR_SEL, &u32Val); AssertRC(rc);
5165 Log4(("Host TR %#08x\n", u32Val));
5166 if (u32Val < HostGdtr.cbGdt)
5167 {
5168 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5169 HMR0DumpDescriptor(pDesc, u32Val, "TR: ");
5170 }
5171
5172 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_TR_BASE, &uHCReg); AssertRC(rc);
5173 Log4(("Host TR Base %#RHv\n", uHCReg));
5174 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, &uHCReg); AssertRC(rc);
5175 Log4(("Host GDTR Base %#RHv\n", uHCReg));
5176 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, &uHCReg); AssertRC(rc);
5177 Log4(("Host IDTR Base %#RHv\n", uHCReg));
5178 rc = VMXReadVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, &u32Val); AssertRC(rc);
5179 Log4(("Host SYSENTER CS %#08x\n", u32Val));
5180 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_EIP, &uHCReg); AssertRC(rc);
5181 Log4(("Host SYSENTER EIP %#RHv\n", uHCReg));
5182 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_ESP, &uHCReg); AssertRC(rc);
5183 Log4(("Host SYSENTER ESP %#RHv\n", uHCReg));
5184 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RSP, &uHCReg); AssertRC(rc);
5185 Log4(("Host RSP %#RHv\n", uHCReg));
5186 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RIP, &uHCReg); AssertRC(rc);
5187 Log4(("Host RIP %#RHv\n", uHCReg));
5188# if HC_ARCH_BITS == 64
5189 Log4(("MSR_K6_EFER = %#RX64\n", ASMRdMsr(MSR_K6_EFER)));
5190 Log4(("MSR_K8_CSTAR = %#RX64\n", ASMRdMsr(MSR_K8_CSTAR)));
5191 Log4(("MSR_K8_LSTAR = %#RX64\n", ASMRdMsr(MSR_K8_LSTAR)));
5192 Log4(("MSR_K6_STAR = %#RX64\n", ASMRdMsr(MSR_K6_STAR)));
5193 Log4(("MSR_K8_SF_MASK = %#RX64\n", ASMRdMsr(MSR_K8_SF_MASK)));
5194 Log4(("MSR_K8_KERNEL_GS_BASE = %#RX64\n", ASMRdMsr(MSR_K8_KERNEL_GS_BASE)));
5195# endif
5196#endif /* VBOX_STRICT */
5197 break;
5198 }
5199
5200 default:
5201 /* Impossible */
5202 AssertMsgFailed(("hmR0VmxReportWorldSwitchError %Rrc (%#x)\n", rcVMRun, rcVMRun));
5203 break;
5204 }
5205 NOREF(pVM); NOREF(pCtx);
5206}
5207
5208
5209#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
5210#ifndef VMX_USE_CACHED_VMCS_ACCESSES
5211# error "VMX_USE_CACHED_VMCS_ACCESSES not defined when it should be!"
5212#endif
5213#ifdef VBOX_STRICT
5214static bool hmR0VmxIsValidWriteField(uint32_t idxField)
5215{
5216 switch (idxField)
5217 {
5218 case VMX_VMCS_GUEST_RIP:
5219 case VMX_VMCS_GUEST_RSP:
5220 case VMX_VMCS_GUEST_SYSENTER_EIP:
5221 case VMX_VMCS_GUEST_SYSENTER_ESP:
5222 case VMX_VMCS_GUEST_GDTR_BASE:
5223 case VMX_VMCS_GUEST_IDTR_BASE:
5224 case VMX_VMCS_GUEST_CS_BASE:
5225 case VMX_VMCS_GUEST_DS_BASE:
5226 case VMX_VMCS_GUEST_ES_BASE:
5227 case VMX_VMCS_GUEST_FS_BASE:
5228 case VMX_VMCS_GUEST_GS_BASE:
5229 case VMX_VMCS_GUEST_SS_BASE:
5230 case VMX_VMCS_GUEST_LDTR_BASE:
5231 case VMX_VMCS_GUEST_TR_BASE:
5232 case VMX_VMCS_GUEST_CR3:
5233 return true;
5234 }
5235 return false;
5236}
5237
5238static bool hmR0VmxIsValidReadField(uint32_t idxField)
5239{
5240 switch (idxField)
5241 {
5242 /* Read-only fields. */
5243 case VMX_VMCS_RO_EXIT_QUALIFICATION:
5244 return true;
5245 }
5246 /* Remaining readable fields should also be writable. */
5247 return hmR0VmxIsValidWriteField(idxField);
5248}
5249#endif /* VBOX_STRICT */
5250
5251
5252/**
5253 * Executes the specified handler in 64-bit mode.
5254 *
5255 * @returns VBox status code (no informational status codes).
5256 * @param pVM The cross context VM structure.
5257 * @param pVCpu The cross context virtual CPU structure.
5258 * @param pCtx Pointer to the guest CPU context.
5259 * @param enmOp The operation to perform.
5260 * @param cParams Number of parameters.
5261 * @param paParam Array of 32-bit parameters.
5262 */
5263VMMR0DECL(int) VMXR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, HM64ON32OP enmOp,
5264 uint32_t cParams, uint32_t *paParam)
5265{
5266 NOREF(pCtx);
5267
5268 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
5269 Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
5270 Assert(pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Write.aField));
5271 Assert(pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Read.aField));
5272
5273#ifdef VBOX_STRICT
5274 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries; i++)
5275 Assert(hmR0VmxIsValidWriteField(pVCpu->hm.s.vmx.VMCSCache.Write.aField[i]));
5276
5277 for (uint32_t i = 0; i <pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries; i++)
5278 Assert(hmR0VmxIsValidReadField(pVCpu->hm.s.vmx.VMCSCache.Read.aField[i]));
5279#endif
5280
5281 /* Disable interrupts. */
5282 RTCCUINTREG fOldEFlags = ASMIntDisableFlags();
5283
5284#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
5285 RTCPUID idHostCpu = RTMpCpuId();
5286 CPUMR0SetLApic(pVCpu, idHostCpu);
5287#endif
5288
5289 PHMGLOBALCPUINFO pCpu = HMR0GetCurrentCpu();
5290 RTHCPHYS HCPhysCpuPage = pCpu->HCPhysMemObj;
5291
5292 /* Clear VMCS. Marking it inactive, clearing implementation-specific data and writing VMCS data back to memory. */
5293 VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
5294 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
5295
5296 /* Leave VMX Root Mode. */
5297 VMXDisable();
5298
5299 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
5300
5301 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
5302 CPUMSetHyperEIP(pVCpu, enmOp);
5303 for (int i = (int)cParams - 1; i >= 0; i--)
5304 CPUMPushHyper(pVCpu, paParam[i]);
5305
5306 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
5307
5308 /* Call the switcher. */
5309 int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum));
5310 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
5311
5312 /** @todo replace with hmR0VmxEnterRootMode() and hmR0VmxLeaveRootMode(). */
5313 /* Make sure the VMX instructions don't cause #UD faults. */
5314 SUPR0ChangeCR4(X86_CR4_VMXE, ~0);
5315
5316 /* Re-enter VMX Root Mode */
5317 int rc2 = VMXEnable(HCPhysCpuPage);
5318 if (RT_FAILURE(rc2))
5319 {
5320 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
5321 ASMSetFlags(fOldEFlags);
5322 pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
5323 return rc2;
5324 }
5325
5326 rc2 = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
5327 AssertRC(rc2);
5328 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
5329 Assert(!(ASMGetFlags() & X86_EFL_IF));
5330 ASMSetFlags(fOldEFlags);
5331 return rc;
5332}
5333
5334
5335/**
5336 * Prepares for and executes VMLAUNCH (64-bit guests) for 32-bit hosts
5337 * supporting 64-bit guests.
5338 *
5339 * @returns VBox status code.
5340 * @param fResume Whether to VMLAUNCH or VMRESUME.
5341 * @param pCtx Pointer to the guest-CPU context.
5342 * @param pCache Pointer to the VMCS cache.
5343 * @param pVM The cross context VM structure.
5344 * @param pVCpu The cross context virtual CPU structure.
5345 */
5346DECLASM(int) VMXR0SwitcherStartVM64(RTHCUINT fResume, PCPUMCTX pCtx, PVMCSCACHE pCache, PVM pVM, PVMCPU pVCpu)
5347{
5348 NOREF(fResume);
5349
5350 PHMGLOBALCPUINFO pCpu = HMR0GetCurrentCpu();
5351 RTHCPHYS HCPhysCpuPage = pCpu->HCPhysMemObj;
5352
5353#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5354 pCache->uPos = 1;
5355 pCache->interPD = PGMGetInterPaeCR3(pVM);
5356 pCache->pSwitcher = (uint64_t)pVM->hm.s.pfnHost32ToGuest64R0;
5357#endif
5358
5359#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
5360 pCache->TestIn.HCPhysCpuPage = 0;
5361 pCache->TestIn.HCPhysVmcs = 0;
5362 pCache->TestIn.pCache = 0;
5363 pCache->TestOut.HCPhysVmcs = 0;
5364 pCache->TestOut.pCache = 0;
5365 pCache->TestOut.pCtx = 0;
5366 pCache->TestOut.eflags = 0;
5367#else
5368 NOREF(pCache);
5369#endif
5370
5371 uint32_t aParam[10];
5372 aParam[0] = (uint32_t)(HCPhysCpuPage); /* Param 1: VMXON physical address - Lo. */
5373 aParam[1] = (uint32_t)(HCPhysCpuPage >> 32); /* Param 1: VMXON physical address - Hi. */
5374 aParam[2] = (uint32_t)(pVCpu->hm.s.vmx.HCPhysVmcs); /* Param 2: VMCS physical address - Lo. */
5375 aParam[3] = (uint32_t)(pVCpu->hm.s.vmx.HCPhysVmcs >> 32); /* Param 2: VMCS physical address - Hi. */
5376 aParam[4] = VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache);
5377 aParam[5] = 0;
5378 aParam[6] = VM_RC_ADDR(pVM, pVM);
5379 aParam[7] = 0;
5380 aParam[8] = VM_RC_ADDR(pVM, pVCpu);
5381 aParam[9] = 0;
5382
5383#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5384 pCtx->dr[4] = pVM->hm.s.vmx.pScratchPhys + 16 + 8;
5385 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 1;
5386#endif
5387 int rc = VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_VMXRCStartVM64, RT_ELEMENTS(aParam), &aParam[0]);
5388
5389#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5390 Assert(*(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) == 5);
5391 Assert(pCtx->dr[4] == 10);
5392 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 0xff;
5393#endif
5394
5395#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
5396 AssertMsg(pCache->TestIn.HCPhysCpuPage == HCPhysCpuPage, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysCpuPage, HCPhysCpuPage));
5397 AssertMsg(pCache->TestIn.HCPhysVmcs == pVCpu->hm.s.vmx.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
5398 pVCpu->hm.s.vmx.HCPhysVmcs));
5399 AssertMsg(pCache->TestIn.HCPhysVmcs == pCache->TestOut.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
5400 pCache->TestOut.HCPhysVmcs));
5401 AssertMsg(pCache->TestIn.pCache == pCache->TestOut.pCache, ("%RGv vs %RGv\n", pCache->TestIn.pCache,
5402 pCache->TestOut.pCache));
5403 AssertMsg(pCache->TestIn.pCache == VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache),
5404 ("%RGv vs %RGv\n", pCache->TestIn.pCache, VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache)));
5405 AssertMsg(pCache->TestIn.pCtx == pCache->TestOut.pCtx, ("%RGv vs %RGv\n", pCache->TestIn.pCtx,
5406 pCache->TestOut.pCtx));
5407 Assert(!(pCache->TestOut.eflags & X86_EFL_IF));
5408#endif
5409 return rc;
5410}
5411
5412
5413/**
5414 * Initialize the VMCS-Read cache.
5415 *
5416 * The VMCS cache is used for 32-bit hosts running 64-bit guests (except 32-bit
5417 * Darwin which runs with 64-bit paging in 32-bit mode) for 64-bit fields that
5418 * cannot be accessed in 32-bit mode. Some 64-bit fields -can- be accessed
5419 * (those that have a 32-bit FULL & HIGH part).
5420 *
5421 * @returns VBox status code.
5422 * @param pVM The cross context VM structure.
5423 * @param pVCpu The cross context virtual CPU structure.
5424 */
5425static int hmR0VmxInitVmcsReadCache(PVM pVM, PVMCPU pVCpu)
5426{
5427#define VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, idxField) \
5428{ \
5429 Assert(pCache->Read.aField[idxField##_CACHE_IDX] == 0); \
5430 pCache->Read.aField[idxField##_CACHE_IDX] = idxField; \
5431 pCache->Read.aFieldVal[idxField##_CACHE_IDX] = 0; \
5432 ++cReadFields; \
5433}
5434
5435 AssertPtr(pVM);
5436 AssertPtr(pVCpu);
5437 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
5438 uint32_t cReadFields = 0;
5439
5440 /*
5441 * Don't remove the #if 0'd fields in this code. They're listed here for consistency
5442 * and serve to indicate exceptions to the rules.
5443 */
5444
5445 /* Guest-natural selector base fields. */
5446#if 0
5447 /* These are 32-bit in practice. See Intel spec. 2.5 "Control Registers". */
5448 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR0);
5449 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR4);
5450#endif
5451 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_ES_BASE);
5452 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CS_BASE);
5453 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SS_BASE);
5454 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_DS_BASE);
5455 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_FS_BASE);
5456 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GS_BASE);
5457 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_LDTR_BASE);
5458 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_TR_BASE);
5459 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GDTR_BASE);
5460 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_IDTR_BASE);
5461 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RSP);
5462 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RIP);
5463#if 0
5464 /* Unused natural width guest-state fields. */
5465 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS);
5466 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3); /* Handled in Nested Paging case */
5467#endif
5468 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_ESP);
5469 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_EIP);
5470
5471 /* 64-bit guest-state fields; unused as we use two 32-bit VMREADs for these 64-bit fields (using "FULL" and "HIGH" fields). */
5472#if 0
5473 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL);
5474 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_DEBUGCTL_FULL);
5475 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PAT_FULL);
5476 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_EFER_FULL);
5477 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL);
5478 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE0_FULL);
5479 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE1_FULL);
5480 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE2_FULL);
5481 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE3_FULL);
5482#endif
5483
5484 /* Natural width guest-state fields. */
5485 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_QUALIFICATION);
5486#if 0
5487 /* Currently unused field. */
5488 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_GUEST_LINEAR_ADDR);
5489#endif
5490
5491 if (pVM->hm.s.fNestedPaging)
5492 {
5493 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3);
5494 AssertMsg(cReadFields == VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields,
5495 VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX));
5496 pCache->Read.cValidEntries = VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX;
5497 }
5498 else
5499 {
5500 AssertMsg(cReadFields == VMX_VMCS_MAX_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields, VMX_VMCS_MAX_CACHE_IDX));
5501 pCache->Read.cValidEntries = VMX_VMCS_MAX_CACHE_IDX;
5502 }
5503
5504#undef VMXLOCAL_INIT_READ_CACHE_FIELD
5505 return VINF_SUCCESS;
5506}
5507
5508
5509/**
5510 * Writes a field into the VMCS. This can either directly invoke a VMWRITE or
5511 * queue up the VMWRITE by using the VMCS write cache (on 32-bit hosts, except
5512 * darwin, running 64-bit guests).
5513 *
5514 * @returns VBox status code.
5515 * @param pVCpu The cross context virtual CPU structure.
5516 * @param idxField The VMCS field encoding.
5517 * @param u64Val 16, 32 or 64-bit value.
5518 */
5519VMMR0DECL(int) VMXWriteVmcs64Ex(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
5520{
5521 int rc;
5522 switch (idxField)
5523 {
5524 /*
5525 * These fields consists of a "FULL" and a "HIGH" part which can be written to individually.
5526 */
5527 /* 64-bit Control fields. */
5528 case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL:
5529 case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL:
5530 case VMX_VMCS64_CTRL_MSR_BITMAP_FULL:
5531 case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL:
5532 case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL:
5533 case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL:
5534 case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL:
5535 case VMX_VMCS64_CTRL_TSC_OFFSET_FULL:
5536 case VMX_VMCS64_CTRL_VAPIC_PAGEADDR_FULL:
5537 case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL:
5538 case VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL:
5539 case VMX_VMCS64_CTRL_EPTP_FULL:
5540 case VMX_VMCS64_CTRL_EPTP_LIST_FULL:
5541 /* 64-bit Guest-state fields. */
5542 case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL:
5543 case VMX_VMCS64_GUEST_DEBUGCTL_FULL:
5544 case VMX_VMCS64_GUEST_PAT_FULL:
5545 case VMX_VMCS64_GUEST_EFER_FULL:
5546 case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL:
5547 case VMX_VMCS64_GUEST_PDPTE0_FULL:
5548 case VMX_VMCS64_GUEST_PDPTE1_FULL:
5549 case VMX_VMCS64_GUEST_PDPTE2_FULL:
5550 case VMX_VMCS64_GUEST_PDPTE3_FULL:
5551 /* 64-bit Host-state fields. */
5552 case VMX_VMCS64_HOST_PAT_FULL:
5553 case VMX_VMCS64_HOST_EFER_FULL:
5554 case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL:
5555 {
5556 rc = VMXWriteVmcs32(idxField, u64Val);
5557 rc |= VMXWriteVmcs32(idxField + 1, (uint32_t)(u64Val >> 32));
5558 break;
5559 }
5560
5561 /*
5562 * These fields do not have high and low parts. Queue up the VMWRITE by using the VMCS write-cache (for 64-bit
5563 * values). When we switch the host to 64-bit mode for running 64-bit guests, these VMWRITEs get executed then.
5564 */
5565 /* Natural-width Guest-state fields. */
5566 case VMX_VMCS_GUEST_CR3:
5567 case VMX_VMCS_GUEST_ES_BASE:
5568 case VMX_VMCS_GUEST_CS_BASE:
5569 case VMX_VMCS_GUEST_SS_BASE:
5570 case VMX_VMCS_GUEST_DS_BASE:
5571 case VMX_VMCS_GUEST_FS_BASE:
5572 case VMX_VMCS_GUEST_GS_BASE:
5573 case VMX_VMCS_GUEST_LDTR_BASE:
5574 case VMX_VMCS_GUEST_TR_BASE:
5575 case VMX_VMCS_GUEST_GDTR_BASE:
5576 case VMX_VMCS_GUEST_IDTR_BASE:
5577 case VMX_VMCS_GUEST_RSP:
5578 case VMX_VMCS_GUEST_RIP:
5579 case VMX_VMCS_GUEST_SYSENTER_ESP:
5580 case VMX_VMCS_GUEST_SYSENTER_EIP:
5581 {
5582 if (!(u64Val >> 32))
5583 {
5584 /* If this field is 64-bit, VT-x will zero out the top bits. */
5585 rc = VMXWriteVmcs32(idxField, (uint32_t)u64Val);
5586 }
5587 else
5588 {
5589 /* Assert that only the 32->64 switcher case should ever come here. */
5590 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests);
5591 rc = VMXWriteCachedVmcsEx(pVCpu, idxField, u64Val);
5592 }
5593 break;
5594 }
5595
5596 default:
5597 {
5598 AssertMsgFailed(("VMXWriteVmcs64Ex: Invalid field %#RX32 (pVCpu=%p u64Val=%#RX64)\n", idxField, pVCpu, u64Val));
5599 rc = VERR_INVALID_PARAMETER;
5600 break;
5601 }
5602 }
5603 AssertRCReturn(rc, rc);
5604 return rc;
5605}
5606
5607
5608/**
5609 * Queue up a VMWRITE by using the VMCS write cache.
5610 * This is only used on 32-bit hosts (except darwin) for 64-bit guests.
5611 *
5612 * @param pVCpu The cross context virtual CPU structure.
5613 * @param idxField The VMCS field encoding.
5614 * @param u64Val 16, 32 or 64-bit value.
5615 */
5616VMMR0DECL(int) VMXWriteCachedVmcsEx(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
5617{
5618 AssertPtr(pVCpu);
5619 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
5620
5621 AssertMsgReturn(pCache->Write.cValidEntries < VMCSCACHE_MAX_ENTRY - 1,
5622 ("entries=%u\n", pCache->Write.cValidEntries), VERR_ACCESS_DENIED);
5623
5624 /* Make sure there are no duplicates. */
5625 for (uint32_t i = 0; i < pCache->Write.cValidEntries; i++)
5626 {
5627 if (pCache->Write.aField[i] == idxField)
5628 {
5629 pCache->Write.aFieldVal[i] = u64Val;
5630 return VINF_SUCCESS;
5631 }
5632 }
5633
5634 pCache->Write.aField[pCache->Write.cValidEntries] = idxField;
5635 pCache->Write.aFieldVal[pCache->Write.cValidEntries] = u64Val;
5636 pCache->Write.cValidEntries++;
5637 return VINF_SUCCESS;
5638}
5639#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
5640
5641
5642/**
5643 * Sets up the usage of TSC-offsetting and updates the VMCS.
5644 *
5645 * If offsetting is not possible, cause VM-exits on RDTSC(P)s. Also sets up the
5646 * VMX preemption timer.
5647 *
5648 * @returns VBox status code.
5649 * @param pVM The cross context VM structure.
5650 * @param pVCpu The cross context virtual CPU structure.
5651 *
5652 * @remarks No-long-jump zone!!!
5653 */
5654static void hmR0VmxUpdateTscOffsettingAndPreemptTimer(PVM pVM, PVMCPU pVCpu)
5655{
5656 int rc;
5657 bool fOffsettedTsc;
5658 bool fParavirtTsc;
5659 if (pVM->hm.s.vmx.fUsePreemptTimer)
5660 {
5661 uint64_t cTicksToDeadline = TMCpuTickGetDeadlineAndTscOffset(pVM, pVCpu, &pVCpu->hm.s.vmx.u64TSCOffset,
5662 &fOffsettedTsc, &fParavirtTsc);
5663
5664 /* Make sure the returned values have sane upper and lower boundaries. */
5665 uint64_t u64CpuHz = SUPGetCpuHzFromGipBySetIndex(g_pSUPGlobalInfoPage, pVCpu->iHostCpuSet);
5666 cTicksToDeadline = RT_MIN(cTicksToDeadline, u64CpuHz / 64); /* 1/64th of a second */
5667 cTicksToDeadline = RT_MAX(cTicksToDeadline, u64CpuHz / 2048); /* 1/2048th of a second */
5668 cTicksToDeadline >>= pVM->hm.s.vmx.cPreemptTimerShift;
5669
5670 uint32_t cPreemptionTickCount = (uint32_t)RT_MIN(cTicksToDeadline, UINT32_MAX - 16);
5671 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_PREEMPT_TIMER_VALUE, cPreemptionTickCount); AssertRC(rc);
5672 }
5673 else
5674 fOffsettedTsc = TMCpuTickCanUseRealTSC(pVM, pVCpu, &pVCpu->hm.s.vmx.u64TSCOffset, &fParavirtTsc);
5675
5676 /** @todo later optimize this to be done elsewhere and not before every
5677 * VM-entry. */
5678 if (fParavirtTsc)
5679 {
5680 /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
5681 information before every VM-entry, hence disable it for performance sake. */
5682#if 0
5683 rc = GIMR0UpdateParavirtTsc(pVM, 0 /* u64Offset */);
5684 AssertRC(rc);
5685#endif
5686 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
5687 }
5688
5689 if (fOffsettedTsc && RT_LIKELY(!pVCpu->hm.s.fDebugWantRdTscExit))
5690 {
5691 /* Note: VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT takes precedence over TSC_OFFSET, applies to RDTSCP too. */
5692 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, pVCpu->hm.s.vmx.u64TSCOffset); AssertRC(rc);
5693
5694 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT;
5695 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc);
5696 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
5697 }
5698 else
5699 {
5700 /* We can't use TSC-offsetting (non-fixed TSC, warp drive active etc.), VM-exit on RDTSC(P). */
5701 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT;
5702 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc);
5703 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
5704 }
5705}
5706
5707
5708/**
5709 * Determines if an exception is a contributory exception.
5710 *
5711 * Contributory exceptions are ones which can cause double-faults unless the
5712 * original exception was a benign exception. Page-fault is intentionally not
5713 * included here as it's a conditional contributory exception.
5714 *
5715 * @returns true if the exception is contributory, false otherwise.
5716 * @param uVector The exception vector.
5717 */
5718DECLINLINE(bool) hmR0VmxIsContributoryXcpt(const uint32_t uVector)
5719{
5720 switch (uVector)
5721 {
5722 case X86_XCPT_GP:
5723 case X86_XCPT_SS:
5724 case X86_XCPT_NP:
5725 case X86_XCPT_TS:
5726 case X86_XCPT_DE:
5727 return true;
5728 default:
5729 break;
5730 }
5731 return false;
5732}
5733
5734
5735/**
5736 * Sets an event as a pending event to be injected into the guest.
5737 *
5738 * @param pVCpu The cross context virtual CPU structure.
5739 * @param u32IntInfo The VM-entry interruption-information field.
5740 * @param cbInstr The VM-entry instruction length in bytes (for software
5741 * interrupts, exceptions and privileged software
5742 * exceptions).
5743 * @param u32ErrCode The VM-entry exception error code.
5744 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
5745 * page-fault.
5746 *
5747 * @remarks Statistics counter assumes this is a guest event being injected or
5748 * re-injected into the guest, i.e. 'StatInjectPendingReflect' is
5749 * always incremented.
5750 */
5751DECLINLINE(void) hmR0VmxSetPendingEvent(PVMCPU pVCpu, uint32_t u32IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
5752 RTGCUINTPTR GCPtrFaultAddress)
5753{
5754 Assert(!pVCpu->hm.s.Event.fPending);
5755 pVCpu->hm.s.Event.fPending = true;
5756 pVCpu->hm.s.Event.u64IntInfo = u32IntInfo;
5757 pVCpu->hm.s.Event.u32ErrCode = u32ErrCode;
5758 pVCpu->hm.s.Event.cbInstr = cbInstr;
5759 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
5760}
5761
5762
5763/**
5764 * Sets a double-fault (\#DF) exception as pending-for-injection into the VM.
5765 *
5766 * @param pVCpu The cross context virtual CPU structure.
5767 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
5768 * out-of-sync. Make sure to update the required fields
5769 * before using them.
5770 */
5771DECLINLINE(void) hmR0VmxSetPendingXcptDF(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5772{
5773 NOREF(pMixedCtx);
5774 uint32_t u32IntInfo = X86_XCPT_DF | VMX_EXIT_INTERRUPTION_INFO_VALID;
5775 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
5776 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
5777 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
5778}
5779
5780
5781/**
5782 * Handle a condition that occurred while delivering an event through the guest
5783 * IDT.
5784 *
5785 * @returns Strict VBox status code (i.e. informational status codes too).
5786 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
5787 * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought
5788 * to continue execution of the guest which will delivery the \#DF.
5789 * @retval VINF_EM_RESET if we detected a triple-fault condition.
5790 * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
5791 *
5792 * @param pVCpu The cross context virtual CPU structure.
5793 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
5794 * out-of-sync. Make sure to update the required fields
5795 * before using them.
5796 * @param pVmxTransient Pointer to the VMX transient structure.
5797 *
5798 * @remarks No-long-jump zone!!!
5799 */
5800static VBOXSTRICTRC hmR0VmxCheckExitDueToEventDelivery(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
5801{
5802 uint32_t uExitVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVmxTransient->uExitIntInfo);
5803
5804 int rc2 = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient); AssertRCReturn(rc2, rc2);
5805 rc2 = hmR0VmxReadExitIntInfoVmcs(pVmxTransient); AssertRCReturn(rc2, rc2);
5806
5807 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
5808 if (VMX_IDT_VECTORING_INFO_VALID(pVmxTransient->uIdtVectoringInfo))
5809 {
5810 uint32_t uIdtVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
5811 uint32_t uIdtVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
5812
5813 typedef enum
5814 {
5815 VMXREFLECTXCPT_XCPT, /* Reflect the exception to the guest or for further evaluation by VMM. */
5816 VMXREFLECTXCPT_DF, /* Reflect the exception as a double-fault to the guest. */
5817 VMXREFLECTXCPT_TF, /* Indicate a triple faulted state to the VMM. */
5818 VMXREFLECTXCPT_HANG, /* Indicate bad VM trying to deadlock the CPU. */
5819 VMXREFLECTXCPT_NONE /* Nothing to reflect. */
5820 } VMXREFLECTXCPT;
5821
5822 /* See Intel spec. 30.7.1.1 "Reflecting Exceptions to Guest Software". */
5823 VMXREFLECTXCPT enmReflect = VMXREFLECTXCPT_NONE;
5824 if (VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo))
5825 {
5826 if (uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT)
5827 {
5828 enmReflect = VMXREFLECTXCPT_XCPT;
5829#ifdef VBOX_STRICT
5830 if ( hmR0VmxIsContributoryXcpt(uIdtVector)
5831 && uExitVector == X86_XCPT_PF)
5832 {
5833 Log4(("IDT: vcpu[%RU32] Contributory #PF uCR2=%#RX64\n", pVCpu->idCpu, pMixedCtx->cr2));
5834 }
5835#endif
5836 if ( uExitVector == X86_XCPT_PF
5837 && uIdtVector == X86_XCPT_PF)
5838 {
5839 pVmxTransient->fVectoringDoublePF = true;
5840 Log4(("IDT: vcpu[%RU32] Vectoring Double #PF uCR2=%#RX64\n", pVCpu->idCpu, pMixedCtx->cr2));
5841 }
5842 else if ( uExitVector == X86_XCPT_AC
5843 && uIdtVector == X86_XCPT_AC)
5844 {
5845 enmReflect = VMXREFLECTXCPT_HANG;
5846 Log4(("IDT: Nested #AC - Bad guest\n"));
5847 }
5848 else if ( (pVCpu->hm.s.vmx.u32XcptBitmap & HMVMX_CONTRIBUTORY_XCPT_MASK)
5849 && hmR0VmxIsContributoryXcpt(uExitVector)
5850 && ( hmR0VmxIsContributoryXcpt(uIdtVector)
5851 || uIdtVector == X86_XCPT_PF))
5852 {
5853 enmReflect = VMXREFLECTXCPT_DF;
5854 }
5855 else if (uIdtVector == X86_XCPT_DF)
5856 enmReflect = VMXREFLECTXCPT_TF;
5857 }
5858 else if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT
5859 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI)
5860 {
5861 /*
5862 * Ignore software interrupts (INT n), software exceptions (#BP, #OF) and
5863 * privileged software exception (#DB from ICEBP) as they reoccur when restarting the instruction.
5864 */
5865 enmReflect = VMXREFLECTXCPT_XCPT;
5866
5867 if (uExitVector == X86_XCPT_PF)
5868 {
5869 pVmxTransient->fVectoringPF = true;
5870 Log4(("IDT: vcpu[%RU32] Vectoring #PF due to Ext-Int/NMI. uCR2=%#RX64\n", pVCpu->idCpu, pMixedCtx->cr2));
5871 }
5872 }
5873 }
5874 else if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
5875 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT
5876 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI)
5877 {
5878 /*
5879 * If event delivery caused an EPT violation/misconfig or APIC access VM-exit, then the VM-exit
5880 * interruption-information will not be valid as it's not an exception and we end up here. In such cases,
5881 * it is sufficient to reflect the original exception to the guest after handling the VM-exit.
5882 */
5883 enmReflect = VMXREFLECTXCPT_XCPT;
5884 }
5885
5886 /*
5887 * On CPUs that support Virtual NMIs, if this VM-exit (be it an exception or EPT violation/misconfig etc.) occurred
5888 * while delivering the NMI, we need to clear the block-by-NMI field in the guest interruptibility-state before
5889 * re-delivering the NMI after handling the VM-exit. Otherwise the subsequent VM-entry would fail.
5890 *
5891 * See Intel spec. 30.7.1.2 "Resuming Guest Software after Handling an Exception". See @bugref{7445}.
5892 */
5893 if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
5894 && enmReflect == VMXREFLECTXCPT_XCPT
5895 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI)
5896 && VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
5897 {
5898 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
5899 }
5900
5901 switch (enmReflect)
5902 {
5903 case VMXREFLECTXCPT_XCPT:
5904 {
5905 Assert( uIdtVectorType != VMX_IDT_VECTORING_INFO_TYPE_SW_INT
5906 && uIdtVectorType != VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
5907 && uIdtVectorType != VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT);
5908
5909 uint32_t u32ErrCode = 0;
5910 if (VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVmxTransient->uIdtVectoringInfo))
5911 {
5912 rc2 = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
5913 AssertRCReturn(rc2, rc2);
5914 u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
5915 }
5916
5917 /* If uExitVector is #PF, CR2 value will be updated from the VMCS if it's a guest #PF. See hmR0VmxExitXcptPF(). */
5918 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
5919 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
5920 0 /* cbInstr */, u32ErrCode, pMixedCtx->cr2);
5921 rcStrict = VINF_SUCCESS;
5922 Log4(("IDT: vcpu[%RU32] Pending vectoring event %#RX64 Err=%#RX32\n", pVCpu->idCpu,
5923 pVCpu->hm.s.Event.u64IntInfo, pVCpu->hm.s.Event.u32ErrCode));
5924
5925 break;
5926 }
5927
5928 case VMXREFLECTXCPT_DF:
5929 {
5930 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
5931 hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
5932 rcStrict = VINF_HM_DOUBLE_FAULT;
5933 Log4(("IDT: vcpu[%RU32] Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->idCpu,
5934 pVCpu->hm.s.Event.u64IntInfo, uIdtVector, uExitVector));
5935
5936 break;
5937 }
5938
5939 case VMXREFLECTXCPT_TF:
5940 {
5941 rcStrict = VINF_EM_RESET;
5942 Log4(("IDT: vcpu[%RU32] Pending vectoring triple-fault uIdt=%#x uExit=%#x\n", pVCpu->idCpu, uIdtVector,
5943 uExitVector));
5944 break;
5945 }
5946
5947 case VMXREFLECTXCPT_HANG:
5948 {
5949 rcStrict = VERR_EM_GUEST_CPU_HANG;
5950 break;
5951 }
5952
5953 default:
5954 Assert(rcStrict == VINF_SUCCESS);
5955 break;
5956 }
5957 }
5958 else if ( VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo)
5959 && VMX_EXIT_INTERRUPTION_INFO_NMI_UNBLOCK_IRET(pVmxTransient->uExitIntInfo)
5960 && uExitVector != X86_XCPT_DF
5961 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI))
5962 {
5963 /*
5964 * Execution of IRET caused this fault when NMI blocking was in effect (i.e we're in the guest NMI handler).
5965 * We need to set the block-by-NMI field so that NMIs remain blocked until the IRET execution is restarted.
5966 * See Intel spec. 30.7.1.2 "Resuming guest software after handling an exception".
5967 */
5968 if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
5969 {
5970 Log4(("hmR0VmxCheckExitDueToEventDelivery: vcpu[%RU32] Setting VMCPU_FF_BLOCK_NMIS. Valid=%RTbool uExitReason=%u\n",
5971 pVCpu->idCpu, VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo), pVmxTransient->uExitReason));
5972 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
5973 }
5974 }
5975
5976 Assert( rcStrict == VINF_SUCCESS || rcStrict == VINF_HM_DOUBLE_FAULT
5977 || rcStrict == VINF_EM_RESET || rcStrict == VERR_EM_GUEST_CPU_HANG);
5978 return rcStrict;
5979}
5980
5981
5982/**
5983 * Saves the guest's CR0 register from the VMCS into the guest-CPU context.
5984 *
5985 * @returns VBox status code.
5986 * @param pVCpu The cross context virtual CPU structure.
5987 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
5988 * out-of-sync. Make sure to update the required fields
5989 * before using them.
5990 *
5991 * @remarks No-long-jump zone!!!
5992 */
5993static int hmR0VmxSaveGuestCR0(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5994{
5995 NOREF(pMixedCtx);
5996
5997 /*
5998 * While in the middle of saving guest-CR0, we could get preempted and re-invoked from the preemption hook,
5999 * see hmR0VmxLeave(). Safer to just make this code non-preemptible.
6000 */
6001 VMMRZCallRing3Disable(pVCpu);
6002 HM_DISABLE_PREEMPT();
6003
6004 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0))
6005 {
6006 uint32_t uVal = 0;
6007 uint32_t uShadow = 0;
6008 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &uVal);
6009 rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uShadow);
6010 AssertRCReturn(rc, rc);
6011
6012 uVal = (uShadow & pVCpu->hm.s.vmx.u32CR0Mask) | (uVal & ~pVCpu->hm.s.vmx.u32CR0Mask);
6013 CPUMSetGuestCR0(pVCpu, uVal);
6014 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0);
6015 }
6016
6017 HM_RESTORE_PREEMPT();
6018 VMMRZCallRing3Enable(pVCpu);
6019 return VINF_SUCCESS;
6020}
6021
6022
6023/**
6024 * Saves the guest's CR4 register from the VMCS into the guest-CPU context.
6025 *
6026 * @returns VBox status code.
6027 * @param pVCpu The cross context virtual CPU structure.
6028 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6029 * out-of-sync. Make sure to update the required fields
6030 * before using them.
6031 *
6032 * @remarks No-long-jump zone!!!
6033 */
6034static int hmR0VmxSaveGuestCR4(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6035{
6036 NOREF(pMixedCtx);
6037
6038 int rc = VINF_SUCCESS;
6039 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR4))
6040 {
6041 uint32_t uVal = 0;
6042 uint32_t uShadow = 0;
6043 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &uVal);
6044 rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uShadow);
6045 AssertRCReturn(rc, rc);
6046
6047 uVal = (uShadow & pVCpu->hm.s.vmx.u32CR4Mask) | (uVal & ~pVCpu->hm.s.vmx.u32CR4Mask);
6048 CPUMSetGuestCR4(pVCpu, uVal);
6049 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR4);
6050 }
6051 return rc;
6052}
6053
6054
6055/**
6056 * Saves the guest's RIP register from the VMCS into the guest-CPU context.
6057 *
6058 * @returns VBox status code.
6059 * @param pVCpu The cross context virtual CPU structure.
6060 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6061 * out-of-sync. Make sure to update the required fields
6062 * before using them.
6063 *
6064 * @remarks No-long-jump zone!!!
6065 */
6066static int hmR0VmxSaveGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6067{
6068 int rc = VINF_SUCCESS;
6069 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RIP))
6070 {
6071 uint64_t u64Val = 0;
6072 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val);
6073 AssertRCReturn(rc, rc);
6074
6075 pMixedCtx->rip = u64Val;
6076 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RIP);
6077 }
6078 return rc;
6079}
6080
6081
6082/**
6083 * Saves the guest's RSP register from the VMCS into the guest-CPU context.
6084 *
6085 * @returns VBox status code.
6086 * @param pVCpu The cross context virtual CPU structure.
6087 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6088 * out-of-sync. Make sure to update the required fields
6089 * before using them.
6090 *
6091 * @remarks No-long-jump zone!!!
6092 */
6093static int hmR0VmxSaveGuestRsp(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6094{
6095 int rc = VINF_SUCCESS;
6096 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RSP))
6097 {
6098 uint64_t u64Val = 0;
6099 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val);
6100 AssertRCReturn(rc, rc);
6101
6102 pMixedCtx->rsp = u64Val;
6103 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RSP);
6104 }
6105 return rc;
6106}
6107
6108
6109/**
6110 * Saves the guest's RFLAGS from the VMCS into the guest-CPU context.
6111 *
6112 * @returns VBox status code.
6113 * @param pVCpu The cross context virtual CPU structure.
6114 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6115 * out-of-sync. Make sure to update the required fields
6116 * before using them.
6117 *
6118 * @remarks No-long-jump zone!!!
6119 */
6120static int hmR0VmxSaveGuestRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6121{
6122 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS))
6123 {
6124 uint32_t uVal = 0;
6125 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &uVal);
6126 AssertRCReturn(rc, rc);
6127
6128 pMixedCtx->eflags.u32 = uVal;
6129 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active) /* Undo our real-on-v86-mode changes to eflags if necessary. */
6130 {
6131 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
6132 Log4(("Saving real-mode EFLAGS VT-x view=%#RX32\n", pMixedCtx->eflags.u32));
6133
6134 pMixedCtx->eflags.Bits.u1VM = 0;
6135 pMixedCtx->eflags.Bits.u2IOPL = pVCpu->hm.s.vmx.RealMode.Eflags.Bits.u2IOPL;
6136 }
6137
6138 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS);
6139 }
6140 return VINF_SUCCESS;
6141}
6142
6143
6144/**
6145 * Wrapper for saving the guest's RIP, RSP and RFLAGS from the VMCS into the
6146 * guest-CPU context.
6147 */
6148DECLINLINE(int) hmR0VmxSaveGuestRipRspRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6149{
6150 int rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
6151 rc |= hmR0VmxSaveGuestRsp(pVCpu, pMixedCtx);
6152 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
6153 return rc;
6154}
6155
6156
6157/**
6158 * Saves the guest's interruptibility-state ("interrupt shadow" as AMD calls it)
6159 * from the guest-state area in the VMCS.
6160 *
6161 * @param pVCpu The cross context virtual CPU structure.
6162 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6163 * out-of-sync. Make sure to update the required fields
6164 * before using them.
6165 *
6166 * @remarks No-long-jump zone!!!
6167 */
6168static void hmR0VmxSaveGuestIntrState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6169{
6170 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_INTR_STATE))
6171 {
6172 uint32_t uIntrState = 0;
6173 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &uIntrState);
6174 AssertRC(rc);
6175
6176 if (!uIntrState)
6177 {
6178 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
6179 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
6180
6181 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6182 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6183 }
6184 else
6185 {
6186 if (uIntrState & ( VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS
6187 | VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI))
6188 {
6189 rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
6190 AssertRC(rc);
6191 rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx); /* for hmR0VmxGetGuestIntrState(). */
6192 AssertRC(rc);
6193
6194 EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
6195 Assert(VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS));
6196 }
6197 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
6198 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
6199
6200 if (uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI)
6201 {
6202 if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6203 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
6204 }
6205 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6206 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6207 }
6208
6209 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_INTR_STATE);
6210 }
6211}
6212
6213
6214/**
6215 * Saves the guest's activity state.
6216 *
6217 * @returns VBox status code.
6218 * @param pVCpu The cross context virtual CPU structure.
6219 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6220 * out-of-sync. Make sure to update the required fields
6221 * before using them.
6222 *
6223 * @remarks No-long-jump zone!!!
6224 */
6225static int hmR0VmxSaveGuestActivityState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6226{
6227 NOREF(pMixedCtx);
6228 /* Nothing to do for now until we make use of different guest-CPU activity state. Just update the flag. */
6229 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_ACTIVITY_STATE);
6230 return VINF_SUCCESS;
6231}
6232
6233
6234/**
6235 * Saves the guest SYSENTER MSRs (SYSENTER_CS, SYSENTER_EIP, SYSENTER_ESP) from
6236 * the current VMCS into the guest-CPU context.
6237 *
6238 * @returns VBox status code.
6239 * @param pVCpu The cross context virtual CPU structure.
6240 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6241 * out-of-sync. Make sure to update the required fields
6242 * before using them.
6243 *
6244 * @remarks No-long-jump zone!!!
6245 */
6246static int hmR0VmxSaveGuestSysenterMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6247{
6248 int rc = VINF_SUCCESS;
6249 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR))
6250 {
6251 uint32_t u32Val = 0;
6252 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, &u32Val); AssertRCReturn(rc, rc);
6253 pMixedCtx->SysEnter.cs = u32Val;
6254 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR);
6255 }
6256
6257 uint64_t u64Val = 0;
6258 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR))
6259 {
6260 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, &u64Val); AssertRCReturn(rc, rc);
6261 pMixedCtx->SysEnter.eip = u64Val;
6262 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR);
6263 }
6264 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR))
6265 {
6266 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, &u64Val); AssertRCReturn(rc, rc);
6267 pMixedCtx->SysEnter.esp = u64Val;
6268 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR);
6269 }
6270 return rc;
6271}
6272
6273
6274/**
6275 * Saves the set of guest MSRs (that we restore lazily while leaving VT-x) from
6276 * the CPU back into the guest-CPU context.
6277 *
6278 * @returns VBox status code.
6279 * @param pVCpu The cross context virtual CPU structure.
6280 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6281 * out-of-sync. Make sure to update the required fields
6282 * before using them.
6283 *
6284 * @remarks No-long-jump zone!!!
6285 */
6286static int hmR0VmxSaveGuestLazyMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6287{
6288 /* Since this can be called from our preemption hook it's safer to make the guest-MSRs update non-preemptible. */
6289 VMMRZCallRing3Disable(pVCpu);
6290 HM_DISABLE_PREEMPT();
6291
6292 /* Doing the check here ensures we don't overwrite already-saved guest MSRs from a preemption hook. */
6293 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS))
6294 {
6295 hmR0VmxLazySaveGuestMsrs(pVCpu, pMixedCtx);
6296 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS);
6297 }
6298
6299 HM_RESTORE_PREEMPT();
6300 VMMRZCallRing3Enable(pVCpu);
6301
6302 return VINF_SUCCESS;
6303}
6304
6305
6306/**
6307 * Saves the auto load/store'd guest MSRs from the current VMCS into
6308 * the guest-CPU context.
6309 *
6310 * @returns VBox status code.
6311 * @param pVCpu The cross context virtual CPU structure.
6312 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6313 * out-of-sync. Make sure to update the required fields
6314 * before using them.
6315 *
6316 * @remarks No-long-jump zone!!!
6317 */
6318static int hmR0VmxSaveGuestAutoLoadStoreMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6319{
6320 if (HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS))
6321 return VINF_SUCCESS;
6322
6323 PVMXAUTOMSR pMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
6324 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
6325 Log4(("hmR0VmxSaveGuestAutoLoadStoreMsrs: cMsrs=%u\n", cMsrs));
6326 for (uint32_t i = 0; i < cMsrs; i++, pMsr++)
6327 {
6328 switch (pMsr->u32Msr)
6329 {
6330 case MSR_K8_TSC_AUX: CPUMR0SetGuestTscAux(pVCpu, pMsr->u64Value); break;
6331 case MSR_K8_LSTAR: pMixedCtx->msrLSTAR = pMsr->u64Value; break;
6332 case MSR_K6_STAR: pMixedCtx->msrSTAR = pMsr->u64Value; break;
6333 case MSR_K8_SF_MASK: pMixedCtx->msrSFMASK = pMsr->u64Value; break;
6334 case MSR_K8_KERNEL_GS_BASE: pMixedCtx->msrKERNELGSBASE = pMsr->u64Value; break;
6335 case MSR_K6_EFER: /* Nothing to do here since we intercept writes, see hmR0VmxLoadGuestMsrs(). */
6336 break;
6337
6338 default:
6339 {
6340 AssertMsgFailed(("Unexpected MSR in auto-load/store area. uMsr=%#RX32 cMsrs=%u\n", pMsr->u32Msr, cMsrs));
6341 pVCpu->hm.s.u32HMError = pMsr->u32Msr;
6342 return VERR_HM_UNEXPECTED_LD_ST_MSR;
6343 }
6344 }
6345 }
6346
6347 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS);
6348 return VINF_SUCCESS;
6349}
6350
6351
6352/**
6353 * Saves the guest control registers from the current VMCS into the guest-CPU
6354 * context.
6355 *
6356 * @returns VBox status code.
6357 * @param pVCpu The cross context virtual CPU structure.
6358 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6359 * out-of-sync. Make sure to update the required fields
6360 * before using them.
6361 *
6362 * @remarks No-long-jump zone!!!
6363 */
6364static int hmR0VmxSaveGuestControlRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6365{
6366 /* Guest CR0. Guest FPU. */
6367 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
6368 AssertRCReturn(rc, rc);
6369
6370 /* Guest CR4. */
6371 rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
6372 AssertRCReturn(rc, rc);
6373
6374 /* Guest CR2 - updated always during the world-switch or in #PF. */
6375 /* Guest CR3. Only changes with Nested Paging. This must be done -after- saving CR0 and CR4 from the guest! */
6376 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR3))
6377 {
6378 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0));
6379 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR4));
6380
6381 PVM pVM = pVCpu->CTX_SUFF(pVM);
6382 if ( pVM->hm.s.vmx.fUnrestrictedGuest
6383 || ( pVM->hm.s.fNestedPaging
6384 && CPUMIsGuestPagingEnabledEx(pMixedCtx)))
6385 {
6386 uint64_t u64Val = 0;
6387 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_CR3, &u64Val);
6388 if (pMixedCtx->cr3 != u64Val)
6389 {
6390 CPUMSetGuestCR3(pVCpu, u64Val);
6391 if (VMMRZCallRing3IsEnabled(pVCpu))
6392 {
6393 PGMUpdateCR3(pVCpu, u64Val);
6394 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
6395 }
6396 else
6397 {
6398 /* Set the force flag to inform PGM about it when necessary. It is cleared by PGMUpdateCR3().*/
6399 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
6400 }
6401 }
6402
6403 /* If the guest is in PAE mode, sync back the PDPE's into the guest state. */
6404 if (CPUMIsGuestInPAEModeEx(pMixedCtx)) /* Reads CR0, CR4 and EFER MSR (EFER is always up-to-date). */
6405 {
6406 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &pVCpu->hm.s.aPdpes[0].u);
6407 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &pVCpu->hm.s.aPdpes[1].u);
6408 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &pVCpu->hm.s.aPdpes[2].u);
6409 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &pVCpu->hm.s.aPdpes[3].u);
6410 AssertRCReturn(rc, rc);
6411
6412 if (VMMRZCallRing3IsEnabled(pVCpu))
6413 {
6414 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
6415 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
6416 }
6417 else
6418 {
6419 /* Set the force flag to inform PGM about it when necessary. It is cleared by PGMGstUpdatePaePdpes(). */
6420 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES);
6421 }
6422 }
6423 }
6424
6425 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR3);
6426 }
6427
6428 /*
6429 * Consider this scenario: VM-exit -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp -> hmR0VmxCallRing3Callback()
6430 * -> VMMRZCallRing3Disable() -> hmR0VmxSaveGuestState() -> Set VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp
6431 * -> continue with VM-exit handling -> hmR0VmxSaveGuestControlRegs() and here we are.
6432 *
6433 * The reason for such complicated handling is because VM-exits that call into PGM expect CR3 to be up-to-date and thus
6434 * if any CR3-saves -before- the VM-exit (longjmp) postponed the CR3 update via the force-flag, any VM-exit handler that
6435 * calls into PGM when it re-saves CR3 will end up here and we call PGMUpdateCR3(). This is why the code below should
6436 * -NOT- check if HMVMX_UPDATED_GUEST_CR3 is already set or not!
6437 *
6438 * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again. We cover for it here.
6439 */
6440 if (VMMRZCallRing3IsEnabled(pVCpu))
6441 {
6442 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
6443 PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
6444
6445 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
6446 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
6447
6448 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
6449 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
6450 }
6451
6452 return rc;
6453}
6454
6455
6456/**
6457 * Reads a guest segment register from the current VMCS into the guest-CPU
6458 * context.
6459 *
6460 * @returns VBox status code.
6461 * @param pVCpu The cross context virtual CPU structure.
6462 * @param idxSel Index of the selector in the VMCS.
6463 * @param idxLimit Index of the segment limit in the VMCS.
6464 * @param idxBase Index of the segment base in the VMCS.
6465 * @param idxAccess Index of the access rights of the segment in the VMCS.
6466 * @param pSelReg Pointer to the segment selector.
6467 *
6468 * @remarks No-long-jump zone!!!
6469 * @remarks Never call this function directly!!! Use the VMXLOCAL_READ_SEG()
6470 * macro as that takes care of whether to read from the VMCS cache or
6471 * not.
6472 */
6473DECLINLINE(int) hmR0VmxReadSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase, uint32_t idxAccess,
6474 PCPUMSELREG pSelReg)
6475{
6476 NOREF(pVCpu);
6477
6478 uint32_t u32Val = 0;
6479 int rc = VMXReadVmcs32(idxSel, &u32Val);
6480 AssertRCReturn(rc, rc);
6481 pSelReg->Sel = (uint16_t)u32Val;
6482 pSelReg->ValidSel = (uint16_t)u32Val;
6483 pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
6484
6485 rc = VMXReadVmcs32(idxLimit, &u32Val);
6486 AssertRCReturn(rc, rc);
6487 pSelReg->u32Limit = u32Val;
6488
6489 uint64_t u64Val = 0;
6490 rc = VMXReadVmcsGstNByIdxVal(idxBase, &u64Val);
6491 AssertRCReturn(rc, rc);
6492 pSelReg->u64Base = u64Val;
6493
6494 rc = VMXReadVmcs32(idxAccess, &u32Val);
6495 AssertRCReturn(rc, rc);
6496 pSelReg->Attr.u = u32Val;
6497
6498 /*
6499 * If VT-x marks the segment as unusable, most other bits remain undefined:
6500 * - For CS the L, D and G bits have meaning.
6501 * - For SS the DPL has meaning (it -is- the CPL for Intel and VBox).
6502 * - For the remaining data segments no bits are defined.
6503 *
6504 * The present bit and the unusable bit has been observed to be set at the
6505 * same time (the selector was supposed to be invalid as we started executing
6506 * a V8086 interrupt in ring-0).
6507 *
6508 * What should be important for the rest of the VBox code, is that the P bit is
6509 * cleared. Some of the other VBox code recognizes the unusable bit, but
6510 * AMD-V certainly don't, and REM doesn't really either. So, to be on the
6511 * safe side here, we'll strip off P and other bits we don't care about. If
6512 * any code breaks because Attr.u != 0 when Sel < 4, it should be fixed.
6513 *
6514 * See Intel spec. 27.3.2 "Saving Segment Registers and Descriptor-Table Registers".
6515 */
6516 if (pSelReg->Attr.u & X86DESCATTR_UNUSABLE)
6517 {
6518 Assert(idxSel != VMX_VMCS16_GUEST_TR_SEL); /* TR is the only selector that can never be unusable. */
6519
6520 /* Masking off: X86DESCATTR_P, X86DESCATTR_LIMIT_HIGH, and X86DESCATTR_AVL. The latter two are really irrelevant. */
6521 pSelReg->Attr.u &= X86DESCATTR_UNUSABLE | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
6522 | X86DESCATTR_DPL | X86DESCATTR_TYPE | X86DESCATTR_DT;
6523
6524 Log4(("hmR0VmxReadSegmentReg: Unusable idxSel=%#x attr=%#x -> %#x\n", idxSel, u32Val, pSelReg->Attr.u));
6525#ifdef DEBUG_bird
6526 AssertMsg((u32Val & ~X86DESCATTR_P) == pSelReg->Attr.u,
6527 ("%#x: %#x != %#x (sel=%#x base=%#llx limit=%#x)\n",
6528 idxSel, u32Val, pSelReg->Attr.u, pSelReg->Sel, pSelReg->u64Base, pSelReg->u32Limit));
6529#endif
6530 }
6531 return VINF_SUCCESS;
6532}
6533
6534
6535#ifdef VMX_USE_CACHED_VMCS_ACCESSES
6536# define VMXLOCAL_READ_SEG(Sel, CtxSel) \
6537 hmR0VmxReadSegmentReg(pVCpu, VMX_VMCS16_GUEST_##Sel##_SEL, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
6538 VMX_VMCS_GUEST_##Sel##_BASE_CACHE_IDX, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, &pMixedCtx->CtxSel)
6539#else
6540# define VMXLOCAL_READ_SEG(Sel, CtxSel) \
6541 hmR0VmxReadSegmentReg(pVCpu, VMX_VMCS16_GUEST_##Sel##_SEL, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
6542 VMX_VMCS_GUEST_##Sel##_BASE, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, &pMixedCtx->CtxSel)
6543#endif
6544
6545
6546/**
6547 * Saves the guest segment registers from the current VMCS into the guest-CPU
6548 * context.
6549 *
6550 * @returns VBox status code.
6551 * @param pVCpu The cross context virtual CPU structure.
6552 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6553 * out-of-sync. Make sure to update the required fields
6554 * before using them.
6555 *
6556 * @remarks No-long-jump zone!!!
6557 */
6558static int hmR0VmxSaveGuestSegmentRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6559{
6560 /* Guest segment registers. */
6561 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SEGMENT_REGS))
6562 {
6563 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
6564 AssertRCReturn(rc, rc);
6565
6566 rc = VMXLOCAL_READ_SEG(CS, cs);
6567 rc |= VMXLOCAL_READ_SEG(SS, ss);
6568 rc |= VMXLOCAL_READ_SEG(DS, ds);
6569 rc |= VMXLOCAL_READ_SEG(ES, es);
6570 rc |= VMXLOCAL_READ_SEG(FS, fs);
6571 rc |= VMXLOCAL_READ_SEG(GS, gs);
6572 AssertRCReturn(rc, rc);
6573
6574 /* Restore segment attributes for real-on-v86 mode hack. */
6575 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6576 {
6577 pMixedCtx->cs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrCS.u;
6578 pMixedCtx->ss.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrSS.u;
6579 pMixedCtx->ds.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrDS.u;
6580 pMixedCtx->es.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrES.u;
6581 pMixedCtx->fs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrFS.u;
6582 pMixedCtx->gs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrGS.u;
6583 }
6584 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SEGMENT_REGS);
6585 }
6586
6587 return VINF_SUCCESS;
6588}
6589
6590
6591/**
6592 * Saves the guest descriptor table registers and task register from the current
6593 * VMCS into the guest-CPU context.
6594 *
6595 * @returns VBox status code.
6596 * @param pVCpu The cross context virtual CPU structure.
6597 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6598 * out-of-sync. Make sure to update the required fields
6599 * before using them.
6600 *
6601 * @remarks No-long-jump zone!!!
6602 */
6603static int hmR0VmxSaveGuestTableRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6604{
6605 int rc = VINF_SUCCESS;
6606
6607 /* Guest LDTR. */
6608 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LDTR))
6609 {
6610 rc = VMXLOCAL_READ_SEG(LDTR, ldtr);
6611 AssertRCReturn(rc, rc);
6612 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LDTR);
6613 }
6614
6615 /* Guest GDTR. */
6616 uint64_t u64Val = 0;
6617 uint32_t u32Val = 0;
6618 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_GDTR))
6619 {
6620 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
6621 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val); AssertRCReturn(rc, rc);
6622 pMixedCtx->gdtr.pGdt = u64Val;
6623 pMixedCtx->gdtr.cbGdt = u32Val;
6624 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_GDTR);
6625 }
6626
6627 /* Guest IDTR. */
6628 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_IDTR))
6629 {
6630 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
6631 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val); AssertRCReturn(rc, rc);
6632 pMixedCtx->idtr.pIdt = u64Val;
6633 pMixedCtx->idtr.cbIdt = u32Val;
6634 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_IDTR);
6635 }
6636
6637 /* Guest TR. */
6638 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_TR))
6639 {
6640 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
6641 AssertRCReturn(rc, rc);
6642
6643 /* For real-mode emulation using virtual-8086 mode we have the fake TSS (pRealModeTSS) in TR, don't save the fake one. */
6644 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6645 {
6646 rc = VMXLOCAL_READ_SEG(TR, tr);
6647 AssertRCReturn(rc, rc);
6648 }
6649 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_TR);
6650 }
6651 return rc;
6652}
6653
6654#undef VMXLOCAL_READ_SEG
6655
6656
6657/**
6658 * Saves the guest debug-register DR7 from the current VMCS into the guest-CPU
6659 * context.
6660 *
6661 * @returns VBox status code.
6662 * @param pVCpu The cross context virtual CPU structure.
6663 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6664 * out-of-sync. Make sure to update the required fields
6665 * before using them.
6666 *
6667 * @remarks No-long-jump zone!!!
6668 */
6669static int hmR0VmxSaveGuestDR7(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6670{
6671 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_DEBUG))
6672 {
6673 if (!pVCpu->hm.s.fUsingHyperDR7)
6674 {
6675 /* Upper 32-bits are always zero. See Intel spec. 2.7.3 "Loading and Storing Debug Registers". */
6676 uint32_t u32Val;
6677 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_DR7, &u32Val); AssertRCReturn(rc, rc);
6678 pMixedCtx->dr[7] = u32Val;
6679 }
6680
6681 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_DEBUG);
6682 }
6683 return VINF_SUCCESS;
6684}
6685
6686
6687/**
6688 * Saves the guest APIC state from the current VMCS into the guest-CPU context.
6689 *
6690 * @returns VBox status code.
6691 * @param pVCpu The cross context virtual CPU structure.
6692 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6693 * out-of-sync. Make sure to update the required fields
6694 * before using them.
6695 *
6696 * @remarks No-long-jump zone!!!
6697 */
6698static int hmR0VmxSaveGuestApicState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6699{
6700 NOREF(pMixedCtx);
6701
6702 /* Updating TPR is already done in hmR0VmxPostRunGuest(). Just update the flag. */
6703 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_APIC_STATE);
6704 return VINF_SUCCESS;
6705}
6706
6707
6708/**
6709 * Saves the entire guest state from the currently active VMCS into the
6710 * guest-CPU context.
6711 *
6712 * This essentially VMREADs all guest-data.
6713 *
6714 * @returns VBox status code.
6715 * @param pVCpu The cross context virtual CPU structure.
6716 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
6717 * out-of-sync. Make sure to update the required fields
6718 * before using them.
6719 */
6720static int hmR0VmxSaveGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6721{
6722 Assert(pVCpu);
6723 Assert(pMixedCtx);
6724
6725 if (HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL)
6726 return VINF_SUCCESS;
6727
6728 /* Though we can longjmp to ring-3 due to log-flushes here and get recalled
6729 again on the ring-3 callback path, there is no real need to. */
6730 if (VMMRZCallRing3IsEnabled(pVCpu))
6731 VMMR0LogFlushDisable(pVCpu);
6732 else
6733 Assert(VMMR0IsLogFlushDisabled(pVCpu));
6734 Log4Func(("vcpu[%RU32]\n", pVCpu->idCpu));
6735
6736 int rc = hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
6737 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestRipRspRflags failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6738
6739 rc = hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
6740 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestControlRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6741
6742 rc = hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
6743 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestSegmentRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6744
6745 rc = hmR0VmxSaveGuestTableRegs(pVCpu, pMixedCtx);
6746 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestTableRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6747
6748 rc = hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
6749 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestDR7 failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6750
6751 rc = hmR0VmxSaveGuestSysenterMsrs(pVCpu, pMixedCtx);
6752 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestSysenterMsrs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6753
6754 rc = hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
6755 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestLazyMsrs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6756
6757 rc = hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
6758 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestAutoLoadStoreMsrs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6759
6760 rc = hmR0VmxSaveGuestActivityState(pVCpu, pMixedCtx);
6761 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestActivityState failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6762
6763 rc = hmR0VmxSaveGuestApicState(pVCpu, pMixedCtx);
6764 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestApicState failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6765
6766 AssertMsg(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL,
6767 ("Missed guest state bits while saving state; missing %RX32 (got %RX32, want %RX32) - check log for any previous errors!\n",
6768 HMVMX_UPDATED_GUEST_ALL ^ HMVMXCPU_GST_VALUE(pVCpu), HMVMXCPU_GST_VALUE(pVCpu), HMVMX_UPDATED_GUEST_ALL));
6769
6770 if (VMMRZCallRing3IsEnabled(pVCpu))
6771 VMMR0LogFlushEnable(pVCpu);
6772
6773 return VINF_SUCCESS;
6774}
6775
6776
6777/**
6778 * Saves basic guest registers needed for IEM instruction execution.
6779 *
6780 * @returns VBox status code (OR-able).
6781 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
6782 * @param pMixedCtx Pointer to the CPU context of the guest.
6783 * @param fMemory Whether the instruction being executed operates on
6784 * memory or not. Only CR0 is synced up if clear.
6785 * @param fNeedRsp Need RSP (any instruction working on GPRs or stack).
6786 */
6787static int hmR0VmxSaveGuestRegsForIemExec(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fMemory, bool fNeedRsp)
6788{
6789 /*
6790 * We assume all general purpose registers other than RSP are available.
6791 *
6792 * RIP is a must, as it will be incremented or otherwise changed.
6793 *
6794 * RFLAGS are always required to figure the CPL.
6795 *
6796 * RSP isn't always required, however it's a GPR, so frequently required.
6797 *
6798 * SS and CS are the only segment register needed if IEM doesn't do memory
6799 * access (CPL + 16/32/64-bit mode), but we can only get all segment registers.
6800 *
6801 * CR0 is always required by IEM for the CPL, while CR3 and CR4 will only
6802 * be required for memory accesses.
6803 *
6804 * Note! Before IEM dispatches an exception, it will call us to sync in everything.
6805 */
6806 int rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
6807 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
6808 if (fNeedRsp)
6809 rc |= hmR0VmxSaveGuestRsp(pVCpu, pMixedCtx);
6810 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
6811 if (!fMemory)
6812 rc |= hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
6813 else
6814 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
6815 AssertRCReturn(rc, rc);
6816 return rc;
6817}
6818
6819
6820/**
6821 * Ensures that we've got a complete basic guest-context.
6822 *
6823 * This excludes the FPU, SSE, AVX, and similar extended state. The interface
6824 * is for the interpreter.
6825 *
6826 * @returns VBox status code.
6827 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
6828 * @param pMixedCtx Pointer to the guest-CPU context which may have data
6829 * needing to be synced in.
6830 * @thread EMT(pVCpu)
6831 */
6832VMMR0_INT_DECL(int) HMR0EnsureCompleteBasicContext(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6833{
6834 /* Note! Since this is only applicable to VT-x, the implementation is placed
6835 in the VT-x part of the sources instead of the generic stuff. */
6836 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fSupported)
6837 {
6838 /* For now, imply that the caller might change everything too. */
6839 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
6840 return hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
6841 }
6842 return VINF_SUCCESS;
6843}
6844
6845
6846/**
6847 * Check per-VM and per-VCPU force flag actions that require us to go back to
6848 * ring-3 for one reason or another.
6849 *
6850 * @returns Strict VBox status code (i.e. informational status codes too)
6851 * @retval VINF_SUCCESS if we don't have any actions that require going back to
6852 * ring-3.
6853 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
6854 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
6855 * interrupts)
6856 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
6857 * all EMTs to be in ring-3.
6858 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
6859 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
6860 * to the EM loop.
6861 *
6862 * @param pVM The cross context VM structure.
6863 * @param pVCpu The cross context virtual CPU structure.
6864 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
6865 * out-of-sync. Make sure to update the required fields
6866 * before using them.
6867 * @param fStepping Running in hmR0VmxRunGuestCodeStep().
6868 */
6869static VBOXSTRICTRC hmR0VmxCheckForceFlags(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fStepping)
6870{
6871 Assert(VMMRZCallRing3IsEnabled(pVCpu));
6872
6873 /*
6874 * Anything pending? Should be more likely than not if we're doing a good job.
6875 */
6876 if ( !fStepping
6877 ? !VM_FF_IS_PENDING(pVM, VM_FF_HP_R0_PRE_HM_MASK)
6878 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HP_R0_PRE_HM_MASK)
6879 : !VM_FF_IS_PENDING(pVM, VM_FF_HP_R0_PRE_HM_STEP_MASK)
6880 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
6881 return VINF_SUCCESS;
6882
6883 /* We need the control registers now, make sure the guest-CPU context is updated. */
6884 int rc3 = hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
6885 AssertRCReturn(rc3, rc3);
6886
6887 /* Pending HM CR3 sync. */
6888 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
6889 {
6890 int rc2 = PGMUpdateCR3(pVCpu, pMixedCtx->cr3);
6891 AssertMsgReturn(rc2 == VINF_SUCCESS || rc2 == VINF_PGM_SYNC_CR3,
6892 ("%Rrc\n", rc2), RT_FAILURE_NP(rc2) ? rc2 : VERR_IPE_UNEXPECTED_INFO_STATUS);
6893 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
6894 }
6895
6896 /* Pending HM PAE PDPEs. */
6897 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
6898 {
6899 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
6900 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
6901 }
6902
6903 /* Pending PGM C3 sync. */
6904 if (VMCPU_FF_IS_PENDING(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
6905 {
6906 VBOXSTRICTRC rcStrict2 = PGMSyncCR3(pVCpu, pMixedCtx->cr0, pMixedCtx->cr3, pMixedCtx->cr4,
6907 VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
6908 if (rcStrict2 != VINF_SUCCESS)
6909 {
6910 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
6911 Log4(("hmR0VmxCheckForceFlags: PGMSyncCR3 forcing us back to ring-3. rc2=%d\n", VBOXSTRICTRC_VAL(rcStrict2)));
6912 return rcStrict2;
6913 }
6914 }
6915
6916 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
6917 if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK)
6918 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
6919 {
6920 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
6921 int rc2 = RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
6922 Log4(("hmR0VmxCheckForceFlags: HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc2));
6923 return rc2;
6924 }
6925
6926 /* Pending VM request packets, such as hardware interrupts. */
6927 if ( VM_FF_IS_PENDING(pVM, VM_FF_REQUEST)
6928 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_REQUEST))
6929 {
6930 Log4(("hmR0VmxCheckForceFlags: Pending VM request forcing us back to ring-3\n"));
6931 return VINF_EM_PENDING_REQUEST;
6932 }
6933
6934 /* Pending PGM pool flushes. */
6935 if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
6936 {
6937 Log4(("hmR0VmxCheckForceFlags: PGM pool flush pending forcing us back to ring-3\n"));
6938 return VINF_PGM_POOL_FLUSH_PENDING;
6939 }
6940
6941 /* Pending DMA requests. */
6942 if (VM_FF_IS_PENDING(pVM, VM_FF_PDM_DMA))
6943 {
6944 Log4(("hmR0VmxCheckForceFlags: Pending DMA request forcing us back to ring-3\n"));
6945 return VINF_EM_RAW_TO_R3;
6946 }
6947
6948 return VINF_SUCCESS;
6949}
6950
6951
6952/**
6953 * Converts any TRPM trap into a pending HM event. This is typically used when
6954 * entering from ring-3 (not longjmp returns).
6955 *
6956 * @param pVCpu The cross context virtual CPU structure.
6957 */
6958static void hmR0VmxTrpmTrapToPendingEvent(PVMCPU pVCpu)
6959{
6960 Assert(TRPMHasTrap(pVCpu));
6961 Assert(!pVCpu->hm.s.Event.fPending);
6962
6963 uint8_t uVector;
6964 TRPMEVENT enmTrpmEvent;
6965 RTGCUINT uErrCode;
6966 RTGCUINTPTR GCPtrFaultAddress;
6967 uint8_t cbInstr;
6968
6969 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
6970 AssertRC(rc);
6971
6972 /* Refer Intel spec. 24.8.3 "VM-entry Controls for Event Injection" for the format of u32IntInfo. */
6973 uint32_t u32IntInfo = uVector | VMX_EXIT_INTERRUPTION_INFO_VALID;
6974 if (enmTrpmEvent == TRPM_TRAP)
6975 {
6976 switch (uVector)
6977 {
6978 case X86_XCPT_NMI:
6979 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
6980 break;
6981
6982 case X86_XCPT_BP:
6983 case X86_XCPT_OF:
6984 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
6985 break;
6986
6987 case X86_XCPT_PF:
6988 case X86_XCPT_DF:
6989 case X86_XCPT_TS:
6990 case X86_XCPT_NP:
6991 case X86_XCPT_SS:
6992 case X86_XCPT_GP:
6993 case X86_XCPT_AC:
6994 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
6995 /* no break! */
6996 default:
6997 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
6998 break;
6999 }
7000 }
7001 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
7002 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7003 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
7004 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7005 else
7006 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
7007
7008 rc = TRPMResetTrap(pVCpu);
7009 AssertRC(rc);
7010 Log4(("TRPM->HM event: u32IntInfo=%#RX32 enmTrpmEvent=%d cbInstr=%u uErrCode=%#RX32 GCPtrFaultAddress=%#RGv\n",
7011 u32IntInfo, enmTrpmEvent, cbInstr, uErrCode, GCPtrFaultAddress));
7012
7013 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, uErrCode, GCPtrFaultAddress);
7014}
7015
7016
7017/**
7018 * Converts the pending HM event into a TRPM trap.
7019 *
7020 * @param pVCpu The cross context virtual CPU structure.
7021 */
7022static void hmR0VmxPendingEventToTrpmTrap(PVMCPU pVCpu)
7023{
7024 Assert(pVCpu->hm.s.Event.fPending);
7025
7026 uint32_t uVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
7027 uint32_t uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVCpu->hm.s.Event.u64IntInfo);
7028 bool fErrorCodeValid = VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVCpu->hm.s.Event.u64IntInfo);
7029 uint32_t uErrorCode = pVCpu->hm.s.Event.u32ErrCode;
7030
7031 /* If a trap was already pending, we did something wrong! */
7032 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
7033
7034 TRPMEVENT enmTrapType;
7035 switch (uVectorType)
7036 {
7037 case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
7038 enmTrapType = TRPM_HARDWARE_INT;
7039 break;
7040
7041 case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
7042 enmTrapType = TRPM_SOFTWARE_INT;
7043 break;
7044
7045 case VMX_IDT_VECTORING_INFO_TYPE_NMI:
7046 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
7047 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT: /* #BP and #OF */
7048 case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
7049 enmTrapType = TRPM_TRAP;
7050 break;
7051
7052 default:
7053 AssertMsgFailed(("Invalid trap type %#x\n", uVectorType));
7054 enmTrapType = TRPM_32BIT_HACK;
7055 break;
7056 }
7057
7058 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, enmTrapType));
7059
7060 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
7061 AssertRC(rc);
7062
7063 if (fErrorCodeValid)
7064 TRPMSetErrorCode(pVCpu, uErrorCode);
7065
7066 if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
7067 && uVector == X86_XCPT_PF)
7068 {
7069 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
7070 }
7071 else if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
7072 || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
7073 || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
7074 {
7075 AssertMsg( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
7076 || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
7077 ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
7078 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
7079 }
7080
7081 /* Clear any pending events from the VMCS. */
7082 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, 0); AssertRC(rc);
7083 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, 0); AssertRC(rc);
7084
7085 /* We're now done converting the pending event. */
7086 pVCpu->hm.s.Event.fPending = false;
7087}
7088
7089
7090/**
7091 * Does the necessary state syncing before returning to ring-3 for any reason
7092 * (longjmp, preemption, voluntary exits to ring-3) from VT-x.
7093 *
7094 * @returns VBox status code.
7095 * @param pVM The cross context VM structure.
7096 * @param pVCpu The cross context virtual CPU structure.
7097 * @param pMixedCtx Pointer to the guest-CPU context. The data may
7098 * be out-of-sync. Make sure to update the required
7099 * fields before using them.
7100 * @param fSaveGuestState Whether to save the guest state or not.
7101 *
7102 * @remarks No-long-jmp zone!!!
7103 */
7104static int hmR0VmxLeave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fSaveGuestState)
7105{
7106 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7107 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
7108
7109 RTCPUID idCpu = RTMpCpuId();
7110 Log4Func(("HostCpuId=%u\n", idCpu));
7111
7112 /*
7113 * !!! IMPORTANT !!!
7114 * If you modify code here, check whether hmR0VmxCallRing3Callback() needs to be updated too.
7115 */
7116
7117 /* Save the guest state if necessary. */
7118 if ( fSaveGuestState
7119 && HMVMXCPU_GST_VALUE(pVCpu) != HMVMX_UPDATED_GUEST_ALL)
7120 {
7121 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
7122 AssertRCReturn(rc, rc);
7123 Assert(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL);
7124 }
7125
7126 /* Restore host FPU state if necessary and resync on next R0 reentry .*/
7127 if (CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu))
7128 {
7129 if (fSaveGuestState)
7130 {
7131 /* We shouldn't reload CR0 without saving it first. */
7132 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
7133 AssertRCReturn(rc, rc);
7134 }
7135 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
7136 }
7137
7138 /* Restore host debug registers if necessary and resync on next R0 reentry. */
7139#ifdef VBOX_STRICT
7140 if (CPUMIsHyperDebugStateActive(pVCpu))
7141 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT);
7142#endif
7143 if (CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */))
7144 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
7145 Assert(!CPUMIsGuestDebugStateActive(pVCpu) && !CPUMIsGuestDebugStateActivePending(pVCpu));
7146 Assert(!CPUMIsHyperDebugStateActive(pVCpu) && !CPUMIsHyperDebugStateActivePending(pVCpu));
7147
7148#if HC_ARCH_BITS == 64
7149 /* Restore host-state bits that VT-x only restores partially. */
7150 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
7151 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
7152 {
7153 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags, idCpu));
7154 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
7155 }
7156 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
7157#endif
7158
7159 /* Restore the lazy host MSRs as we're leaving VT-x context. */
7160 if (pVCpu->hm.s.vmx.fLazyMsrs)
7161 {
7162 /* We shouldn't reload the guest MSRs without saving it first. */
7163 if (!fSaveGuestState)
7164 {
7165 int rc = hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
7166 AssertRCReturn(rc, rc);
7167 }
7168 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS));
7169 hmR0VmxLazyRestoreHostMsrs(pVCpu);
7170 Assert(!pVCpu->hm.s.vmx.fLazyMsrs);
7171 }
7172
7173 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
7174 pVCpu->hm.s.vmx.fUpdatedHostMsrs = false;
7175
7176 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
7177 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatLoadGuestState);
7178 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit1);
7179 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit2);
7180 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitIO);
7181 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitMovCRx);
7182 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitXcptNmi);
7183 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
7184
7185 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
7186
7187 /** @todo This partially defeats the purpose of having preemption hooks.
7188 * The problem is, deregistering the hooks should be moved to a place that
7189 * lasts until the EMT is about to be destroyed not everytime while leaving HM
7190 * context.
7191 */
7192 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_ACTIVE)
7193 {
7194 int rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
7195 AssertRCReturn(rc, rc);
7196
7197 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
7198 Log4Func(("Cleared Vmcs. HostCpuId=%u\n", idCpu));
7199 }
7200 Assert(!(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_LAUNCHED));
7201 NOREF(idCpu);
7202
7203 return VINF_SUCCESS;
7204}
7205
7206
7207/**
7208 * Leaves the VT-x session.
7209 *
7210 * @returns VBox status code.
7211 * @param pVM The cross context VM structure.
7212 * @param pVCpu The cross context virtual CPU structure.
7213 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7214 * out-of-sync. Make sure to update the required fields
7215 * before using them.
7216 *
7217 * @remarks No-long-jmp zone!!!
7218 */
7219DECLINLINE(int) hmR0VmxLeaveSession(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7220{
7221 HM_DISABLE_PREEMPT();
7222 HMVMX_ASSERT_CPU_SAFE();
7223 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
7224 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7225
7226 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
7227 and done this from the VMXR0ThreadCtxCallback(). */
7228 if (!pVCpu->hm.s.fLeaveDone)
7229 {
7230 int rc2 = hmR0VmxLeave(pVM, pVCpu, pMixedCtx, true /* fSaveGuestState */);
7231 AssertRCReturnStmt(rc2, HM_RESTORE_PREEMPT(), rc2);
7232 pVCpu->hm.s.fLeaveDone = true;
7233 }
7234 Assert(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL);
7235
7236 /*
7237 * !!! IMPORTANT !!!
7238 * If you modify code here, make sure to check whether hmR0VmxCallRing3Callback() needs to be updated too.
7239 */
7240
7241 /* Deregister hook now that we've left HM context before re-enabling preemption. */
7242 /** @todo Deregistering here means we need to VMCLEAR always
7243 * (longjmp/exit-to-r3) in VT-x which is not efficient. */
7244 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
7245 VMMR0ThreadCtxHookDisable(pVCpu);
7246
7247 /* Leave HM context. This takes care of local init (term). */
7248 int rc = HMR0LeaveCpu(pVCpu);
7249
7250 HM_RESTORE_PREEMPT();
7251 return rc;
7252}
7253
7254
7255/**
7256 * Does the necessary state syncing before doing a longjmp to ring-3.
7257 *
7258 * @returns VBox status code.
7259 * @param pVM The cross context VM structure.
7260 * @param pVCpu The cross context virtual CPU structure.
7261 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7262 * out-of-sync. Make sure to update the required fields
7263 * before using them.
7264 *
7265 * @remarks No-long-jmp zone!!!
7266 */
7267DECLINLINE(int) hmR0VmxLongJmpToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7268{
7269 return hmR0VmxLeaveSession(pVM, pVCpu, pMixedCtx);
7270}
7271
7272
7273/**
7274 * Take necessary actions before going back to ring-3.
7275 *
7276 * An action requires us to go back to ring-3. This function does the necessary
7277 * steps before we can safely return to ring-3. This is not the same as longjmps
7278 * to ring-3, this is voluntary and prepares the guest so it may continue
7279 * executing outside HM (recompiler/IEM).
7280 *
7281 * @returns VBox status code.
7282 * @param pVM The cross context VM structure.
7283 * @param pVCpu The cross context virtual CPU structure.
7284 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7285 * out-of-sync. Make sure to update the required fields
7286 * before using them.
7287 * @param rcExit The reason for exiting to ring-3. Can be
7288 * VINF_VMM_UNKNOWN_RING3_CALL.
7289 */
7290static int hmR0VmxExitToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, VBOXSTRICTRC rcExit)
7291{
7292 Assert(pVM);
7293 Assert(pVCpu);
7294 Assert(pMixedCtx);
7295 HMVMX_ASSERT_PREEMPT_SAFE();
7296
7297 if (RT_UNLIKELY(rcExit == VERR_VMX_INVALID_VMCS_PTR))
7298 {
7299 VMXGetActivatedVmcs(&pVCpu->hm.s.vmx.LastError.u64VMCSPhys);
7300 pVCpu->hm.s.vmx.LastError.u32VMCSRevision = *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs;
7301 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
7302 /* LastError.idCurrentCpu was updated in hmR0VmxPreRunGuestCommitted(). */
7303 }
7304
7305 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
7306 VMMRZCallRing3Disable(pVCpu);
7307 Log4(("hmR0VmxExitToRing3: pVCpu=%p idCpu=%RU32 rcExit=%d\n", pVCpu, pVCpu->idCpu, VBOXSTRICTRC_VAL(rcExit)));
7308
7309 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
7310 if (pVCpu->hm.s.Event.fPending)
7311 {
7312 hmR0VmxPendingEventToTrpmTrap(pVCpu);
7313 Assert(!pVCpu->hm.s.Event.fPending);
7314 }
7315
7316 /* Clear interrupt-window and NMI-window controls as we re-evaluate it when we return from ring-3. */
7317 hmR0VmxClearIntNmiWindowsVmcs(pVCpu);
7318
7319 /* If we're emulating an instruction, we shouldn't have any TRPM traps pending
7320 and if we're injecting an event we should have a TRPM trap pending. */
7321 AssertMsg(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
7322#ifndef DEBUG_bird /* Triggered after firing an NMI against NT4SP1, possibly a tripple fault in progress. */
7323 AssertMsg(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
7324#endif
7325
7326 /* Save guest state and restore host state bits. */
7327 int rc = hmR0VmxLeaveSession(pVM, pVCpu, pMixedCtx);
7328 AssertRCReturn(rc, rc);
7329 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
7330 /* Thread-context hooks are unregistered at this point!!! */
7331
7332 /* Sync recompiler state. */
7333 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
7334 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
7335 | CPUM_CHANGED_LDTR
7336 | CPUM_CHANGED_GDTR
7337 | CPUM_CHANGED_IDTR
7338 | CPUM_CHANGED_TR
7339 | CPUM_CHANGED_HIDDEN_SEL_REGS);
7340 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0));
7341 if ( pVM->hm.s.fNestedPaging
7342 && CPUMIsGuestPagingEnabledEx(pMixedCtx))
7343 {
7344 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
7345 }
7346
7347 Assert(!pVCpu->hm.s.fClearTrapFlag);
7348
7349 /* On our way back from ring-3 reload the guest state if there is a possibility of it being changed. */
7350 if (rcExit != VINF_EM_RAW_INTERRUPT)
7351 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
7352
7353 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
7354
7355 /* We do -not- want any longjmp notifications after this! We must return to ring-3 ASAP. */
7356 VMMRZCallRing3RemoveNotification(pVCpu);
7357 VMMRZCallRing3Enable(pVCpu);
7358
7359 return rc;
7360}
7361
7362
7363/**
7364 * VMMRZCallRing3() callback wrapper which saves the guest state before we
7365 * longjump to ring-3 and possibly get preempted.
7366 *
7367 * @returns VBox status code.
7368 * @param pVCpu The cross context virtual CPU structure.
7369 * @param enmOperation The operation causing the ring-3 longjump.
7370 * @param pvUser Opaque pointer to the guest-CPU context. The data
7371 * may be out-of-sync. Make sure to update the required
7372 * fields before using them.
7373 */
7374static DECLCALLBACK(int) hmR0VmxCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
7375{
7376 if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
7377 {
7378 /*
7379 * !!! IMPORTANT !!!
7380 * If you modify code here, check whether hmR0VmxLeave() and hmR0VmxLeaveSession() needs to be updated too.
7381 * This is a stripped down version which gets out ASAP, trying to not trigger any further assertions.
7382 */
7383 VMMRZCallRing3RemoveNotification(pVCpu);
7384 VMMRZCallRing3Disable(pVCpu);
7385 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
7386 RTThreadPreemptDisable(&PreemptState);
7387
7388 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
7389 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
7390
7391#if HC_ARCH_BITS == 64
7392 /* Restore host-state bits that VT-x only restores partially. */
7393 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
7394 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
7395 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
7396 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
7397#endif
7398 /* Restore the lazy host MSRs as we're leaving VT-x context. */
7399 if (pVCpu->hm.s.vmx.fLazyMsrs)
7400 hmR0VmxLazyRestoreHostMsrs(pVCpu);
7401
7402 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
7403 pVCpu->hm.s.vmx.fUpdatedHostMsrs = false;
7404 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
7405 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_ACTIVE)
7406 {
7407 VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
7408 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
7409 }
7410
7411 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
7412 VMMR0ThreadCtxHookDisable(pVCpu);
7413 HMR0LeaveCpu(pVCpu);
7414 RTThreadPreemptRestore(&PreemptState);
7415 return VINF_SUCCESS;
7416 }
7417
7418 Assert(pVCpu);
7419 Assert(pvUser);
7420 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7421 HMVMX_ASSERT_PREEMPT_SAFE();
7422
7423 VMMRZCallRing3Disable(pVCpu);
7424 Assert(VMMR0IsLogFlushDisabled(pVCpu));
7425
7426 Log4(("hmR0VmxCallRing3Callback->hmR0VmxLongJmpToRing3 pVCpu=%p idCpu=%RU32 enmOperation=%d\n", pVCpu, pVCpu->idCpu,
7427 enmOperation));
7428
7429 int rc = hmR0VmxLongJmpToRing3(pVCpu->CTX_SUFF(pVM), pVCpu, (PCPUMCTX)pvUser);
7430 AssertRCReturn(rc, rc);
7431
7432 VMMRZCallRing3Enable(pVCpu);
7433 return VINF_SUCCESS;
7434}
7435
7436
7437/**
7438 * Sets the interrupt-window exiting control in the VMCS which instructs VT-x to
7439 * cause a VM-exit as soon as the guest is in a state to receive interrupts.
7440 *
7441 * @param pVCpu The cross context virtual CPU structure.
7442 */
7443DECLINLINE(void) hmR0VmxSetIntWindowExitVmcs(PVMCPU pVCpu)
7444{
7445 if (RT_LIKELY(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT))
7446 {
7447 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT))
7448 {
7449 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT;
7450 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7451 AssertRC(rc);
7452 Log4(("Setup interrupt-window exiting\n"));
7453 }
7454 } /* else we will deliver interrupts whenever the guest exits next and is in a state to receive events. */
7455}
7456
7457
7458/**
7459 * Clears the interrupt-window exiting control in the VMCS.
7460 *
7461 * @param pVCpu The cross context virtual CPU structure.
7462 */
7463DECLINLINE(void) hmR0VmxClearIntWindowExitVmcs(PVMCPU pVCpu)
7464{
7465 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT);
7466 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT;
7467 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7468 AssertRC(rc);
7469 Log4(("Cleared interrupt-window exiting\n"));
7470}
7471
7472
7473/**
7474 * Sets the NMI-window exiting control in the VMCS which instructs VT-x to
7475 * cause a VM-exit as soon as the guest is in a state to receive NMIs.
7476 *
7477 * @param pVCpu The cross context virtual CPU structure.
7478 */
7479DECLINLINE(void) hmR0VmxSetNmiWindowExitVmcs(PVMCPU pVCpu)
7480{
7481 if (RT_LIKELY(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT))
7482 {
7483 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT))
7484 {
7485 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT;
7486 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7487 AssertRC(rc);
7488 Log4(("Setup NMI-window exiting\n"));
7489 }
7490 } /* else we will deliver NMIs whenever we VM-exit next, even possibly nesting NMIs. Can't be helped on ancient CPUs. */
7491}
7492
7493
7494/**
7495 * Clears the NMI-window exiting control in the VMCS.
7496 *
7497 * @param pVCpu The cross context virtual CPU structure.
7498 */
7499DECLINLINE(void) hmR0VmxClearNmiWindowExitVmcs(PVMCPU pVCpu)
7500{
7501 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT);
7502 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT;
7503 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7504 AssertRC(rc);
7505 Log4(("Cleared NMI-window exiting\n"));
7506}
7507
7508
7509/**
7510 * Evaluates the event to be delivered to the guest and sets it as the pending
7511 * event.
7512 *
7513 * @returns The VT-x guest-interruptibility state.
7514 * @param pVCpu The cross context virtual CPU structure.
7515 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7516 * out-of-sync. Make sure to update the required fields
7517 * before using them.
7518 */
7519static uint32_t hmR0VmxEvaluatePendingEvent(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7520{
7521 /* Get the current interruptibility-state of the guest and then figure out what can be injected. */
7522 uint32_t const uIntrState = hmR0VmxGetGuestIntrState(pVCpu, pMixedCtx);
7523 bool const fBlockMovSS = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
7524 bool const fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
7525 bool const fBlockNmi = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI);
7526
7527 Assert(!fBlockSti || HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS));
7528 Assert(!(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
7529 Assert(!fBlockSti || pMixedCtx->eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
7530 Assert(!TRPMHasTrap(pVCpu));
7531
7532#ifdef VBOX_WITH_NEW_APIC
7533 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
7534 APICUpdatePendingInterrupts(pVCpu);
7535#endif
7536
7537 /*
7538 * Toggling of interrupt force-flags here is safe since we update TRPM on premature exits
7539 * to ring-3 before executing guest code, see hmR0VmxExitToRing3(). We must NOT restore these force-flags.
7540 */
7541 /** @todo SMI. SMIs take priority over NMIs. */
7542 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts. */
7543 {
7544 /* On some CPUs block-by-STI also blocks NMIs. See Intel spec. 26.3.1.5 "Checks On Guest Non-Register State". */
7545 if ( !pVCpu->hm.s.Event.fPending
7546 && !fBlockNmi
7547 && !fBlockSti
7548 && !fBlockMovSS)
7549 {
7550 Log4(("Pending NMI vcpu[%RU32]\n", pVCpu->idCpu));
7551 uint32_t u32IntInfo = X86_XCPT_NMI | VMX_EXIT_INTERRUPTION_INFO_VALID;
7552 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7553
7554 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7555 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
7556 }
7557 else
7558 hmR0VmxSetNmiWindowExitVmcs(pVCpu);
7559 }
7560 /*
7561 * Check if the guest can receive external interrupts (PIC/APIC). Once PDMGetInterrupt() returns
7562 * a valid interrupt we must- deliver the interrupt. We can no longer re-request it from the APIC.
7563 */
7564 else if ( VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
7565 && !pVCpu->hm.s.fSingleInstruction)
7566 {
7567 Assert(!DBGFIsStepping(pVCpu));
7568 int rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
7569 AssertRC(rc);
7570 bool const fBlockInt = !(pMixedCtx->eflags.u32 & X86_EFL_IF);
7571 if ( !pVCpu->hm.s.Event.fPending
7572 && !fBlockInt
7573 && !fBlockSti
7574 && !fBlockMovSS)
7575 {
7576 uint8_t u8Interrupt;
7577 rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
7578 if (RT_SUCCESS(rc))
7579 {
7580 Log4(("Pending interrupt vcpu[%RU32] u8Interrupt=%#x \n", pVCpu->idCpu, u8Interrupt));
7581 uint32_t u32IntInfo = u8Interrupt | VMX_EXIT_INTERRUPTION_INFO_VALID;
7582 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7583
7584 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrfaultAddress */);
7585 }
7586 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
7587 {
7588 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
7589 hmR0VmxApicSetTprThreshold(pVCpu, u8Interrupt >> 4);
7590 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
7591 }
7592 else
7593 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
7594 }
7595 else
7596 hmR0VmxSetIntWindowExitVmcs(pVCpu);
7597 }
7598
7599 return uIntrState;
7600}
7601
7602
7603/**
7604 * Sets a pending-debug exception to be delivered to the guest if the guest is
7605 * single-stepping in the VMCS.
7606 *
7607 * @param pVCpu The cross context virtual CPU structure.
7608 */
7609DECLINLINE(void) hmR0VmxSetPendingDebugXcptVmcs(PVMCPU pVCpu)
7610{
7611 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS)); NOREF(pVCpu);
7612 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, VMX_VMCS_GUEST_DEBUG_EXCEPTIONS_BS);
7613 AssertRC(rc);
7614}
7615
7616
7617/**
7618 * Injects any pending events into the guest if the guest is in a state to
7619 * receive them.
7620 *
7621 * @returns Strict VBox status code (i.e. informational status codes too).
7622 * @param pVCpu The cross context virtual CPU structure.
7623 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7624 * out-of-sync. Make sure to update the required fields
7625 * before using them.
7626 * @param uIntrState The VT-x guest-interruptibility state.
7627 * @param fStepping Running in hmR0VmxRunGuestCodeStep() and we should
7628 * return VINF_EM_DBG_STEPPED if the event was
7629 * dispatched directly.
7630 */
7631static VBOXSTRICTRC hmR0VmxInjectPendingEvent(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t uIntrState, bool fStepping)
7632{
7633 HMVMX_ASSERT_PREEMPT_SAFE();
7634 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7635
7636 bool fBlockMovSS = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
7637 bool fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
7638
7639 Assert(!fBlockSti || HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS));
7640 Assert(!(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
7641 Assert(!fBlockSti || pMixedCtx->eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
7642 Assert(!TRPMHasTrap(pVCpu));
7643
7644 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
7645 if (pVCpu->hm.s.Event.fPending)
7646 {
7647 /*
7648 * Do -not- clear any interrupt-window exiting control here. We might have an interrupt
7649 * pending even while injecting an event and in this case, we want a VM-exit as soon as
7650 * the guest is ready for the next interrupt, see @bugref{6208#c45}.
7651 *
7652 * See Intel spec. 26.6.5 "Interrupt-Window Exiting and Virtual-Interrupt Delivery".
7653 */
7654 uint32_t const uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
7655#ifdef VBOX_STRICT
7656 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
7657 {
7658 bool const fBlockInt = !(pMixedCtx->eflags.u32 & X86_EFL_IF);
7659 Assert(!fBlockInt);
7660 Assert(!fBlockSti);
7661 Assert(!fBlockMovSS);
7662 }
7663 else if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
7664 {
7665 bool const fBlockNmi = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI);
7666 Assert(!fBlockSti);
7667 Assert(!fBlockMovSS);
7668 Assert(!fBlockNmi);
7669 }
7670#endif
7671 Log4(("Injecting pending event vcpu[%RU32] u64IntInfo=%#RX64 Type=%#x\n", pVCpu->idCpu, pVCpu->hm.s.Event.u64IntInfo,
7672 (uint8_t)uIntType));
7673 rcStrict = hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, pVCpu->hm.s.Event.u64IntInfo, pVCpu->hm.s.Event.cbInstr,
7674 pVCpu->hm.s.Event.u32ErrCode, pVCpu->hm.s.Event.GCPtrFaultAddress,
7675 fStepping, &uIntrState);
7676 AssertRCReturn(VBOXSTRICTRC_VAL(rcStrict), rcStrict);
7677
7678 /* Update the interruptibility-state as it could have been changed by
7679 hmR0VmxInjectEventVmcs() (e.g. real-on-v86 guest injecting software interrupts) */
7680 fBlockMovSS = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
7681 fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
7682
7683 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
7684 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
7685 else
7686 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
7687 }
7688
7689 /* Deliver pending debug exception if the guest is single-stepping. Evaluate and set the BS bit. */
7690 if ( fBlockSti
7691 || fBlockMovSS)
7692 {
7693 if (!pVCpu->hm.s.fSingleInstruction)
7694 {
7695 /*
7696 * The pending-debug exceptions field is cleared on all VM-exits except VMX_EXIT_TPR_BELOW_THRESHOLD,
7697 * VMX_EXIT_MTF, VMX_EXIT_APIC_WRITE and VMX_EXIT_VIRTUALIZED_EOI.
7698 * See Intel spec. 27.3.4 "Saving Non-Register State".
7699 */
7700 Assert(!DBGFIsStepping(pVCpu));
7701 int rc2 = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
7702 AssertRCReturn(rc2, rc2);
7703 if (pMixedCtx->eflags.Bits.u1TF)
7704 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
7705 }
7706 else if (pMixedCtx->eflags.Bits.u1TF)
7707 {
7708 /*
7709 * We are single-stepping in the hypervisor debugger using EFLAGS.TF. Clear interrupt inhibition as setting the
7710 * BS bit would mean delivering a #DB to the guest upon VM-entry when it shouldn't be.
7711 */
7712 Assert(!(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG));
7713 uIntrState = 0;
7714 }
7715 }
7716
7717 /*
7718 * There's no need to clear the VM-entry interruption-information field here if we're not injecting anything.
7719 * VT-x clears the valid bit on every VM-exit. See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
7720 */
7721 int rc2 = hmR0VmxLoadGuestIntrState(pVCpu, uIntrState);
7722 AssertRC(rc2);
7723
7724 Assert(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping));
7725 NOREF(fBlockMovSS); NOREF(fBlockSti);
7726 return rcStrict;
7727}
7728
7729
7730/**
7731 * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
7732 *
7733 * @param pVCpu The cross context virtual CPU structure.
7734 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7735 * out-of-sync. Make sure to update the required fields
7736 * before using them.
7737 */
7738DECLINLINE(void) hmR0VmxSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7739{
7740 NOREF(pMixedCtx);
7741 uint32_t u32IntInfo = X86_XCPT_UD | VMX_EXIT_INTERRUPTION_INFO_VALID;
7742 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7743}
7744
7745
7746/**
7747 * Injects a double-fault (\#DF) exception into the VM.
7748 *
7749 * @returns Strict VBox status code (i.e. informational status codes too).
7750 * @param pVCpu The cross context virtual CPU structure.
7751 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7752 * out-of-sync. Make sure to update the required fields
7753 * before using them.
7754 * @param fStepping Whether we're running in hmR0VmxRunGuestCodeStep()
7755 * and should return VINF_EM_DBG_STEPPED if the event
7756 * is injected directly (register modified by us, not
7757 * by hardware on VM-entry).
7758 * @param puIntrState Pointer to the current guest interruptibility-state.
7759 * This interruptibility-state will be updated if
7760 * necessary. This cannot not be NULL.
7761 */
7762DECLINLINE(VBOXSTRICTRC) hmR0VmxInjectXcptDF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fStepping, uint32_t *puIntrState)
7763{
7764 uint32_t u32IntInfo = X86_XCPT_DF | VMX_EXIT_INTERRUPTION_INFO_VALID;
7765 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7766 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
7767 return hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */,
7768 fStepping, puIntrState);
7769}
7770
7771
7772/**
7773 * Sets a debug (\#DB) exception as pending-for-injection into the VM.
7774 *
7775 * @param pVCpu The cross context virtual CPU structure.
7776 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7777 * out-of-sync. Make sure to update the required fields
7778 * before using them.
7779 */
7780DECLINLINE(void) hmR0VmxSetPendingXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7781{
7782 NOREF(pMixedCtx);
7783 uint32_t u32IntInfo = X86_XCPT_DB | VMX_EXIT_INTERRUPTION_INFO_VALID;
7784 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7785 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7786}
7787
7788
7789/**
7790 * Sets an overflow (\#OF) exception as pending-for-injection into the VM.
7791 *
7792 * @param pVCpu The cross context virtual CPU structure.
7793 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7794 * out-of-sync. Make sure to update the required fields
7795 * before using them.
7796 * @param cbInstr The value of RIP that is to be pushed on the guest
7797 * stack.
7798 */
7799DECLINLINE(void) hmR0VmxSetPendingXcptOF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t cbInstr)
7800{
7801 NOREF(pMixedCtx);
7802 uint32_t u32IntInfo = X86_XCPT_OF | VMX_EXIT_INTERRUPTION_INFO_VALID;
7803 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7804 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7805}
7806
7807
7808/**
7809 * Injects a general-protection (\#GP) fault into the VM.
7810 *
7811 * @returns Strict VBox status code (i.e. informational status codes too).
7812 * @param pVCpu The cross context virtual CPU structure.
7813 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7814 * out-of-sync. Make sure to update the required fields
7815 * before using them.
7816 * @param fErrorCodeValid Whether the error code is valid (depends on the CPU
7817 * mode, i.e. in real-mode it's not valid).
7818 * @param u32ErrorCode The error code associated with the \#GP.
7819 * @param fStepping Whether we're running in
7820 * hmR0VmxRunGuestCodeStep() and should return
7821 * VINF_EM_DBG_STEPPED if the event is injected
7822 * directly (register modified by us, not by
7823 * hardware on VM-entry).
7824 * @param puIntrState Pointer to the current guest interruptibility-state.
7825 * This interruptibility-state will be updated if
7826 * necessary. This cannot not be NULL.
7827 */
7828DECLINLINE(VBOXSTRICTRC) hmR0VmxInjectXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fErrorCodeValid, uint32_t u32ErrorCode,
7829 bool fStepping, uint32_t *puIntrState)
7830{
7831 uint32_t u32IntInfo = X86_XCPT_GP | VMX_EXIT_INTERRUPTION_INFO_VALID;
7832 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7833 if (fErrorCodeValid)
7834 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
7835 return hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, u32IntInfo, 0 /* cbInstr */, u32ErrorCode, 0 /* GCPtrFaultAddress */,
7836 fStepping, puIntrState);
7837}
7838
7839
7840/**
7841 * Sets a general-protection (\#GP) exception as pending-for-injection into the
7842 * VM.
7843 *
7844 * @param pVCpu The cross context virtual CPU structure.
7845 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7846 * out-of-sync. Make sure to update the required fields
7847 * before using them.
7848 * @param u32ErrorCode The error code associated with the \#GP.
7849 */
7850DECLINLINE(void) hmR0VmxSetPendingXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t u32ErrorCode)
7851{
7852 NOREF(pMixedCtx);
7853 uint32_t u32IntInfo = X86_XCPT_GP | VMX_EXIT_INTERRUPTION_INFO_VALID;
7854 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7855 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
7856 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrorCode, 0 /* GCPtrFaultAddress */);
7857}
7858
7859
7860/**
7861 * Sets a software interrupt (INTn) as pending-for-injection into the VM.
7862 *
7863 * @param pVCpu The cross context virtual CPU structure.
7864 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7865 * out-of-sync. Make sure to update the required fields
7866 * before using them.
7867 * @param uVector The software interrupt vector number.
7868 * @param cbInstr The value of RIP that is to be pushed on the guest
7869 * stack.
7870 */
7871DECLINLINE(void) hmR0VmxSetPendingIntN(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint16_t uVector, uint32_t cbInstr)
7872{
7873 NOREF(pMixedCtx);
7874 uint32_t u32IntInfo = uVector | VMX_EXIT_INTERRUPTION_INFO_VALID;
7875 if ( uVector == X86_XCPT_BP
7876 || uVector == X86_XCPT_OF)
7877 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7878 else
7879 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7880 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7881}
7882
7883
7884/**
7885 * Pushes a 2-byte value onto the real-mode (in virtual-8086 mode) guest's
7886 * stack.
7887 *
7888 * @returns Strict VBox status code (i.e. informational status codes too).
7889 * @retval VINF_EM_RESET if pushing a value to the stack caused a triple-fault.
7890 * @param pVM The cross context VM structure.
7891 * @param pMixedCtx Pointer to the guest-CPU context.
7892 * @param uValue The value to push to the guest stack.
7893 */
7894DECLINLINE(VBOXSTRICTRC) hmR0VmxRealModeGuestStackPush(PVM pVM, PCPUMCTX pMixedCtx, uint16_t uValue)
7895{
7896 /*
7897 * The stack limit is 0xffff in real-on-virtual 8086 mode. Real-mode with weird stack limits cannot be run in
7898 * virtual 8086 mode in VT-x. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
7899 * See Intel Instruction reference for PUSH and Intel spec. 22.33.1 "Segment Wraparound".
7900 */
7901 if (pMixedCtx->sp == 1)
7902 return VINF_EM_RESET;
7903 pMixedCtx->sp -= sizeof(uint16_t); /* May wrap around which is expected behaviour. */
7904 int rc = PGMPhysSimpleWriteGCPhys(pVM, pMixedCtx->ss.u64Base + pMixedCtx->sp, &uValue, sizeof(uint16_t));
7905 AssertRC(rc);
7906 return rc;
7907}
7908
7909
7910/**
7911 * Injects an event into the guest upon VM-entry by updating the relevant fields
7912 * in the VM-entry area in the VMCS.
7913 *
7914 * @returns Strict VBox status code (i.e. informational status codes too).
7915 * @retval VINF_SUCCESS if the event is successfully injected into the VMCS.
7916 * @retval VINF_EM_RESET if event injection resulted in a triple-fault.
7917 *
7918 * @param pVCpu The cross context virtual CPU structure.
7919 * @param pMixedCtx Pointer to the guest-CPU context. The data may
7920 * be out-of-sync. Make sure to update the required
7921 * fields before using them.
7922 * @param u64IntInfo The VM-entry interruption-information field.
7923 * @param cbInstr The VM-entry instruction length in bytes (for
7924 * software interrupts, exceptions and privileged
7925 * software exceptions).
7926 * @param u32ErrCode The VM-entry exception error code.
7927 * @param GCPtrFaultAddress The page-fault address for \#PF exceptions.
7928 * @param puIntrState Pointer to the current guest interruptibility-state.
7929 * This interruptibility-state will be updated if
7930 * necessary. This cannot not be NULL.
7931 * @param fStepping Whether we're running in
7932 * hmR0VmxRunGuestCodeStep() and should return
7933 * VINF_EM_DBG_STEPPED if the event is injected
7934 * directly (register modified by us, not by
7935 * hardware on VM-entry).
7936 *
7937 * @remarks Requires CR0!
7938 * @remarks No-long-jump zone!!!
7939 */
7940static VBOXSTRICTRC hmR0VmxInjectEventVmcs(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint64_t u64IntInfo, uint32_t cbInstr,
7941 uint32_t u32ErrCode, RTGCUINTREG GCPtrFaultAddress, bool fStepping,
7942 uint32_t *puIntrState)
7943{
7944 /* Intel spec. 24.8.3 "VM-Entry Controls for Event Injection" specifies the interruption-information field to be 32-bits. */
7945 AssertMsg(u64IntInfo >> 32 == 0, ("%#RX64\n", u64IntInfo));
7946 Assert(puIntrState);
7947 uint32_t u32IntInfo = (uint32_t)u64IntInfo;
7948
7949 uint32_t const uVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(u32IntInfo);
7950 uint32_t const uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(u32IntInfo);
7951
7952#ifdef VBOX_STRICT
7953 /* Validate the error-code-valid bit for hardware exceptions. */
7954 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT)
7955 {
7956 switch (uVector)
7957 {
7958 case X86_XCPT_PF:
7959 case X86_XCPT_DF:
7960 case X86_XCPT_TS:
7961 case X86_XCPT_NP:
7962 case X86_XCPT_SS:
7963 case X86_XCPT_GP:
7964 case X86_XCPT_AC:
7965 AssertMsg(VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(u32IntInfo),
7966 ("Error-code-valid bit not set for exception that has an error code uVector=%#x\n", uVector));
7967 /* fallthru */
7968 default:
7969 break;
7970 }
7971 }
7972#endif
7973
7974 /* Cannot inject an NMI when block-by-MOV SS is in effect. */
7975 Assert( uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI
7976 || !(*puIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS));
7977
7978 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[uVector & MASK_INJECT_IRQ_STAT]);
7979
7980 /* We require CR0 to check if the guest is in real-mode. */
7981 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
7982 AssertRCReturn(rc, rc);
7983
7984 /*
7985 * Hardware interrupts & exceptions cannot be delivered through the software interrupt redirection bitmap to the real
7986 * mode task in virtual-8086 mode. We must jump to the interrupt handler in the (real-mode) guest.
7987 * See Intel spec. 20.3 "Interrupt and Exception handling in Virtual-8086 Mode" for interrupt & exception classes.
7988 * See Intel spec. 20.1.4 "Interrupt and Exception Handling" for real-mode interrupt handling.
7989 */
7990 if (CPUMIsGuestInRealModeEx(pMixedCtx))
7991 {
7992 PVM pVM = pVCpu->CTX_SUFF(pVM);
7993 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
7994 {
7995 Assert(PDMVmmDevHeapIsEnabled(pVM));
7996 Assert(pVM->hm.s.vmx.pRealModeTSS);
7997
7998 /* We require RIP, RSP, RFLAGS, CS, IDTR. Save the required ones from the VMCS. */
7999 rc = hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
8000 rc |= hmR0VmxSaveGuestTableRegs(pVCpu, pMixedCtx);
8001 rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
8002 AssertRCReturn(rc, rc);
8003 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RIP));
8004
8005 /* Check if the interrupt handler is present in the IVT (real-mode IDT). IDT limit is (4N - 1). */
8006 size_t const cbIdtEntry = sizeof(X86IDTR16);
8007 if (uVector * cbIdtEntry + (cbIdtEntry - 1) > pMixedCtx->idtr.cbIdt)
8008 {
8009 /* If we are trying to inject a #DF with no valid IDT entry, return a triple-fault. */
8010 if (uVector == X86_XCPT_DF)
8011 return VINF_EM_RESET;
8012
8013 /* If we're injecting a #GP with no valid IDT entry, inject a double-fault. */
8014 if (uVector == X86_XCPT_GP)
8015 return hmR0VmxInjectXcptDF(pVCpu, pMixedCtx, fStepping, puIntrState);
8016
8017 /* If we're injecting an interrupt/exception with no valid IDT entry, inject a general-protection fault. */
8018 /* No error codes for exceptions in real-mode. See Intel spec. 20.1.4 "Interrupt and Exception Handling" */
8019 return hmR0VmxInjectXcptGP(pVCpu, pMixedCtx, false /* fErrCodeValid */, 0 /* u32ErrCode */,
8020 fStepping, puIntrState);
8021 }
8022
8023 /* Software exceptions (#BP and #OF exceptions thrown as a result of INT3 or INTO) */
8024 uint16_t uGuestIp = pMixedCtx->ip;
8025 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT)
8026 {
8027 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF);
8028 /* #BP and #OF are both benign traps, we need to resume the next instruction. */
8029 uGuestIp = pMixedCtx->ip + (uint16_t)cbInstr;
8030 }
8031 else if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT)
8032 uGuestIp = pMixedCtx->ip + (uint16_t)cbInstr;
8033
8034 /* Get the code segment selector and offset from the IDT entry for the interrupt handler. */
8035 X86IDTR16 IdtEntry;
8036 RTGCPHYS GCPhysIdtEntry = (RTGCPHYS)pMixedCtx->idtr.pIdt + uVector * cbIdtEntry;
8037 rc = PGMPhysSimpleReadGCPhys(pVM, &IdtEntry, GCPhysIdtEntry, cbIdtEntry);
8038 AssertRCReturn(rc, rc);
8039
8040 /* Construct the stack frame for the interrupt/exception handler. */
8041 VBOXSTRICTRC rcStrict;
8042 rcStrict = hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, pMixedCtx->eflags.u32);
8043 if (rcStrict == VINF_SUCCESS)
8044 rcStrict = hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, pMixedCtx->cs.Sel);
8045 if (rcStrict == VINF_SUCCESS)
8046 rcStrict = hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, uGuestIp);
8047
8048 /* Clear the required eflag bits and jump to the interrupt/exception handler. */
8049 if (rcStrict == VINF_SUCCESS)
8050 {
8051 pMixedCtx->eflags.u32 &= ~(X86_EFL_IF | X86_EFL_TF | X86_EFL_RF | X86_EFL_AC);
8052 pMixedCtx->rip = IdtEntry.offSel;
8053 pMixedCtx->cs.Sel = IdtEntry.uSel;
8054 pMixedCtx->cs.ValidSel = IdtEntry.uSel;
8055 pMixedCtx->cs.u64Base = IdtEntry.uSel << cbIdtEntry;
8056 if ( uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT
8057 && uVector == X86_XCPT_PF)
8058 pMixedCtx->cr2 = GCPtrFaultAddress;
8059
8060 /* If any other guest-state bits are changed here, make sure to update
8061 hmR0VmxPreRunGuestCommitted() when thread-context hooks are used. */
8062 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS
8063 | HM_CHANGED_GUEST_RIP
8064 | HM_CHANGED_GUEST_RFLAGS
8065 | HM_CHANGED_GUEST_RSP);
8066
8067 /* We're clearing interrupts, which means no block-by-STI interrupt-inhibition. */
8068 if (*puIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
8069 {
8070 Assert( uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI
8071 && uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT);
8072 Log4(("Clearing inhibition due to STI.\n"));
8073 *puIntrState &= ~VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI;
8074 }
8075 Log4(("Injecting real-mode: u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x Eflags=%#x CS:EIP=%04x:%04x\n",
8076 u32IntInfo, u32ErrCode, cbInstr, pMixedCtx->eflags.u, pMixedCtx->cs.Sel, pMixedCtx->eip));
8077
8078 /* The event has been truly dispatched. Mark it as no longer pending so we don't attempt to 'undo'
8079 it, if we are returning to ring-3 before executing guest code. */
8080 pVCpu->hm.s.Event.fPending = false;
8081
8082 /* Make hmR0VmxPreRunGuest return if we're stepping since we've changed cs:rip. */
8083 if (fStepping)
8084 rcStrict = VINF_EM_DBG_STEPPED;
8085 }
8086 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
8087 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8088 return rcStrict;
8089 }
8090
8091 /*
8092 * For unrestricted execution enabled CPUs running real-mode guests, we must not set the deliver-error-code bit.
8093 * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
8094 */
8095 u32IntInfo &= ~VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
8096 }
8097
8098 /* Validate. */
8099 Assert(VMX_EXIT_INTERRUPTION_INFO_IS_VALID(u32IntInfo)); /* Bit 31 (Valid bit) must be set by caller. */
8100 Assert(!VMX_EXIT_INTERRUPTION_INFO_NMI_UNBLOCK_IRET(u32IntInfo)); /* Bit 12 MBZ. */
8101 Assert(!(u32IntInfo & 0x7ffff000)); /* Bits 30:12 MBZ. */
8102
8103 /* Inject. */
8104 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, u32IntInfo);
8105 if (VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(u32IntInfo))
8106 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, u32ErrCode);
8107 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, cbInstr);
8108
8109 if ( VMX_EXIT_INTERRUPTION_INFO_TYPE(u32IntInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT
8110 && uVector == X86_XCPT_PF)
8111 pMixedCtx->cr2 = GCPtrFaultAddress;
8112
8113 Log4(("Injecting vcpu[%RU32] u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x pMixedCtx->uCR2=%#RX64\n", pVCpu->idCpu,
8114 u32IntInfo, u32ErrCode, cbInstr, pMixedCtx->cr2));
8115
8116 AssertRCReturn(rc, rc);
8117 return VINF_SUCCESS;
8118}
8119
8120
8121/**
8122 * Clears the interrupt-window exiting control in the VMCS and if necessary
8123 * clears the current event in the VMCS as well.
8124 *
8125 * @returns VBox status code.
8126 * @param pVCpu The cross context virtual CPU structure.
8127 *
8128 * @remarks Use this function only to clear events that have not yet been
8129 * delivered to the guest but are injected in the VMCS!
8130 * @remarks No-long-jump zone!!!
8131 */
8132static void hmR0VmxClearIntNmiWindowsVmcs(PVMCPU pVCpu)
8133{
8134 Log4Func(("vcpu[%d]\n", pVCpu->idCpu));
8135
8136 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT)
8137 hmR0VmxClearIntWindowExitVmcs(pVCpu);
8138
8139 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT)
8140 hmR0VmxClearNmiWindowExitVmcs(pVCpu);
8141}
8142
8143
8144/**
8145 * Enters the VT-x session.
8146 *
8147 * @returns VBox status code.
8148 * @param pVM The cross context VM structure.
8149 * @param pVCpu The cross context virtual CPU structure.
8150 * @param pCpu Pointer to the CPU info struct.
8151 */
8152VMMR0DECL(int) VMXR0Enter(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
8153{
8154 AssertPtr(pVM);
8155 AssertPtr(pVCpu);
8156 Assert(pVM->hm.s.vmx.fSupported);
8157 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8158 NOREF(pCpu); NOREF(pVM);
8159
8160 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
8161 Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
8162
8163#ifdef VBOX_STRICT
8164 /* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
8165 RTCCUINTREG uHostCR4 = ASMGetCR4();
8166 if (!(uHostCR4 & X86_CR4_VMXE))
8167 {
8168 LogRel(("VMXR0Enter: X86_CR4_VMXE bit in CR4 is not set!\n"));
8169 return VERR_VMX_X86_CR4_VMXE_CLEARED;
8170 }
8171#endif
8172
8173 /*
8174 * Load the VCPU's VMCS as the current (and active) one.
8175 */
8176 Assert(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_CLEAR);
8177 int rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
8178 if (RT_FAILURE(rc))
8179 return rc;
8180
8181 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
8182 pVCpu->hm.s.fLeaveDone = false;
8183 Log4Func(("Activated Vmcs. HostCpuId=%u\n", RTMpCpuId()));
8184
8185 return VINF_SUCCESS;
8186}
8187
8188
8189/**
8190 * The thread-context callback (only on platforms which support it).
8191 *
8192 * @param enmEvent The thread-context event.
8193 * @param pVCpu The cross context virtual CPU structure.
8194 * @param fGlobalInit Whether global VT-x/AMD-V init. was used.
8195 * @thread EMT(pVCpu)
8196 */
8197VMMR0DECL(void) VMXR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
8198{
8199 NOREF(fGlobalInit);
8200
8201 switch (enmEvent)
8202 {
8203 case RTTHREADCTXEVENT_OUT:
8204 {
8205 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8206 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
8207 VMCPU_ASSERT_EMT(pVCpu);
8208
8209 PVM pVM = pVCpu->CTX_SUFF(pVM);
8210 PCPUMCTX pMixedCtx = CPUMQueryGuestCtxPtr(pVCpu);
8211
8212 /* No longjmps (logger flushes, locks) in this fragile context. */
8213 VMMRZCallRing3Disable(pVCpu);
8214 Log4Func(("Preempting: HostCpuId=%u\n", RTMpCpuId()));
8215
8216 /*
8217 * Restore host-state (FPU, debug etc.)
8218 */
8219 if (!pVCpu->hm.s.fLeaveDone)
8220 {
8221 /* Do -not- save guest-state here as we might already be in the middle of saving it (esp. bad if we are
8222 holding the PGM lock while saving the guest state (see hmR0VmxSaveGuestControlRegs()). */
8223 hmR0VmxLeave(pVM, pVCpu, pMixedCtx, false /* fSaveGuestState */);
8224 pVCpu->hm.s.fLeaveDone = true;
8225 }
8226
8227 /* Leave HM context, takes care of local init (term). */
8228 int rc = HMR0LeaveCpu(pVCpu);
8229 AssertRC(rc); NOREF(rc);
8230
8231 /* Restore longjmp state. */
8232 VMMRZCallRing3Enable(pVCpu);
8233 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
8234 break;
8235 }
8236
8237 case RTTHREADCTXEVENT_IN:
8238 {
8239 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8240 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
8241 VMCPU_ASSERT_EMT(pVCpu);
8242
8243 /* No longjmps here, as we don't want to trigger preemption (& its hook) while resuming. */
8244 VMMRZCallRing3Disable(pVCpu);
8245 Log4Func(("Resumed: HostCpuId=%u\n", RTMpCpuId()));
8246
8247 /* Initialize the bare minimum state required for HM. This takes care of
8248 initializing VT-x if necessary (onlined CPUs, local init etc.) */
8249 int rc = HMR0EnterCpu(pVCpu);
8250 AssertRC(rc);
8251 Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
8252
8253 /* Load the active VMCS as the current one. */
8254 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_CLEAR)
8255 {
8256 rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
8257 AssertRC(rc); NOREF(rc);
8258 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
8259 Log4Func(("Resumed: Activated Vmcs. HostCpuId=%u\n", RTMpCpuId()));
8260 }
8261 pVCpu->hm.s.fLeaveDone = false;
8262
8263 /* Restore longjmp state. */
8264 VMMRZCallRing3Enable(pVCpu);
8265 break;
8266 }
8267
8268 default:
8269 break;
8270 }
8271}
8272
8273
8274/**
8275 * Saves the host state in the VMCS host-state.
8276 * Sets up the VM-exit MSR-load area.
8277 *
8278 * The CPU state will be loaded from these fields on every successful VM-exit.
8279 *
8280 * @returns VBox status code.
8281 * @param pVM The cross context VM structure.
8282 * @param pVCpu The cross context virtual CPU structure.
8283 *
8284 * @remarks No-long-jump zone!!!
8285 */
8286static int hmR0VmxSaveHostState(PVM pVM, PVMCPU pVCpu)
8287{
8288 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8289
8290 int rc = VINF_SUCCESS;
8291 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_CONTEXT))
8292 {
8293 rc = hmR0VmxSaveHostControlRegs(pVM, pVCpu);
8294 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostControlRegisters failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8295
8296 rc = hmR0VmxSaveHostSegmentRegs(pVM, pVCpu);
8297 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostSegmentRegisters failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8298
8299 rc = hmR0VmxSaveHostMsrs(pVM, pVCpu);
8300 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostMsrs failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8301
8302 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_HOST_CONTEXT);
8303 }
8304 return rc;
8305}
8306
8307
8308/**
8309 * Saves the host state in the VMCS host-state.
8310 *
8311 * @returns VBox status code.
8312 * @param pVM The cross context VM structure.
8313 * @param pVCpu The cross context virtual CPU structure.
8314 *
8315 * @remarks No-long-jump zone!!!
8316 */
8317VMMR0DECL(int) VMXR0SaveHostState(PVM pVM, PVMCPU pVCpu)
8318{
8319 AssertPtr(pVM);
8320 AssertPtr(pVCpu);
8321
8322 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
8323
8324 /* Save the host state here while entering HM context. When thread-context hooks are used, we might get preempted
8325 and have to resave the host state but most of the time we won't be, so do it here before we disable interrupts. */
8326 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8327 return hmR0VmxSaveHostState(pVM, pVCpu);
8328}
8329
8330
8331/**
8332 * Loads the guest state into the VMCS guest-state area.
8333 *
8334 * The will typically be done before VM-entry when the guest-CPU state and the
8335 * VMCS state may potentially be out of sync.
8336 *
8337 * Sets up the VM-entry MSR-load and VM-exit MSR-store areas. Sets up the
8338 * VM-entry controls.
8339 * Sets up the appropriate VMX non-root function to execute guest code based on
8340 * the guest CPU mode.
8341 *
8342 * @returns VBox strict status code.
8343 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
8344 * without unrestricted guest access and the VMMDev is not presently
8345 * mapped (e.g. EFI32).
8346 *
8347 * @param pVM The cross context VM structure.
8348 * @param pVCpu The cross context virtual CPU structure.
8349 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8350 * out-of-sync. Make sure to update the required fields
8351 * before using them.
8352 *
8353 * @remarks No-long-jump zone!!! (Disables and enables long jmps for itself,
8354 * caller disables then again on successfull return. Confusing.)
8355 */
8356static VBOXSTRICTRC hmR0VmxLoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
8357{
8358 AssertPtr(pVM);
8359 AssertPtr(pVCpu);
8360 AssertPtr(pMixedCtx);
8361 HMVMX_ASSERT_PREEMPT_SAFE();
8362
8363 VMMRZCallRing3Disable(pVCpu);
8364 Assert(VMMR0IsLogFlushDisabled(pVCpu));
8365
8366 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
8367
8368 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestState, x);
8369
8370 /* Determine real-on-v86 mode. */
8371 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = false;
8372 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
8373 && CPUMIsGuestInRealModeEx(pMixedCtx))
8374 {
8375 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = true;
8376 }
8377
8378 /*
8379 * Load the guest-state into the VMCS.
8380 * Any ordering dependency among the sub-functions below must be explicitly stated using comments.
8381 * Ideally, assert that the cross-dependent bits are up-to-date at the point of using it.
8382 */
8383 int rc = hmR0VmxSetupVMRunHandler(pVCpu, pMixedCtx);
8384 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSetupVMRunHandler! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8385
8386 /* This needs to be done after hmR0VmxSetupVMRunHandler() as changing pfnStartVM may require VM-entry control updates. */
8387 rc = hmR0VmxLoadGuestEntryCtls(pVCpu, pMixedCtx);
8388 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestEntryCtls! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8389
8390 /* This needs to be done after hmR0VmxSetupVMRunHandler() as changing pfnStartVM may require VM-exit control updates. */
8391 rc = hmR0VmxLoadGuestExitCtls(pVCpu, pMixedCtx);
8392 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSetupExitCtls failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8393
8394 rc = hmR0VmxLoadGuestActivityState(pVCpu, pMixedCtx);
8395 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestActivityState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8396
8397 VBOXSTRICTRC rcStrict = hmR0VmxLoadGuestCR3AndCR4(pVCpu, pMixedCtx);
8398 if (rcStrict == VINF_SUCCESS)
8399 { /* likely */ }
8400 else
8401 {
8402 VMMRZCallRing3Enable(pVCpu);
8403 Assert(rcStrict == VINF_EM_RESCHEDULE_REM || RT_FAILURE_NP(rcStrict));
8404 return rcStrict;
8405 }
8406
8407 /* Assumes pMixedCtx->cr0 is up-to-date (strict builds require CR0 for segment register validation checks). */
8408 rc = hmR0VmxLoadGuestSegmentRegs(pVCpu, pMixedCtx);
8409 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestSegmentRegs: rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8410
8411 /* This needs to be done after hmR0VmxLoadGuestEntryCtls() and hmR0VmxLoadGuestExitCtls() as it may alter controls if we
8412 determine we don't have to swap EFER after all. */
8413 rc = hmR0VmxLoadGuestMsrs(pVCpu, pMixedCtx);
8414 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadSharedMsrs! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8415
8416 rc = hmR0VmxLoadGuestApicState(pVCpu, pMixedCtx);
8417 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestApicState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8418
8419 rc = hmR0VmxLoadGuestXcptIntercepts(pVCpu, pMixedCtx);
8420 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestXcptIntercepts! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8421
8422 /*
8423 * Loading Rflags here is fine, even though Rflags.TF might depend on guest debug state (which is not loaded here).
8424 * It is re-evaluated and updated if necessary in hmR0VmxLoadSharedState().
8425 */
8426 rc = hmR0VmxLoadGuestRipRspRflags(pVCpu, pMixedCtx);
8427 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestRipRspRflags! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8428
8429 /* Clear any unused and reserved bits. */
8430 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR2);
8431
8432 VMMRZCallRing3Enable(pVCpu);
8433
8434 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestState, x);
8435 return rc;
8436}
8437
8438
8439/**
8440 * Loads the state shared between the host and guest into the VMCS.
8441 *
8442 * @param pVM The cross context VM structure.
8443 * @param pVCpu The cross context virtual CPU structure.
8444 * @param pCtx Pointer to the guest-CPU context.
8445 *
8446 * @remarks No-long-jump zone!!!
8447 */
8448static void hmR0VmxLoadSharedState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
8449{
8450 NOREF(pVM);
8451
8452 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8453 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8454
8455 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0))
8456 {
8457 int rc = hmR0VmxLoadSharedCR0(pVCpu, pCtx);
8458 AssertRC(rc);
8459 }
8460
8461 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_DEBUG))
8462 {
8463 int rc = hmR0VmxLoadSharedDebugState(pVCpu, pCtx);
8464 AssertRC(rc);
8465
8466 /* Loading shared debug bits might have changed eflags.TF bit for debugging purposes. */
8467 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RFLAGS))
8468 {
8469 rc = hmR0VmxLoadGuestRflags(pVCpu, pCtx);
8470 AssertRC(rc);
8471 }
8472 }
8473
8474 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS))
8475 {
8476 hmR0VmxLazyLoadGuestMsrs(pVCpu, pCtx);
8477 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS);
8478 }
8479
8480 /* Loading CR0, debug state might have changed intercepts, update VMCS. */
8481 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS))
8482 {
8483 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_AC));
8484 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_DB));
8485 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
8486 AssertRC(rc);
8487 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS);
8488 }
8489
8490 AssertMsg(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE),
8491 ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
8492}
8493
8494
8495/**
8496 * Worker for loading the guest-state bits in the inner VT-x execution loop.
8497 *
8498 * @returns Strict VBox status code (i.e. informational status codes too).
8499 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
8500 * without unrestricted guest access and the VMMDev is not presently
8501 * mapped (e.g. EFI32).
8502 *
8503 * @param pVM The cross context VM structure.
8504 * @param pVCpu The cross context virtual CPU structure.
8505 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8506 * out-of-sync. Make sure to update the required fields
8507 * before using them.
8508 */
8509static VBOXSTRICTRC hmR0VmxLoadGuestStateOptimal(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
8510{
8511 HMVMX_ASSERT_PREEMPT_SAFE();
8512
8513 Log5(("LoadFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
8514#ifdef HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
8515 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
8516#endif
8517
8518 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
8519 if (HMCPU_CF_IS_SET_ONLY(pVCpu, HM_CHANGED_GUEST_RIP))
8520 {
8521 rcStrict = hmR0VmxLoadGuestRip(pVCpu, pMixedCtx);
8522 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8523 { /* likely */}
8524 else
8525 {
8526 AssertMsgFailedReturn(("hmR0VmxLoadGuestStateOptimal: hmR0VmxLoadGuestRip failed! rc=%Rrc\n",
8527 VBOXSTRICTRC_VAL(rcStrict)), rcStrict);
8528 }
8529 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadMinimal);
8530 }
8531 else if (HMCPU_CF_VALUE(pVCpu))
8532 {
8533 rcStrict = hmR0VmxLoadGuestState(pVM, pVCpu, pMixedCtx);
8534 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8535 { /* likely */}
8536 else
8537 {
8538 AssertMsg(rcStrict == VINF_EM_RESCHEDULE_REM,
8539 ("hmR0VmxLoadGuestStateOptimal: hmR0VmxLoadGuestState failed! rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8540 return rcStrict;
8541 }
8542 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadFull);
8543 }
8544
8545 /* All the guest state bits should be loaded except maybe the host context and/or the shared host/guest bits. */
8546 AssertMsg( !HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_ALL_GUEST)
8547 || HMCPU_CF_IS_PENDING_ONLY(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE),
8548 ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
8549 return rcStrict;
8550}
8551
8552
8553/**
8554 * Does the preparations before executing guest code in VT-x.
8555 *
8556 * This may cause longjmps to ring-3 and may even result in rescheduling to the
8557 * recompiler/IEM. We must be cautious what we do here regarding committing
8558 * guest-state information into the VMCS assuming we assuredly execute the
8559 * guest in VT-x mode.
8560 *
8561 * If we fall back to the recompiler/IEM after updating the VMCS and clearing
8562 * the common-state (TRPM/forceflags), we must undo those changes so that the
8563 * recompiler/IEM can (and should) use them when it resumes guest execution.
8564 * Otherwise such operations must be done when we can no longer exit to ring-3.
8565 *
8566 * @returns Strict VBox status code (i.e. informational status codes too).
8567 * @retval VINF_SUCCESS if we can proceed with running the guest, interrupts
8568 * have been disabled.
8569 * @retval VINF_EM_RESET if a triple-fault occurs while injecting a
8570 * double-fault into the guest.
8571 * @retval VINF_EM_DBG_STEPPED if @a fStepping is true and an event was
8572 * dispatched directly.
8573 * @retval VINF_* scheduling changes, we have to go back to ring-3.
8574 *
8575 * @param pVM The cross context VM structure.
8576 * @param pVCpu The cross context virtual CPU structure.
8577 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8578 * out-of-sync. Make sure to update the required fields
8579 * before using them.
8580 * @param pVmxTransient Pointer to the VMX transient structure.
8581 * @param fStepping Set if called from hmR0VmxRunGuestCodeStep(). Makes
8582 * us ignore some of the reasons for returning to
8583 * ring-3, and return VINF_EM_DBG_STEPPED if event
8584 * dispatching took place.
8585 */
8586static VBOXSTRICTRC hmR0VmxPreRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, bool fStepping)
8587{
8588 Assert(VMMRZCallRing3IsEnabled(pVCpu));
8589
8590#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
8591 PGMRZDynMapFlushAutoSet(pVCpu);
8592#endif
8593
8594 /* Check force flag actions that might require us to go back to ring-3. */
8595 VBOXSTRICTRC rcStrict = hmR0VmxCheckForceFlags(pVM, pVCpu, pMixedCtx, fStepping);
8596 if (rcStrict == VINF_SUCCESS)
8597 { /* FFs doesn't get set all the time. */ }
8598 else
8599 return rcStrict;
8600
8601#ifndef IEM_VERIFICATION_MODE_FULL
8602 /* Setup the Virtualized APIC accesses. pMixedCtx->msrApicBase is always up-to-date. It's not part of the VMCS. */
8603 if ( pVCpu->hm.s.vmx.u64MsrApicBase != pMixedCtx->msrApicBase
8604 && (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC))
8605 {
8606 Assert(pVM->hm.s.vmx.HCPhysApicAccess);
8607 RTGCPHYS GCPhysApicBase;
8608 GCPhysApicBase = pMixedCtx->msrApicBase;
8609 GCPhysApicBase &= PAGE_BASE_GC_MASK;
8610
8611 /* Unalias any existing mapping. */
8612 int rc = PGMHandlerPhysicalReset(pVM, GCPhysApicBase);
8613 AssertRCReturn(rc, rc);
8614
8615 /* Map the HC APIC-access page into the GC space, this also updates the shadow page tables if necessary. */
8616 Log4(("Mapped HC APIC-access page into GC: GCPhysApicBase=%#RGp\n", GCPhysApicBase));
8617 rc = IOMMMIOMapMMIOHCPage(pVM, pVCpu, GCPhysApicBase, pVM->hm.s.vmx.HCPhysApicAccess, X86_PTE_RW | X86_PTE_P);
8618 AssertRCReturn(rc, rc);
8619
8620 pVCpu->hm.s.vmx.u64MsrApicBase = pMixedCtx->msrApicBase;
8621 }
8622#endif /* !IEM_VERIFICATION_MODE_FULL */
8623
8624 if (TRPMHasTrap(pVCpu))
8625 hmR0VmxTrpmTrapToPendingEvent(pVCpu);
8626 uint32_t uIntrState = hmR0VmxEvaluatePendingEvent(pVCpu, pMixedCtx);
8627
8628 /*
8629 * Event injection may take locks (currently the PGM lock for real-on-v86 case) and thus needs to be done with
8630 * longjmps or interrupts + preemption enabled. Event injection might also result in triple-faulting the VM.
8631 */
8632 rcStrict = hmR0VmxInjectPendingEvent(pVCpu, pMixedCtx, uIntrState, fStepping);
8633 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8634 { /* likely */ }
8635 else
8636 {
8637 AssertMsg(rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
8638 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8639 return rcStrict;
8640 }
8641
8642 /*
8643 * Load the guest state bits, we can handle longjmps/getting preempted here.
8644 *
8645 * If we are injecting events to a real-on-v86 mode guest, we will have to update
8646 * RIP and some segment registers, i.e. hmR0VmxInjectPendingEvent()->hmR0VmxInjectEventVmcs().
8647 * Hence, this needs to be done -after- injection of events.
8648 */
8649 rcStrict = hmR0VmxLoadGuestStateOptimal(pVM, pVCpu, pMixedCtx);
8650 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8651 { /* likely */ }
8652 else
8653 return rcStrict;
8654
8655 /*
8656 * No longjmps to ring-3 from this point on!!!
8657 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
8658 * This also disables flushing of the R0-logger instance (if any).
8659 */
8660 VMMRZCallRing3Disable(pVCpu);
8661
8662 /*
8663 * We disable interrupts so that we don't miss any interrupts that would flag preemption (IPI/timers etc.)
8664 * when thread-context hooks aren't used and we've been running with preemption disabled for a while.
8665 *
8666 * We need to check for force-flags that could've possible been altered since we last checked them (e.g.
8667 * by PDMGetInterrupt() leaving the PDM critical section, see @bugref{6398}).
8668 *
8669 * We also check a couple of other force-flags as a last opportunity to get the EMT back to ring-3 before
8670 * executing guest code.
8671 */
8672 pVmxTransient->fEFlags = ASMIntDisableFlags();
8673
8674 if ( ( !VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
8675 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
8676 || ( fStepping /* Optimized for the non-stepping case, so a bit of unnecessary work when stepping. */
8677 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK & ~(VMCPU_FF_TIMER | VMCPU_FF_PDM_CRITSECT))) )
8678 {
8679 if (!RTThreadPreemptIsPending(NIL_RTTHREAD))
8680 {
8681 /* We've injected any pending events. This is really the point of no return (to ring-3). */
8682 pVCpu->hm.s.Event.fPending = false;
8683
8684 return VINF_SUCCESS;
8685 }
8686
8687 STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
8688 rcStrict = VINF_EM_RAW_INTERRUPT;
8689 }
8690 else
8691 {
8692 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
8693 rcStrict = VINF_EM_RAW_TO_R3;
8694 }
8695
8696 ASMSetFlags(pVmxTransient->fEFlags);
8697 VMMRZCallRing3Enable(pVCpu);
8698
8699 return rcStrict;
8700}
8701
8702
8703/**
8704 * Prepares to run guest code in VT-x and we've committed to doing so. This
8705 * means there is no backing out to ring-3 or anywhere else at this
8706 * point.
8707 *
8708 * @param pVM The cross context VM structure.
8709 * @param pVCpu The cross context virtual CPU structure.
8710 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8711 * out-of-sync. Make sure to update the required fields
8712 * before using them.
8713 * @param pVmxTransient Pointer to the VMX transient structure.
8714 *
8715 * @remarks Called with preemption disabled.
8716 * @remarks No-long-jump zone!!!
8717 */
8718static void hmR0VmxPreRunGuestCommitted(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
8719{
8720 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8721 Assert(VMMR0IsLogFlushDisabled(pVCpu));
8722 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8723
8724 /*
8725 * Indicate start of guest execution and where poking EMT out of guest-context is recognized.
8726 */
8727 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
8728 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
8729
8730#ifdef HMVMX_ALWAYS_SWAP_FPU_STATE
8731 if (!CPUMIsGuestFPUStateActive(pVCpu))
8732 if (CPUMR0LoadGuestFPU(pVM, pVCpu) == VINF_CPUM_HOST_CR0_MODIFIED)
8733 HMCPU_CF_SET(pVCpu, HM_CHANGED_HOST_CONTEXT);
8734 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
8735#endif
8736
8737 if ( pVCpu->hm.s.fPreloadGuestFpu
8738 && !CPUMIsGuestFPUStateActive(pVCpu))
8739 {
8740 if (CPUMR0LoadGuestFPU(pVM, pVCpu) == VINF_CPUM_HOST_CR0_MODIFIED)
8741 HMCPU_CF_SET(pVCpu, HM_CHANGED_HOST_CONTEXT);
8742 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0));
8743 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
8744 }
8745
8746 /*
8747 * Lazy-update of the host MSRs values in the auto-load/store MSR area.
8748 */
8749 if ( !pVCpu->hm.s.vmx.fUpdatedHostMsrs
8750 && pVCpu->hm.s.vmx.cMsrs > 0)
8751 {
8752 hmR0VmxUpdateAutoLoadStoreHostMsrs(pVCpu);
8753 }
8754
8755 /*
8756 * Load the host state bits as we may've been preempted (only happens when
8757 * thread-context hooks are used or when hmR0VmxSetupVMRunHandler() changes pfnStartVM).
8758 * Note that the 64-on-32 switcher saves the (64-bit) host state into the VMCS and
8759 * if we change the switcher back to 32-bit, we *must* save the 32-bit host state here.
8760 * See @bugref{8432}.
8761 */
8762 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_CONTEXT))
8763 {
8764 int rc = hmR0VmxSaveHostState(pVM, pVCpu);
8765 AssertRC(rc);
8766 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreemptSaveHostState);
8767 }
8768 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_CONTEXT));
8769
8770 /*
8771 * Load the state shared between host and guest (FPU, debug, lazy MSRs).
8772 */
8773 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE))
8774 hmR0VmxLoadSharedState(pVM, pVCpu, pMixedCtx);
8775 AssertMsg(!HMCPU_CF_VALUE(pVCpu), ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
8776
8777 /* Store status of the shared guest-host state at the time of VM-entry. */
8778#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
8779 if (CPUMIsGuestInLongModeEx(pMixedCtx))
8780 {
8781 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
8782 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
8783 }
8784 else
8785#endif
8786 {
8787 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
8788 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
8789 }
8790 pVmxTransient->fWasGuestFPUStateActive = CPUMIsGuestFPUStateActive(pVCpu);
8791
8792 /*
8793 * Cache the TPR-shadow for checking on every VM-exit if it might have changed.
8794 */
8795 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
8796 pVmxTransient->u8GuestTpr = pVCpu->hm.s.vmx.pbVirtApic[0x80];
8797
8798 PHMGLOBALCPUINFO pCpu = HMR0GetCurrentCpu();
8799 RTCPUID idCurrentCpu = pCpu->idCpu;
8800 if ( pVmxTransient->fUpdateTscOffsettingAndPreemptTimer
8801 || idCurrentCpu != pVCpu->hm.s.idLastCpu)
8802 {
8803 hmR0VmxUpdateTscOffsettingAndPreemptTimer(pVM, pVCpu);
8804 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = false;
8805 }
8806
8807 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
8808 hmR0VmxFlushTaggedTlb(pVCpu, pCpu); /* Invalidate the appropriate guest entries from the TLB. */
8809 Assert(idCurrentCpu == pVCpu->hm.s.idLastCpu);
8810 pVCpu->hm.s.vmx.LastError.idCurrentCpu = idCurrentCpu; /* Update the error reporting info. with the current host CPU. */
8811
8812 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
8813
8814 TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
8815 to start executing. */
8816
8817 /*
8818 * Load the TSC_AUX MSR when we are not intercepting RDTSCP.
8819 */
8820 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP)
8821 {
8822 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT))
8823 {
8824 bool fMsrUpdated;
8825 int rc2 = hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
8826 AssertRC(rc2);
8827 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS));
8828
8829 rc2 = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_TSC_AUX, CPUMR0GetGuestTscAux(pVCpu), true /* fUpdateHostMsr */,
8830 &fMsrUpdated);
8831 AssertRC(rc2);
8832 Assert(fMsrUpdated || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
8833
8834 /* Finally, mark that all host MSR values are updated so we don't redo it without leaving VT-x. See @bugref{6956}. */
8835 pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
8836 }
8837 else
8838 {
8839 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, MSR_K8_TSC_AUX);
8840 Assert(!pVCpu->hm.s.vmx.cMsrs || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
8841 }
8842 }
8843
8844#ifdef VBOX_STRICT
8845 hmR0VmxCheckAutoLoadStoreMsrs(pVCpu);
8846 hmR0VmxCheckHostEferMsr(pVCpu);
8847 AssertRC(hmR0VmxCheckVmcsCtls(pVCpu));
8848#endif
8849#ifdef HMVMX_ALWAYS_CHECK_GUEST_STATE
8850 uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVM, pVCpu, pMixedCtx);
8851 if (uInvalidReason != VMX_IGS_REASON_NOT_FOUND)
8852 Log4(("hmR0VmxCheckGuestState returned %#x\n", uInvalidReason));
8853#endif
8854}
8855
8856
8857/**
8858 * Performs some essential restoration of state after running guest code in
8859 * VT-x.
8860 *
8861 * @param pVM The cross context VM structure.
8862 * @param pVCpu The cross context virtual CPU structure.
8863 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
8864 * out-of-sync. Make sure to update the required fields
8865 * before using them.
8866 * @param pVmxTransient Pointer to the VMX transient structure.
8867 * @param rcVMRun Return code of VMLAUNCH/VMRESUME.
8868 *
8869 * @remarks Called with interrupts disabled, and returns with interrupts enabled!
8870 *
8871 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
8872 * unconditionally when it is safe to do so.
8873 */
8874static void hmR0VmxPostRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, int rcVMRun)
8875{
8876 NOREF(pVM);
8877
8878 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8879
8880 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
8881 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
8882 HMVMXCPU_GST_RESET_TO(pVCpu, 0); /* Exits/longjmps to ring-3 requires saving the guest state. */
8883 pVmxTransient->fVmcsFieldsRead = 0; /* Transient fields need to be read from the VMCS. */
8884 pVmxTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
8885 pVmxTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
8886
8887 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT))
8888 TMCpuTickSetLastSeen(pVCpu, ASMReadTSC() + pVCpu->hm.s.vmx.u64TSCOffset);
8889
8890 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatExit1, x);
8891 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
8892 Assert(!ASMIntAreEnabled());
8893 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
8894
8895#ifdef HMVMX_ALWAYS_SWAP_FPU_STATE
8896 if (CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVM, pVCpu))
8897 {
8898 hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
8899 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
8900 }
8901#endif
8902
8903#if HC_ARCH_BITS == 64
8904 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_REQUIRED; /* Host state messed up by VT-x, we must restore. */
8905#endif
8906#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
8907 /* The 64-on-32 switcher maintains uVmcsState on its own and we need to leave it alone here. */
8908 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0SwitcherStartVM64)
8909 pVCpu->hm.s.vmx.uVmcsState |= HMVMX_VMCS_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
8910#else
8911 pVCpu->hm.s.vmx.uVmcsState |= HMVMX_VMCS_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
8912#endif
8913#ifdef VBOX_STRICT
8914 hmR0VmxCheckHostEferMsr(pVCpu); /* Verify that VMRUN/VMLAUNCH didn't modify host EFER. */
8915#endif
8916 ASMSetFlags(pVmxTransient->fEFlags); /* Enable interrupts. */
8917 VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
8918
8919 /* Save the basic VM-exit reason. Refer Intel spec. 24.9.1 "Basic VM-exit Information". */
8920 uint32_t uExitReason;
8921 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
8922 rc |= hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
8923 AssertRC(rc);
8924 pVmxTransient->uExitReason = (uint16_t)VMX_EXIT_REASON_BASIC(uExitReason);
8925 pVmxTransient->fVMEntryFailed = VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uEntryIntInfo);
8926
8927 /* Update the VM-exit history array. */
8928 HMCPU_EXIT_HISTORY_ADD(pVCpu, pVmxTransient->uExitReason);
8929
8930 /* If the VMLAUNCH/VMRESUME failed, we can bail out early. This does -not- cover VMX_EXIT_ERR_*. */
8931 if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
8932 {
8933 Log4(("VM-entry failure: pVCpu=%p idCpu=%RU32 rcVMRun=%Rrc fVMEntryFailed=%RTbool\n", pVCpu, pVCpu->idCpu, rcVMRun,
8934 pVmxTransient->fVMEntryFailed));
8935 return;
8936 }
8937
8938 if (RT_LIKELY(!pVmxTransient->fVMEntryFailed))
8939 {
8940 /** @todo We can optimize this by only syncing with our force-flags when
8941 * really needed and keeping the VMCS state as it is for most
8942 * VM-exits. */
8943 /* Update the guest interruptibility-state from the VMCS. */
8944 hmR0VmxSaveGuestIntrState(pVCpu, pMixedCtx);
8945
8946#if defined(HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE) || defined(HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE)
8947 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
8948 AssertRC(rc);
8949#elif defined(HMVMX_ALWAYS_SAVE_GUEST_RFLAGS)
8950 rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
8951 AssertRC(rc);
8952#endif
8953
8954 /*
8955 * If the TPR was raised by the guest, it wouldn't cause a VM-exit immediately. Instead we sync the TPR lazily whenever
8956 * we eventually get a VM-exit for any reason. This maybe expensive as PDMApicSetTPR() can longjmp to ring-3 and which is
8957 * why it's done here as it's easier and no less efficient to deal with it here than making hmR0VmxSaveGuestState()
8958 * cope with longjmps safely (see VMCPU_FF_HM_UPDATE_CR3 handling).
8959 */
8960 if ( (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
8961 && pVmxTransient->u8GuestTpr != pVCpu->hm.s.vmx.pbVirtApic[0x80])
8962 {
8963 rc = PDMApicSetTPR(pVCpu, pVCpu->hm.s.vmx.pbVirtApic[0x80]);
8964 AssertRC(rc);
8965 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
8966 }
8967 }
8968}
8969
8970
8971/**
8972 * Runs the guest code using VT-x the normal way.
8973 *
8974 * @returns VBox status code.
8975 * @param pVM The cross context VM structure.
8976 * @param pVCpu The cross context virtual CPU structure.
8977 * @param pCtx Pointer to the guest-CPU context.
8978 *
8979 * @note Mostly the same as hmR0VmxRunGuestCodeStep().
8980 */
8981static VBOXSTRICTRC hmR0VmxRunGuestCodeNormal(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
8982{
8983 VMXTRANSIENT VmxTransient;
8984 VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
8985 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
8986 uint32_t cLoops = 0;
8987
8988 for (;; cLoops++)
8989 {
8990 Assert(!HMR0SuspendPending());
8991 HMVMX_ASSERT_CPU_SAFE();
8992
8993 /* Preparatory work for running guest code, this may force us to return
8994 to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
8995 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
8996 rcStrict = hmR0VmxPreRunGuest(pVM, pVCpu, pCtx, &VmxTransient, false /* fStepping */);
8997 if (rcStrict != VINF_SUCCESS)
8998 break;
8999
9000 hmR0VmxPreRunGuestCommitted(pVM, pVCpu, pCtx, &VmxTransient);
9001 int rcRun = hmR0VmxRunGuest(pVM, pVCpu, pCtx);
9002 /* The guest-CPU context is now outdated, 'pCtx' is to be treated as 'pMixedCtx' from this point on!!! */
9003
9004 /* Restore any residual host-state and save any bits shared between host
9005 and guest into the guest-CPU state. Re-enables interrupts! */
9006 hmR0VmxPostRunGuest(pVM, pVCpu, pCtx, &VmxTransient, VBOXSTRICTRC_TODO(rcStrict));
9007
9008 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
9009 if (RT_SUCCESS(rcRun))
9010 { /* very likely */ }
9011 else
9012 {
9013 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
9014 hmR0VmxReportWorldSwitchError(pVM, pVCpu, rcRun, pCtx, &VmxTransient);
9015 return rcRun;
9016 }
9017
9018 /* Profile the VM-exit. */
9019 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
9020 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
9021 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
9022 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
9023 HMVMX_START_EXIT_DISPATCH_PROF();
9024
9025 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, pCtx, VmxTransient.uExitReason);
9026
9027 /* Handle the VM-exit. */
9028#ifdef HMVMX_USE_FUNCTION_TABLE
9029 rcStrict = g_apfnVMExitHandlers[VmxTransient.uExitReason](pVCpu, pCtx, &VmxTransient);
9030#else
9031 rcStrict = hmR0VmxHandleExit(pVCpu, pCtx, &VmxTransient, VmxTransient.uExitReason);
9032#endif
9033 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
9034 if (rcStrict == VINF_SUCCESS)
9035 {
9036 if (cLoops <= pVM->hm.s.cMaxResumeLoops)
9037 continue; /* likely */
9038 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
9039 rcStrict = VINF_EM_RAW_INTERRUPT;
9040 }
9041 break;
9042 }
9043
9044 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
9045 return rcStrict;
9046}
9047
9048
9049
9050/** @name Execution loop for single stepping, DBGF events and expensive Dtrace
9051 * probes.
9052 *
9053 * The following few functions and associated structure contains the bloat
9054 * necessary for providing detailed debug events and dtrace probes as well as
9055 * reliable host side single stepping. This works on the principle of
9056 * "subclassing" the normal execution loop and workers. We replace the loop
9057 * method completely and override selected helpers to add necessary adjustments
9058 * to their core operation.
9059 *
9060 * The goal is to keep the "parent" code lean and mean, so as not to sacrifice
9061 * any performance for debug and analysis features.
9062 *
9063 * @{
9064 */
9065
9066typedef struct VMXRUNDBGSTATE
9067{
9068 /** The RIP we started executing at. This is for detecting that we stepped. */
9069 uint64_t uRipStart;
9070 /** The CS we started executing with. */
9071 uint16_t uCsStart;
9072
9073 /** Whether we've actually modified the 1st execution control field. */
9074 bool fModifiedProcCtls : 1;
9075 /** Whether we've actually modified the 2nd execution control field. */
9076 bool fModifiedProcCtls2 : 1;
9077 /** Whether we've actually modified the exception bitmap. */
9078 bool fModifiedXcptBitmap : 1;
9079
9080 /** We desire the modified the CR0 mask to be cleared. */
9081 bool fClearCr0Mask : 1;
9082 /** We desire the modified the CR4 mask to be cleared. */
9083 bool fClearCr4Mask : 1;
9084 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC. */
9085 uint32_t fCpe1Extra;
9086 /** Stuff we do not want in VMX_VMCS32_CTRL_PROC_EXEC. */
9087 uint32_t fCpe1Unwanted;
9088 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC2. */
9089 uint32_t fCpe2Extra;
9090 /** Extra stuff we need in */
9091 uint32_t bmXcptExtra;
9092 /** The sequence number of the Dtrace provider settings the state was
9093 * configured against. */
9094 uint32_t uDtraceSettingsSeqNo;
9095 /** Exits to check (one bit per exit). */
9096 uint32_t bmExitsToCheck[3];
9097
9098 /** The initial VMX_VMCS32_CTRL_PROC_EXEC value (helps with restore). */
9099 uint32_t fProcCtlsInitial;
9100 /** The initial VMX_VMCS32_CTRL_PROC_EXEC2 value (helps with restore). */
9101 uint32_t fProcCtls2Initial;
9102 /** The initial VMX_VMCS32_CTRL_EXCEPTION_BITMAP value (helps with restore). */
9103 uint32_t bmXcptInitial;
9104} VMXRUNDBGSTATE;
9105AssertCompileMemberSize(VMXRUNDBGSTATE, bmExitsToCheck, (VMX_EXIT_MAX + 1 + 31) / 32 * 4);
9106typedef VMXRUNDBGSTATE *PVMXRUNDBGSTATE;
9107
9108
9109/**
9110 * Initializes the VMXRUNDBGSTATE structure.
9111 *
9112 * @param pVCpu The cross context virtual CPU structure of the
9113 * calling EMT.
9114 * @param pCtx The CPU register context to go with @a pVCpu.
9115 * @param pDbgState The structure to initialize.
9116 */
9117DECLINLINE(void) hmR0VmxRunDebugStateInit(PVMCPU pVCpu, PCCPUMCTX pCtx, PVMXRUNDBGSTATE pDbgState)
9118{
9119 pDbgState->uRipStart = pCtx->rip;
9120 pDbgState->uCsStart = pCtx->cs.Sel;
9121
9122 pDbgState->fModifiedProcCtls = false;
9123 pDbgState->fModifiedProcCtls2 = false;
9124 pDbgState->fModifiedXcptBitmap = false;
9125 pDbgState->fClearCr0Mask = false;
9126 pDbgState->fClearCr4Mask = false;
9127 pDbgState->fCpe1Extra = 0;
9128 pDbgState->fCpe1Unwanted = 0;
9129 pDbgState->fCpe2Extra = 0;
9130 pDbgState->bmXcptExtra = 0;
9131 pDbgState->fProcCtlsInitial = pVCpu->hm.s.vmx.u32ProcCtls;
9132 pDbgState->fProcCtls2Initial = pVCpu->hm.s.vmx.u32ProcCtls2;
9133 pDbgState->bmXcptInitial = pVCpu->hm.s.vmx.u32XcptBitmap;
9134}
9135
9136
9137/**
9138 * Updates the VMSC fields with changes requested by @a pDbgState.
9139 *
9140 * This is performed after hmR0VmxPreRunGuestDebugStateUpdate as well
9141 * immediately before executing guest code, i.e. when interrupts are disabled.
9142 * We don't check status codes here as we cannot easily assert or return in the
9143 * latter case.
9144 *
9145 * @param pVCpu The cross context virtual CPU structure.
9146 * @param pDbgState The debug state.
9147 */
9148DECLINLINE(void) hmR0VmxPreRunGuestDebugStateApply(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState)
9149{
9150 /*
9151 * Ensure desired flags in VMCS control fields are set.
9152 * (Ignoring write failure here, as we're committed and it's just debug extras.)
9153 *
9154 * Note! We load the shadow CR0 & CR4 bits when we flag the clearing, so
9155 * there should be no stale data in pCtx at this point.
9156 */
9157 if ( (pVCpu->hm.s.vmx.u32ProcCtls & pDbgState->fCpe1Extra) != pDbgState->fCpe1Extra
9158 || (pVCpu->hm.s.vmx.u32ProcCtls & pDbgState->fCpe1Unwanted))
9159 {
9160 pVCpu->hm.s.vmx.u32ProcCtls |= pDbgState->fCpe1Extra;
9161 pVCpu->hm.s.vmx.u32ProcCtls &= ~pDbgState->fCpe1Unwanted;
9162 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
9163 Log6(("hmR0VmxRunDebugStateRevert: VMX_VMCS32_CTRL_PROC_EXEC: %#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls));
9164 pDbgState->fModifiedProcCtls = true;
9165 }
9166
9167 if ((pVCpu->hm.s.vmx.u32ProcCtls2 & pDbgState->fCpe2Extra) != pDbgState->fCpe2Extra)
9168 {
9169 pVCpu->hm.s.vmx.u32ProcCtls2 |= pDbgState->fCpe2Extra;
9170 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pVCpu->hm.s.vmx.u32ProcCtls2);
9171 Log6(("hmR0VmxRunDebugStateRevert: VMX_VMCS32_CTRL_PROC_EXEC2: %#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls2));
9172 pDbgState->fModifiedProcCtls2 = true;
9173 }
9174
9175 if ((pVCpu->hm.s.vmx.u32XcptBitmap & pDbgState->bmXcptExtra) != pDbgState->bmXcptExtra)
9176 {
9177 pVCpu->hm.s.vmx.u32XcptBitmap |= pDbgState->bmXcptExtra;
9178 VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
9179 Log6(("hmR0VmxRunDebugStateRevert: VMX_VMCS32_CTRL_EXCEPTION_BITMAP: %#RX32\n", pVCpu->hm.s.vmx.u32XcptBitmap));
9180 pDbgState->fModifiedXcptBitmap = true;
9181 }
9182
9183 if (pDbgState->fClearCr0Mask && pVCpu->hm.s.vmx.u32CR0Mask != 0)
9184 {
9185 pVCpu->hm.s.vmx.u32CR0Mask = 0;
9186 VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_MASK, 0);
9187 Log6(("hmR0VmxRunDebugStateRevert: VMX_VMCS_CTRL_CR0_MASK: 0\n"));
9188 }
9189
9190 if (pDbgState->fClearCr4Mask && pVCpu->hm.s.vmx.u32CR4Mask != 0)
9191 {
9192 pVCpu->hm.s.vmx.u32CR4Mask = 0;
9193 VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_MASK, 0);
9194 Log6(("hmR0VmxRunDebugStateRevert: VMX_VMCS_CTRL_CR4_MASK: 0\n"));
9195 }
9196}
9197
9198
9199DECLINLINE(VBOXSTRICTRC) hmR0VmxRunDebugStateRevert(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState, VBOXSTRICTRC rcStrict)
9200{
9201 /*
9202 * Restore exit control settings as we may not reenter this function the
9203 * next time around.
9204 */
9205 /* We reload the initial value, trigger what we can of recalculations the
9206 next time around. From the looks of things, that's all that's required atm. */
9207 if (pDbgState->fModifiedProcCtls)
9208 {
9209 if (!(pDbgState->fProcCtlsInitial & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT) && CPUMIsHyperDebugStateActive(pVCpu))
9210 pDbgState->fProcCtlsInitial |= VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT; /* Avoid assertion in hmR0VmxLeave */
9211 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pDbgState->fProcCtlsInitial);
9212 AssertRCReturn(rc2, rc2);
9213 pVCpu->hm.s.vmx.u32ProcCtls = pDbgState->fProcCtlsInitial;
9214 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0 | HM_CHANGED_GUEST_DEBUG);
9215 }
9216
9217 /* We're currently the only ones messing with this one, so just restore the
9218 cached value and reload the field. */
9219 if ( pDbgState->fModifiedProcCtls2
9220 && pVCpu->hm.s.vmx.u32ProcCtls2 != pDbgState->fProcCtls2Initial)
9221 {
9222 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pDbgState->fProcCtls2Initial);
9223 AssertRCReturn(rc2, rc2);
9224 pVCpu->hm.s.vmx.u32ProcCtls2 = pDbgState->fProcCtls2Initial;
9225 }
9226
9227 /* If we've modified the exception bitmap, we restore it and trigger
9228 reloading and partial recalculation the next time around. */
9229 if (pDbgState->fModifiedXcptBitmap)
9230 {
9231 pVCpu->hm.s.vmx.u32XcptBitmap = pDbgState->bmXcptInitial;
9232 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS | HM_CHANGED_GUEST_CR0);
9233 }
9234
9235 /* We assume hmR0VmxLoadSharedCR0 will recalculate and load the CR0 mask. */
9236 if (pDbgState->fClearCr0Mask)
9237 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
9238
9239 /* We assume hmR0VmxLoadGuestCR3AndCR4 will recalculate and load the CR4 mask. */
9240 if (pDbgState->fClearCr4Mask)
9241 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR4);
9242
9243 return rcStrict;
9244}
9245
9246
9247/**
9248 * Configures VM-exit controls for current DBGF and DTrace settings.
9249 *
9250 * This updates @a pDbgState and the VMCS execution control fields to reflect
9251 * the necessary exits demanded by DBGF and DTrace.
9252 *
9253 * @param pVM The cross context VM structure.
9254 * @param pVCpu The cross context virtual CPU structure.
9255 * @param pCtx Pointer to the guest-CPU context.
9256 * @param pDbgState The debug state.
9257 * @param pVmxTransient Pointer to the VMX transient structure. May update
9258 * fUpdateTscOffsettingAndPreemptTimer.
9259 */
9260static void hmR0VmxPreRunGuestDebugStateUpdate(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx,
9261 PVMXRUNDBGSTATE pDbgState, PVMXTRANSIENT pVmxTransient)
9262{
9263 /*
9264 * Take down the dtrace serial number so we can spot changes.
9265 */
9266 pDbgState->uDtraceSettingsSeqNo = VBOXVMM_GET_SETTINGS_SEQ_NO();
9267 ASMCompilerBarrier();
9268
9269 /*
9270 * We'll rebuild most of the middle block of data members (holding the
9271 * current settings) as we go along here, so start by clearing it all.
9272 */
9273 pDbgState->bmXcptExtra = 0;
9274 pDbgState->fCpe1Extra = 0;
9275 pDbgState->fCpe1Unwanted = 0;
9276 pDbgState->fCpe2Extra = 0;
9277 for (unsigned i = 0; i < RT_ELEMENTS(pDbgState->bmExitsToCheck); i++)
9278 pDbgState->bmExitsToCheck[i] = 0;
9279
9280 /*
9281 * Software interrupts (INT XXh) - no idea how to trigger these...
9282 */
9283 if ( DBGF_IS_EVENT_ENABLED(pVM, DBGFEVENT_INTERRUPT_SOFTWARE)
9284 || VBOXVMM_INT_SOFTWARE_ENABLED())
9285 {
9286 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
9287 }
9288
9289 /*
9290 * Exception bitmap and XCPT events+probes.
9291 */
9292 for (int iXcpt = 0; iXcpt < (DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST + 1); iXcpt++)
9293 if (DBGF_IS_EVENT_ENABLED(pVM, (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + iXcpt)))
9294 pDbgState->bmXcptExtra |= RT_BIT_32(iXcpt);
9295
9296 if (VBOXVMM_XCPT_DE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DE);
9297 if (VBOXVMM_XCPT_DB_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DB);
9298 if (VBOXVMM_XCPT_BP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
9299 if (VBOXVMM_XCPT_OF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_OF);
9300 if (VBOXVMM_XCPT_BR_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BR);
9301 if (VBOXVMM_XCPT_UD_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_UD);
9302 if (VBOXVMM_XCPT_NM_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NM);
9303 if (VBOXVMM_XCPT_DF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DF);
9304 if (VBOXVMM_XCPT_TS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_TS);
9305 if (VBOXVMM_XCPT_NP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NP);
9306 if (VBOXVMM_XCPT_SS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SS);
9307 if (VBOXVMM_XCPT_GP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_GP);
9308 if (VBOXVMM_XCPT_PF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_PF);
9309 if (VBOXVMM_XCPT_MF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_MF);
9310 if (VBOXVMM_XCPT_AC_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_AC);
9311 if (VBOXVMM_XCPT_XF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_XF);
9312 if (VBOXVMM_XCPT_VE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_VE);
9313 if (VBOXVMM_XCPT_SX_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SX);
9314
9315 if (pDbgState->bmXcptExtra)
9316 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
9317
9318 /*
9319 * Process events and probes for VM exits, making sure we get the wanted exits.
9320 *
9321 * Note! This is the reverse of waft hmR0VmxHandleExitDtraceEvents does.
9322 * So, when adding/changing/removing please don't forget to update it.
9323 *
9324 * Some of the macros are picking up local variables to save horizontal space,
9325 * (being able to see it in a table is the lesser evil here).
9326 */
9327#define IS_EITHER_ENABLED(a_pVM, a_EventSubName) \
9328 ( DBGF_IS_EVENT_ENABLED(a_pVM, RT_CONCAT(DBGFEVENT_, a_EventSubName)) \
9329 || RT_CONCAT3(VBOXVMM_, a_EventSubName, _ENABLED)() )
9330#define SET_ONLY_XBM_IF_EITHER_EN(a_EventSubName, a_uExit) \
9331 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9332 { AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9333 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9334 } else do { } while (0)
9335#define SET_CPE1_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec) \
9336 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9337 { \
9338 (pDbgState)->fCpe1Extra |= (a_fCtrlProcExec); \
9339 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9340 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9341 } else do { } while (0)
9342#define SET_CPEU_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fUnwantedCtrlProcExec) \
9343 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9344 { \
9345 (pDbgState)->fCpe1Unwanted |= (a_fUnwantedCtrlProcExec); \
9346 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9347 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9348 } else do { } while (0)
9349#define SET_CPE2_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec2) \
9350 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9351 { \
9352 (pDbgState)->fCpe2Extra |= (a_fCtrlProcExec2); \
9353 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9354 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9355 } else do { } while (0)
9356
9357 SET_ONLY_XBM_IF_EITHER_EN(EXIT_TASK_SWITCH, VMX_EXIT_TASK_SWITCH); /* unconditional */
9358 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_VIOLATION, VMX_EXIT_EPT_VIOLATION); /* unconditional */
9359 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_MISCONFIG, VMX_EXIT_EPT_MISCONFIG); /* unconditional (unless #VE) */
9360 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_ACCESS, VMX_EXIT_APIC_ACCESS); /* feature dependent, nothing to enable here */
9361 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_WRITE, VMX_EXIT_APIC_WRITE); /* feature dependent, nothing to enable here */
9362
9363 SET_ONLY_XBM_IF_EITHER_EN(INSTR_CPUID, VMX_EXIT_CPUID); /* unconditional */
9364 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CPUID, VMX_EXIT_CPUID);
9365 SET_ONLY_XBM_IF_EITHER_EN(INSTR_GETSEC, VMX_EXIT_GETSEC); /* unconditional */
9366 SET_ONLY_XBM_IF_EITHER_EN( EXIT_GETSEC, VMX_EXIT_GETSEC);
9367 SET_CPE1_XBM_IF_EITHER_EN(INSTR_HALT, VMX_EXIT_HLT, VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT); /* paranoia */
9368 SET_ONLY_XBM_IF_EITHER_EN( EXIT_HALT, VMX_EXIT_HLT);
9369 SET_ONLY_XBM_IF_EITHER_EN(INSTR_INVD, VMX_EXIT_INVD); /* unconditional */
9370 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVD, VMX_EXIT_INVD);
9371 SET_CPE1_XBM_IF_EITHER_EN(INSTR_INVLPG, VMX_EXIT_INVLPG, VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT);
9372 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVLPG, VMX_EXIT_INVLPG);
9373 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDPMC, VMX_EXIT_RDPMC, VMX_VMCS_CTRL_PROC_EXEC_RDPMC_EXIT);
9374 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDPMC, VMX_EXIT_RDPMC);
9375 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSC, VMX_EXIT_RDTSC, VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT);
9376 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSC, VMX_EXIT_RDTSC);
9377 SET_ONLY_XBM_IF_EITHER_EN(INSTR_RSM, VMX_EXIT_RSM); /* unconditional */
9378 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RSM, VMX_EXIT_RSM);
9379 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMM_CALL, VMX_EXIT_VMCALL); /* unconditional */
9380 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMM_CALL, VMX_EXIT_VMCALL);
9381 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMCLEAR, VMX_EXIT_VMCLEAR); /* unconditional */
9382 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMCLEAR, VMX_EXIT_VMCLEAR);
9383 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH); /* unconditional */
9384 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH);
9385 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRLD, VMX_EXIT_VMPTRLD); /* unconditional */
9386 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRLD, VMX_EXIT_VMPTRLD);
9387 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRST, VMX_EXIT_VMPTRST); /* unconditional */
9388 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRST, VMX_EXIT_VMPTRST);
9389 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMREAD, VMX_EXIT_VMREAD); /* unconditional */
9390 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMREAD, VMX_EXIT_VMREAD);
9391 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMRESUME, VMX_EXIT_VMRESUME); /* unconditional */
9392 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMRESUME, VMX_EXIT_VMRESUME);
9393 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMWRITE, VMX_EXIT_VMWRITE); /* unconditional */
9394 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMWRITE, VMX_EXIT_VMWRITE);
9395 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXOFF, VMX_EXIT_VMXOFF); /* unconditional */
9396 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXOFF, VMX_EXIT_VMXOFF);
9397 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXON, VMX_EXIT_VMXON); /* unconditional */
9398 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXON, VMX_EXIT_VMXON);
9399
9400 if ( IS_EITHER_ENABLED(pVM, INSTR_CRX_READ)
9401 || IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
9402 {
9403 int rc2 = hmR0VmxSaveGuestCR0(pVCpu, pCtx);
9404 rc2 |= hmR0VmxSaveGuestCR4(pVCpu, pCtx);
9405 rc2 |= hmR0VmxSaveGuestApicState(pVCpu, pCtx);
9406 AssertRC(rc2);
9407
9408#if 0 /** @todo fix me */
9409 pDbgState->fClearCr0Mask = true;
9410 pDbgState->fClearCr4Mask = true;
9411#endif
9412 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_READ))
9413 pDbgState->fCpe1Extra |= VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT | VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT;
9414 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
9415 pDbgState->fCpe1Extra |= VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT | VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT;
9416 pDbgState->fCpe1Unwanted |= VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW; /* risky? */
9417 /* Note! We currently don't use VMX_VMCS32_CTRL_CR3_TARGET_COUNT. It would
9418 require clearing here and in the loop if we start using it. */
9419 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_CRX);
9420 }
9421 else
9422 {
9423 if (pDbgState->fClearCr0Mask)
9424 {
9425 pDbgState->fClearCr0Mask = false;
9426 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
9427 }
9428 if (pDbgState->fClearCr4Mask)
9429 {
9430 pDbgState->fClearCr4Mask = false;
9431 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR4);
9432 }
9433 }
9434 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_READ, VMX_EXIT_MOV_CRX);
9435 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_WRITE, VMX_EXIT_MOV_CRX);
9436
9437 if ( IS_EITHER_ENABLED(pVM, INSTR_DRX_READ)
9438 || IS_EITHER_ENABLED(pVM, INSTR_DRX_WRITE))
9439 {
9440 /** @todo later, need to fix handler as it assumes this won't usually happen. */
9441 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_DRX);
9442 }
9443 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_READ, VMX_EXIT_MOV_DRX);
9444 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_WRITE, VMX_EXIT_MOV_DRX);
9445
9446 SET_CPEU_XBM_IF_EITHER_EN(INSTR_RDMSR, VMX_EXIT_RDMSR, VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS); /* risky clearing this? */
9447 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDMSR, VMX_EXIT_RDMSR);
9448 SET_CPEU_XBM_IF_EITHER_EN(INSTR_WRMSR, VMX_EXIT_WRMSR, VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS);
9449 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WRMSR, VMX_EXIT_WRMSR);
9450 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MWAIT, VMX_EXIT_MWAIT, VMX_VMCS_CTRL_PROC_EXEC_MWAIT_EXIT); /* paranoia */
9451 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MWAIT, VMX_EXIT_MWAIT);
9452 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MONITOR, VMX_EXIT_MONITOR, VMX_VMCS_CTRL_PROC_EXEC_MONITOR_EXIT); /* paranoia */
9453 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MONITOR, VMX_EXIT_MONITOR);
9454#if 0 /** @todo too slow, fix handler. */
9455 SET_CPE1_XBM_IF_EITHER_EN(INSTR_PAUSE, VMX_EXIT_PAUSE, VMX_VMCS_CTRL_PROC_EXEC_PAUSE_EXIT);
9456#endif
9457 SET_ONLY_XBM_IF_EITHER_EN( EXIT_PAUSE, VMX_EXIT_PAUSE);
9458
9459 if ( IS_EITHER_ENABLED(pVM, INSTR_SGDT)
9460 || IS_EITHER_ENABLED(pVM, INSTR_SIDT)
9461 || IS_EITHER_ENABLED(pVM, INSTR_LGDT)
9462 || IS_EITHER_ENABLED(pVM, INSTR_LIDT))
9463 {
9464 pDbgState->fCpe2Extra |= VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT;
9465 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XDTR_ACCESS);
9466 }
9467 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SGDT, VMX_EXIT_XDTR_ACCESS);
9468 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SIDT, VMX_EXIT_XDTR_ACCESS);
9469 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LGDT, VMX_EXIT_XDTR_ACCESS);
9470 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LIDT, VMX_EXIT_XDTR_ACCESS);
9471
9472 if ( IS_EITHER_ENABLED(pVM, INSTR_SLDT)
9473 || IS_EITHER_ENABLED(pVM, INSTR_STR)
9474 || IS_EITHER_ENABLED(pVM, INSTR_LLDT)
9475 || IS_EITHER_ENABLED(pVM, INSTR_LTR))
9476 {
9477 pDbgState->fCpe2Extra |= VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT;
9478 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_TR_ACCESS);
9479 }
9480 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SLDT, VMX_EXIT_TR_ACCESS);
9481 SET_ONLY_XBM_IF_EITHER_EN( EXIT_STR, VMX_EXIT_TR_ACCESS);
9482 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LLDT, VMX_EXIT_TR_ACCESS);
9483 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LTR, VMX_EXIT_TR_ACCESS);
9484
9485 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVEPT, VMX_EXIT_INVEPT); /* unconditional */
9486 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVEPT, VMX_EXIT_INVEPT);
9487 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSCP, VMX_EXIT_RDTSCP, VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT);
9488 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSCP, VMX_EXIT_RDTSCP);
9489 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVVPID, VMX_EXIT_INVVPID); /* unconditional */
9490 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVVPID, VMX_EXIT_INVVPID);
9491 SET_CPE2_XBM_IF_EITHER_EN(INSTR_WBINVD, VMX_EXIT_WBINVD, VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT);
9492 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WBINVD, VMX_EXIT_WBINVD);
9493 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSETBV, VMX_EXIT_XSETBV); /* unconditional */
9494 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XSETBV, VMX_EXIT_XSETBV);
9495 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDRAND, VMX_EXIT_RDRAND, VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT);
9496 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDRAND, VMX_EXIT_RDRAND);
9497 SET_CPE1_XBM_IF_EITHER_EN(INSTR_VMX_INVPCID, VMX_EXIT_INVPCID, VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT);
9498 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVPCID, VMX_EXIT_INVPCID);
9499 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMFUNC, VMX_EXIT_VMFUNC); /* unconditional for the current setup */
9500 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMFUNC, VMX_EXIT_VMFUNC);
9501 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDSEED, VMX_EXIT_RDSEED, VMX_VMCS_CTRL_PROC_EXEC2_RDSEED_EXIT);
9502 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDSEED, VMX_EXIT_RDSEED);
9503 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSAVES, VMX_EXIT_XSAVES); /* unconditional (enabled by host, guest cfg) */
9504 SET_ONLY_XBM_IF_EITHER_EN(EXIT_XSAVES, VMX_EXIT_XSAVES);
9505 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XRSTORS, VMX_EXIT_XRSTORS); /* unconditional (enabled by host, guest cfg) */
9506 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XRSTORS, VMX_EXIT_XRSTORS);
9507
9508#undef IS_EITHER_ENABLED
9509#undef SET_ONLY_XBM_IF_EITHER_EN
9510#undef SET_CPE1_XBM_IF_EITHER_EN
9511#undef SET_CPEU_XBM_IF_EITHER_EN
9512#undef SET_CPE2_XBM_IF_EITHER_EN
9513
9514 /*
9515 * Sanitize the control stuff.
9516 */
9517 pDbgState->fCpe2Extra &= pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1;
9518 if (pDbgState->fCpe2Extra)
9519 pDbgState->fCpe1Extra |= VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL;
9520 pDbgState->fCpe1Extra &= pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1;
9521 pDbgState->fCpe1Unwanted &= ~pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0;
9522 if (pVCpu->hm.s.fDebugWantRdTscExit != RT_BOOL(pDbgState->fCpe1Extra & VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT))
9523 {
9524 pVCpu->hm.s.fDebugWantRdTscExit ^= true;
9525 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
9526 }
9527
9528 Log6(("HM: debug state: cpe1=%#RX32 cpeu=%#RX32 cpe2=%#RX32%s%s\n",
9529 pDbgState->fCpe1Extra, pDbgState->fCpe1Unwanted, pDbgState->fCpe2Extra,
9530 pDbgState->fClearCr0Mask ? " clr-cr0" : "",
9531 pDbgState->fClearCr4Mask ? " clr-cr4" : ""));
9532}
9533
9534
9535/**
9536 * Fires off DBGF events and dtrace probes for an exit, when it's appropriate.
9537 *
9538 * The caller has checked exit against the VMXRUNDBGSTATE::bmExitsToCheck
9539 * bitmap. The caller has checked for NMIs already, so we don't have to do that
9540 * either.
9541 *
9542 * @returns Strict VBox status code (i.e. informational status codes too).
9543 * @param pVM The cross context VM structure.
9544 * @param pVCpu The cross context virtual CPU structure.
9545 * @param pMixedCtx Pointer to the guest-CPU context.
9546 * @param pVmxTransient Pointer to the VMX-transient structure.
9547 * @param uExitReason The VM-exit reason.
9548 *
9549 * @remarks The name of this function is displayed by dtrace, so keep it short
9550 * and to the point. No longer than 33 chars long, please.
9551 */
9552static VBOXSTRICTRC hmR0VmxHandleExitDtraceEvents(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx,
9553 PVMXTRANSIENT pVmxTransient, uint32_t uExitReason)
9554{
9555 /*
9556 * Translate the event into a DBGF event (enmEvent + uEventArg) and at the
9557 * same time check whether any corresponding Dtrace event is enabled (fDtrace).
9558 *
9559 * Note! This is the reverse operation of what hmR0VmxPreRunGuestDebugStateUpdate
9560 * does. Must add/change/remove both places. Same ordering, please.
9561 *
9562 * Added/removed events must also be reflected in the next section
9563 * where we dispatch dtrace events.
9564 */
9565 bool fDtrace1 = false;
9566 bool fDtrace2 = false;
9567 DBGFEVENTTYPE enmEvent1 = DBGFEVENT_END;
9568 DBGFEVENTTYPE enmEvent2 = DBGFEVENT_END;
9569 uint32_t uEventArg = 0;
9570#define SET_EXIT(a_EventSubName) \
9571 do { \
9572 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
9573 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
9574 } while (0)
9575#define SET_BOTH(a_EventSubName) \
9576 do { \
9577 enmEvent1 = RT_CONCAT(DBGFEVENT_INSTR_, a_EventSubName); \
9578 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
9579 fDtrace1 = RT_CONCAT3(VBOXVMM_INSTR_, a_EventSubName, _ENABLED)(); \
9580 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
9581 } while (0)
9582 switch (uExitReason)
9583 {
9584 case VMX_EXIT_MTF:
9585 return hmR0VmxExitMtf(pVCpu, pMixedCtx, pVmxTransient);
9586
9587 case VMX_EXIT_XCPT_OR_NMI:
9588 {
9589 uint8_t const idxVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVmxTransient->uExitIntInfo);
9590 switch (VMX_EXIT_INTERRUPTION_INFO_TYPE(pVmxTransient->uExitIntInfo))
9591 {
9592 case VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT:
9593 case VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT:
9594 case VMX_EXIT_INTERRUPTION_INFO_TYPE_PRIV_SW_XCPT:
9595 if (idxVector <= (unsigned)(DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST))
9596 {
9597 if (VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(pVmxTransient->uExitIntInfo))
9598 {
9599 hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
9600 uEventArg = pVmxTransient->uExitIntErrorCode;
9601 }
9602 enmEvent1 = (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + idxVector);
9603 switch (enmEvent1)
9604 {
9605 case DBGFEVENT_XCPT_DE: fDtrace1 = VBOXVMM_XCPT_DE_ENABLED(); break;
9606 case DBGFEVENT_XCPT_DB: fDtrace1 = VBOXVMM_XCPT_DB_ENABLED(); break;
9607 case DBGFEVENT_XCPT_BP: fDtrace1 = VBOXVMM_XCPT_BP_ENABLED(); break;
9608 case DBGFEVENT_XCPT_OF: fDtrace1 = VBOXVMM_XCPT_OF_ENABLED(); break;
9609 case DBGFEVENT_XCPT_BR: fDtrace1 = VBOXVMM_XCPT_BR_ENABLED(); break;
9610 case DBGFEVENT_XCPT_UD: fDtrace1 = VBOXVMM_XCPT_UD_ENABLED(); break;
9611 case DBGFEVENT_XCPT_NM: fDtrace1 = VBOXVMM_XCPT_NM_ENABLED(); break;
9612 case DBGFEVENT_XCPT_DF: fDtrace1 = VBOXVMM_XCPT_DF_ENABLED(); break;
9613 case DBGFEVENT_XCPT_TS: fDtrace1 = VBOXVMM_XCPT_TS_ENABLED(); break;
9614 case DBGFEVENT_XCPT_NP: fDtrace1 = VBOXVMM_XCPT_NP_ENABLED(); break;
9615 case DBGFEVENT_XCPT_SS: fDtrace1 = VBOXVMM_XCPT_SS_ENABLED(); break;
9616 case DBGFEVENT_XCPT_GP: fDtrace1 = VBOXVMM_XCPT_GP_ENABLED(); break;
9617 case DBGFEVENT_XCPT_PF: fDtrace1 = VBOXVMM_XCPT_PF_ENABLED(); break;
9618 case DBGFEVENT_XCPT_MF: fDtrace1 = VBOXVMM_XCPT_MF_ENABLED(); break;
9619 case DBGFEVENT_XCPT_AC: fDtrace1 = VBOXVMM_XCPT_AC_ENABLED(); break;
9620 case DBGFEVENT_XCPT_XF: fDtrace1 = VBOXVMM_XCPT_XF_ENABLED(); break;
9621 case DBGFEVENT_XCPT_VE: fDtrace1 = VBOXVMM_XCPT_VE_ENABLED(); break;
9622 case DBGFEVENT_XCPT_SX: fDtrace1 = VBOXVMM_XCPT_SX_ENABLED(); break;
9623 default: break;
9624 }
9625 }
9626 else
9627 AssertFailed();
9628 break;
9629
9630 case VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT:
9631 uEventArg = idxVector;
9632 enmEvent1 = DBGFEVENT_INTERRUPT_SOFTWARE;
9633 fDtrace1 = VBOXVMM_INT_SOFTWARE_ENABLED();
9634 break;
9635 }
9636 break;
9637 }
9638
9639 case VMX_EXIT_TRIPLE_FAULT:
9640 enmEvent1 = DBGFEVENT_TRIPLE_FAULT;
9641 //fDtrace1 = VBOXVMM_EXIT_TRIPLE_FAULT_ENABLED();
9642 break;
9643 case VMX_EXIT_TASK_SWITCH: SET_EXIT(TASK_SWITCH); break;
9644 case VMX_EXIT_EPT_VIOLATION: SET_EXIT(VMX_EPT_VIOLATION); break;
9645 case VMX_EXIT_EPT_MISCONFIG: SET_EXIT(VMX_EPT_MISCONFIG); break;
9646 case VMX_EXIT_APIC_ACCESS: SET_EXIT(VMX_VAPIC_ACCESS); break;
9647 case VMX_EXIT_APIC_WRITE: SET_EXIT(VMX_VAPIC_WRITE); break;
9648
9649 /* Instruction specific VM-exits: */
9650 case VMX_EXIT_CPUID: SET_BOTH(CPUID); break;
9651 case VMX_EXIT_GETSEC: SET_BOTH(GETSEC); break;
9652 case VMX_EXIT_HLT: SET_BOTH(HALT); break;
9653 case VMX_EXIT_INVD: SET_BOTH(INVD); break;
9654 case VMX_EXIT_INVLPG: SET_BOTH(INVLPG); break;
9655 case VMX_EXIT_RDPMC: SET_BOTH(RDPMC); break;
9656 case VMX_EXIT_RDTSC: SET_BOTH(RDTSC); break;
9657 case VMX_EXIT_RSM: SET_BOTH(RSM); break;
9658 case VMX_EXIT_VMCALL: SET_BOTH(VMM_CALL); break;
9659 case VMX_EXIT_VMCLEAR: SET_BOTH(VMX_VMCLEAR); break;
9660 case VMX_EXIT_VMLAUNCH: SET_BOTH(VMX_VMLAUNCH); break;
9661 case VMX_EXIT_VMPTRLD: SET_BOTH(VMX_VMPTRLD); break;
9662 case VMX_EXIT_VMPTRST: SET_BOTH(VMX_VMPTRST); break;
9663 case VMX_EXIT_VMREAD: SET_BOTH(VMX_VMREAD); break;
9664 case VMX_EXIT_VMRESUME: SET_BOTH(VMX_VMRESUME); break;
9665 case VMX_EXIT_VMWRITE: SET_BOTH(VMX_VMWRITE); break;
9666 case VMX_EXIT_VMXOFF: SET_BOTH(VMX_VMXOFF); break;
9667 case VMX_EXIT_VMXON: SET_BOTH(VMX_VMXON); break;
9668 case VMX_EXIT_MOV_CRX:
9669 hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
9670/** @todo r=bird: I feel these macros aren't very descriptive and needs to be at least 30 chars longer! ;-)
9671* Sensible abbreviations strongly recommended here because even with 130 columns this stuff get too wide! */
9672 if ( VMX_EXIT_QUALIFICATION_CRX_ACCESS(pVmxTransient->uExitQualification)
9673 == VMX_EXIT_QUALIFICATION_CRX_ACCESS_READ)
9674 SET_BOTH(CRX_READ);
9675 else
9676 SET_BOTH(CRX_WRITE);
9677 uEventArg = VMX_EXIT_QUALIFICATION_CRX_REGISTER(pVmxTransient->uExitQualification);
9678 break;
9679 case VMX_EXIT_MOV_DRX:
9680 hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
9681 if ( VMX_EXIT_QUALIFICATION_DRX_DIRECTION(pVmxTransient->uExitQualification)
9682 == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_READ)
9683 SET_BOTH(DRX_READ);
9684 else
9685 SET_BOTH(DRX_WRITE);
9686 uEventArg = VMX_EXIT_QUALIFICATION_DRX_REGISTER(pVmxTransient->uExitQualification);
9687 break;
9688 case VMX_EXIT_RDMSR: SET_BOTH(RDMSR); break;
9689 case VMX_EXIT_WRMSR: SET_BOTH(WRMSR); break;
9690 case VMX_EXIT_MWAIT: SET_BOTH(MWAIT); break;
9691 case VMX_EXIT_MONITOR: SET_BOTH(MONITOR); break;
9692 case VMX_EXIT_PAUSE: SET_BOTH(PAUSE); break;
9693 case VMX_EXIT_XDTR_ACCESS:
9694 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
9695 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_XDTR_INSINFO_INSTR_ID))
9696 {
9697 case VMX_XDTR_INSINFO_II_SGDT: SET_BOTH(SGDT); break;
9698 case VMX_XDTR_INSINFO_II_SIDT: SET_BOTH(SIDT); break;
9699 case VMX_XDTR_INSINFO_II_LGDT: SET_BOTH(LGDT); break;
9700 case VMX_XDTR_INSINFO_II_LIDT: SET_BOTH(LIDT); break;
9701 }
9702 break;
9703
9704 case VMX_EXIT_TR_ACCESS:
9705 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
9706 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_YYTR_INSINFO_INSTR_ID))
9707 {
9708 case VMX_YYTR_INSINFO_II_SLDT: SET_BOTH(SLDT); break;
9709 case VMX_YYTR_INSINFO_II_STR: SET_BOTH(STR); break;
9710 case VMX_YYTR_INSINFO_II_LLDT: SET_BOTH(LLDT); break;
9711 case VMX_YYTR_INSINFO_II_LTR: SET_BOTH(LTR); break;
9712 }
9713 break;
9714
9715 case VMX_EXIT_INVEPT: SET_BOTH(VMX_INVEPT); break;
9716 case VMX_EXIT_RDTSCP: SET_BOTH(RDTSCP); break;
9717 case VMX_EXIT_INVVPID: SET_BOTH(VMX_INVVPID); break;
9718 case VMX_EXIT_WBINVD: SET_BOTH(WBINVD); break;
9719 case VMX_EXIT_XSETBV: SET_BOTH(XSETBV); break;
9720 case VMX_EXIT_RDRAND: SET_BOTH(RDRAND); break;
9721 case VMX_EXIT_INVPCID: SET_BOTH(VMX_INVPCID); break;
9722 case VMX_EXIT_VMFUNC: SET_BOTH(VMX_VMFUNC); break;
9723 case VMX_EXIT_RDSEED: SET_BOTH(RDSEED); break;
9724 case VMX_EXIT_XSAVES: SET_BOTH(XSAVES); break;
9725 case VMX_EXIT_XRSTORS: SET_BOTH(XRSTORS); break;
9726
9727 /* Events that aren't relevant at this point. */
9728 case VMX_EXIT_EXT_INT:
9729 case VMX_EXIT_INT_WINDOW:
9730 case VMX_EXIT_NMI_WINDOW:
9731 case VMX_EXIT_TPR_BELOW_THRESHOLD:
9732 case VMX_EXIT_PREEMPT_TIMER:
9733 case VMX_EXIT_IO_INSTR:
9734 break;
9735
9736 /* Errors and unexpected events. */
9737 case VMX_EXIT_INIT_SIGNAL:
9738 case VMX_EXIT_SIPI:
9739 case VMX_EXIT_IO_SMI:
9740 case VMX_EXIT_SMI:
9741 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
9742 case VMX_EXIT_ERR_MSR_LOAD:
9743 case VMX_EXIT_ERR_MACHINE_CHECK:
9744 break;
9745
9746 default:
9747 AssertMsgFailed(("Unexpected exit=%#x\n", uExitReason));
9748 break;
9749 }
9750#undef SET_BOTH
9751#undef SET_EXIT
9752
9753 /*
9754 * Dtrace tracepoints go first. We do them here at once so we don't
9755 * have to copy the guest state saving and stuff a few dozen times.
9756 * Down side is that we've got to repeat the switch, though this time
9757 * we use enmEvent since the probes are a subset of what DBGF does.
9758 */
9759 if (fDtrace1 || fDtrace2)
9760 {
9761 hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
9762 hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
9763 switch (enmEvent1)
9764 {
9765 /** @todo consider which extra parameters would be helpful for each probe. */
9766 case DBGFEVENT_END: break;
9767 case DBGFEVENT_XCPT_DE: VBOXVMM_XCPT_DE(pVCpu, pMixedCtx); break;
9768 case DBGFEVENT_XCPT_DB: VBOXVMM_XCPT_DB(pVCpu, pMixedCtx, pMixedCtx->dr[6]); break;
9769 case DBGFEVENT_XCPT_BP: VBOXVMM_XCPT_BP(pVCpu, pMixedCtx); break;
9770 case DBGFEVENT_XCPT_OF: VBOXVMM_XCPT_OF(pVCpu, pMixedCtx); break;
9771 case DBGFEVENT_XCPT_BR: VBOXVMM_XCPT_BR(pVCpu, pMixedCtx); break;
9772 case DBGFEVENT_XCPT_UD: VBOXVMM_XCPT_UD(pVCpu, pMixedCtx); break;
9773 case DBGFEVENT_XCPT_NM: VBOXVMM_XCPT_NM(pVCpu, pMixedCtx); break;
9774 case DBGFEVENT_XCPT_DF: VBOXVMM_XCPT_DF(pVCpu, pMixedCtx); break;
9775 case DBGFEVENT_XCPT_TS: VBOXVMM_XCPT_TS(pVCpu, pMixedCtx, uEventArg); break;
9776 case DBGFEVENT_XCPT_NP: VBOXVMM_XCPT_NP(pVCpu, pMixedCtx, uEventArg); break;
9777 case DBGFEVENT_XCPT_SS: VBOXVMM_XCPT_SS(pVCpu, pMixedCtx, uEventArg); break;
9778 case DBGFEVENT_XCPT_GP: VBOXVMM_XCPT_GP(pVCpu, pMixedCtx, uEventArg); break;
9779 case DBGFEVENT_XCPT_PF: VBOXVMM_XCPT_PF(pVCpu, pMixedCtx, uEventArg, pMixedCtx->cr2); break;
9780 case DBGFEVENT_XCPT_MF: VBOXVMM_XCPT_MF(pVCpu, pMixedCtx); break;
9781 case DBGFEVENT_XCPT_AC: VBOXVMM_XCPT_AC(pVCpu, pMixedCtx); break;
9782 case DBGFEVENT_XCPT_XF: VBOXVMM_XCPT_XF(pVCpu, pMixedCtx); break;
9783 case DBGFEVENT_XCPT_VE: VBOXVMM_XCPT_VE(pVCpu, pMixedCtx); break;
9784 case DBGFEVENT_XCPT_SX: VBOXVMM_XCPT_SX(pVCpu, pMixedCtx, uEventArg); break;
9785 case DBGFEVENT_INTERRUPT_SOFTWARE: VBOXVMM_INT_SOFTWARE(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
9786 case DBGFEVENT_INSTR_CPUID: VBOXVMM_INSTR_CPUID(pVCpu, pMixedCtx, pMixedCtx->eax, pMixedCtx->ecx); break;
9787 case DBGFEVENT_INSTR_GETSEC: VBOXVMM_INSTR_GETSEC(pVCpu, pMixedCtx); break;
9788 case DBGFEVENT_INSTR_HALT: VBOXVMM_INSTR_HALT(pVCpu, pMixedCtx); break;
9789 case DBGFEVENT_INSTR_INVD: VBOXVMM_INSTR_INVD(pVCpu, pMixedCtx); break;
9790 case DBGFEVENT_INSTR_INVLPG: VBOXVMM_INSTR_INVLPG(pVCpu, pMixedCtx); break;
9791 case DBGFEVENT_INSTR_RDPMC: VBOXVMM_INSTR_RDPMC(pVCpu, pMixedCtx); break;
9792 case DBGFEVENT_INSTR_RDTSC: VBOXVMM_INSTR_RDTSC(pVCpu, pMixedCtx); break;
9793 case DBGFEVENT_INSTR_RSM: VBOXVMM_INSTR_RSM(pVCpu, pMixedCtx); break;
9794 case DBGFEVENT_INSTR_CRX_READ: VBOXVMM_INSTR_CRX_READ(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
9795 case DBGFEVENT_INSTR_CRX_WRITE: VBOXVMM_INSTR_CRX_WRITE(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
9796 case DBGFEVENT_INSTR_DRX_READ: VBOXVMM_INSTR_DRX_READ(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
9797 case DBGFEVENT_INSTR_DRX_WRITE: VBOXVMM_INSTR_DRX_WRITE(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
9798 case DBGFEVENT_INSTR_RDMSR: VBOXVMM_INSTR_RDMSR(pVCpu, pMixedCtx, pMixedCtx->ecx); break;
9799 case DBGFEVENT_INSTR_WRMSR: VBOXVMM_INSTR_WRMSR(pVCpu, pMixedCtx, pMixedCtx->ecx,
9800 RT_MAKE_U64(pMixedCtx->eax, pMixedCtx->edx)); break;
9801 case DBGFEVENT_INSTR_MWAIT: VBOXVMM_INSTR_MWAIT(pVCpu, pMixedCtx); break;
9802 case DBGFEVENT_INSTR_MONITOR: VBOXVMM_INSTR_MONITOR(pVCpu, pMixedCtx); break;
9803 case DBGFEVENT_INSTR_PAUSE: VBOXVMM_INSTR_PAUSE(pVCpu, pMixedCtx); break;
9804 case DBGFEVENT_INSTR_SGDT: VBOXVMM_INSTR_SGDT(pVCpu, pMixedCtx); break;
9805 case DBGFEVENT_INSTR_SIDT: VBOXVMM_INSTR_SIDT(pVCpu, pMixedCtx); break;
9806 case DBGFEVENT_INSTR_LGDT: VBOXVMM_INSTR_LGDT(pVCpu, pMixedCtx); break;
9807 case DBGFEVENT_INSTR_LIDT: VBOXVMM_INSTR_LIDT(pVCpu, pMixedCtx); break;
9808 case DBGFEVENT_INSTR_SLDT: VBOXVMM_INSTR_SLDT(pVCpu, pMixedCtx); break;
9809 case DBGFEVENT_INSTR_STR: VBOXVMM_INSTR_STR(pVCpu, pMixedCtx); break;
9810 case DBGFEVENT_INSTR_LLDT: VBOXVMM_INSTR_LLDT(pVCpu, pMixedCtx); break;
9811 case DBGFEVENT_INSTR_LTR: VBOXVMM_INSTR_LTR(pVCpu, pMixedCtx); break;
9812 case DBGFEVENT_INSTR_RDTSCP: VBOXVMM_INSTR_RDTSCP(pVCpu, pMixedCtx); break;
9813 case DBGFEVENT_INSTR_WBINVD: VBOXVMM_INSTR_WBINVD(pVCpu, pMixedCtx); break;
9814 case DBGFEVENT_INSTR_XSETBV: VBOXVMM_INSTR_XSETBV(pVCpu, pMixedCtx); break;
9815 case DBGFEVENT_INSTR_RDRAND: VBOXVMM_INSTR_RDRAND(pVCpu, pMixedCtx); break;
9816 case DBGFEVENT_INSTR_RDSEED: VBOXVMM_INSTR_RDSEED(pVCpu, pMixedCtx); break;
9817 case DBGFEVENT_INSTR_XSAVES: VBOXVMM_INSTR_XSAVES(pVCpu, pMixedCtx); break;
9818 case DBGFEVENT_INSTR_XRSTORS: VBOXVMM_INSTR_XRSTORS(pVCpu, pMixedCtx); break;
9819 case DBGFEVENT_INSTR_VMM_CALL: VBOXVMM_INSTR_VMM_CALL(pVCpu, pMixedCtx); break;
9820 case DBGFEVENT_INSTR_VMX_VMCLEAR: VBOXVMM_INSTR_VMX_VMCLEAR(pVCpu, pMixedCtx); break;
9821 case DBGFEVENT_INSTR_VMX_VMLAUNCH: VBOXVMM_INSTR_VMX_VMLAUNCH(pVCpu, pMixedCtx); break;
9822 case DBGFEVENT_INSTR_VMX_VMPTRLD: VBOXVMM_INSTR_VMX_VMPTRLD(pVCpu, pMixedCtx); break;
9823 case DBGFEVENT_INSTR_VMX_VMPTRST: VBOXVMM_INSTR_VMX_VMPTRST(pVCpu, pMixedCtx); break;
9824 case DBGFEVENT_INSTR_VMX_VMREAD: VBOXVMM_INSTR_VMX_VMREAD(pVCpu, pMixedCtx); break;
9825 case DBGFEVENT_INSTR_VMX_VMRESUME: VBOXVMM_INSTR_VMX_VMRESUME(pVCpu, pMixedCtx); break;
9826 case DBGFEVENT_INSTR_VMX_VMWRITE: VBOXVMM_INSTR_VMX_VMWRITE(pVCpu, pMixedCtx); break;
9827 case DBGFEVENT_INSTR_VMX_VMXOFF: VBOXVMM_INSTR_VMX_VMXOFF(pVCpu, pMixedCtx); break;
9828 case DBGFEVENT_INSTR_VMX_VMXON: VBOXVMM_INSTR_VMX_VMXON(pVCpu, pMixedCtx); break;
9829 case DBGFEVENT_INSTR_VMX_INVEPT: VBOXVMM_INSTR_VMX_INVEPT(pVCpu, pMixedCtx); break;
9830 case DBGFEVENT_INSTR_VMX_INVVPID: VBOXVMM_INSTR_VMX_INVVPID(pVCpu, pMixedCtx); break;
9831 case DBGFEVENT_INSTR_VMX_INVPCID: VBOXVMM_INSTR_VMX_INVPCID(pVCpu, pMixedCtx); break;
9832 case DBGFEVENT_INSTR_VMX_VMFUNC: VBOXVMM_INSTR_VMX_VMFUNC(pVCpu, pMixedCtx); break;
9833 default: AssertMsgFailed(("enmEvent1=%d uExitReason=%d\n", enmEvent1, uExitReason)); break;
9834 }
9835 switch (enmEvent2)
9836 {
9837 /** @todo consider which extra parameters would be helpful for each probe. */
9838 case DBGFEVENT_END: break;
9839 case DBGFEVENT_EXIT_TASK_SWITCH: VBOXVMM_EXIT_TASK_SWITCH(pVCpu, pMixedCtx); break;
9840 case DBGFEVENT_EXIT_CPUID: VBOXVMM_EXIT_CPUID(pVCpu, pMixedCtx, pMixedCtx->eax, pMixedCtx->ecx); break;
9841 case DBGFEVENT_EXIT_GETSEC: VBOXVMM_EXIT_GETSEC(pVCpu, pMixedCtx); break;
9842 case DBGFEVENT_EXIT_HALT: VBOXVMM_EXIT_HALT(pVCpu, pMixedCtx); break;
9843 case DBGFEVENT_EXIT_INVD: VBOXVMM_EXIT_INVD(pVCpu, pMixedCtx); break;
9844 case DBGFEVENT_EXIT_INVLPG: VBOXVMM_EXIT_INVLPG(pVCpu, pMixedCtx); break;
9845 case DBGFEVENT_EXIT_RDPMC: VBOXVMM_EXIT_RDPMC(pVCpu, pMixedCtx); break;
9846 case DBGFEVENT_EXIT_RDTSC: VBOXVMM_EXIT_RDTSC(pVCpu, pMixedCtx); break;
9847 case DBGFEVENT_EXIT_RSM: VBOXVMM_EXIT_RSM(pVCpu, pMixedCtx); break;
9848 case DBGFEVENT_EXIT_CRX_READ: VBOXVMM_EXIT_CRX_READ(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
9849 case DBGFEVENT_EXIT_CRX_WRITE: VBOXVMM_EXIT_CRX_WRITE(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
9850 case DBGFEVENT_EXIT_DRX_READ: VBOXVMM_EXIT_DRX_READ(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
9851 case DBGFEVENT_EXIT_DRX_WRITE: VBOXVMM_EXIT_DRX_WRITE(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
9852 case DBGFEVENT_EXIT_RDMSR: VBOXVMM_EXIT_RDMSR(pVCpu, pMixedCtx, pMixedCtx->ecx); break;
9853 case DBGFEVENT_EXIT_WRMSR: VBOXVMM_EXIT_WRMSR(pVCpu, pMixedCtx, pMixedCtx->ecx,
9854 RT_MAKE_U64(pMixedCtx->eax, pMixedCtx->edx)); break;
9855 case DBGFEVENT_EXIT_MWAIT: VBOXVMM_EXIT_MWAIT(pVCpu, pMixedCtx); break;
9856 case DBGFEVENT_EXIT_MONITOR: VBOXVMM_EXIT_MONITOR(pVCpu, pMixedCtx); break;
9857 case DBGFEVENT_EXIT_PAUSE: VBOXVMM_EXIT_PAUSE(pVCpu, pMixedCtx); break;
9858 case DBGFEVENT_EXIT_SGDT: VBOXVMM_EXIT_SGDT(pVCpu, pMixedCtx); break;
9859 case DBGFEVENT_EXIT_SIDT: VBOXVMM_EXIT_SIDT(pVCpu, pMixedCtx); break;
9860 case DBGFEVENT_EXIT_LGDT: VBOXVMM_EXIT_LGDT(pVCpu, pMixedCtx); break;
9861 case DBGFEVENT_EXIT_LIDT: VBOXVMM_EXIT_LIDT(pVCpu, pMixedCtx); break;
9862 case DBGFEVENT_EXIT_SLDT: VBOXVMM_EXIT_SLDT(pVCpu, pMixedCtx); break;
9863 case DBGFEVENT_EXIT_STR: VBOXVMM_EXIT_STR(pVCpu, pMixedCtx); break;
9864 case DBGFEVENT_EXIT_LLDT: VBOXVMM_EXIT_LLDT(pVCpu, pMixedCtx); break;
9865 case DBGFEVENT_EXIT_LTR: VBOXVMM_EXIT_LTR(pVCpu, pMixedCtx); break;
9866 case DBGFEVENT_EXIT_RDTSCP: VBOXVMM_EXIT_RDTSCP(pVCpu, pMixedCtx); break;
9867 case DBGFEVENT_EXIT_WBINVD: VBOXVMM_EXIT_WBINVD(pVCpu, pMixedCtx); break;
9868 case DBGFEVENT_EXIT_XSETBV: VBOXVMM_EXIT_XSETBV(pVCpu, pMixedCtx); break;
9869 case DBGFEVENT_EXIT_RDRAND: VBOXVMM_EXIT_RDRAND(pVCpu, pMixedCtx); break;
9870 case DBGFEVENT_EXIT_RDSEED: VBOXVMM_EXIT_RDSEED(pVCpu, pMixedCtx); break;
9871 case DBGFEVENT_EXIT_XSAVES: VBOXVMM_EXIT_XSAVES(pVCpu, pMixedCtx); break;
9872 case DBGFEVENT_EXIT_XRSTORS: VBOXVMM_EXIT_XRSTORS(pVCpu, pMixedCtx); break;
9873 case DBGFEVENT_EXIT_VMM_CALL: VBOXVMM_EXIT_VMM_CALL(pVCpu, pMixedCtx); break;
9874 case DBGFEVENT_EXIT_VMX_VMCLEAR: VBOXVMM_EXIT_VMX_VMCLEAR(pVCpu, pMixedCtx); break;
9875 case DBGFEVENT_EXIT_VMX_VMLAUNCH: VBOXVMM_EXIT_VMX_VMLAUNCH(pVCpu, pMixedCtx); break;
9876 case DBGFEVENT_EXIT_VMX_VMPTRLD: VBOXVMM_EXIT_VMX_VMPTRLD(pVCpu, pMixedCtx); break;
9877 case DBGFEVENT_EXIT_VMX_VMPTRST: VBOXVMM_EXIT_VMX_VMPTRST(pVCpu, pMixedCtx); break;
9878 case DBGFEVENT_EXIT_VMX_VMREAD: VBOXVMM_EXIT_VMX_VMREAD(pVCpu, pMixedCtx); break;
9879 case DBGFEVENT_EXIT_VMX_VMRESUME: VBOXVMM_EXIT_VMX_VMRESUME(pVCpu, pMixedCtx); break;
9880 case DBGFEVENT_EXIT_VMX_VMWRITE: VBOXVMM_EXIT_VMX_VMWRITE(pVCpu, pMixedCtx); break;
9881 case DBGFEVENT_EXIT_VMX_VMXOFF: VBOXVMM_EXIT_VMX_VMXOFF(pVCpu, pMixedCtx); break;
9882 case DBGFEVENT_EXIT_VMX_VMXON: VBOXVMM_EXIT_VMX_VMXON(pVCpu, pMixedCtx); break;
9883 case DBGFEVENT_EXIT_VMX_INVEPT: VBOXVMM_EXIT_VMX_INVEPT(pVCpu, pMixedCtx); break;
9884 case DBGFEVENT_EXIT_VMX_INVVPID: VBOXVMM_EXIT_VMX_INVVPID(pVCpu, pMixedCtx); break;
9885 case DBGFEVENT_EXIT_VMX_INVPCID: VBOXVMM_EXIT_VMX_INVPCID(pVCpu, pMixedCtx); break;
9886 case DBGFEVENT_EXIT_VMX_VMFUNC: VBOXVMM_EXIT_VMX_VMFUNC(pVCpu, pMixedCtx); break;
9887 case DBGFEVENT_EXIT_VMX_EPT_MISCONFIG: VBOXVMM_EXIT_VMX_EPT_MISCONFIG(pVCpu, pMixedCtx); break;
9888 case DBGFEVENT_EXIT_VMX_EPT_VIOLATION: VBOXVMM_EXIT_VMX_EPT_VIOLATION(pVCpu, pMixedCtx); break;
9889 case DBGFEVENT_EXIT_VMX_VAPIC_ACCESS: VBOXVMM_EXIT_VMX_VAPIC_ACCESS(pVCpu, pMixedCtx); break;
9890 case DBGFEVENT_EXIT_VMX_VAPIC_WRITE: VBOXVMM_EXIT_VMX_VAPIC_WRITE(pVCpu, pMixedCtx); break;
9891 default: AssertMsgFailed(("enmEvent2=%d uExitReason=%d\n", enmEvent2, uExitReason)); break;
9892 }
9893 }
9894
9895 /*
9896 * Fire of the DBGF event, if enabled (our check here is just a quick one,
9897 * the DBGF call will do a full check).
9898 *
9899 * Note! DBGF sets DBGFEVENT_INTERRUPT_SOFTWARE in the bitmap.
9900 * Note! If we have to events, we prioritize the first, i.e. the instruction
9901 * one, in order to avoid event nesting.
9902 */
9903 if ( enmEvent1 != DBGFEVENT_END
9904 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent1))
9905 {
9906 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArg(pVM, pVCpu, enmEvent1, uEventArg, DBGFEVENTCTX_HM);
9907 if (rcStrict != VINF_SUCCESS)
9908 return rcStrict;
9909 }
9910 else if ( enmEvent2 != DBGFEVENT_END
9911 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent2))
9912 {
9913 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArg(pVM, pVCpu, enmEvent2, uEventArg, DBGFEVENTCTX_HM);
9914 if (rcStrict != VINF_SUCCESS)
9915 return rcStrict;
9916 }
9917
9918 return VINF_SUCCESS;
9919}
9920
9921
9922/**
9923 * Single-stepping VM-exit filtering.
9924 *
9925 * This is preprocessing the exits and deciding whether we've gotten far enough
9926 * to return VINF_EM_DBG_STEPPED already. If not, normal VM-exit handling is
9927 * performed.
9928 *
9929 * @returns Strict VBox status code (i.e. informational status codes too).
9930 * @param pVM The cross context VM structure.
9931 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
9932 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
9933 * out-of-sync. Make sure to update the required
9934 * fields before using them.
9935 * @param pVmxTransient Pointer to the VMX-transient structure.
9936 * @param uExitReason The VM-exit reason.
9937 * @param pDbgState The debug state.
9938 */
9939DECLINLINE(VBOXSTRICTRC) hmR0VmxRunDebugHandleExit(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient,
9940 uint32_t uExitReason, PVMXRUNDBGSTATE pDbgState)
9941{
9942 /*
9943 * Expensive (saves context) generic dtrace exit probe.
9944 */
9945 if (!VBOXVMM_R0_HMVMX_VMEXIT_ENABLED())
9946 { /* more likely */ }
9947 else
9948 {
9949 hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
9950 hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
9951 VBOXVMM_R0_HMVMX_VMEXIT(pVCpu, pMixedCtx, pVmxTransient->uExitReason, pVmxTransient->uExitQualification);
9952 }
9953
9954 /*
9955 * Check for host NMI, just to get that out of the way.
9956 */
9957 if (uExitReason != VMX_EXIT_XCPT_OR_NMI)
9958 { /* normally likely */ }
9959 else
9960 {
9961 int rc2 = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
9962 AssertRCReturn(rc2, rc2);
9963 uint32_t uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(pVmxTransient->uExitIntInfo);
9964 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
9965 return hmR0VmxExitXcptOrNmi(pVCpu, pMixedCtx, pVmxTransient);
9966 }
9967
9968 /*
9969 * Check for single stepping event if we're stepping.
9970 */
9971 if (pVCpu->hm.s.fSingleInstruction)
9972 {
9973 switch (uExitReason)
9974 {
9975 case VMX_EXIT_MTF:
9976 return hmR0VmxExitMtf(pVCpu, pMixedCtx, pVmxTransient);
9977
9978 /* Various events: */
9979 case VMX_EXIT_XCPT_OR_NMI:
9980 case VMX_EXIT_EXT_INT:
9981 case VMX_EXIT_TRIPLE_FAULT:
9982 case VMX_EXIT_INT_WINDOW:
9983 case VMX_EXIT_NMI_WINDOW:
9984 case VMX_EXIT_TASK_SWITCH:
9985 case VMX_EXIT_TPR_BELOW_THRESHOLD:
9986 case VMX_EXIT_APIC_ACCESS:
9987 case VMX_EXIT_EPT_VIOLATION:
9988 case VMX_EXIT_EPT_MISCONFIG:
9989 case VMX_EXIT_PREEMPT_TIMER:
9990
9991 /* Instruction specific VM-exits: */
9992 case VMX_EXIT_CPUID:
9993 case VMX_EXIT_GETSEC:
9994 case VMX_EXIT_HLT:
9995 case VMX_EXIT_INVD:
9996 case VMX_EXIT_INVLPG:
9997 case VMX_EXIT_RDPMC:
9998 case VMX_EXIT_RDTSC:
9999 case VMX_EXIT_RSM:
10000 case VMX_EXIT_VMCALL:
10001 case VMX_EXIT_VMCLEAR:
10002 case VMX_EXIT_VMLAUNCH:
10003 case VMX_EXIT_VMPTRLD:
10004 case VMX_EXIT_VMPTRST:
10005 case VMX_EXIT_VMREAD:
10006 case VMX_EXIT_VMRESUME:
10007 case VMX_EXIT_VMWRITE:
10008 case VMX_EXIT_VMXOFF:
10009 case VMX_EXIT_VMXON:
10010 case VMX_EXIT_MOV_CRX:
10011 case VMX_EXIT_MOV_DRX:
10012 case VMX_EXIT_IO_INSTR:
10013 case VMX_EXIT_RDMSR:
10014 case VMX_EXIT_WRMSR:
10015 case VMX_EXIT_MWAIT:
10016 case VMX_EXIT_MONITOR:
10017 case VMX_EXIT_PAUSE:
10018 case VMX_EXIT_XDTR_ACCESS:
10019 case VMX_EXIT_TR_ACCESS:
10020 case VMX_EXIT_INVEPT:
10021 case VMX_EXIT_RDTSCP:
10022 case VMX_EXIT_INVVPID:
10023 case VMX_EXIT_WBINVD:
10024 case VMX_EXIT_XSETBV:
10025 case VMX_EXIT_RDRAND:
10026 case VMX_EXIT_INVPCID:
10027 case VMX_EXIT_VMFUNC:
10028 case VMX_EXIT_RDSEED:
10029 case VMX_EXIT_XSAVES:
10030 case VMX_EXIT_XRSTORS:
10031 {
10032 int rc2 = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
10033 rc2 |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
10034 AssertRCReturn(rc2, rc2);
10035 if ( pMixedCtx->rip != pDbgState->uRipStart
10036 || pMixedCtx->cs.Sel != pDbgState->uCsStart)
10037 return VINF_EM_DBG_STEPPED;
10038 break;
10039 }
10040
10041 /* Errors and unexpected events: */
10042 case VMX_EXIT_INIT_SIGNAL:
10043 case VMX_EXIT_SIPI:
10044 case VMX_EXIT_IO_SMI:
10045 case VMX_EXIT_SMI:
10046 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
10047 case VMX_EXIT_ERR_MSR_LOAD:
10048 case VMX_EXIT_ERR_MACHINE_CHECK:
10049 case VMX_EXIT_APIC_WRITE: /* Some talk about this being fault like, so I guess we must process it? */
10050 break;
10051
10052 default:
10053 AssertMsgFailed(("Unexpected exit=%#x\n", uExitReason));
10054 break;
10055 }
10056 }
10057
10058 /*
10059 * Check for debugger event breakpoints and dtrace probes.
10060 */
10061 if ( uExitReason < RT_ELEMENTS(pDbgState->bmExitsToCheck) * 32U
10062 && ASMBitTest(pDbgState->bmExitsToCheck, uExitReason) )
10063 {
10064 VBOXSTRICTRC rcStrict = hmR0VmxHandleExitDtraceEvents(pVM, pVCpu, pMixedCtx, pVmxTransient, uExitReason);
10065 if (rcStrict != VINF_SUCCESS)
10066 return rcStrict;
10067 }
10068
10069 /*
10070 * Normal processing.
10071 */
10072#ifdef HMVMX_USE_FUNCTION_TABLE
10073 return g_apfnVMExitHandlers[uExitReason](pVCpu, pMixedCtx, pVmxTransient);
10074#else
10075 return hmR0VmxHandleExit(pVCpu, pMixedCtx, pVmxTransient, uExitReason);
10076#endif
10077}
10078
10079
10080/**
10081 * Single steps guest code using VT-x.
10082 *
10083 * @returns Strict VBox status code (i.e. informational status codes too).
10084 * @param pVM The cross context VM structure.
10085 * @param pVCpu The cross context virtual CPU structure.
10086 * @param pCtx Pointer to the guest-CPU context.
10087 *
10088 * @note Mostly the same as hmR0VmxRunGuestCodeNormal().
10089 */
10090static VBOXSTRICTRC hmR0VmxRunGuestCodeDebug(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
10091{
10092 VMXTRANSIENT VmxTransient;
10093 VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
10094
10095 /* Set HMCPU indicators. */
10096 bool const fSavedSingleInstruction = pVCpu->hm.s.fSingleInstruction;
10097 pVCpu->hm.s.fSingleInstruction = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
10098 pVCpu->hm.s.fDebugWantRdTscExit = false;
10099 pVCpu->hm.s.fUsingDebugLoop = true;
10100
10101 /* State we keep to help modify and later restore the VMCS fields we alter, and for detecting steps. */
10102 VMXRUNDBGSTATE DbgState;
10103 hmR0VmxRunDebugStateInit(pVCpu, pCtx, &DbgState);
10104 hmR0VmxPreRunGuestDebugStateUpdate(pVM, pVCpu, pCtx, &DbgState, &VmxTransient);
10105
10106 /*
10107 * The loop.
10108 */
10109 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
10110 for (uint32_t cLoops = 0; ; cLoops++)
10111 {
10112 Assert(!HMR0SuspendPending());
10113 HMVMX_ASSERT_CPU_SAFE();
10114 bool fStepping = pVCpu->hm.s.fSingleInstruction;
10115
10116 /*
10117 * Preparatory work for running guest code, this may force us to return
10118 * to ring-3. This bugger disables interrupts on VINF_SUCCESS!
10119 */
10120 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
10121 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &DbgState); /* Set up execute controls the next to can respond to. */
10122 rcStrict = hmR0VmxPreRunGuest(pVM, pVCpu, pCtx, &VmxTransient, fStepping);
10123 if (rcStrict != VINF_SUCCESS)
10124 break;
10125
10126 hmR0VmxPreRunGuestCommitted(pVM, pVCpu, pCtx, &VmxTransient);
10127 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &DbgState); /* Override any obnoxious code in the above two calls. */
10128
10129 /*
10130 * Now we can run the guest code.
10131 */
10132 int rcRun = hmR0VmxRunGuest(pVM, pVCpu, pCtx);
10133
10134 /* The guest-CPU context is now outdated, 'pCtx' is to be treated as 'pMixedCtx' from this point on!!! */
10135
10136 /*
10137 * Restore any residual host-state and save any bits shared between host
10138 * and guest into the guest-CPU state. Re-enables interrupts!
10139 */
10140 hmR0VmxPostRunGuest(pVM, pVCpu, pCtx, &VmxTransient, VBOXSTRICTRC_TODO(rcStrict));
10141
10142 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
10143 if (RT_SUCCESS(rcRun))
10144 { /* very likely */ }
10145 else
10146 {
10147 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
10148 hmR0VmxReportWorldSwitchError(pVM, pVCpu, rcRun, pCtx, &VmxTransient);
10149 return rcRun;
10150 }
10151
10152 /* Profile the VM-exit. */
10153 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
10154 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
10155 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
10156 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
10157 HMVMX_START_EXIT_DISPATCH_PROF();
10158
10159 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, pCtx, VmxTransient.uExitReason);
10160
10161 /*
10162 * Handle the VM-exit - we quit earlier on certain VM-exits, see hmR0VmxHandleExitDebug().
10163 */
10164 rcStrict = hmR0VmxRunDebugHandleExit(pVM, pVCpu, pCtx, &VmxTransient, VmxTransient.uExitReason, &DbgState);
10165 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
10166 if (rcStrict != VINF_SUCCESS)
10167 break;
10168 if (cLoops > pVM->hm.s.cMaxResumeLoops)
10169 {
10170 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
10171 rcStrict = VINF_EM_RAW_INTERRUPT;
10172 break;
10173 }
10174
10175 /*
10176 * Stepping: Did the RIP change, if so, consider it a single step.
10177 * Otherwise, make sure one of the TFs gets set.
10178 */
10179 if (fStepping)
10180 {
10181 int rc2 = hmR0VmxSaveGuestRip(pVCpu, pCtx);
10182 rc2 |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pCtx);
10183 AssertRCReturn(rc2, rc2);
10184 if ( pCtx->rip != DbgState.uRipStart
10185 || pCtx->cs.Sel != DbgState.uCsStart)
10186 {
10187 rcStrict = VINF_EM_DBG_STEPPED;
10188 break;
10189 }
10190 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
10191 }
10192
10193 /*
10194 * Update when dtrace settings changes (DBGF kicks us, so no need to check).
10195 */
10196 if (VBOXVMM_GET_SETTINGS_SEQ_NO() != DbgState.uDtraceSettingsSeqNo)
10197 hmR0VmxPreRunGuestDebugStateUpdate(pVM, pVCpu, pCtx, &DbgState, &VmxTransient);
10198 }
10199
10200 /*
10201 * Clear the X86_EFL_TF if necessary.
10202 */
10203 if (pVCpu->hm.s.fClearTrapFlag)
10204 {
10205 int rc2 = hmR0VmxSaveGuestRflags(pVCpu, pCtx);
10206 AssertRCReturn(rc2, rc2);
10207 pVCpu->hm.s.fClearTrapFlag = false;
10208 pCtx->eflags.Bits.u1TF = 0;
10209 }
10210 /** @todo there seems to be issues with the resume flag when the monitor trap
10211 * flag is pending without being used. Seen early in bios init when
10212 * accessing APIC page in protected mode. */
10213
10214 /*
10215 * Restore VM-exit control settings as we may not reenter this function the
10216 * next time around.
10217 */
10218 rcStrict = hmR0VmxRunDebugStateRevert(pVCpu, &DbgState, rcStrict);
10219
10220 /* Restore HMCPU indicators. */
10221 pVCpu->hm.s.fUsingDebugLoop = false;
10222 pVCpu->hm.s.fDebugWantRdTscExit = false;
10223 pVCpu->hm.s.fSingleInstruction = fSavedSingleInstruction;
10224
10225 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
10226 return rcStrict;
10227}
10228
10229
10230/** @} */
10231
10232
10233/**
10234 * Checks if any expensive dtrace probes are enabled and we should go to the
10235 * debug loop.
10236 *
10237 * @returns true if we should use debug loop, false if not.
10238 */
10239static bool hmR0VmxAnyExpensiveProbesEnabled(void)
10240{
10241 /* It's probably faster to OR the raw 32-bit counter variables together.
10242 Since the variables are in an array and the probes are next to one
10243 another (more or less), we have good locality. So, better read
10244 eight-nine cache lines ever time and only have one conditional, than
10245 128+ conditionals, right? */
10246 return ( VBOXVMM_R0_HMVMX_VMEXIT_ENABLED_RAW() /* expensive too due to context */
10247 | VBOXVMM_XCPT_DE_ENABLED_RAW()
10248 | VBOXVMM_XCPT_DB_ENABLED_RAW()
10249 | VBOXVMM_XCPT_BP_ENABLED_RAW()
10250 | VBOXVMM_XCPT_OF_ENABLED_RAW()
10251 | VBOXVMM_XCPT_BR_ENABLED_RAW()
10252 | VBOXVMM_XCPT_UD_ENABLED_RAW()
10253 | VBOXVMM_XCPT_NM_ENABLED_RAW()
10254 | VBOXVMM_XCPT_DF_ENABLED_RAW()
10255 | VBOXVMM_XCPT_TS_ENABLED_RAW()
10256 | VBOXVMM_XCPT_NP_ENABLED_RAW()
10257 | VBOXVMM_XCPT_SS_ENABLED_RAW()
10258 | VBOXVMM_XCPT_GP_ENABLED_RAW()
10259 | VBOXVMM_XCPT_PF_ENABLED_RAW()
10260 | VBOXVMM_XCPT_MF_ENABLED_RAW()
10261 | VBOXVMM_XCPT_AC_ENABLED_RAW()
10262 | VBOXVMM_XCPT_XF_ENABLED_RAW()
10263 | VBOXVMM_XCPT_VE_ENABLED_RAW()
10264 | VBOXVMM_XCPT_SX_ENABLED_RAW()
10265 | VBOXVMM_INT_SOFTWARE_ENABLED_RAW()
10266 | VBOXVMM_INT_HARDWARE_ENABLED_RAW()
10267 ) != 0
10268 || ( VBOXVMM_INSTR_HALT_ENABLED_RAW()
10269 | VBOXVMM_INSTR_MWAIT_ENABLED_RAW()
10270 | VBOXVMM_INSTR_MONITOR_ENABLED_RAW()
10271 | VBOXVMM_INSTR_CPUID_ENABLED_RAW()
10272 | VBOXVMM_INSTR_INVD_ENABLED_RAW()
10273 | VBOXVMM_INSTR_WBINVD_ENABLED_RAW()
10274 | VBOXVMM_INSTR_INVLPG_ENABLED_RAW()
10275 | VBOXVMM_INSTR_RDTSC_ENABLED_RAW()
10276 | VBOXVMM_INSTR_RDTSCP_ENABLED_RAW()
10277 | VBOXVMM_INSTR_RDPMC_ENABLED_RAW()
10278 | VBOXVMM_INSTR_RDMSR_ENABLED_RAW()
10279 | VBOXVMM_INSTR_WRMSR_ENABLED_RAW()
10280 | VBOXVMM_INSTR_CRX_READ_ENABLED_RAW()
10281 | VBOXVMM_INSTR_CRX_WRITE_ENABLED_RAW()
10282 | VBOXVMM_INSTR_DRX_READ_ENABLED_RAW()
10283 | VBOXVMM_INSTR_DRX_WRITE_ENABLED_RAW()
10284 | VBOXVMM_INSTR_PAUSE_ENABLED_RAW()
10285 | VBOXVMM_INSTR_XSETBV_ENABLED_RAW()
10286 | VBOXVMM_INSTR_SIDT_ENABLED_RAW()
10287 | VBOXVMM_INSTR_LIDT_ENABLED_RAW()
10288 | VBOXVMM_INSTR_SGDT_ENABLED_RAW()
10289 | VBOXVMM_INSTR_LGDT_ENABLED_RAW()
10290 | VBOXVMM_INSTR_SLDT_ENABLED_RAW()
10291 | VBOXVMM_INSTR_LLDT_ENABLED_RAW()
10292 | VBOXVMM_INSTR_STR_ENABLED_RAW()
10293 | VBOXVMM_INSTR_LTR_ENABLED_RAW()
10294 | VBOXVMM_INSTR_GETSEC_ENABLED_RAW()
10295 | VBOXVMM_INSTR_RSM_ENABLED_RAW()
10296 | VBOXVMM_INSTR_RDRAND_ENABLED_RAW()
10297 | VBOXVMM_INSTR_RDSEED_ENABLED_RAW()
10298 | VBOXVMM_INSTR_XSAVES_ENABLED_RAW()
10299 | VBOXVMM_INSTR_XRSTORS_ENABLED_RAW()
10300 | VBOXVMM_INSTR_VMM_CALL_ENABLED_RAW()
10301 | VBOXVMM_INSTR_VMX_VMCLEAR_ENABLED_RAW()
10302 | VBOXVMM_INSTR_VMX_VMLAUNCH_ENABLED_RAW()
10303 | VBOXVMM_INSTR_VMX_VMPTRLD_ENABLED_RAW()
10304 | VBOXVMM_INSTR_VMX_VMPTRST_ENABLED_RAW()
10305 | VBOXVMM_INSTR_VMX_VMREAD_ENABLED_RAW()
10306 | VBOXVMM_INSTR_VMX_VMRESUME_ENABLED_RAW()
10307 | VBOXVMM_INSTR_VMX_VMWRITE_ENABLED_RAW()
10308 | VBOXVMM_INSTR_VMX_VMXOFF_ENABLED_RAW()
10309 | VBOXVMM_INSTR_VMX_VMXON_ENABLED_RAW()
10310 | VBOXVMM_INSTR_VMX_VMFUNC_ENABLED_RAW()
10311 | VBOXVMM_INSTR_VMX_INVEPT_ENABLED_RAW()
10312 | VBOXVMM_INSTR_VMX_INVVPID_ENABLED_RAW()
10313 | VBOXVMM_INSTR_VMX_INVPCID_ENABLED_RAW()
10314 ) != 0
10315 || ( VBOXVMM_EXIT_TASK_SWITCH_ENABLED_RAW()
10316 | VBOXVMM_EXIT_HALT_ENABLED_RAW()
10317 | VBOXVMM_EXIT_MWAIT_ENABLED_RAW()
10318 | VBOXVMM_EXIT_MONITOR_ENABLED_RAW()
10319 | VBOXVMM_EXIT_CPUID_ENABLED_RAW()
10320 | VBOXVMM_EXIT_INVD_ENABLED_RAW()
10321 | VBOXVMM_EXIT_WBINVD_ENABLED_RAW()
10322 | VBOXVMM_EXIT_INVLPG_ENABLED_RAW()
10323 | VBOXVMM_EXIT_RDTSC_ENABLED_RAW()
10324 | VBOXVMM_EXIT_RDTSCP_ENABLED_RAW()
10325 | VBOXVMM_EXIT_RDPMC_ENABLED_RAW()
10326 | VBOXVMM_EXIT_RDMSR_ENABLED_RAW()
10327 | VBOXVMM_EXIT_WRMSR_ENABLED_RAW()
10328 | VBOXVMM_EXIT_CRX_READ_ENABLED_RAW()
10329 | VBOXVMM_EXIT_CRX_WRITE_ENABLED_RAW()
10330 | VBOXVMM_EXIT_DRX_READ_ENABLED_RAW()
10331 | VBOXVMM_EXIT_DRX_WRITE_ENABLED_RAW()
10332 | VBOXVMM_EXIT_PAUSE_ENABLED_RAW()
10333 | VBOXVMM_EXIT_XSETBV_ENABLED_RAW()
10334 | VBOXVMM_EXIT_SIDT_ENABLED_RAW()
10335 | VBOXVMM_EXIT_LIDT_ENABLED_RAW()
10336 | VBOXVMM_EXIT_SGDT_ENABLED_RAW()
10337 | VBOXVMM_EXIT_LGDT_ENABLED_RAW()
10338 | VBOXVMM_EXIT_SLDT_ENABLED_RAW()
10339 | VBOXVMM_EXIT_LLDT_ENABLED_RAW()
10340 | VBOXVMM_EXIT_STR_ENABLED_RAW()
10341 | VBOXVMM_EXIT_LTR_ENABLED_RAW()
10342 | VBOXVMM_EXIT_GETSEC_ENABLED_RAW()
10343 | VBOXVMM_EXIT_RSM_ENABLED_RAW()
10344 | VBOXVMM_EXIT_RDRAND_ENABLED_RAW()
10345 | VBOXVMM_EXIT_RDSEED_ENABLED_RAW()
10346 | VBOXVMM_EXIT_XSAVES_ENABLED_RAW()
10347 | VBOXVMM_EXIT_XRSTORS_ENABLED_RAW()
10348 | VBOXVMM_EXIT_VMM_CALL_ENABLED_RAW()
10349 | VBOXVMM_EXIT_VMX_VMCLEAR_ENABLED_RAW()
10350 | VBOXVMM_EXIT_VMX_VMLAUNCH_ENABLED_RAW()
10351 | VBOXVMM_EXIT_VMX_VMPTRLD_ENABLED_RAW()
10352 | VBOXVMM_EXIT_VMX_VMPTRST_ENABLED_RAW()
10353 | VBOXVMM_EXIT_VMX_VMREAD_ENABLED_RAW()
10354 | VBOXVMM_EXIT_VMX_VMRESUME_ENABLED_RAW()
10355 | VBOXVMM_EXIT_VMX_VMWRITE_ENABLED_RAW()
10356 | VBOXVMM_EXIT_VMX_VMXOFF_ENABLED_RAW()
10357 | VBOXVMM_EXIT_VMX_VMXON_ENABLED_RAW()
10358 | VBOXVMM_EXIT_VMX_VMFUNC_ENABLED_RAW()
10359 | VBOXVMM_EXIT_VMX_INVEPT_ENABLED_RAW()
10360 | VBOXVMM_EXIT_VMX_INVVPID_ENABLED_RAW()
10361 | VBOXVMM_EXIT_VMX_INVPCID_ENABLED_RAW()
10362 | VBOXVMM_EXIT_VMX_EPT_VIOLATION_ENABLED_RAW()
10363 | VBOXVMM_EXIT_VMX_EPT_MISCONFIG_ENABLED_RAW()
10364 | VBOXVMM_EXIT_VMX_VAPIC_ACCESS_ENABLED_RAW()
10365 | VBOXVMM_EXIT_VMX_VAPIC_WRITE_ENABLED_RAW()
10366 ) != 0;
10367}
10368
10369
10370/**
10371 * Runs the guest code using VT-x.
10372 *
10373 * @returns Strict VBox status code (i.e. informational status codes too).
10374 * @param pVM The cross context VM structure.
10375 * @param pVCpu The cross context virtual CPU structure.
10376 * @param pCtx Pointer to the guest-CPU context.
10377 */
10378VMMR0DECL(VBOXSTRICTRC) VMXR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
10379{
10380 Assert(VMMRZCallRing3IsEnabled(pVCpu));
10381 Assert(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL);
10382 HMVMX_ASSERT_PREEMPT_SAFE();
10383
10384 VMMRZCallRing3SetNotification(pVCpu, hmR0VmxCallRing3Callback, pCtx);
10385
10386 VBOXSTRICTRC rcStrict;
10387 if ( !pVCpu->hm.s.fUseDebugLoop
10388 && (!VBOXVMM_ANY_PROBES_ENABLED() || !hmR0VmxAnyExpensiveProbesEnabled())
10389 && !DBGFIsStepping(pVCpu) )
10390 rcStrict = hmR0VmxRunGuestCodeNormal(pVM, pVCpu, pCtx);
10391 else
10392 rcStrict = hmR0VmxRunGuestCodeDebug(pVM, pVCpu, pCtx);
10393
10394 if (rcStrict == VERR_EM_INTERPRETER)
10395 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
10396 else if (rcStrict == VINF_EM_RESET)
10397 rcStrict = VINF_EM_TRIPLE_FAULT;
10398
10399 int rc2 = hmR0VmxExitToRing3(pVM, pVCpu, pCtx, rcStrict);
10400 if (RT_FAILURE(rc2))
10401 {
10402 pVCpu->hm.s.u32HMError = (uint32_t)VBOXSTRICTRC_VAL(rcStrict);
10403 rcStrict = rc2;
10404 }
10405 Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
10406 return rcStrict;
10407}
10408
10409
10410#ifndef HMVMX_USE_FUNCTION_TABLE
10411DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, uint32_t rcReason)
10412{
10413# ifdef DEBUG_ramshankar
10414# define RETURN_EXIT_CALL(a_CallExpr) \
10415 do { \
10416 int rc2 = hmR0VmxSaveGuestState(pVCpu, pMixedCtx); AssertRC(rc2); \
10417 VBOXSTRICTRC rcStrict = a_CallExpr; \
10418 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST); \
10419 return rcStrict; \
10420 } while (0)
10421# else
10422# define RETURN_EXIT_CALL(a_CallExpr) return a_CallExpr
10423# endif
10424 switch (rcReason)
10425 {
10426 case VMX_EXIT_EPT_MISCONFIG: RETURN_EXIT_CALL(hmR0VmxExitEptMisconfig(pVCpu, pMixedCtx, pVmxTransient));
10427 case VMX_EXIT_EPT_VIOLATION: RETURN_EXIT_CALL(hmR0VmxExitEptViolation(pVCpu, pMixedCtx, pVmxTransient));
10428 case VMX_EXIT_IO_INSTR: RETURN_EXIT_CALL(hmR0VmxExitIoInstr(pVCpu, pMixedCtx, pVmxTransient));
10429 case VMX_EXIT_CPUID: RETURN_EXIT_CALL(hmR0VmxExitCpuid(pVCpu, pMixedCtx, pVmxTransient));
10430 case VMX_EXIT_RDTSC: RETURN_EXIT_CALL(hmR0VmxExitRdtsc(pVCpu, pMixedCtx, pVmxTransient));
10431 case VMX_EXIT_RDTSCP: RETURN_EXIT_CALL(hmR0VmxExitRdtscp(pVCpu, pMixedCtx, pVmxTransient));
10432 case VMX_EXIT_APIC_ACCESS: RETURN_EXIT_CALL(hmR0VmxExitApicAccess(pVCpu, pMixedCtx, pVmxTransient));
10433 case VMX_EXIT_XCPT_OR_NMI: RETURN_EXIT_CALL(hmR0VmxExitXcptOrNmi(pVCpu, pMixedCtx, pVmxTransient));
10434 case VMX_EXIT_MOV_CRX: RETURN_EXIT_CALL(hmR0VmxExitMovCRx(pVCpu, pMixedCtx, pVmxTransient));
10435 case VMX_EXIT_EXT_INT: RETURN_EXIT_CALL(hmR0VmxExitExtInt(pVCpu, pMixedCtx, pVmxTransient));
10436 case VMX_EXIT_INT_WINDOW: RETURN_EXIT_CALL(hmR0VmxExitIntWindow(pVCpu, pMixedCtx, pVmxTransient));
10437 case VMX_EXIT_MWAIT: RETURN_EXIT_CALL(hmR0VmxExitMwait(pVCpu, pMixedCtx, pVmxTransient));
10438 case VMX_EXIT_MONITOR: RETURN_EXIT_CALL(hmR0VmxExitMonitor(pVCpu, pMixedCtx, pVmxTransient));
10439 case VMX_EXIT_TASK_SWITCH: RETURN_EXIT_CALL(hmR0VmxExitTaskSwitch(pVCpu, pMixedCtx, pVmxTransient));
10440 case VMX_EXIT_PREEMPT_TIMER: RETURN_EXIT_CALL(hmR0VmxExitPreemptTimer(pVCpu, pMixedCtx, pVmxTransient));
10441 case VMX_EXIT_RDMSR: RETURN_EXIT_CALL(hmR0VmxExitRdmsr(pVCpu, pMixedCtx, pVmxTransient));
10442 case VMX_EXIT_WRMSR: RETURN_EXIT_CALL(hmR0VmxExitWrmsr(pVCpu, pMixedCtx, pVmxTransient));
10443 case VMX_EXIT_MOV_DRX: RETURN_EXIT_CALL(hmR0VmxExitMovDRx(pVCpu, pMixedCtx, pVmxTransient));
10444 case VMX_EXIT_TPR_BELOW_THRESHOLD: RETURN_EXIT_CALL(hmR0VmxExitTprBelowThreshold(pVCpu, pMixedCtx, pVmxTransient));
10445 case VMX_EXIT_HLT: RETURN_EXIT_CALL(hmR0VmxExitHlt(pVCpu, pMixedCtx, pVmxTransient));
10446 case VMX_EXIT_INVD: RETURN_EXIT_CALL(hmR0VmxExitInvd(pVCpu, pMixedCtx, pVmxTransient));
10447 case VMX_EXIT_INVLPG: RETURN_EXIT_CALL(hmR0VmxExitInvlpg(pVCpu, pMixedCtx, pVmxTransient));
10448 case VMX_EXIT_RSM: RETURN_EXIT_CALL(hmR0VmxExitRsm(pVCpu, pMixedCtx, pVmxTransient));
10449 case VMX_EXIT_MTF: RETURN_EXIT_CALL(hmR0VmxExitMtf(pVCpu, pMixedCtx, pVmxTransient));
10450 case VMX_EXIT_PAUSE: RETURN_EXIT_CALL(hmR0VmxExitPause(pVCpu, pMixedCtx, pVmxTransient));
10451 case VMX_EXIT_XDTR_ACCESS: RETURN_EXIT_CALL(hmR0VmxExitXdtrAccess(pVCpu, pMixedCtx, pVmxTransient));
10452 case VMX_EXIT_TR_ACCESS: RETURN_EXIT_CALL(hmR0VmxExitXdtrAccess(pVCpu, pMixedCtx, pVmxTransient));
10453 case VMX_EXIT_WBINVD: RETURN_EXIT_CALL(hmR0VmxExitWbinvd(pVCpu, pMixedCtx, pVmxTransient));
10454 case VMX_EXIT_XSETBV: RETURN_EXIT_CALL(hmR0VmxExitXsetbv(pVCpu, pMixedCtx, pVmxTransient));
10455 case VMX_EXIT_RDRAND: RETURN_EXIT_CALL(hmR0VmxExitRdrand(pVCpu, pMixedCtx, pVmxTransient));
10456 case VMX_EXIT_INVPCID: RETURN_EXIT_CALL(hmR0VmxExitInvpcid(pVCpu, pMixedCtx, pVmxTransient));
10457 case VMX_EXIT_GETSEC: RETURN_EXIT_CALL(hmR0VmxExitGetsec(pVCpu, pMixedCtx, pVmxTransient));
10458 case VMX_EXIT_RDPMC: RETURN_EXIT_CALL(hmR0VmxExitRdpmc(pVCpu, pMixedCtx, pVmxTransient));
10459 case VMX_EXIT_VMCALL: RETURN_EXIT_CALL(hmR0VmxExitVmcall(pVCpu, pMixedCtx, pVmxTransient));
10460
10461 case VMX_EXIT_TRIPLE_FAULT: return hmR0VmxExitTripleFault(pVCpu, pMixedCtx, pVmxTransient);
10462 case VMX_EXIT_NMI_WINDOW: return hmR0VmxExitNmiWindow(pVCpu, pMixedCtx, pVmxTransient);
10463 case VMX_EXIT_INIT_SIGNAL: return hmR0VmxExitInitSignal(pVCpu, pMixedCtx, pVmxTransient);
10464 case VMX_EXIT_SIPI: return hmR0VmxExitSipi(pVCpu, pMixedCtx, pVmxTransient);
10465 case VMX_EXIT_IO_SMI: return hmR0VmxExitIoSmi(pVCpu, pMixedCtx, pVmxTransient);
10466 case VMX_EXIT_SMI: return hmR0VmxExitSmi(pVCpu, pMixedCtx, pVmxTransient);
10467 case VMX_EXIT_ERR_MSR_LOAD: return hmR0VmxExitErrMsrLoad(pVCpu, pMixedCtx, pVmxTransient);
10468 case VMX_EXIT_ERR_INVALID_GUEST_STATE: return hmR0VmxExitErrInvalidGuestState(pVCpu, pMixedCtx, pVmxTransient);
10469 case VMX_EXIT_ERR_MACHINE_CHECK: return hmR0VmxExitErrMachineCheck(pVCpu, pMixedCtx, pVmxTransient);
10470
10471 case VMX_EXIT_VMCLEAR:
10472 case VMX_EXIT_VMLAUNCH:
10473 case VMX_EXIT_VMPTRLD:
10474 case VMX_EXIT_VMPTRST:
10475 case VMX_EXIT_VMREAD:
10476 case VMX_EXIT_VMRESUME:
10477 case VMX_EXIT_VMWRITE:
10478 case VMX_EXIT_VMXOFF:
10479 case VMX_EXIT_VMXON:
10480 case VMX_EXIT_INVEPT:
10481 case VMX_EXIT_INVVPID:
10482 case VMX_EXIT_VMFUNC:
10483 case VMX_EXIT_XSAVES:
10484 case VMX_EXIT_XRSTORS:
10485 return hmR0VmxExitSetPendingXcptUD(pVCpu, pMixedCtx, pVmxTransient);
10486 case VMX_EXIT_RESERVED_60:
10487 case VMX_EXIT_RDSEED: /* only spurious exits, so undefined */
10488 case VMX_EXIT_RESERVED_62:
10489 default:
10490 return hmR0VmxExitErrUndefined(pVCpu, pMixedCtx, pVmxTransient);
10491 }
10492#undef RETURN_EXIT_CALL
10493}
10494#endif /* !HMVMX_USE_FUNCTION_TABLE */
10495
10496
10497#ifdef VBOX_STRICT
10498/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
10499# define HMVMX_ASSERT_PREEMPT_CPUID_VAR() \
10500 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
10501
10502# define HMVMX_ASSERT_PREEMPT_CPUID() \
10503 do { \
10504 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
10505 AssertMsg(idAssertCpu == idAssertCpuNow, ("VMX %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
10506 } while (0)
10507
10508# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS() \
10509 do { \
10510 AssertPtr(pVCpu); \
10511 AssertPtr(pMixedCtx); \
10512 AssertPtr(pVmxTransient); \
10513 Assert(pVmxTransient->fVMEntryFailed == false); \
10514 Assert(ASMIntAreEnabled()); \
10515 HMVMX_ASSERT_PREEMPT_SAFE(); \
10516 HMVMX_ASSERT_PREEMPT_CPUID_VAR(); \
10517 Log4Func(("vcpu[%RU32] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v\n", pVCpu->idCpu)); \
10518 HMVMX_ASSERT_PREEMPT_SAFE(); \
10519 if (VMMR0IsLogFlushDisabled(pVCpu)) \
10520 HMVMX_ASSERT_PREEMPT_CPUID(); \
10521 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
10522 } while (0)
10523
10524# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS() \
10525 do { \
10526 Log4Func(("\n")); \
10527 } while (0)
10528#else /* nonstrict builds: */
10529# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS() \
10530 do { \
10531 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
10532 NOREF(pVCpu); NOREF(pMixedCtx); NOREF(pVmxTransient); \
10533 } while (0)
10534# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS() do { } while (0)
10535#endif
10536
10537
10538/**
10539 * Advances the guest RIP by the specified number of bytes.
10540 *
10541 * @param pVCpu The cross context virtual CPU structure.
10542 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
10543 * out-of-sync. Make sure to update the required fields
10544 * before using them.
10545 * @param cbInstr Number of bytes to advance the RIP by.
10546 *
10547 * @remarks No-long-jump zone!!!
10548 */
10549DECLINLINE(void) hmR0VmxAdvanceGuestRipBy(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t cbInstr)
10550{
10551 /* Advance the RIP. */
10552 pMixedCtx->rip += cbInstr;
10553 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP);
10554
10555 /* Update interrupt inhibition. */
10556 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
10557 && pMixedCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
10558 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
10559}
10560
10561
10562/**
10563 * Advances the guest RIP after reading it from the VMCS.
10564 *
10565 * @returns VBox status code, no informational status codes.
10566 * @param pVCpu The cross context virtual CPU structure.
10567 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
10568 * out-of-sync. Make sure to update the required fields
10569 * before using them.
10570 * @param pVmxTransient Pointer to the VMX transient structure.
10571 *
10572 * @remarks No-long-jump zone!!!
10573 */
10574static int hmR0VmxAdvanceGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10575{
10576 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
10577 rc |= hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
10578 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
10579 AssertRCReturn(rc, rc);
10580
10581 hmR0VmxAdvanceGuestRipBy(pVCpu, pMixedCtx, pVmxTransient->cbInstr);
10582
10583 /*
10584 * Deliver a debug exception to the guest if it is single-stepping. Don't directly inject a #DB but use the
10585 * pending debug exception field as it takes care of priority of events.
10586 *
10587 * See Intel spec. 32.2.1 "Debug Exceptions".
10588 */
10589 if ( !pVCpu->hm.s.fSingleInstruction
10590 && pMixedCtx->eflags.Bits.u1TF)
10591 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
10592
10593 return VINF_SUCCESS;
10594}
10595
10596
10597/**
10598 * Tries to determine what part of the guest-state VT-x has deemed as invalid
10599 * and update error record fields accordingly.
10600 *
10601 * @return VMX_IGS_* return codes.
10602 * @retval VMX_IGS_REASON_NOT_FOUND if this function could not find anything
10603 * wrong with the guest state.
10604 *
10605 * @param pVM The cross context VM structure.
10606 * @param pVCpu The cross context virtual CPU structure.
10607 * @param pCtx Pointer to the guest-CPU state.
10608 *
10609 * @remarks This function assumes our cache of the VMCS controls
10610 * are valid, i.e. hmR0VmxCheckVmcsCtls() succeeded.
10611 */
10612static uint32_t hmR0VmxCheckGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
10613{
10614#define HMVMX_ERROR_BREAK(err) { uError = (err); break; }
10615#define HMVMX_CHECK_BREAK(expr, err) if (!(expr)) { \
10616 uError = (err); \
10617 break; \
10618 } else do { } while (0)
10619
10620 int rc;
10621 uint32_t uError = VMX_IGS_ERROR;
10622 uint32_t u32Val;
10623 bool fUnrestrictedGuest = pVM->hm.s.vmx.fUnrestrictedGuest;
10624
10625 do
10626 {
10627 /*
10628 * CR0.
10629 */
10630 uint32_t uSetCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
10631 uint32_t uZapCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
10632 /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG).
10633 See Intel spec. 26.3.1 "Checks on Guest Control Registers, Debug Registers and MSRs." */
10634 if (fUnrestrictedGuest)
10635 uSetCR0 &= ~(X86_CR0_PE | X86_CR0_PG);
10636
10637 uint32_t u32GuestCR0;
10638 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32GuestCR0);
10639 AssertRCBreak(rc);
10640 HMVMX_CHECK_BREAK((u32GuestCR0 & uSetCR0) == uSetCR0, VMX_IGS_CR0_FIXED1);
10641 HMVMX_CHECK_BREAK(!(u32GuestCR0 & ~uZapCR0), VMX_IGS_CR0_FIXED0);
10642 if ( !fUnrestrictedGuest
10643 && (u32GuestCR0 & X86_CR0_PG)
10644 && !(u32GuestCR0 & X86_CR0_PE))
10645 {
10646 HMVMX_ERROR_BREAK(VMX_IGS_CR0_PG_PE_COMBO);
10647 }
10648
10649 /*
10650 * CR4.
10651 */
10652 uint64_t uSetCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
10653 uint64_t uZapCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
10654
10655 uint32_t u32GuestCR4;
10656 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &u32GuestCR4);
10657 AssertRCBreak(rc);
10658 HMVMX_CHECK_BREAK((u32GuestCR4 & uSetCR4) == uSetCR4, VMX_IGS_CR4_FIXED1);
10659 HMVMX_CHECK_BREAK(!(u32GuestCR4 & ~uZapCR4), VMX_IGS_CR4_FIXED0);
10660
10661 /*
10662 * IA32_DEBUGCTL MSR.
10663 */
10664 uint64_t u64Val;
10665 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, &u64Val);
10666 AssertRCBreak(rc);
10667 if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG)
10668 && (u64Val & 0xfffffe3c)) /* Bits 31:9, bits 5:2 MBZ. */
10669 {
10670 HMVMX_ERROR_BREAK(VMX_IGS_DEBUGCTL_MSR_RESERVED);
10671 }
10672 uint64_t u64DebugCtlMsr = u64Val;
10673
10674#ifdef VBOX_STRICT
10675 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
10676 AssertRCBreak(rc);
10677 Assert(u32Val == pVCpu->hm.s.vmx.u32EntryCtls);
10678#endif
10679 bool const fLongModeGuest = RT_BOOL(pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST);
10680
10681 /*
10682 * RIP and RFLAGS.
10683 */
10684 uint32_t u32Eflags;
10685#if HC_ARCH_BITS == 64
10686 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RIP, &u64Val);
10687 AssertRCBreak(rc);
10688 /* pCtx->rip can be different than the one in the VMCS (e.g. run guest code and VM-exits that don't update it). */
10689 if ( !fLongModeGuest
10690 || !pCtx->cs.Attr.n.u1Long)
10691 {
10692 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffff00000000)), VMX_IGS_LONGMODE_RIP_INVALID);
10693 }
10694 /** @todo If the processor supports N < 64 linear-address bits, bits 63:N
10695 * must be identical if the "IA-32e mode guest" VM-entry
10696 * control is 1 and CS.L is 1. No check applies if the
10697 * CPU supports 64 linear-address bits. */
10698
10699 /* Flags in pCtx can be different (real-on-v86 for instance). We are only concerned about the VMCS contents here. */
10700 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RFLAGS, &u64Val);
10701 AssertRCBreak(rc);
10702 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffc08028)), /* Bit 63:22, Bit 15, 5, 3 MBZ. */
10703 VMX_IGS_RFLAGS_RESERVED);
10704 HMVMX_CHECK_BREAK((u64Val & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
10705 u32Eflags = u64Val;
10706#else
10707 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Eflags);
10708 AssertRCBreak(rc);
10709 HMVMX_CHECK_BREAK(!(u32Eflags & 0xffc08028), VMX_IGS_RFLAGS_RESERVED); /* Bit 31:22, Bit 15, 5, 3 MBZ. */
10710 HMVMX_CHECK_BREAK((u32Eflags & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
10711#endif
10712
10713 if ( fLongModeGuest
10714 || ( fUnrestrictedGuest
10715 && !(u32GuestCR0 & X86_CR0_PE)))
10716 {
10717 HMVMX_CHECK_BREAK(!(u32Eflags & X86_EFL_VM), VMX_IGS_RFLAGS_VM_INVALID);
10718 }
10719
10720 uint32_t u32EntryInfo;
10721 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32EntryInfo);
10722 AssertRCBreak(rc);
10723 if ( VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(u32EntryInfo)
10724 && VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
10725 {
10726 HMVMX_CHECK_BREAK(u32Eflags & X86_EFL_IF, VMX_IGS_RFLAGS_IF_INVALID);
10727 }
10728
10729 /*
10730 * 64-bit checks.
10731 */
10732#if HC_ARCH_BITS == 64
10733 if (fLongModeGuest)
10734 {
10735 HMVMX_CHECK_BREAK(u32GuestCR0 & X86_CR0_PG, VMX_IGS_CR0_PG_LONGMODE);
10736 HMVMX_CHECK_BREAK(u32GuestCR4 & X86_CR4_PAE, VMX_IGS_CR4_PAE_LONGMODE);
10737 }
10738
10739 if ( !fLongModeGuest
10740 && (u32GuestCR4 & X86_CR4_PCIDE))
10741 {
10742 HMVMX_ERROR_BREAK(VMX_IGS_CR4_PCIDE);
10743 }
10744
10745 /** @todo CR3 field must be such that bits 63:52 and bits in the range
10746 * 51:32 beyond the processor's physical-address width are 0. */
10747
10748 if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG)
10749 && (pCtx->dr[7] & X86_DR7_MBZ_MASK))
10750 {
10751 HMVMX_ERROR_BREAK(VMX_IGS_DR7_RESERVED);
10752 }
10753
10754 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, &u64Val);
10755 AssertRCBreak(rc);
10756 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_ESP_NOT_CANONICAL);
10757
10758 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, &u64Val);
10759 AssertRCBreak(rc);
10760 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_EIP_NOT_CANONICAL);
10761#endif
10762
10763 /*
10764 * PERF_GLOBAL MSR.
10765 */
10766 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PERF_MSR)
10767 {
10768 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL, &u64Val);
10769 AssertRCBreak(rc);
10770 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffff8fffffffc)),
10771 VMX_IGS_PERF_GLOBAL_MSR_RESERVED); /* Bits 63:35, bits 31:2 MBZ. */
10772 }
10773
10774 /*
10775 * PAT MSR.
10776 */
10777 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PAT_MSR)
10778 {
10779 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PAT_FULL, &u64Val);
10780 AssertRCBreak(rc);
10781 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0x707070707070707)), VMX_IGS_PAT_MSR_RESERVED);
10782 for (unsigned i = 0; i < 8; i++)
10783 {
10784 uint8_t u8Val = (u64Val & 0xff);
10785 if ( u8Val != 0 /* UC */
10786 && u8Val != 1 /* WC */
10787 && u8Val != 4 /* WT */
10788 && u8Val != 5 /* WP */
10789 && u8Val != 6 /* WB */
10790 && u8Val != 7 /* UC- */)
10791 {
10792 HMVMX_ERROR_BREAK(VMX_IGS_PAT_MSR_INVALID);
10793 }
10794 u64Val >>= 8;
10795 }
10796 }
10797
10798 /*
10799 * EFER MSR.
10800 */
10801 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR)
10802 {
10803 Assert(pVM->hm.s.vmx.fSupportsVmcsEfer);
10804 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_EFER_FULL, &u64Val);
10805 AssertRCBreak(rc);
10806 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffffffffff2fe)),
10807 VMX_IGS_EFER_MSR_RESERVED); /* Bits 63:12, bit 9, bits 7:1 MBZ. */
10808 HMVMX_CHECK_BREAK(RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL( pVCpu->hm.s.vmx.u32EntryCtls
10809 & VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST),
10810 VMX_IGS_EFER_LMA_GUEST_MODE_MISMATCH);
10811 HMVMX_CHECK_BREAK( fUnrestrictedGuest
10812 || !(u32GuestCR0 & X86_CR0_PG)
10813 || RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL(u64Val & MSR_K6_EFER_LME),
10814 VMX_IGS_EFER_LMA_LME_MISMATCH);
10815 }
10816
10817 /*
10818 * Segment registers.
10819 */
10820 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
10821 || !(pCtx->ldtr.Sel & X86_SEL_LDT), VMX_IGS_LDTR_TI_INVALID);
10822 if (!(u32Eflags & X86_EFL_VM))
10823 {
10824 /* CS */
10825 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1Present, VMX_IGS_CS_ATTR_P_INVALID);
10826 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xf00), VMX_IGS_CS_ATTR_RESERVED);
10827 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xfffe0000), VMX_IGS_CS_ATTR_RESERVED);
10828 HMVMX_CHECK_BREAK( (pCtx->cs.u32Limit & 0xfff) == 0xfff
10829 || !(pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
10830 HMVMX_CHECK_BREAK( !(pCtx->cs.u32Limit & 0xfff00000)
10831 || (pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
10832 /* CS cannot be loaded with NULL in protected mode. */
10833 HMVMX_CHECK_BREAK(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_CS_ATTR_UNUSABLE);
10834 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1DescType, VMX_IGS_CS_ATTR_S_INVALID);
10835 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
10836 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_UNEQUAL);
10837 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
10838 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_MISMATCH);
10839 else if (pVM->hm.s.vmx.fUnrestrictedGuest && pCtx->cs.Attr.n.u4Type == 3)
10840 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == 0, VMX_IGS_CS_ATTR_DPL_INVALID);
10841 else
10842 HMVMX_ERROR_BREAK(VMX_IGS_CS_ATTR_TYPE_INVALID);
10843
10844 /* SS */
10845 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10846 || (pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL), VMX_IGS_SS_CS_RPL_UNEQUAL);
10847 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL), VMX_IGS_SS_ATTR_DPL_RPL_UNEQUAL);
10848 if ( !(pCtx->cr0 & X86_CR0_PE)
10849 || pCtx->cs.Attr.n.u4Type == 3)
10850 {
10851 HMVMX_CHECK_BREAK(!pCtx->ss.Attr.n.u2Dpl, VMX_IGS_SS_ATTR_DPL_INVALID);
10852 }
10853 if (!(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
10854 {
10855 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7, VMX_IGS_SS_ATTR_TYPE_INVALID);
10856 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u1Present, VMX_IGS_SS_ATTR_P_INVALID);
10857 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xf00), VMX_IGS_SS_ATTR_RESERVED);
10858 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xfffe0000), VMX_IGS_SS_ATTR_RESERVED);
10859 HMVMX_CHECK_BREAK( (pCtx->ss.u32Limit & 0xfff) == 0xfff
10860 || !(pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
10861 HMVMX_CHECK_BREAK( !(pCtx->ss.u32Limit & 0xfff00000)
10862 || (pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
10863 }
10864
10865 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxWriteSegmentReg(). */
10866 if (!(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
10867 {
10868 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_DS_ATTR_A_INVALID);
10869 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u1Present, VMX_IGS_DS_ATTR_P_INVALID);
10870 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10871 || pCtx->ds.Attr.n.u4Type > 11
10872 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
10873 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xf00), VMX_IGS_DS_ATTR_RESERVED);
10874 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xfffe0000), VMX_IGS_DS_ATTR_RESERVED);
10875 HMVMX_CHECK_BREAK( (pCtx->ds.u32Limit & 0xfff) == 0xfff
10876 || !(pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
10877 HMVMX_CHECK_BREAK( !(pCtx->ds.u32Limit & 0xfff00000)
10878 || (pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
10879 HMVMX_CHECK_BREAK( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10880 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_DS_ATTR_TYPE_INVALID);
10881 }
10882 if (!(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
10883 {
10884 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_ES_ATTR_A_INVALID);
10885 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u1Present, VMX_IGS_ES_ATTR_P_INVALID);
10886 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10887 || pCtx->es.Attr.n.u4Type > 11
10888 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
10889 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xf00), VMX_IGS_ES_ATTR_RESERVED);
10890 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xfffe0000), VMX_IGS_ES_ATTR_RESERVED);
10891 HMVMX_CHECK_BREAK( (pCtx->es.u32Limit & 0xfff) == 0xfff
10892 || !(pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
10893 HMVMX_CHECK_BREAK( !(pCtx->es.u32Limit & 0xfff00000)
10894 || (pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
10895 HMVMX_CHECK_BREAK( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10896 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_ES_ATTR_TYPE_INVALID);
10897 }
10898 if (!(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
10899 {
10900 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_FS_ATTR_A_INVALID);
10901 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u1Present, VMX_IGS_FS_ATTR_P_INVALID);
10902 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10903 || pCtx->fs.Attr.n.u4Type > 11
10904 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL), VMX_IGS_FS_ATTR_DPL_RPL_UNEQUAL);
10905 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xf00), VMX_IGS_FS_ATTR_RESERVED);
10906 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xfffe0000), VMX_IGS_FS_ATTR_RESERVED);
10907 HMVMX_CHECK_BREAK( (pCtx->fs.u32Limit & 0xfff) == 0xfff
10908 || !(pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
10909 HMVMX_CHECK_BREAK( !(pCtx->fs.u32Limit & 0xfff00000)
10910 || (pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
10911 HMVMX_CHECK_BREAK( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10912 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_FS_ATTR_TYPE_INVALID);
10913 }
10914 if (!(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
10915 {
10916 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_GS_ATTR_A_INVALID);
10917 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u1Present, VMX_IGS_GS_ATTR_P_INVALID);
10918 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10919 || pCtx->gs.Attr.n.u4Type > 11
10920 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL), VMX_IGS_GS_ATTR_DPL_RPL_UNEQUAL);
10921 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xf00), VMX_IGS_GS_ATTR_RESERVED);
10922 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xfffe0000), VMX_IGS_GS_ATTR_RESERVED);
10923 HMVMX_CHECK_BREAK( (pCtx->gs.u32Limit & 0xfff) == 0xfff
10924 || !(pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
10925 HMVMX_CHECK_BREAK( !(pCtx->gs.u32Limit & 0xfff00000)
10926 || (pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
10927 HMVMX_CHECK_BREAK( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10928 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_GS_ATTR_TYPE_INVALID);
10929 }
10930 /* 64-bit capable CPUs. */
10931#if HC_ARCH_BITS == 64
10932 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
10933 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
10934 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
10935 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
10936 HMVMX_CHECK_BREAK(!(pCtx->cs.u64Base >> 32), VMX_IGS_LONGMODE_CS_BASE_INVALID);
10937 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ss.u64Base >> 32),
10938 VMX_IGS_LONGMODE_SS_BASE_INVALID);
10939 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ds.u64Base >> 32),
10940 VMX_IGS_LONGMODE_DS_BASE_INVALID);
10941 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->es.u64Base >> 32),
10942 VMX_IGS_LONGMODE_ES_BASE_INVALID);
10943#endif
10944 }
10945 else
10946 {
10947 /* V86 mode checks. */
10948 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
10949 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
10950 {
10951 u32CSAttr = 0xf3; u32SSAttr = 0xf3;
10952 u32DSAttr = 0xf3; u32ESAttr = 0xf3;
10953 u32FSAttr = 0xf3; u32GSAttr = 0xf3;
10954 }
10955 else
10956 {
10957 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u;
10958 u32DSAttr = pCtx->ds.Attr.u; u32ESAttr = pCtx->es.Attr.u;
10959 u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
10960 }
10961
10962 /* CS */
10963 HMVMX_CHECK_BREAK((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), VMX_IGS_V86_CS_BASE_INVALID);
10964 HMVMX_CHECK_BREAK(pCtx->cs.u32Limit == 0xffff, VMX_IGS_V86_CS_LIMIT_INVALID);
10965 HMVMX_CHECK_BREAK(u32CSAttr == 0xf3, VMX_IGS_V86_CS_ATTR_INVALID);
10966 /* SS */
10967 HMVMX_CHECK_BREAK((pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4), VMX_IGS_V86_SS_BASE_INVALID);
10968 HMVMX_CHECK_BREAK(pCtx->ss.u32Limit == 0xffff, VMX_IGS_V86_SS_LIMIT_INVALID);
10969 HMVMX_CHECK_BREAK(u32SSAttr == 0xf3, VMX_IGS_V86_SS_ATTR_INVALID);
10970 /* DS */
10971 HMVMX_CHECK_BREAK((pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4), VMX_IGS_V86_DS_BASE_INVALID);
10972 HMVMX_CHECK_BREAK(pCtx->ds.u32Limit == 0xffff, VMX_IGS_V86_DS_LIMIT_INVALID);
10973 HMVMX_CHECK_BREAK(u32DSAttr == 0xf3, VMX_IGS_V86_DS_ATTR_INVALID);
10974 /* ES */
10975 HMVMX_CHECK_BREAK((pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4), VMX_IGS_V86_ES_BASE_INVALID);
10976 HMVMX_CHECK_BREAK(pCtx->es.u32Limit == 0xffff, VMX_IGS_V86_ES_LIMIT_INVALID);
10977 HMVMX_CHECK_BREAK(u32ESAttr == 0xf3, VMX_IGS_V86_ES_ATTR_INVALID);
10978 /* FS */
10979 HMVMX_CHECK_BREAK((pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4), VMX_IGS_V86_FS_BASE_INVALID);
10980 HMVMX_CHECK_BREAK(pCtx->fs.u32Limit == 0xffff, VMX_IGS_V86_FS_LIMIT_INVALID);
10981 HMVMX_CHECK_BREAK(u32FSAttr == 0xf3, VMX_IGS_V86_FS_ATTR_INVALID);
10982 /* GS */
10983 HMVMX_CHECK_BREAK((pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4), VMX_IGS_V86_GS_BASE_INVALID);
10984 HMVMX_CHECK_BREAK(pCtx->gs.u32Limit == 0xffff, VMX_IGS_V86_GS_LIMIT_INVALID);
10985 HMVMX_CHECK_BREAK(u32GSAttr == 0xf3, VMX_IGS_V86_GS_ATTR_INVALID);
10986 /* 64-bit capable CPUs. */
10987#if HC_ARCH_BITS == 64
10988 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
10989 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
10990 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
10991 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
10992 HMVMX_CHECK_BREAK(!(pCtx->cs.u64Base >> 32), VMX_IGS_LONGMODE_CS_BASE_INVALID);
10993 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ss.u64Base >> 32),
10994 VMX_IGS_LONGMODE_SS_BASE_INVALID);
10995 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ds.u64Base >> 32),
10996 VMX_IGS_LONGMODE_DS_BASE_INVALID);
10997 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->es.u64Base >> 32),
10998 VMX_IGS_LONGMODE_ES_BASE_INVALID);
10999#endif
11000 }
11001
11002 /*
11003 * TR.
11004 */
11005 HMVMX_CHECK_BREAK(!(pCtx->tr.Sel & X86_SEL_LDT), VMX_IGS_TR_TI_INVALID);
11006 /* 64-bit capable CPUs. */
11007#if HC_ARCH_BITS == 64
11008 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->tr.u64Base), VMX_IGS_TR_BASE_NOT_CANONICAL);
11009#endif
11010 if (fLongModeGuest)
11011 {
11012 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u4Type == 11, /* 64-bit busy TSS. */
11013 VMX_IGS_LONGMODE_TR_ATTR_TYPE_INVALID);
11014 }
11015 else
11016 {
11017 HMVMX_CHECK_BREAK( pCtx->tr.Attr.n.u4Type == 3 /* 16-bit busy TSS. */
11018 || pCtx->tr.Attr.n.u4Type == 11, /* 32-bit busy TSS.*/
11019 VMX_IGS_TR_ATTR_TYPE_INVALID);
11020 }
11021 HMVMX_CHECK_BREAK(!pCtx->tr.Attr.n.u1DescType, VMX_IGS_TR_ATTR_S_INVALID);
11022 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u1Present, VMX_IGS_TR_ATTR_P_INVALID);
11023 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & 0xf00), VMX_IGS_TR_ATTR_RESERVED); /* Bits 11:8 MBZ. */
11024 HMVMX_CHECK_BREAK( (pCtx->tr.u32Limit & 0xfff) == 0xfff
11025 || !(pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
11026 HMVMX_CHECK_BREAK( !(pCtx->tr.u32Limit & 0xfff00000)
11027 || (pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
11028 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_TR_ATTR_UNUSABLE);
11029
11030 /*
11031 * GDTR and IDTR.
11032 */
11033#if HC_ARCH_BITS == 64
11034 rc = VMXReadVmcs64(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
11035 AssertRCBreak(rc);
11036 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_GDTR_BASE_NOT_CANONICAL);
11037
11038 rc = VMXReadVmcs64(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
11039 AssertRCBreak(rc);
11040 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_IDTR_BASE_NOT_CANONICAL);
11041#endif
11042
11043 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
11044 AssertRCBreak(rc);
11045 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_GDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
11046
11047 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
11048 AssertRCBreak(rc);
11049 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_IDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
11050
11051 /*
11052 * Guest Non-Register State.
11053 */
11054 /* Activity State. */
11055 uint32_t u32ActivityState;
11056 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, &u32ActivityState);
11057 AssertRCBreak(rc);
11058 HMVMX_CHECK_BREAK( !u32ActivityState
11059 || (u32ActivityState & MSR_IA32_VMX_MISC_ACTIVITY_STATES(pVM->hm.s.vmx.Msrs.u64Misc)),
11060 VMX_IGS_ACTIVITY_STATE_INVALID);
11061 HMVMX_CHECK_BREAK( !(pCtx->ss.Attr.n.u2Dpl)
11062 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT, VMX_IGS_ACTIVITY_STATE_HLT_INVALID);
11063 uint32_t u32IntrState;
11064 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &u32IntrState);
11065 AssertRCBreak(rc);
11066 if ( u32IntrState == VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS
11067 || u32IntrState == VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
11068 {
11069 HMVMX_CHECK_BREAK(u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE, VMX_IGS_ACTIVITY_STATE_ACTIVE_INVALID);
11070 }
11071
11072 /** @todo Activity state and injecting interrupts. Left as a todo since we
11073 * currently don't use activity states but ACTIVE. */
11074
11075 HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_ENTRY_SMM)
11076 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_SIPI_WAIT, VMX_IGS_ACTIVITY_STATE_SIPI_WAIT_INVALID);
11077
11078 /* Guest interruptibility-state. */
11079 HMVMX_CHECK_BREAK(!(u32IntrState & 0xfffffff0), VMX_IGS_INTERRUPTIBILITY_STATE_RESERVED);
11080 HMVMX_CHECK_BREAK((u32IntrState & ( VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI
11081 | VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS))
11082 != ( VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI
11083 | VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS),
11084 VMX_IGS_INTERRUPTIBILITY_STATE_STI_MOVSS_INVALID);
11085 HMVMX_CHECK_BREAK( (u32Eflags & X86_EFL_IF)
11086 || !(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI),
11087 VMX_IGS_INTERRUPTIBILITY_STATE_STI_EFL_INVALID);
11088 if (VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(u32EntryInfo))
11089 {
11090 if (VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
11091 {
11092 HMVMX_CHECK_BREAK( !(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
11093 && !(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS),
11094 VMX_IGS_INTERRUPTIBILITY_STATE_EXT_INT_INVALID);
11095 }
11096 else if (VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
11097 {
11098 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS),
11099 VMX_IGS_INTERRUPTIBILITY_STATE_MOVSS_INVALID);
11100 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI),
11101 VMX_IGS_INTERRUPTIBILITY_STATE_STI_INVALID);
11102 }
11103 }
11104 /** @todo Assumes the processor is not in SMM. */
11105 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI),
11106 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_INVALID);
11107 HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_ENTRY_SMM)
11108 || (u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI),
11109 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_SMM_INVALID);
11110 if ( (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI)
11111 && VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(u32EntryInfo)
11112 && VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
11113 {
11114 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI),
11115 VMX_IGS_INTERRUPTIBILITY_STATE_NMI_INVALID);
11116 }
11117
11118 /* Pending debug exceptions. */
11119#if HC_ARCH_BITS == 64
11120 rc = VMXReadVmcs64(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, &u64Val);
11121 AssertRCBreak(rc);
11122 /* Bits 63:15, Bit 13, Bits 11:4 MBZ. */
11123 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffffaff0)), VMX_IGS_LONGMODE_PENDING_DEBUG_RESERVED);
11124 u32Val = u64Val; /* For pending debug exceptions checks below. */
11125#else
11126 rc = VMXReadVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, &u32Val);
11127 AssertRCBreak(rc);
11128 /* Bits 31:15, Bit 13, Bits 11:4 MBZ. */
11129 HMVMX_CHECK_BREAK(!(u32Val & 0xffffaff0), VMX_IGS_PENDING_DEBUG_RESERVED);
11130#endif
11131
11132 if ( (u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
11133 || (u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS)
11134 || u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT)
11135 {
11136 if ( (u32Eflags & X86_EFL_TF)
11137 && !(u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
11138 {
11139 /* Bit 14 is PendingDebug.BS. */
11140 HMVMX_CHECK_BREAK(u32Val & RT_BIT(14), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_SET);
11141 }
11142 if ( !(u32Eflags & X86_EFL_TF)
11143 || (u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
11144 {
11145 /* Bit 14 is PendingDebug.BS. */
11146 HMVMX_CHECK_BREAK(!(u32Val & RT_BIT(14)), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_CLEAR);
11147 }
11148 }
11149
11150 /* VMCS link pointer. */
11151 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, &u64Val);
11152 AssertRCBreak(rc);
11153 if (u64Val != UINT64_C(0xffffffffffffffff))
11154 {
11155 HMVMX_CHECK_BREAK(!(u64Val & 0xfff), VMX_IGS_VMCS_LINK_PTR_RESERVED);
11156 /** @todo Bits beyond the processor's physical-address width MBZ. */
11157 /** @todo 32-bit located in memory referenced by value of this field (as a
11158 * physical address) must contain the processor's VMCS revision ID. */
11159 /** @todo SMM checks. */
11160 }
11161
11162 /** @todo Checks on Guest Page-Directory-Pointer-Table Entries when guest is
11163 * not using Nested Paging? */
11164 if ( pVM->hm.s.fNestedPaging
11165 && !fLongModeGuest
11166 && CPUMIsGuestInPAEModeEx(pCtx))
11167 {
11168 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &u64Val);
11169 AssertRCBreak(rc);
11170 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11171
11172 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &u64Val);
11173 AssertRCBreak(rc);
11174 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11175
11176 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &u64Val);
11177 AssertRCBreak(rc);
11178 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11179
11180 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &u64Val);
11181 AssertRCBreak(rc);
11182 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11183 }
11184
11185 /* Shouldn't happen but distinguish it from AssertRCBreak() errors. */
11186 if (uError == VMX_IGS_ERROR)
11187 uError = VMX_IGS_REASON_NOT_FOUND;
11188 } while (0);
11189
11190 pVCpu->hm.s.u32HMError = uError;
11191 return uError;
11192
11193#undef HMVMX_ERROR_BREAK
11194#undef HMVMX_CHECK_BREAK
11195}
11196
11197/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
11198/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
11199/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
11200
11201/** @name VM-exit handlers.
11202 * @{
11203 */
11204
11205/**
11206 * VM-exit handler for external interrupts (VMX_EXIT_EXT_INT).
11207 */
11208HMVMX_EXIT_DECL hmR0VmxExitExtInt(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11209{
11210 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11211 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
11212 /* Windows hosts (32-bit and 64-bit) have DPC latency issues. See @bugref{6853}. */
11213 if (VMMR0ThreadCtxHookIsEnabled(pVCpu))
11214 return VINF_SUCCESS;
11215 return VINF_EM_RAW_INTERRUPT;
11216}
11217
11218
11219/**
11220 * VM-exit handler for exceptions or NMIs (VMX_EXIT_XCPT_OR_NMI).
11221 */
11222HMVMX_EXIT_DECL hmR0VmxExitXcptOrNmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11223{
11224 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11225 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitXcptNmi, y3);
11226
11227 int rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
11228 AssertRCReturn(rc, rc);
11229
11230 uint32_t uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(pVmxTransient->uExitIntInfo);
11231 Assert( !(pVCpu->hm.s.vmx.u32ExitCtls & VMX_VMCS_CTRL_EXIT_ACK_EXT_INT)
11232 && uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT);
11233 Assert(VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo));
11234
11235 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
11236 {
11237 /*
11238 * This cannot be a guest NMI as the only way for the guest to receive an NMI is if we injected it ourselves and
11239 * anything we inject is not going to cause a VM-exit directly for the event being injected.
11240 * See Intel spec. 27.2.3 "Information for VM Exits During Event Delivery".
11241 *
11242 * Dispatch the NMI to the host. See Intel spec. 27.5.5 "Updating Non-Register State".
11243 */
11244 VMXDispatchHostNmi();
11245 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
11246 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11247 return VINF_SUCCESS;
11248 }
11249
11250 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
11251 VBOXSTRICTRC rcStrictRc1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
11252 if (RT_UNLIKELY(rcStrictRc1 == VINF_SUCCESS))
11253 { /* likely */ }
11254 else
11255 {
11256 if (rcStrictRc1 == VINF_HM_DOUBLE_FAULT)
11257 rcStrictRc1 = VINF_SUCCESS;
11258 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11259 return rcStrictRc1;
11260 }
11261
11262 uint32_t uExitIntInfo = pVmxTransient->uExitIntInfo;
11263 uint32_t uVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(uExitIntInfo);
11264 switch (uIntType)
11265 {
11266 case VMX_EXIT_INTERRUPTION_INFO_TYPE_PRIV_SW_XCPT: /* Privileged software exception. (#DB from ICEBP) */
11267 Assert(uVector == X86_XCPT_DB);
11268 /* no break */
11269 case VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT: /* Software exception. (#BP or #OF) */
11270 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF || uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_PRIV_SW_XCPT);
11271 /* no break */
11272 case VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT:
11273 {
11274 /*
11275 * If there's any exception caused as a result of event injection, go back to
11276 * the interpreter. The page-fault case is complicated and we manually handle
11277 * any currently pending event in hmR0VmxExitXcptPF. Nested #ACs are already
11278 * handled in hmR0VmxCheckExitDueToEventDelivery.
11279 */
11280 if (!pVCpu->hm.s.Event.fPending)
11281 { /* likely */ }
11282 else if ( uVector != X86_XCPT_PF
11283 && uVector != X86_XCPT_AC)
11284 {
11285 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
11286 rc = VERR_EM_INTERPRETER;
11287 break;
11288 }
11289
11290 switch (uVector)
11291 {
11292 case X86_XCPT_PF: rc = hmR0VmxExitXcptPF(pVCpu, pMixedCtx, pVmxTransient); break;
11293 case X86_XCPT_GP: rc = hmR0VmxExitXcptGP(pVCpu, pMixedCtx, pVmxTransient); break;
11294 case X86_XCPT_NM: rc = hmR0VmxExitXcptNM(pVCpu, pMixedCtx, pVmxTransient); break;
11295 case X86_XCPT_MF: rc = hmR0VmxExitXcptMF(pVCpu, pMixedCtx, pVmxTransient); break;
11296 case X86_XCPT_DB: rc = hmR0VmxExitXcptDB(pVCpu, pMixedCtx, pVmxTransient); break;
11297 case X86_XCPT_BP: rc = hmR0VmxExitXcptBP(pVCpu, pMixedCtx, pVmxTransient); break;
11298 case X86_XCPT_AC: rc = hmR0VmxExitXcptAC(pVCpu, pMixedCtx, pVmxTransient); break;
11299
11300 case X86_XCPT_XF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXF);
11301 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11302 case X86_XCPT_DE: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
11303 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11304 case X86_XCPT_UD: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
11305 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11306 case X86_XCPT_SS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
11307 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11308 case X86_XCPT_NP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
11309 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11310 case X86_XCPT_TS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestTS);
11311 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11312 default:
11313 {
11314 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
11315 AssertRCReturn(rc, rc);
11316
11317 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXcpUnk);
11318 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
11319 {
11320 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
11321 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
11322 Assert(CPUMIsGuestInRealModeEx(pMixedCtx));
11323
11324 rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11325 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
11326 AssertRCReturn(rc, rc);
11327 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(uExitIntInfo),
11328 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode,
11329 0 /* GCPtrFaultAddress */);
11330 AssertRCReturn(rc, rc);
11331 }
11332 else
11333 {
11334 AssertMsgFailed(("Unexpected VM-exit caused by exception %#x\n", uVector));
11335 pVCpu->hm.s.u32HMError = uVector;
11336 rc = VERR_VMX_UNEXPECTED_EXCEPTION;
11337 }
11338 break;
11339 }
11340 }
11341 break;
11342 }
11343
11344 default:
11345 {
11346 pVCpu->hm.s.u32HMError = uExitIntInfo;
11347 rc = VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE;
11348 AssertMsgFailed(("Unexpected interruption info %#x\n", VMX_EXIT_INTERRUPTION_INFO_TYPE(uExitIntInfo)));
11349 break;
11350 }
11351 }
11352 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11353 return rc;
11354}
11355
11356
11357/**
11358 * VM-exit handler for interrupt-window exiting (VMX_EXIT_INT_WINDOW).
11359 */
11360HMVMX_EXIT_NSRC_DECL hmR0VmxExitIntWindow(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11361{
11362 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11363
11364 /* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */
11365 hmR0VmxClearIntWindowExitVmcs(pVCpu);
11366
11367 /* Deliver the pending interrupts via hmR0VmxEvaluatePendingEvent() and resume guest execution. */
11368 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
11369 return VINF_SUCCESS;
11370}
11371
11372
11373/**
11374 * VM-exit handler for NMI-window exiting (VMX_EXIT_NMI_WINDOW).
11375 */
11376HMVMX_EXIT_NSRC_DECL hmR0VmxExitNmiWindow(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11377{
11378 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11379 if (RT_UNLIKELY(!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT)))
11380 {
11381 AssertMsgFailed(("Unexpected NMI-window exit.\n"));
11382 HMVMX_RETURN_UNEXPECTED_EXIT();
11383 }
11384
11385 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS));
11386
11387 /*
11388 * If block-by-STI is set when we get this VM-exit, it means the CPU doesn't block NMIs following STI.
11389 * It is therefore safe to unblock STI and deliver the NMI ourselves. See @bugref{7445}.
11390 */
11391 uint32_t uIntrState = 0;
11392 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &uIntrState);
11393 AssertRCReturn(rc, rc);
11394
11395 bool const fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
11396 if ( fBlockSti
11397 && VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
11398 {
11399 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
11400 }
11401
11402 /* Indicate that we no longer need to VM-exit when the guest is ready to receive NMIs, it is now ready */
11403 hmR0VmxClearNmiWindowExitVmcs(pVCpu);
11404
11405 /* Deliver the pending NMI via hmR0VmxEvaluatePendingEvent() and resume guest execution. */
11406 return VINF_SUCCESS;
11407}
11408
11409
11410/**
11411 * VM-exit handler for WBINVD (VMX_EXIT_WBINVD). Conditional VM-exit.
11412 */
11413HMVMX_EXIT_NSRC_DECL hmR0VmxExitWbinvd(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11414{
11415 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11416 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWbinvd);
11417 return hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11418}
11419
11420
11421/**
11422 * VM-exit handler for INVD (VMX_EXIT_INVD). Unconditional VM-exit.
11423 */
11424HMVMX_EXIT_NSRC_DECL hmR0VmxExitInvd(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11425{
11426 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11427 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvd);
11428 return hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11429}
11430
11431
11432/**
11433 * VM-exit handler for CPUID (VMX_EXIT_CPUID). Unconditional VM-exit.
11434 */
11435HMVMX_EXIT_DECL hmR0VmxExitCpuid(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11436{
11437 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11438 PVM pVM = pVCpu->CTX_SUFF(pVM);
11439 int rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
11440 if (RT_LIKELY(rc == VINF_SUCCESS))
11441 {
11442 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11443 Assert(pVmxTransient->cbInstr == 2);
11444 }
11445 else
11446 {
11447 AssertMsgFailed(("hmR0VmxExitCpuid: EMInterpretCpuId failed with %Rrc\n", rc));
11448 rc = VERR_EM_INTERPRETER;
11449 }
11450 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCpuid);
11451 return rc;
11452}
11453
11454
11455/**
11456 * VM-exit handler for GETSEC (VMX_EXIT_GETSEC). Unconditional VM-exit.
11457 */
11458HMVMX_EXIT_DECL hmR0VmxExitGetsec(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11459{
11460 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11461 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
11462 AssertRCReturn(rc, rc);
11463
11464 if (pMixedCtx->cr4 & X86_CR4_SMXE)
11465 return VINF_EM_RAW_EMULATE_INSTR;
11466
11467 AssertMsgFailed(("hmR0VmxExitGetsec: unexpected VM-exit when CR4.SMXE is 0.\n"));
11468 HMVMX_RETURN_UNEXPECTED_EXIT();
11469}
11470
11471
11472/**
11473 * VM-exit handler for RDTSC (VMX_EXIT_RDTSC). Conditional VM-exit.
11474 */
11475HMVMX_EXIT_DECL hmR0VmxExitRdtsc(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11476{
11477 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11478 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
11479 AssertRCReturn(rc, rc);
11480
11481 PVM pVM = pVCpu->CTX_SUFF(pVM);
11482 rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
11483 if (RT_LIKELY(rc == VINF_SUCCESS))
11484 {
11485 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11486 Assert(pVmxTransient->cbInstr == 2);
11487 /* If we get a spurious VM-exit when offsetting is enabled, we must reset offsetting on VM-reentry. See @bugref{6634}. */
11488 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING)
11489 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
11490 }
11491 else
11492 rc = VERR_EM_INTERPRETER;
11493 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
11494 return rc;
11495}
11496
11497
11498/**
11499 * VM-exit handler for RDTSCP (VMX_EXIT_RDTSCP). Conditional VM-exit.
11500 */
11501HMVMX_EXIT_DECL hmR0VmxExitRdtscp(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11502{
11503 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11504 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
11505 rc |= hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx); /* For MSR_K8_TSC_AUX */
11506 AssertRCReturn(rc, rc);
11507
11508 PVM pVM = pVCpu->CTX_SUFF(pVM);
11509 rc = EMInterpretRdtscp(pVM, pVCpu, pMixedCtx);
11510 if (RT_SUCCESS(rc))
11511 {
11512 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11513 Assert(pVmxTransient->cbInstr == 3);
11514 /* If we get a spurious VM-exit when offsetting is enabled, we must reset offsetting on VM-reentry. See @bugref{6634}. */
11515 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING)
11516 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
11517 }
11518 else
11519 {
11520 AssertMsgFailed(("hmR0VmxExitRdtscp: EMInterpretRdtscp failed with %Rrc\n", rc));
11521 rc = VERR_EM_INTERPRETER;
11522 }
11523 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
11524 return rc;
11525}
11526
11527
11528/**
11529 * VM-exit handler for RDPMC (VMX_EXIT_RDPMC). Conditional VM-exit.
11530 */
11531HMVMX_EXIT_DECL hmR0VmxExitRdpmc(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11532{
11533 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11534 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
11535 rc |= hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
11536 AssertRCReturn(rc, rc);
11537
11538 PVM pVM = pVCpu->CTX_SUFF(pVM);
11539 rc = EMInterpretRdpmc(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
11540 if (RT_LIKELY(rc == VINF_SUCCESS))
11541 {
11542 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11543 Assert(pVmxTransient->cbInstr == 2);
11544 }
11545 else
11546 {
11547 AssertMsgFailed(("hmR0VmxExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
11548 rc = VERR_EM_INTERPRETER;
11549 }
11550 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdpmc);
11551 return rc;
11552}
11553
11554
11555/**
11556 * VM-exit handler for VMCALL (VMX_EXIT_VMCALL). Unconditional VM-exit.
11557 */
11558HMVMX_EXIT_DECL hmR0VmxExitVmcall(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11559{
11560 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11561 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitVmcall);
11562
11563 VBOXSTRICTRC rcStrict = VERR_VMX_IPE_3;
11564 if (pVCpu->hm.s.fHypercallsEnabled)
11565 {
11566#if 0
11567 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
11568#else
11569 /* Aggressive state sync. for now. */
11570 int rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
11571 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx); /* For long-mode checks in gimKvmHypercall(). */
11572 AssertRCReturn(rc, rc);
11573#endif
11574
11575 /* Perform the hypercall. */
11576 rcStrict = GIMHypercall(pVCpu, pMixedCtx);
11577 if (rcStrict == VINF_SUCCESS)
11578 {
11579 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11580 AssertRCReturn(rc, rc);
11581 }
11582 else
11583 Assert( rcStrict == VINF_GIM_R3_HYPERCALL
11584 || rcStrict == VINF_GIM_HYPERCALL_CONTINUING
11585 || RT_FAILURE(VBOXSTRICTRC_VAL(rcStrict)));
11586
11587 /* If the hypercall changes anything other than guest's general-purpose registers,
11588 we would need to reload the guest changed bits here before VM-entry. */
11589 }
11590 else
11591 Log4(("hmR0VmxExitVmcall: Hypercalls not enabled\n"));
11592
11593 /* If hypercalls are disabled or the hypercall failed for some reason, raise #UD and continue. */
11594 if (RT_FAILURE(VBOXSTRICTRC_VAL(rcStrict)))
11595 {
11596 hmR0VmxSetPendingXcptUD(pVCpu, pMixedCtx);
11597 rcStrict = VINF_SUCCESS;
11598 }
11599
11600 return rcStrict;
11601}
11602
11603
11604/**
11605 * VM-exit handler for INVLPG (VMX_EXIT_INVLPG). Conditional VM-exit.
11606 */
11607HMVMX_EXIT_DECL hmR0VmxExitInvlpg(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11608{
11609 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11610 PVM pVM = pVCpu->CTX_SUFF(pVM);
11611 Assert(!pVM->hm.s.fNestedPaging || pVCpu->hm.s.fUsingDebugLoop);
11612
11613 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
11614 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
11615 AssertRCReturn(rc, rc);
11616
11617 VBOXSTRICTRC rcStrict = EMInterpretInvlpg(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), pVmxTransient->uExitQualification);
11618 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
11619 rcStrict = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11620 else
11621 AssertMsg(rcStrict == VERR_EM_INTERPRETER, ("hmR0VmxExitInvlpg: EMInterpretInvlpg %#RX64 failed with %Rrc\n",
11622 pVmxTransient->uExitQualification, VBOXSTRICTRC_VAL(rcStrict)));
11623 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpg);
11624 return rcStrict;
11625}
11626
11627
11628/**
11629 * VM-exit handler for MONITOR (VMX_EXIT_MONITOR). Conditional VM-exit.
11630 */
11631HMVMX_EXIT_DECL hmR0VmxExitMonitor(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11632{
11633 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11634 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
11635 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
11636 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
11637 AssertRCReturn(rc, rc);
11638
11639 PVM pVM = pVCpu->CTX_SUFF(pVM);
11640 rc = EMInterpretMonitor(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
11641 if (RT_LIKELY(rc == VINF_SUCCESS))
11642 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11643 else
11644 {
11645 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
11646 rc = VERR_EM_INTERPRETER;
11647 }
11648 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
11649 return rc;
11650}
11651
11652
11653/**
11654 * VM-exit handler for MWAIT (VMX_EXIT_MWAIT). Conditional VM-exit.
11655 */
11656HMVMX_EXIT_DECL hmR0VmxExitMwait(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11657{
11658 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11659 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
11660 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
11661 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
11662 AssertRCReturn(rc, rc);
11663
11664 PVM pVM = pVCpu->CTX_SUFF(pVM);
11665 VBOXSTRICTRC rc2 = EMInterpretMWait(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
11666 rc = VBOXSTRICTRC_VAL(rc2);
11667 if (RT_LIKELY( rc == VINF_SUCCESS
11668 || rc == VINF_EM_HALT))
11669 {
11670 int rc3 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11671 AssertRCReturn(rc3, rc3);
11672
11673 if ( rc == VINF_EM_HALT
11674 && EMMonitorWaitShouldContinue(pVCpu, pMixedCtx))
11675 {
11676 rc = VINF_SUCCESS;
11677 }
11678 }
11679 else
11680 {
11681 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
11682 rc = VERR_EM_INTERPRETER;
11683 }
11684 AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
11685 ("hmR0VmxExitMwait: failed, invalid error code %Rrc\n", rc));
11686 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
11687 return rc;
11688}
11689
11690
11691/**
11692 * VM-exit handler for RSM (VMX_EXIT_RSM). Unconditional VM-exit.
11693 */
11694HMVMX_EXIT_NSRC_DECL hmR0VmxExitRsm(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11695{
11696 /*
11697 * Execution of RSM outside of SMM mode causes #UD regardless of VMX root or VMX non-root mode. In theory, we should never
11698 * get this VM-exit. This can happen only if dual-monitor treatment of SMI and VMX is enabled, which can (only?) be done by
11699 * executing VMCALL in VMX root operation. If we get here, something funny is going on.
11700 * See Intel spec. "33.15.5 Enabling the Dual-Monitor Treatment".
11701 */
11702 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11703 AssertMsgFailed(("Unexpected RSM VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
11704 HMVMX_RETURN_UNEXPECTED_EXIT();
11705}
11706
11707
11708/**
11709 * VM-exit handler for SMI (VMX_EXIT_SMI). Unconditional VM-exit.
11710 */
11711HMVMX_EXIT_NSRC_DECL hmR0VmxExitSmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11712{
11713 /*
11714 * This can only happen if we support dual-monitor treatment of SMI, which can be activated by executing VMCALL in VMX
11715 * root operation. Only an STM (SMM transfer monitor) would get this VM-exit when we (the executive monitor) execute a VMCALL
11716 * in VMX root mode or receive an SMI. If we get here, something funny is going on.
11717 * See Intel spec. "33.15.6 Activating the Dual-Monitor Treatment" and Intel spec. 25.3 "Other Causes of VM-Exits"
11718 */
11719 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11720 AssertMsgFailed(("Unexpected SMI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
11721 HMVMX_RETURN_UNEXPECTED_EXIT();
11722}
11723
11724
11725/**
11726 * VM-exit handler for IO SMI (VMX_EXIT_IO_SMI). Unconditional VM-exit.
11727 */
11728HMVMX_EXIT_NSRC_DECL hmR0VmxExitIoSmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11729{
11730 /* Same treatment as VMX_EXIT_SMI. See comment in hmR0VmxExitSmi(). */
11731 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11732 AssertMsgFailed(("Unexpected IO SMI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
11733 HMVMX_RETURN_UNEXPECTED_EXIT();
11734}
11735
11736
11737/**
11738 * VM-exit handler for SIPI (VMX_EXIT_SIPI). Conditional VM-exit.
11739 */
11740HMVMX_EXIT_NSRC_DECL hmR0VmxExitSipi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11741{
11742 /*
11743 * SIPI exits can only occur in VMX non-root operation when the "wait-for-SIPI" guest activity state is used. We currently
11744 * don't make use of it (see hmR0VmxLoadGuestActivityState()) as our guests don't have direct access to the host LAPIC.
11745 * See Intel spec. 25.3 "Other Causes of VM-exits".
11746 */
11747 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11748 AssertMsgFailed(("Unexpected SIPI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
11749 HMVMX_RETURN_UNEXPECTED_EXIT();
11750}
11751
11752
11753/**
11754 * VM-exit handler for INIT signal (VMX_EXIT_INIT_SIGNAL). Unconditional
11755 * VM-exit.
11756 */
11757HMVMX_EXIT_NSRC_DECL hmR0VmxExitInitSignal(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11758{
11759 /*
11760 * INIT signals are blocked in VMX root operation by VMXON and by SMI in SMM.
11761 * See Intel spec. 33.14.1 Default Treatment of SMI Delivery" and Intel spec. 29.3 "VMX Instructions" for "VMXON".
11762 *
11763 * It is -NOT- blocked in VMX non-root operation so we can, in theory, still get these VM-exits.
11764 * See Intel spec. "23.8 Restrictions on VMX operation".
11765 */
11766 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11767 return VINF_SUCCESS;
11768}
11769
11770
11771/**
11772 * VM-exit handler for triple faults (VMX_EXIT_TRIPLE_FAULT). Unconditional
11773 * VM-exit.
11774 */
11775HMVMX_EXIT_DECL hmR0VmxExitTripleFault(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11776{
11777 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11778 return VINF_EM_RESET;
11779}
11780
11781
11782/**
11783 * VM-exit handler for HLT (VMX_EXIT_HLT). Conditional VM-exit.
11784 */
11785HMVMX_EXIT_DECL hmR0VmxExitHlt(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11786{
11787 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11788 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT);
11789
11790 int rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11791 AssertRCReturn(rc, rc);
11792
11793 if (EMShouldContinueAfterHalt(pVCpu, pMixedCtx)) /* Requires eflags. */
11794 rc = VINF_SUCCESS;
11795 else
11796 rc = VINF_EM_HALT;
11797
11798 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
11799 if (rc != VINF_SUCCESS)
11800 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
11801 return rc;
11802}
11803
11804
11805/**
11806 * VM-exit handler for instructions that result in a \#UD exception delivered to
11807 * the guest.
11808 */
11809HMVMX_EXIT_NSRC_DECL hmR0VmxExitSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11810{
11811 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11812 hmR0VmxSetPendingXcptUD(pVCpu, pMixedCtx);
11813 return VINF_SUCCESS;
11814}
11815
11816
11817/**
11818 * VM-exit handler for expiry of the VMX preemption timer.
11819 */
11820HMVMX_EXIT_DECL hmR0VmxExitPreemptTimer(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11821{
11822 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11823
11824 /* If the preemption-timer has expired, reinitialize the preemption timer on next VM-entry. */
11825 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
11826
11827 /* If there are any timer events pending, fall back to ring-3, otherwise resume guest execution. */
11828 PVM pVM = pVCpu->CTX_SUFF(pVM);
11829 bool fTimersPending = TMTimerPollBool(pVM, pVCpu);
11830 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPreemptTimer);
11831 return fTimersPending ? VINF_EM_RAW_TIMER_PENDING : VINF_SUCCESS;
11832}
11833
11834
11835/**
11836 * VM-exit handler for XSETBV (VMX_EXIT_XSETBV). Unconditional VM-exit.
11837 */
11838HMVMX_EXIT_DECL hmR0VmxExitXsetbv(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11839{
11840 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11841
11842 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11843 rc |= hmR0VmxSaveGuestRegsForIemExec(pVCpu, pMixedCtx, false /*fMemory*/, false /*fNeedRsp*/);
11844 rc |= hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
11845 AssertRCReturn(rc, rc);
11846
11847 VBOXSTRICTRC rcStrict = IEMExecDecodedXsetbv(pVCpu, pVmxTransient->cbInstr);
11848 HMCPU_CF_SET(pVCpu, rcStrict != VINF_IEM_RAISED_XCPT ? HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS : HM_CHANGED_ALL_GUEST);
11849
11850 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pMixedCtx->cr4 & X86_CR4_OSXSAVE) && pMixedCtx->aXcr[0] != ASMGetXcr0();
11851
11852 return rcStrict;
11853}
11854
11855
11856/**
11857 * VM-exit handler for INVPCID (VMX_EXIT_INVPCID). Conditional VM-exit.
11858 */
11859HMVMX_EXIT_DECL hmR0VmxExitInvpcid(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11860{
11861 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11862
11863 /* The guest should not invalidate the host CPU's TLBs, fallback to interpreter. */
11864 /** @todo implement EMInterpretInvpcid() */
11865 return VERR_EM_INTERPRETER;
11866}
11867
11868
11869/**
11870 * VM-exit handler for invalid-guest-state (VMX_EXIT_ERR_INVALID_GUEST_STATE).
11871 * Error VM-exit.
11872 */
11873HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrInvalidGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11874{
11875 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
11876 AssertRCReturn(rc, rc);
11877
11878 rc = hmR0VmxCheckVmcsCtls(pVCpu);
11879 AssertRCReturn(rc, rc);
11880
11881 uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVCpu->CTX_SUFF(pVM), pVCpu, pMixedCtx);
11882 NOREF(uInvalidReason);
11883
11884#ifdef VBOX_STRICT
11885 uint32_t uIntrState;
11886 RTHCUINTREG uHCReg;
11887 uint64_t u64Val;
11888 uint32_t u32Val;
11889
11890 rc = hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
11891 rc |= hmR0VmxReadEntryXcptErrorCodeVmcs(pVmxTransient);
11892 rc |= hmR0VmxReadEntryInstrLenVmcs(pVmxTransient);
11893 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &uIntrState);
11894 AssertRCReturn(rc, rc);
11895
11896 Log4(("uInvalidReason %u\n", uInvalidReason));
11897 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", pVmxTransient->uEntryIntInfo));
11898 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", pVmxTransient->uEntryXcptErrorCode));
11899 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %#RX32\n", pVmxTransient->cbEntryInstr));
11900 Log4(("VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE %#RX32\n", uIntrState));
11901
11902 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32Val); AssertRC(rc);
11903 Log4(("VMX_VMCS_GUEST_CR0 %#RX32\n", u32Val));
11904 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
11905 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
11906 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
11907 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
11908 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
11909 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
11910 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
11911 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
11912 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
11913 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
11914#else
11915 NOREF(pVmxTransient);
11916#endif
11917
11918 HMDumpRegs(pVCpu->CTX_SUFF(pVM), pVCpu, pMixedCtx);
11919 return VERR_VMX_INVALID_GUEST_STATE;
11920}
11921
11922
11923/**
11924 * VM-exit handler for VM-entry failure due to an MSR-load
11925 * (VMX_EXIT_ERR_MSR_LOAD). Error VM-exit.
11926 */
11927HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrMsrLoad(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11928{
11929 NOREF(pVmxTransient);
11930 AssertMsgFailed(("Unexpected MSR-load exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx)); NOREF(pMixedCtx);
11931 HMVMX_RETURN_UNEXPECTED_EXIT();
11932}
11933
11934
11935/**
11936 * VM-exit handler for VM-entry failure due to a machine-check event
11937 * (VMX_EXIT_ERR_MACHINE_CHECK). Error VM-exit.
11938 */
11939HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrMachineCheck(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11940{
11941 NOREF(pVmxTransient);
11942 AssertMsgFailed(("Unexpected machine-check event exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx)); NOREF(pMixedCtx);
11943 HMVMX_RETURN_UNEXPECTED_EXIT();
11944}
11945
11946
11947/**
11948 * VM-exit handler for all undefined reasons. Should never ever happen.. in
11949 * theory.
11950 */
11951HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrUndefined(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11952{
11953 AssertMsgFailed(("Huh!? Undefined VM-exit reason %d. pVCpu=%p pMixedCtx=%p\n", pVmxTransient->uExitReason, pVCpu, pMixedCtx));
11954 NOREF(pVCpu); NOREF(pMixedCtx); NOREF(pVmxTransient);
11955 return VERR_VMX_UNDEFINED_EXIT_CODE;
11956}
11957
11958
11959/**
11960 * VM-exit handler for XDTR (LGDT, SGDT, LIDT, SIDT) accesses
11961 * (VMX_EXIT_XDTR_ACCESS) and LDT and TR access (LLDT, LTR, SLDT, STR).
11962 * Conditional VM-exit.
11963 */
11964HMVMX_EXIT_DECL hmR0VmxExitXdtrAccess(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11965{
11966 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11967
11968 /* By default, we don't enable VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT. */
11969 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitXdtrAccess);
11970 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT)
11971 return VERR_EM_INTERPRETER;
11972 AssertMsgFailed(("Unexpected XDTR access. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
11973 HMVMX_RETURN_UNEXPECTED_EXIT();
11974}
11975
11976
11977/**
11978 * VM-exit handler for RDRAND (VMX_EXIT_RDRAND). Conditional VM-exit.
11979 */
11980HMVMX_EXIT_DECL hmR0VmxExitRdrand(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11981{
11982 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11983
11984 /* By default, we don't enable VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT. */
11985 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdrand);
11986 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT)
11987 return VERR_EM_INTERPRETER;
11988 AssertMsgFailed(("Unexpected RDRAND exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
11989 HMVMX_RETURN_UNEXPECTED_EXIT();
11990}
11991
11992
11993/**
11994 * VM-exit handler for RDMSR (VMX_EXIT_RDMSR).
11995 */
11996HMVMX_EXIT_DECL hmR0VmxExitRdmsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11997{
11998 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11999
12000 /* EMInterpretRdmsr() requires CR0, Eflags and SS segment register. */
12001 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
12002 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
12003 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
12004 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS))
12005 {
12006 rc |= hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
12007 rc |= hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
12008 }
12009 AssertRCReturn(rc, rc);
12010 Log4(("ecx=%#RX32\n", pMixedCtx->ecx));
12011
12012#ifdef VBOX_STRICT
12013 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
12014 {
12015 if ( hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, pMixedCtx->ecx)
12016 && pMixedCtx->ecx != MSR_K6_EFER)
12017 {
12018 AssertMsgFailed(("Unexpected RDMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n",
12019 pMixedCtx->ecx));
12020 HMVMX_RETURN_UNEXPECTED_EXIT();
12021 }
12022 if (hmR0VmxIsLazyGuestMsr(pVCpu, pMixedCtx->ecx))
12023 {
12024 VMXMSREXITREAD enmRead;
12025 VMXMSREXITWRITE enmWrite;
12026 int rc2 = hmR0VmxGetMsrPermission(pVCpu, pMixedCtx->ecx, &enmRead, &enmWrite);
12027 AssertRCReturn(rc2, rc2);
12028 if (enmRead == VMXMSREXIT_PASSTHRU_READ)
12029 {
12030 AssertMsgFailed(("Unexpected RDMSR for a passthru lazy-restore MSR. ecx=%#RX32\n", pMixedCtx->ecx));
12031 HMVMX_RETURN_UNEXPECTED_EXIT();
12032 }
12033 }
12034 }
12035#endif
12036
12037 PVM pVM = pVCpu->CTX_SUFF(pVM);
12038 rc = EMInterpretRdmsr(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
12039 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER,
12040 ("hmR0VmxExitRdmsr: failed, invalid error code %Rrc\n", rc));
12041 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
12042 if (RT_SUCCESS(rc))
12043 {
12044 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
12045 Assert(pVmxTransient->cbInstr == 2);
12046 }
12047 return rc;
12048}
12049
12050
12051/**
12052 * VM-exit handler for WRMSR (VMX_EXIT_WRMSR).
12053 */
12054HMVMX_EXIT_DECL hmR0VmxExitWrmsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12055{
12056 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12057 PVM pVM = pVCpu->CTX_SUFF(pVM);
12058 int rc = VINF_SUCCESS;
12059
12060 /* EMInterpretWrmsr() requires CR0, EFLAGS and SS segment register. */
12061 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
12062 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
12063 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
12064 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS))
12065 {
12066 rc |= hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
12067 rc |= hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
12068 }
12069 AssertRCReturn(rc, rc);
12070 Log4(("ecx=%#RX32 edx:eax=%#RX32:%#RX32\n", pMixedCtx->ecx, pMixedCtx->edx, pMixedCtx->eax));
12071
12072 rc = EMInterpretWrmsr(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
12073 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER, ("hmR0VmxExitWrmsr: failed, invalid error code %Rrc\n", rc));
12074 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
12075
12076 if (RT_SUCCESS(rc))
12077 {
12078 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
12079
12080 /* If this is an X2APIC WRMSR access, update the APIC state as well. */
12081 if ( pMixedCtx->ecx >= MSR_IA32_X2APIC_START
12082 && pMixedCtx->ecx <= MSR_IA32_X2APIC_END)
12083 {
12084 /* We've already saved the APIC related guest-state (TPR) in hmR0VmxPostRunGuest(). When full APIC register
12085 * virtualization is implemented we'll have to make sure APIC state is saved from the VMCS before
12086 EMInterpretWrmsr() changes it. */
12087 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
12088 }
12089 else if (pMixedCtx->ecx == MSR_IA32_TSC) /* Windows 7 does this during bootup. See @bugref{6398}. */
12090 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
12091 else if (pMixedCtx->ecx == MSR_K6_EFER)
12092 {
12093 /*
12094 * If the guest touches EFER we need to update the VM-Entry and VM-Exit controls as well,
12095 * even if it is -not- touching bits that cause paging mode changes (LMA/LME). We care about
12096 * the other bits as well, SCE and NXE. See @bugref{7368}.
12097 */
12098 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_EFER_MSR | HM_CHANGED_VMX_ENTRY_CTLS | HM_CHANGED_VMX_EXIT_CTLS);
12099 }
12100
12101 /* Update MSRs that are part of the VMCS and auto-load/store area when MSR-bitmaps are not supported. */
12102 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS))
12103 {
12104 switch (pMixedCtx->ecx)
12105 {
12106 case MSR_IA32_SYSENTER_CS: HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR); break;
12107 case MSR_IA32_SYSENTER_EIP: HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR); break;
12108 case MSR_IA32_SYSENTER_ESP: HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR); break;
12109 case MSR_K8_FS_BASE: /* no break */
12110 case MSR_K8_GS_BASE: HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS); break;
12111 case MSR_K6_EFER: /* already handled above */ break;
12112 default:
12113 {
12114 if (hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, pMixedCtx->ecx))
12115 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_AUTO_MSRS);
12116 else if (hmR0VmxIsLazyGuestMsr(pVCpu, pMixedCtx->ecx))
12117 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS);
12118 break;
12119 }
12120 }
12121 }
12122#ifdef VBOX_STRICT
12123 else
12124 {
12125 /* Paranoia. Validate that MSRs in the MSR-bitmaps with write-passthru are not intercepted. */
12126 switch (pMixedCtx->ecx)
12127 {
12128 case MSR_IA32_SYSENTER_CS:
12129 case MSR_IA32_SYSENTER_EIP:
12130 case MSR_IA32_SYSENTER_ESP:
12131 case MSR_K8_FS_BASE:
12132 case MSR_K8_GS_BASE:
12133 {
12134 AssertMsgFailed(("Unexpected WRMSR for an MSR in the VMCS. ecx=%#RX32\n", pMixedCtx->ecx));
12135 HMVMX_RETURN_UNEXPECTED_EXIT();
12136 }
12137
12138 /* Writes to MSRs in auto-load/store area/swapped MSRs, shouldn't cause VM-exits with MSR-bitmaps. */
12139 default:
12140 {
12141 if (hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, pMixedCtx->ecx))
12142 {
12143 /* EFER writes are always intercepted, see hmR0VmxLoadGuestMsrs(). */
12144 if (pMixedCtx->ecx != MSR_K6_EFER)
12145 {
12146 AssertMsgFailed(("Unexpected WRMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n",
12147 pMixedCtx->ecx));
12148 HMVMX_RETURN_UNEXPECTED_EXIT();
12149 }
12150 }
12151
12152 if (hmR0VmxIsLazyGuestMsr(pVCpu, pMixedCtx->ecx))
12153 {
12154 VMXMSREXITREAD enmRead;
12155 VMXMSREXITWRITE enmWrite;
12156 int rc2 = hmR0VmxGetMsrPermission(pVCpu, pMixedCtx->ecx, &enmRead, &enmWrite);
12157 AssertRCReturn(rc2, rc2);
12158 if (enmWrite == VMXMSREXIT_PASSTHRU_WRITE)
12159 {
12160 AssertMsgFailed(("Unexpected WRMSR for passthru, lazy-restore MSR. ecx=%#RX32\n", pMixedCtx->ecx));
12161 HMVMX_RETURN_UNEXPECTED_EXIT();
12162 }
12163 }
12164 break;
12165 }
12166 }
12167 }
12168#endif /* VBOX_STRICT */
12169 }
12170 return rc;
12171}
12172
12173
12174/**
12175 * VM-exit handler for PAUSE (VMX_EXIT_PAUSE). Conditional VM-exit.
12176 */
12177HMVMX_EXIT_DECL hmR0VmxExitPause(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12178{
12179 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12180
12181 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPause);
12182 return VINF_EM_RAW_INTERRUPT;
12183}
12184
12185
12186/**
12187 * VM-exit handler for when the TPR value is lowered below the specified
12188 * threshold (VMX_EXIT_TPR_BELOW_THRESHOLD). Conditional VM-exit.
12189 */
12190HMVMX_EXIT_NSRC_DECL hmR0VmxExitTprBelowThreshold(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12191{
12192 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12193 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW);
12194
12195 /*
12196 * The TPR has already been updated, see hmR0VMXPostRunGuest(). RIP is also updated as part of the VM-exit by VT-x. Update
12197 * the threshold in the VMCS, deliver the pending interrupt via hmR0VmxPreRunGuest()->hmR0VmxInjectPendingEvent() and
12198 * resume guest execution.
12199 */
12200 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
12201 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTprBelowThreshold);
12202 return VINF_SUCCESS;
12203}
12204
12205
12206/**
12207 * VM-exit handler for control-register accesses (VMX_EXIT_MOV_CRX). Conditional
12208 * VM-exit.
12209 *
12210 * @retval VINF_SUCCESS when guest execution can continue.
12211 * @retval VINF_PGM_CHANGE_MODE when shadow paging mode changed, back to ring-3.
12212 * @retval VINF_PGM_SYNC_CR3 CR3 sync is required, back to ring-3.
12213 * @retval VERR_EM_INTERPRETER when something unexpected happened, fallback to
12214 * interpreter.
12215 */
12216HMVMX_EXIT_DECL hmR0VmxExitMovCRx(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12217{
12218 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12219 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitMovCRx, y2);
12220 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
12221 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12222 AssertRCReturn(rc, rc);
12223
12224 RTGCUINTPTR const uExitQualification = pVmxTransient->uExitQualification;
12225 uint32_t const uAccessType = VMX_EXIT_QUALIFICATION_CRX_ACCESS(uExitQualification);
12226 PVM pVM = pVCpu->CTX_SUFF(pVM);
12227 VBOXSTRICTRC rcStrict;
12228 rc = hmR0VmxSaveGuestRegsForIemExec(pVCpu, pMixedCtx, false /*fMemory*/, true /*fNeedRsp*/);
12229 switch (uAccessType)
12230 {
12231 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_WRITE: /* MOV to CRx */
12232 {
12233 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
12234 AssertRCReturn(rc, rc);
12235
12236 rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, pVmxTransient->cbInstr,
12237 VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification),
12238 VMX_EXIT_QUALIFICATION_CRX_GENREG(uExitQualification));
12239 AssertMsg( rcStrict == VINF_SUCCESS || rcStrict == VINF_IEM_RAISED_XCPT || rcStrict == VINF_PGM_CHANGE_MODE
12240 || rcStrict == VINF_PGM_SYNC_CR3, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12241 switch (VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification))
12242 {
12243 case 0: /* CR0 */
12244 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
12245 Log4(("CRX CR0 write rcStrict=%Rrc CR0=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pMixedCtx->cr0));
12246 break;
12247 case 2: /* CR2 */
12248 /* Nothing to do here, CR2 it's not part of the VMCS. */
12249 break;
12250 case 3: /* CR3 */
12251 Assert(!pVM->hm.s.fNestedPaging || !CPUMIsGuestPagingEnabledEx(pMixedCtx) || pVCpu->hm.s.fUsingDebugLoop);
12252 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR3);
12253 Log4(("CRX CR3 write rcStrict=%Rrc CR3=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pMixedCtx->cr3));
12254 break;
12255 case 4: /* CR4 */
12256 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR4);
12257 Log4(("CRX CR4 write rc=%Rrc CR4=%#RX64 fLoadSaveGuestXcr0=%u\n",
12258 VBOXSTRICTRC_VAL(rcStrict), pMixedCtx->cr4, pVCpu->hm.s.fLoadSaveGuestXcr0));
12259 break;
12260 case 8: /* CR8 */
12261 Assert(!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW));
12262 /* CR8 contains the APIC TPR. Was updated by IEMExecDecodedMovCRxWrite(). */
12263 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
12264 break;
12265 default:
12266 AssertMsgFailed(("Invalid CRx register %#x\n", VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)));
12267 break;
12268 }
12269
12270 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxWrite[VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)]);
12271 break;
12272 }
12273
12274 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_READ: /* MOV from CRx */
12275 {
12276 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
12277 AssertRCReturn(rc, rc);
12278
12279 Assert( !pVM->hm.s.fNestedPaging
12280 || !CPUMIsGuestPagingEnabledEx(pMixedCtx)
12281 || pVCpu->hm.s.fUsingDebugLoop
12282 || VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification) != 3);
12283
12284 /* CR8 reads only cause a VM-exit when the TPR shadow feature isn't enabled. */
12285 Assert( VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification) != 8
12286 || !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW));
12287
12288 rcStrict = IEMExecDecodedMovCRxRead(pVCpu, pVmxTransient->cbInstr,
12289 VMX_EXIT_QUALIFICATION_CRX_GENREG(uExitQualification),
12290 VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification));
12291 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12292 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxRead[VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)]);
12293 Log4(("CRX CR%d Read access rcStrict=%Rrc\n", VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification),
12294 VBOXSTRICTRC_VAL(rcStrict)));
12295 break;
12296 }
12297
12298 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_CLTS: /* CLTS (Clear Task-Switch Flag in CR0) */
12299 {
12300 AssertRCReturn(rc, rc);
12301 rcStrict = IEMExecDecodedClts(pVCpu, pVmxTransient->cbInstr);
12302 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12303 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
12304 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitClts);
12305 Log4(("CRX CLTS rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
12306 break;
12307 }
12308
12309 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_LMSW: /* LMSW (Load Machine-Status Word into CR0) */
12310 {
12311 AssertRCReturn(rc, rc);
12312 rcStrict = IEMExecDecodedLmsw(pVCpu, pVmxTransient->cbInstr,
12313 VMX_EXIT_QUALIFICATION_CRX_LMSW_DATA(uExitQualification));
12314 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_IEM_RAISED_XCPT || rcStrict == VINF_PGM_CHANGE_MODE,
12315 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12316 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitLmsw);
12317 Log4(("CRX LMSW rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
12318 break;
12319 }
12320
12321 default:
12322 AssertMsgFailedReturn(("Invalid access-type in Mov CRx VM-exit qualification %#x\n", uAccessType),
12323 VERR_VMX_UNEXPECTED_EXCEPTION);
12324 }
12325
12326 HMCPU_CF_SET(pVCpu, rcStrict != VINF_IEM_RAISED_XCPT ? HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS : HM_CHANGED_ALL_GUEST);
12327 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitMovCRx, y2);
12328 NOREF(pVM);
12329 return rcStrict;
12330}
12331
12332
12333/**
12334 * VM-exit handler for I/O instructions (VMX_EXIT_IO_INSTR). Conditional
12335 * VM-exit.
12336 */
12337HMVMX_EXIT_DECL hmR0VmxExitIoInstr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12338{
12339 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12340 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitIO, y1);
12341
12342 int rc2 = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
12343 rc2 |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12344 rc2 |= hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
12345 rc2 |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx); /* Eflag checks in EMInterpretDisasCurrent(). */
12346 rc2 |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx); /* CR0 checks & PGM* in EMInterpretDisasCurrent(). */
12347 rc2 |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx); /* SELM checks in EMInterpretDisasCurrent(). */
12348 /* EFER also required for longmode checks in EMInterpretDisasCurrent(), but it's always up-to-date. */
12349 AssertRCReturn(rc2, rc2);
12350
12351 /* Refer Intel spec. 27-5. "Exit Qualifications for I/O Instructions" for the format. */
12352 uint32_t uIOPort = VMX_EXIT_QUALIFICATION_IO_PORT(pVmxTransient->uExitQualification);
12353 uint8_t uIOWidth = VMX_EXIT_QUALIFICATION_IO_WIDTH(pVmxTransient->uExitQualification);
12354 bool fIOWrite = ( VMX_EXIT_QUALIFICATION_IO_DIRECTION(pVmxTransient->uExitQualification)
12355 == VMX_EXIT_QUALIFICATION_IO_DIRECTION_OUT);
12356 bool fIOString = VMX_EXIT_QUALIFICATION_IO_IS_STRING(pVmxTransient->uExitQualification);
12357 bool fGstStepping = RT_BOOL(pMixedCtx->eflags.Bits.u1TF);
12358 bool fDbgStepping = pVCpu->hm.s.fSingleInstruction;
12359 AssertReturn(uIOWidth <= 3 && uIOWidth != 2, VERR_VMX_IPE_1);
12360
12361 /* I/O operation lookup arrays. */
12362 static uint32_t const s_aIOSizes[4] = { 1, 2, 0, 4 }; /* Size of the I/O accesses. */
12363 static uint32_t const s_aIOOpAnd[4] = { 0xff, 0xffff, 0, 0xffffffff }; /* AND masks for saving the result (in AL/AX/EAX). */
12364
12365 VBOXSTRICTRC rcStrict;
12366 uint32_t const cbValue = s_aIOSizes[uIOWidth];
12367 uint32_t const cbInstr = pVmxTransient->cbInstr;
12368 bool fUpdateRipAlready = false; /* ugly hack, should be temporary. */
12369 PVM pVM = pVCpu->CTX_SUFF(pVM);
12370 if (fIOString)
12371 {
12372#ifdef VBOX_WITH_2ND_IEM_STEP /* This used to gurus with debian 32-bit guest without NP (on ATA reads).
12373 See @bugref{5752#c158}. Should work now. */
12374 /*
12375 * INS/OUTS - I/O String instruction.
12376 *
12377 * Use instruction-information if available, otherwise fall back on
12378 * interpreting the instruction.
12379 */
12380 Log4(("CS:RIP=%04x:%08RX64 %#06x/%u %c str\n", pMixedCtx->cs.Sel, pMixedCtx->rip, uIOPort, cbValue,
12381 fIOWrite ? 'w' : 'r'));
12382 AssertReturn(pMixedCtx->dx == uIOPort, VERR_VMX_IPE_2);
12383 if (MSR_IA32_VMX_BASIC_INFO_VMCS_INS_OUTS(pVM->hm.s.vmx.Msrs.u64BasicInfo))
12384 {
12385 rc2 = hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
12386 /** @todo optimize this, IEM should request the additional state if it needs it (GP, PF, ++). */
12387 rc2 |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
12388 AssertRCReturn(rc2, rc2);
12389 AssertReturn(pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize <= 2, VERR_VMX_IPE_3);
12390 AssertCompile(IEMMODE_16BIT == 0 && IEMMODE_32BIT == 1 && IEMMODE_64BIT == 2);
12391 IEMMODE enmAddrMode = (IEMMODE)pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize;
12392 bool fRep = VMX_EXIT_QUALIFICATION_IO_IS_REP(pVmxTransient->uExitQualification);
12393 if (fIOWrite)
12394 {
12395 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, fRep, cbInstr,
12396 pVmxTransient->ExitInstrInfo.StrIo.iSegReg, true /*fIoChecked*/);
12397 }
12398 else
12399 {
12400 /*
12401 * The segment prefix for INS cannot be overridden and is always ES. We can safely assume X86_SREG_ES.
12402 * Hence "iSegReg" field is undefined in the instruction-information field in VT-x for INS.
12403 * See Intel Instruction spec. for "INS".
12404 * See Intel spec. Table 27-8 "Format of the VM-Exit Instruction-Information Field as Used for INS and OUTS".
12405 */
12406 rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, fRep, cbInstr, true /*fIoChecked*/);
12407 }
12408 }
12409 else
12410 {
12411 /** @todo optimize this, IEM should request the additional state if it needs it (GP, PF, ++). */
12412 rc2 = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
12413 AssertRCReturn(rc2, rc2);
12414 rcStrict = IEMExecOne(pVCpu);
12415 }
12416 /** @todo IEM needs to be setting these flags somehow. */
12417 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP);
12418 fUpdateRipAlready = true;
12419#else
12420 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
12421 rcStrict = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL /* pcbInstr */);
12422 if (RT_SUCCESS(rcStrict))
12423 {
12424 if (fIOWrite)
12425 {
12426 rcStrict = IOMInterpretOUTSEx(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), uIOPort, pDis->fPrefix,
12427 (DISCPUMODE)pDis->uAddrMode, cbValue);
12428 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
12429 }
12430 else
12431 {
12432 rcStrict = IOMInterpretINSEx(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), uIOPort, pDis->fPrefix,
12433 (DISCPUMODE)pDis->uAddrMode, cbValue);
12434 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
12435 }
12436 }
12437 else
12438 {
12439 AssertMsg(rcStrict == VERR_EM_INTERPRETER, ("rcStrict=%Rrc RIP=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict),
12440 pMixedCtx->rip));
12441 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
12442 }
12443#endif
12444 }
12445 else
12446 {
12447 /*
12448 * IN/OUT - I/O instruction.
12449 */
12450 Log4(("CS:RIP=%04x:%08RX64 %#06x/%u %c\n", pMixedCtx->cs.Sel, pMixedCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
12451 uint32_t const uAndVal = s_aIOOpAnd[uIOWidth];
12452 Assert(!VMX_EXIT_QUALIFICATION_IO_IS_REP(pVmxTransient->uExitQualification));
12453 if (fIOWrite)
12454 {
12455 rcStrict = IOMIOPortWrite(pVM, pVCpu, uIOPort, pMixedCtx->eax & uAndVal, cbValue);
12456 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
12457 }
12458 else
12459 {
12460 uint32_t u32Result = 0;
12461 rcStrict = IOMIOPortRead(pVM, pVCpu, uIOPort, &u32Result, cbValue);
12462 if (IOM_SUCCESS(rcStrict))
12463 {
12464 /* Save result of I/O IN instr. in AL/AX/EAX. */
12465 pMixedCtx->eax = (pMixedCtx->eax & ~uAndVal) | (u32Result & uAndVal);
12466 }
12467 else if (rcStrict == VINF_IOM_R3_IOPORT_READ)
12468 HMR0SavePendingIOPortRead(pVCpu, pMixedCtx->rip, pMixedCtx->rip + cbInstr, uIOPort, uAndVal, cbValue);
12469 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
12470 }
12471 }
12472
12473 if (IOM_SUCCESS(rcStrict))
12474 {
12475 if (!fUpdateRipAlready)
12476 {
12477 hmR0VmxAdvanceGuestRipBy(pVCpu, pMixedCtx, cbInstr);
12478 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP);
12479 }
12480
12481 /*
12482 * INS/OUTS with REP prefix updates RFLAGS, can be observed with triple-fault guru while booting Fedora 17 64-bit guest.
12483 * See Intel Instruction reference for REP/REPE/REPZ/REPNE/REPNZ.
12484 */
12485 if (fIOString)
12486 {
12487 /** @todo Single-step for INS/OUTS with REP prefix? */
12488 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RFLAGS);
12489 }
12490 else if ( !fDbgStepping
12491 && fGstStepping)
12492 {
12493 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
12494 }
12495
12496 /*
12497 * If any I/O breakpoints are armed, we need to check if one triggered
12498 * and take appropriate action.
12499 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
12500 */
12501 rc2 = hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
12502 AssertRCReturn(rc2, rc2);
12503
12504 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
12505 * execution engines about whether hyper BPs and such are pending. */
12506 uint32_t const uDr7 = pMixedCtx->dr[7];
12507 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
12508 && X86_DR7_ANY_RW_IO(uDr7)
12509 && (pMixedCtx->cr4 & X86_CR4_DE))
12510 || DBGFBpIsHwIoArmed(pVM)))
12511 {
12512 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
12513
12514 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
12515 VMMRZCallRing3Disable(pVCpu);
12516 HM_DISABLE_PREEMPT();
12517
12518 bool fIsGuestDbgActive = CPUMR0DebugStateMaybeSaveGuest(pVCpu, true /* fDr6 */);
12519
12520 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pMixedCtx, uIOPort, cbValue);
12521 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
12522 {
12523 /* Raise #DB. */
12524 if (fIsGuestDbgActive)
12525 ASMSetDR6(pMixedCtx->dr[6]);
12526 if (pMixedCtx->dr[7] != uDr7)
12527 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
12528
12529 hmR0VmxSetPendingXcptDB(pVCpu, pMixedCtx);
12530 }
12531 /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
12532 however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
12533 else if ( rcStrict2 != VINF_SUCCESS
12534 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
12535 rcStrict = rcStrict2;
12536 AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
12537
12538 HM_RESTORE_PREEMPT();
12539 VMMRZCallRing3Enable(pVCpu);
12540 }
12541 }
12542
12543#ifdef VBOX_STRICT
12544 if (rcStrict == VINF_IOM_R3_IOPORT_READ)
12545 Assert(!fIOWrite);
12546 else if (rcStrict == VINF_IOM_R3_IOPORT_WRITE || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE)
12547 Assert(fIOWrite);
12548 else
12549 {
12550#if 0 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
12551 * statuses, that the VMM device and some others may return. See
12552 * IOM_SUCCESS() for guidance. */
12553 AssertMsg( RT_FAILURE(rcStrict)
12554 || rcStrict == VINF_SUCCESS
12555 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
12556 || rcStrict == VINF_EM_DBG_BREAKPOINT
12557 || rcStrict == VINF_EM_RAW_GUEST_TRAP
12558 || rcStrict == VINF_EM_RAW_TO_R3
12559 || rcStrict == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12560#endif
12561 }
12562#endif
12563
12564 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitIO, y1);
12565 return rcStrict;
12566}
12567
12568
12569/**
12570 * VM-exit handler for task switches (VMX_EXIT_TASK_SWITCH). Unconditional
12571 * VM-exit.
12572 */
12573HMVMX_EXIT_DECL hmR0VmxExitTaskSwitch(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12574{
12575 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12576
12577 /* Check if this task-switch occurred while delivery an event through the guest IDT. */
12578 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
12579 AssertRCReturn(rc, rc);
12580 if (VMX_EXIT_QUALIFICATION_TASK_SWITCH_TYPE(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_TASK_SWITCH_TYPE_IDT)
12581 {
12582 rc = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
12583 AssertRCReturn(rc, rc);
12584 if (VMX_IDT_VECTORING_INFO_VALID(pVmxTransient->uIdtVectoringInfo))
12585 {
12586 uint32_t uIntType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
12587
12588 uint32_t uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
12589 bool fErrorCodeValid = VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVmxTransient->uIdtVectoringInfo);
12590
12591 /* Save it as a pending event and it'll be converted to a TRPM event on the way out to ring-3. */
12592 Assert(!pVCpu->hm.s.Event.fPending);
12593 pVCpu->hm.s.Event.fPending = true;
12594 pVCpu->hm.s.Event.u64IntInfo = pVmxTransient->uIdtVectoringInfo;
12595 rc = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
12596 AssertRCReturn(rc, rc);
12597 if (fErrorCodeValid)
12598 pVCpu->hm.s.Event.u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
12599 else
12600 pVCpu->hm.s.Event.u32ErrCode = 0;
12601 if ( uIntType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
12602 && uVector == X86_XCPT_PF)
12603 {
12604 pVCpu->hm.s.Event.GCPtrFaultAddress = pMixedCtx->cr2;
12605 }
12606
12607 Log4(("Pending event on TaskSwitch uIntType=%#x uVector=%#x\n", uIntType, uVector));
12608 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
12609 return VINF_EM_RAW_INJECT_TRPM_EVENT;
12610 }
12611 }
12612
12613 /* Fall back to the interpreter to emulate the task-switch. */
12614 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
12615 return VERR_EM_INTERPRETER;
12616}
12617
12618
12619/**
12620 * VM-exit handler for monitor-trap-flag (VMX_EXIT_MTF). Conditional VM-exit.
12621 */
12622HMVMX_EXIT_DECL hmR0VmxExitMtf(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12623{
12624 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12625 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG);
12626 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG;
12627 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
12628 AssertRCReturn(rc, rc);
12629 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMtf);
12630 return VINF_EM_DBG_STEPPED;
12631}
12632
12633
12634/**
12635 * VM-exit handler for APIC access (VMX_EXIT_APIC_ACCESS). Conditional VM-exit.
12636 */
12637HMVMX_EXIT_DECL hmR0VmxExitApicAccess(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12638{
12639 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12640
12641 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitApicAccess);
12642
12643 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
12644 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
12645 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
12646 {
12647 /* For some crazy guest, if an event delivery causes an APIC-access VM-exit, go to instruction emulation. */
12648 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
12649 {
12650 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
12651 return VERR_EM_INTERPRETER;
12652 }
12653 }
12654 else
12655 {
12656 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
12657 rcStrict1 = VINF_SUCCESS;
12658 return rcStrict1;
12659 }
12660
12661#if 0
12662 /** @todo Investigate if IOMMMIOPhysHandler() requires a lot of state, for now
12663 * just sync the whole thing. */
12664 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
12665#else
12666 /* Aggressive state sync. for now. */
12667 int rc = hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
12668 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
12669 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
12670#endif
12671 rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
12672 AssertRCReturn(rc, rc);
12673
12674 /* See Intel spec. 27-6 "Exit Qualifications for APIC-access VM-exits from Linear Accesses & Guest-Phyiscal Addresses" */
12675 uint32_t uAccessType = VMX_EXIT_QUALIFICATION_APIC_ACCESS_TYPE(pVmxTransient->uExitQualification);
12676 VBOXSTRICTRC rcStrict2;
12677 switch (uAccessType)
12678 {
12679 case VMX_APIC_ACCESS_TYPE_LINEAR_WRITE:
12680 case VMX_APIC_ACCESS_TYPE_LINEAR_READ:
12681 {
12682 AssertMsg( !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
12683 || VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification) != 0x80,
12684 ("hmR0VmxExitApicAccess: can't access TPR offset while using TPR shadowing.\n"));
12685
12686 RTGCPHYS GCPhys = pMixedCtx->msrApicBase; /* Always up-to-date, msrApicBase is not part of the VMCS. */
12687 GCPhys &= PAGE_BASE_GC_MASK;
12688 GCPhys += VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification);
12689 PVM pVM = pVCpu->CTX_SUFF(pVM);
12690 Log4(("ApicAccess uAccessType=%#x GCPhys=%#RGp Off=%#x\n", uAccessType, GCPhys,
12691 VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification)));
12692
12693 rcStrict2 = IOMMMIOPhysHandler(pVM, pVCpu,
12694 uAccessType == VMX_APIC_ACCESS_TYPE_LINEAR_READ ? 0 : X86_TRAP_PF_RW,
12695 CPUMCTX2CORE(pMixedCtx), GCPhys);
12696 Log4(("ApicAccess rcStrict2=%d\n", VBOXSTRICTRC_VAL(rcStrict2)));
12697 if ( rcStrict2 == VINF_SUCCESS
12698 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
12699 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
12700 {
12701 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
12702 | HM_CHANGED_GUEST_RSP
12703 | HM_CHANGED_GUEST_RFLAGS
12704 | HM_CHANGED_VMX_GUEST_APIC_STATE);
12705 rcStrict2 = VINF_SUCCESS;
12706 }
12707 break;
12708 }
12709
12710 default:
12711 Log4(("ApicAccess uAccessType=%#x\n", uAccessType));
12712 rcStrict2 = VINF_EM_RAW_EMULATE_INSTR;
12713 break;
12714 }
12715
12716 if (rcStrict2 != VINF_SUCCESS)
12717 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchApicAccessToR3);
12718 return rcStrict2;
12719}
12720
12721
12722/**
12723 * VM-exit handler for debug-register accesses (VMX_EXIT_MOV_DRX). Conditional
12724 * VM-exit.
12725 */
12726HMVMX_EXIT_DECL hmR0VmxExitMovDRx(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12727{
12728 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12729
12730 /* We should -not- get this VM-exit if the guest's debug registers were active. */
12731 if (pVmxTransient->fWasGuestDebugStateActive)
12732 {
12733 AssertMsgFailed(("Unexpected MOV DRx exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
12734 HMVMX_RETURN_UNEXPECTED_EXIT();
12735 }
12736
12737 if ( !pVCpu->hm.s.fSingleInstruction
12738 && !pVmxTransient->fWasHyperDebugStateActive)
12739 {
12740 Assert(!DBGFIsStepping(pVCpu));
12741 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_DB));
12742
12743 /* Don't intercept MOV DRx any more. */
12744 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT;
12745 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
12746 AssertRCReturn(rc, rc);
12747
12748 /* We're playing with the host CPU state here, make sure we can't preempt or longjmp. */
12749 VMMRZCallRing3Disable(pVCpu);
12750 HM_DISABLE_PREEMPT();
12751
12752 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
12753 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
12754 Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
12755
12756 HM_RESTORE_PREEMPT();
12757 VMMRZCallRing3Enable(pVCpu);
12758
12759#ifdef VBOX_WITH_STATISTICS
12760 rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
12761 AssertRCReturn(rc, rc);
12762 if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE)
12763 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
12764 else
12765 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
12766#endif
12767 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
12768 return VINF_SUCCESS;
12769 }
12770
12771 /*
12772 * EMInterpretDRx[Write|Read]() calls CPUMIsGuestIn64BitCode() which requires EFER, CS. EFER is always up-to-date.
12773 * Update the segment registers and DR7 from the CPU.
12774 */
12775 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
12776 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
12777 rc |= hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
12778 AssertRCReturn(rc, rc);
12779 Log4(("CS:RIP=%04x:%08RX64\n", pMixedCtx->cs.Sel, pMixedCtx->rip));
12780
12781 PVM pVM = pVCpu->CTX_SUFF(pVM);
12782 if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE)
12783 {
12784 rc = EMInterpretDRxWrite(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx),
12785 VMX_EXIT_QUALIFICATION_DRX_REGISTER(pVmxTransient->uExitQualification),
12786 VMX_EXIT_QUALIFICATION_DRX_GENREG(pVmxTransient->uExitQualification));
12787 if (RT_SUCCESS(rc))
12788 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
12789 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
12790 }
12791 else
12792 {
12793 rc = EMInterpretDRxRead(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx),
12794 VMX_EXIT_QUALIFICATION_DRX_GENREG(pVmxTransient->uExitQualification),
12795 VMX_EXIT_QUALIFICATION_DRX_REGISTER(pVmxTransient->uExitQualification));
12796 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
12797 }
12798
12799 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
12800 if (RT_SUCCESS(rc))
12801 {
12802 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
12803 AssertRCReturn(rc2, rc2);
12804 return VINF_SUCCESS;
12805 }
12806 return rc;
12807}
12808
12809
12810/**
12811 * VM-exit handler for EPT misconfiguration (VMX_EXIT_EPT_MISCONFIG).
12812 * Conditional VM-exit.
12813 */
12814HMVMX_EXIT_DECL hmR0VmxExitEptMisconfig(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12815{
12816 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12817 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
12818
12819 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
12820 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
12821 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
12822 {
12823 /* If event delivery causes an EPT misconfig (MMIO), go back to instruction emulation as otherwise
12824 injecting the original pending event would most likely cause the same EPT misconfig VM-exit. */
12825 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
12826 {
12827 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
12828 return VERR_EM_INTERPRETER;
12829 }
12830 }
12831 else
12832 {
12833 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
12834 rcStrict1 = VINF_SUCCESS;
12835 return rcStrict1;
12836 }
12837
12838 RTGCPHYS GCPhys = 0;
12839 int rc = VMXReadVmcs64(VMX_VMCS64_EXIT_GUEST_PHYS_ADDR_FULL, &GCPhys);
12840
12841#if 0
12842 rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx); /** @todo Can we do better? */
12843#else
12844 /* Aggressive state sync. for now. */
12845 rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
12846 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
12847 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
12848#endif
12849 AssertRCReturn(rc, rc);
12850
12851 /*
12852 * If we succeed, resume guest execution.
12853 * If we fail in interpreting the instruction because we couldn't get the guest physical address
12854 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
12855 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
12856 * weird case. See @bugref{6043}.
12857 */
12858 PVM pVM = pVCpu->CTX_SUFF(pVM);
12859 VBOXSTRICTRC rcStrict2 = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, PGMMODE_EPT, CPUMCTX2CORE(pMixedCtx), GCPhys, UINT32_MAX);
12860 Log4(("EPT misconfig at %#RGp RIP=%#RX64 rc=%Rrc\n", GCPhys, pMixedCtx->rip, VBOXSTRICTRC_VAL(rcStrict2)));
12861 if ( rcStrict2 == VINF_SUCCESS
12862 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
12863 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
12864 {
12865 /* Successfully handled MMIO operation. */
12866 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
12867 | HM_CHANGED_GUEST_RSP
12868 | HM_CHANGED_GUEST_RFLAGS
12869 | HM_CHANGED_VMX_GUEST_APIC_STATE);
12870 return VINF_SUCCESS;
12871 }
12872 return rcStrict2;
12873}
12874
12875
12876/**
12877 * VM-exit handler for EPT violation (VMX_EXIT_EPT_VIOLATION). Conditional
12878 * VM-exit.
12879 */
12880HMVMX_EXIT_DECL hmR0VmxExitEptViolation(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12881{
12882 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12883 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
12884
12885 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
12886 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
12887 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
12888 {
12889 /* In the unlikely case that the EPT violation happened as a result of delivering an event, log it. */
12890 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
12891 Log4(("EPT violation with an event pending u64IntInfo=%#RX64\n", pVCpu->hm.s.Event.u64IntInfo));
12892 }
12893 else
12894 {
12895 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
12896 rcStrict1 = VINF_SUCCESS;
12897 return rcStrict1;
12898 }
12899
12900 RTGCPHYS GCPhys = 0;
12901 int rc = VMXReadVmcs64(VMX_VMCS64_EXIT_GUEST_PHYS_ADDR_FULL, &GCPhys);
12902 rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
12903#if 0
12904 rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx); /** @todo Can we do better? */
12905#else
12906 /* Aggressive state sync. for now. */
12907 rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
12908 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
12909 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
12910#endif
12911 AssertRCReturn(rc, rc);
12912
12913 /* Intel spec. Table 27-7 "Exit Qualifications for EPT violations". */
12914 AssertMsg(((pVmxTransient->uExitQualification >> 7) & 3) != 2, ("%#RX64", pVmxTransient->uExitQualification));
12915
12916 RTGCUINT uErrorCode = 0;
12917 if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_INSTR_FETCH)
12918 uErrorCode |= X86_TRAP_PF_ID;
12919 if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_DATA_WRITE)
12920 uErrorCode |= X86_TRAP_PF_RW;
12921 if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_ENTRY_PRESENT)
12922 uErrorCode |= X86_TRAP_PF_P;
12923
12924 TRPMAssertXcptPF(pVCpu, GCPhys, uErrorCode);
12925
12926 Log4(("EPT violation %#x at %#RX64 ErrorCode %#x CS:RIP=%04x:%08RX64\n", pVmxTransient->uExitQualification, GCPhys,
12927 uErrorCode, pMixedCtx->cs.Sel, pMixedCtx->rip));
12928
12929 /* Handle the pagefault trap for the nested shadow table. */
12930 PVM pVM = pVCpu->CTX_SUFF(pVM);
12931 VBOXSTRICTRC rcStrict2 = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, PGMMODE_EPT, uErrorCode, CPUMCTX2CORE(pMixedCtx), GCPhys);
12932 TRPMResetTrap(pVCpu);
12933
12934 /* Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}. */
12935 if ( rcStrict2 == VINF_SUCCESS
12936 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
12937 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
12938 {
12939 /* Successfully synced our nested page tables. */
12940 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf);
12941 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
12942 | HM_CHANGED_GUEST_RSP
12943 | HM_CHANGED_GUEST_RFLAGS);
12944 return VINF_SUCCESS;
12945 }
12946
12947 Log4(("EPT return to ring-3 rcStrict2=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
12948 return rcStrict2;
12949}
12950
12951/** @} */
12952
12953/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-= */
12954/* -=-=-=-=-=-=-=-=-=- VM-exit Exception Handlers -=-=-=-=-=-=-=-=-=-=- */
12955/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-= */
12956
12957/** @name VM-exit exception handlers.
12958 * @{
12959 */
12960
12961/**
12962 * VM-exit exception handler for \#MF (Math Fault: floating point exception).
12963 */
12964static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12965{
12966 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
12967 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
12968
12969 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
12970 AssertRCReturn(rc, rc);
12971
12972 if (!(pMixedCtx->cr0 & X86_CR0_NE))
12973 {
12974 /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
12975 rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13, 1, 0 /* uTagSrc */);
12976
12977 /** @todo r=ramshankar: The Intel spec. does -not- specify that this VM-exit
12978 * provides VM-exit instruction length. If this causes problem later,
12979 * disassemble the instruction like it's done on AMD-V. */
12980 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
12981 AssertRCReturn(rc2, rc2);
12982 return rc;
12983 }
12984
12985 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
12986 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
12987 return rc;
12988}
12989
12990
12991/**
12992 * VM-exit exception handler for \#BP (Breakpoint exception).
12993 */
12994static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12995{
12996 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
12997 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
12998
12999 /** @todo Try optimize this by not saving the entire guest state unless
13000 * really needed. */
13001 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
13002 AssertRCReturn(rc, rc);
13003
13004 PVM pVM = pVCpu->CTX_SUFF(pVM);
13005 rc = DBGFRZTrap03Handler(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
13006 if (rc == VINF_EM_RAW_GUEST_TRAP)
13007 {
13008 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13009 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13010 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13011 AssertRCReturn(rc, rc);
13012
13013 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13014 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13015 }
13016
13017 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_EM_DBG_BREAKPOINT);
13018 return rc;
13019}
13020
13021
13022/**
13023 * VM-exit exception handler for \#AC (alignment check exception).
13024 */
13025static int hmR0VmxExitXcptAC(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13026{
13027 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13028
13029 /*
13030 * Re-inject it. We'll detect any nesting before getting here.
13031 */
13032 int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13033 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13034 AssertRCReturn(rc, rc);
13035 Assert(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO);
13036
13037 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13038 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13039 return VINF_SUCCESS;
13040}
13041
13042
13043/**
13044 * VM-exit exception handler for \#DB (Debug exception).
13045 */
13046static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13047{
13048 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13049 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
13050 Log6(("XcptDB\n"));
13051
13052 /*
13053 * Get the DR6-like values from the VM-exit qualification and pass it to DBGF
13054 * for processing.
13055 */
13056 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
13057 AssertRCReturn(rc, rc);
13058
13059 /* Refer Intel spec. Table 27-1. "Exit Qualifications for debug exceptions" for the format. */
13060 uint64_t uDR6 = X86_DR6_INIT_VAL;
13061 uDR6 |= ( pVmxTransient->uExitQualification
13062 & (X86_DR6_B0 | X86_DR6_B1 | X86_DR6_B2 | X86_DR6_B3 | X86_DR6_BD | X86_DR6_BS));
13063
13064 rc = DBGFRZTrap01Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pMixedCtx), uDR6, pVCpu->hm.s.fSingleInstruction);
13065 if (rc == VINF_EM_RAW_GUEST_TRAP)
13066 {
13067 /*
13068 * The exception was for the guest. Update DR6, DR7.GD and
13069 * IA32_DEBUGCTL.LBR before forwarding it.
13070 * (See Intel spec. 27.1 "Architectural State before a VM-Exit".)
13071 */
13072 VMMRZCallRing3Disable(pVCpu);
13073 HM_DISABLE_PREEMPT();
13074
13075 pMixedCtx->dr[6] &= ~X86_DR6_B_MASK;
13076 pMixedCtx->dr[6] |= uDR6;
13077 if (CPUMIsGuestDebugStateActive(pVCpu))
13078 ASMSetDR6(pMixedCtx->dr[6]);
13079
13080 HM_RESTORE_PREEMPT();
13081 VMMRZCallRing3Enable(pVCpu);
13082
13083 rc = hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
13084 AssertRCReturn(rc, rc);
13085
13086 /* X86_DR7_GD will be cleared if DRx accesses should be trapped inside the guest. */
13087 pMixedCtx->dr[7] &= ~X86_DR7_GD;
13088
13089 /* Paranoia. */
13090 pMixedCtx->dr[7] &= ~X86_DR7_RAZ_MASK;
13091 pMixedCtx->dr[7] |= X86_DR7_RA1_MASK;
13092
13093 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, (uint32_t)pMixedCtx->dr[7]);
13094 AssertRCReturn(rc, rc);
13095
13096 /*
13097 * Raise #DB in the guest.
13098 *
13099 * It is important to reflect what the VM-exit gave us (preserving the interruption-type) rather than use
13100 * hmR0VmxSetPendingXcptDB() as the #DB could've been raised while executing ICEBP and not the 'normal' #DB.
13101 * Thus it -may- trigger different handling in the CPU (like skipped DPL checks). See @bugref{6398}.
13102 *
13103 * Since ICEBP isn't documented on Intel, see AMD spec. 15.20 "Event Injection".
13104 */
13105 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13106 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13107 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13108 AssertRCReturn(rc, rc);
13109 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13110 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13111 return VINF_SUCCESS;
13112 }
13113
13114 /*
13115 * Not a guest trap, must be a hypervisor related debug event then.
13116 * Update DR6 in case someone is interested in it.
13117 */
13118 AssertMsg(rc == VINF_EM_DBG_STEPPED || rc == VINF_EM_DBG_BREAKPOINT, ("%Rrc\n", rc));
13119 AssertReturn(pVmxTransient->fWasHyperDebugStateActive, VERR_HM_IPE_5);
13120 CPUMSetHyperDR6(pVCpu, uDR6);
13121
13122 return rc;
13123}
13124
13125
13126/**
13127 * VM-exit exception handler for \#NM (Device-not-available exception: floating
13128 * point exception).
13129 */
13130static int hmR0VmxExitXcptNM(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13131{
13132 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13133
13134 /* We require CR0 and EFER. EFER is always up-to-date. */
13135 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
13136 AssertRCReturn(rc, rc);
13137
13138 /* We're playing with the host CPU state here, have to disable preemption or longjmp. */
13139 VMMRZCallRing3Disable(pVCpu);
13140 HM_DISABLE_PREEMPT();
13141
13142 /* If the guest FPU was active at the time of the #NM exit, then it's a guest fault. */
13143 if (pVmxTransient->fWasGuestFPUStateActive)
13144 {
13145 rc = VINF_EM_RAW_GUEST_TRAP;
13146 Assert(CPUMIsGuestFPUStateActive(pVCpu) || HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0));
13147 }
13148 else
13149 {
13150#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
13151 Assert(!pVmxTransient->fWasGuestFPUStateActive || pVCpu->hm.s.fUsingDebugLoop);
13152#endif
13153 rc = CPUMR0Trap07Handler(pVCpu->CTX_SUFF(pVM), pVCpu);
13154 Assert( rc == VINF_EM_RAW_GUEST_TRAP
13155 || ((rc == VINF_SUCCESS || rc == VINF_CPUM_HOST_CR0_MODIFIED) && CPUMIsGuestFPUStateActive(pVCpu)));
13156 if (rc == VINF_CPUM_HOST_CR0_MODIFIED)
13157 HMCPU_CF_SET(pVCpu, HM_CHANGED_HOST_CONTEXT);
13158 }
13159
13160 HM_RESTORE_PREEMPT();
13161 VMMRZCallRing3Enable(pVCpu);
13162
13163 if (rc == VINF_SUCCESS || rc == VINF_CPUM_HOST_CR0_MODIFIED)
13164 {
13165 /* Guest FPU state was activated, we'll want to change CR0 FPU intercepts before the next VM-reentry. */
13166 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
13167 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowNM);
13168 pVCpu->hm.s.fPreloadGuestFpu = true;
13169 }
13170 else
13171 {
13172 /* Forward #NM to the guest. */
13173 Assert(rc == VINF_EM_RAW_GUEST_TRAP);
13174 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13175 AssertRCReturn(rc, rc);
13176 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13177 pVmxTransient->cbInstr, 0 /* error code */, 0 /* GCPtrFaultAddress */);
13178 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
13179 }
13180
13181 return VINF_SUCCESS;
13182}
13183
13184
13185/**
13186 * VM-exit exception handler for \#GP (General-protection exception).
13187 *
13188 * @remarks Requires pVmxTransient->uExitIntInfo to be up-to-date.
13189 */
13190static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13191{
13192 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13193 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
13194
13195 int rc;
13196 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
13197 { /* likely */ }
13198 else
13199 {
13200#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
13201 Assert(pVCpu->hm.s.fUsingDebugLoop);
13202#endif
13203 /* If the guest is not in real-mode or we have unrestricted execution support, reflect #GP to the guest. */
13204 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13205 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13206 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13207 rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
13208 AssertRCReturn(rc, rc);
13209 Log4(("#GP Gst: CS:RIP %04x:%08RX64 ErrorCode=%#x CR0=%#RX64 CPL=%u TR=%#04x\n", pMixedCtx->cs.Sel, pMixedCtx->rip,
13210 pVmxTransient->uExitIntErrorCode, pMixedCtx->cr0, CPUMGetGuestCPL(pVCpu), pMixedCtx->tr.Sel));
13211 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13212 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13213 return rc;
13214 }
13215
13216 Assert(CPUMIsGuestInRealModeEx(pMixedCtx));
13217 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest);
13218
13219 /* EMInterpretDisasCurrent() requires a lot of the state, save the entire state. */
13220 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
13221 AssertRCReturn(rc, rc);
13222
13223 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
13224 uint32_t cbOp = 0;
13225 PVM pVM = pVCpu->CTX_SUFF(pVM);
13226 bool fDbgStepping = pVCpu->hm.s.fSingleInstruction;
13227 rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
13228 if (RT_SUCCESS(rc))
13229 {
13230 rc = VINF_SUCCESS;
13231 Assert(cbOp == pDis->cbInstr);
13232 Log4(("#GP Disas OpCode=%u CS:EIP %04x:%04RX64\n", pDis->pCurInstr->uOpcode, pMixedCtx->cs.Sel, pMixedCtx->rip));
13233 switch (pDis->pCurInstr->uOpcode)
13234 {
13235 case OP_CLI:
13236 {
13237 pMixedCtx->eflags.Bits.u1IF = 0;
13238 pMixedCtx->eflags.Bits.u1RF = 0;
13239 pMixedCtx->rip += pDis->cbInstr;
13240 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13241 if ( !fDbgStepping
13242 && pMixedCtx->eflags.Bits.u1TF)
13243 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
13244 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCli);
13245 break;
13246 }
13247
13248 case OP_STI:
13249 {
13250 bool fOldIF = pMixedCtx->eflags.Bits.u1IF;
13251 pMixedCtx->eflags.Bits.u1IF = 1;
13252 pMixedCtx->eflags.Bits.u1RF = 0;
13253 pMixedCtx->rip += pDis->cbInstr;
13254 if (!fOldIF)
13255 {
13256 EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
13257 Assert(VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS));
13258 }
13259 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13260 if ( !fDbgStepping
13261 && pMixedCtx->eflags.Bits.u1TF)
13262 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
13263 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitSti);
13264 break;
13265 }
13266
13267 case OP_HLT:
13268 {
13269 rc = VINF_EM_HALT;
13270 pMixedCtx->rip += pDis->cbInstr;
13271 pMixedCtx->eflags.Bits.u1RF = 0;
13272 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13273 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
13274 break;
13275 }
13276
13277 case OP_POPF:
13278 {
13279 Log4(("POPF CS:EIP %04x:%04RX64\n", pMixedCtx->cs.Sel, pMixedCtx->rip));
13280 uint32_t cbParm;
13281 uint32_t uMask;
13282 bool fGstStepping = RT_BOOL(pMixedCtx->eflags.Bits.u1TF);
13283 if (pDis->fPrefix & DISPREFIX_OPSIZE)
13284 {
13285 cbParm = 4;
13286 uMask = 0xffffffff;
13287 }
13288 else
13289 {
13290 cbParm = 2;
13291 uMask = 0xffff;
13292 }
13293
13294 /* Get the stack pointer & pop the contents of the stack onto Eflags. */
13295 RTGCPTR GCPtrStack = 0;
13296 X86EFLAGS Eflags;
13297 rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), pMixedCtx->esp & uMask, SELMTOFLAT_FLAGS_CPL0,
13298 &GCPtrStack);
13299 if (RT_SUCCESS(rc))
13300 {
13301 Assert(sizeof(Eflags.u32) >= cbParm);
13302 Eflags.u32 = 0;
13303 rc = VBOXSTRICTRC_TODO(PGMPhysRead(pVM, (RTGCPHYS)GCPtrStack, &Eflags.u32, cbParm, PGMACCESSORIGIN_HM));
13304 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc)); /** @todo allow strict return codes here */
13305 }
13306 if (RT_FAILURE(rc))
13307 {
13308 rc = VERR_EM_INTERPRETER;
13309 break;
13310 }
13311 Log4(("POPF %#x -> %#RX64 mask=%#x RIP=%#RX64\n", Eflags.u, pMixedCtx->rsp, uMask, pMixedCtx->rip));
13312 pMixedCtx->eflags.u32 = (pMixedCtx->eflags.u32 & ~((X86_EFL_POPF_BITS & uMask) | X86_EFL_RF))
13313 | (Eflags.u32 & X86_EFL_POPF_BITS & uMask);
13314 pMixedCtx->esp += cbParm;
13315 pMixedCtx->esp &= uMask;
13316 pMixedCtx->rip += pDis->cbInstr;
13317 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
13318 | HM_CHANGED_GUEST_RSP
13319 | HM_CHANGED_GUEST_RFLAGS);
13320 /* Generate a pending-debug exception when the guest stepping over POPF regardless of how
13321 POPF restores EFLAGS.TF. */
13322 if ( !fDbgStepping
13323 && fGstStepping)
13324 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
13325 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPopf);
13326 break;
13327 }
13328
13329 case OP_PUSHF:
13330 {
13331 uint32_t cbParm;
13332 uint32_t uMask;
13333 if (pDis->fPrefix & DISPREFIX_OPSIZE)
13334 {
13335 cbParm = 4;
13336 uMask = 0xffffffff;
13337 }
13338 else
13339 {
13340 cbParm = 2;
13341 uMask = 0xffff;
13342 }
13343
13344 /* Get the stack pointer & push the contents of eflags onto the stack. */
13345 RTGCPTR GCPtrStack = 0;
13346 rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), (pMixedCtx->esp - cbParm) & uMask,
13347 SELMTOFLAT_FLAGS_CPL0, &GCPtrStack);
13348 if (RT_FAILURE(rc))
13349 {
13350 rc = VERR_EM_INTERPRETER;
13351 break;
13352 }
13353 X86EFLAGS Eflags = pMixedCtx->eflags;
13354 /* The RF & VM bits are cleared on image stored on stack; see Intel Instruction reference for PUSHF. */
13355 Eflags.Bits.u1RF = 0;
13356 Eflags.Bits.u1VM = 0;
13357
13358 rc = VBOXSTRICTRC_TODO(PGMPhysWrite(pVM, (RTGCPHYS)GCPtrStack, &Eflags.u, cbParm, PGMACCESSORIGIN_HM));
13359 if (RT_UNLIKELY(rc != VINF_SUCCESS))
13360 {
13361 AssertMsgFailed(("%Rrc\n", rc)); /** @todo allow strict return codes here */
13362 rc = VERR_EM_INTERPRETER;
13363 break;
13364 }
13365 Log4(("PUSHF %#x -> %#RGv\n", Eflags.u, GCPtrStack));
13366 pMixedCtx->esp -= cbParm;
13367 pMixedCtx->esp &= uMask;
13368 pMixedCtx->rip += pDis->cbInstr;
13369 pMixedCtx->eflags.Bits.u1RF = 0;
13370 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
13371 | HM_CHANGED_GUEST_RSP
13372 | HM_CHANGED_GUEST_RFLAGS);
13373 if ( !fDbgStepping
13374 && pMixedCtx->eflags.Bits.u1TF)
13375 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
13376 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPushf);
13377 break;
13378 }
13379
13380 case OP_IRET:
13381 {
13382 /** @todo Handle 32-bit operand sizes and check stack limits. See Intel
13383 * instruction reference. */
13384 RTGCPTR GCPtrStack = 0;
13385 uint32_t uMask = 0xffff;
13386 bool fGstStepping = RT_BOOL(pMixedCtx->eflags.Bits.u1TF);
13387 uint16_t aIretFrame[3];
13388 if (pDis->fPrefix & (DISPREFIX_OPSIZE | DISPREFIX_ADDRSIZE))
13389 {
13390 rc = VERR_EM_INTERPRETER;
13391 break;
13392 }
13393 rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), pMixedCtx->esp & uMask, SELMTOFLAT_FLAGS_CPL0,
13394 &GCPtrStack);
13395 if (RT_SUCCESS(rc))
13396 {
13397 rc = VBOXSTRICTRC_TODO(PGMPhysRead(pVM, (RTGCPHYS)GCPtrStack, &aIretFrame[0], sizeof(aIretFrame),
13398 PGMACCESSORIGIN_HM));
13399 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc)); /** @todo allow strict return codes here */
13400 }
13401 if (RT_FAILURE(rc))
13402 {
13403 rc = VERR_EM_INTERPRETER;
13404 break;
13405 }
13406 pMixedCtx->eip = 0;
13407 pMixedCtx->ip = aIretFrame[0];
13408 pMixedCtx->cs.Sel = aIretFrame[1];
13409 pMixedCtx->cs.ValidSel = aIretFrame[1];
13410 pMixedCtx->cs.u64Base = (uint64_t)pMixedCtx->cs.Sel << 4;
13411 pMixedCtx->eflags.u32 = (pMixedCtx->eflags.u32 & ((UINT32_C(0xffff0000) | X86_EFL_1) & ~X86_EFL_RF))
13412 | (aIretFrame[2] & X86_EFL_POPF_BITS & uMask);
13413 pMixedCtx->sp += sizeof(aIretFrame);
13414 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
13415 | HM_CHANGED_GUEST_SEGMENT_REGS
13416 | HM_CHANGED_GUEST_RSP
13417 | HM_CHANGED_GUEST_RFLAGS);
13418 /* Generate a pending-debug exception when stepping over IRET regardless of how IRET modifies EFLAGS.TF. */
13419 if ( !fDbgStepping
13420 && fGstStepping)
13421 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
13422 Log4(("IRET %#RX32 to %04x:%04x\n", GCPtrStack, pMixedCtx->cs.Sel, pMixedCtx->ip));
13423 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIret);
13424 break;
13425 }
13426
13427 case OP_INT:
13428 {
13429 uint16_t uVector = pDis->Param1.uValue & 0xff;
13430 hmR0VmxSetPendingIntN(pVCpu, pMixedCtx, uVector, pDis->cbInstr);
13431 /* INT clears EFLAGS.TF, we must not set any pending debug exceptions here. */
13432 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInt);
13433 break;
13434 }
13435
13436 case OP_INTO:
13437 {
13438 if (pMixedCtx->eflags.Bits.u1OF)
13439 {
13440 hmR0VmxSetPendingXcptOF(pVCpu, pMixedCtx, pDis->cbInstr);
13441 /* INTO clears EFLAGS.TF, we must not set any pending debug exceptions here. */
13442 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInt);
13443 }
13444 else
13445 {
13446 pMixedCtx->eflags.Bits.u1RF = 0;
13447 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RFLAGS);
13448 }
13449 break;
13450 }
13451
13452 default:
13453 {
13454 pMixedCtx->eflags.Bits.u1RF = 0; /* This is correct most of the time... */
13455 VBOXSTRICTRC rc2 = EMInterpretInstructionDisasState(pVCpu, pDis, CPUMCTX2CORE(pMixedCtx), 0 /* pvFault */,
13456 EMCODETYPE_SUPERVISOR);
13457 rc = VBOXSTRICTRC_VAL(rc2);
13458 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
13459 /** @todo We have to set pending-debug exceptions here when the guest is
13460 * single-stepping depending on the instruction that was interpreted. */
13461 Log4(("#GP rc=%Rrc\n", rc));
13462 break;
13463 }
13464 }
13465 }
13466 else
13467 rc = VERR_EM_INTERPRETER;
13468
13469 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_EM_HALT,
13470 ("#GP Unexpected rc=%Rrc\n", rc));
13471 return rc;
13472}
13473
13474
13475/**
13476 * VM-exit exception handler wrapper for generic exceptions. Simply re-injects
13477 * the exception reported in the VMX transient structure back into the VM.
13478 *
13479 * @remarks Requires uExitIntInfo in the VMX transient structure to be
13480 * up-to-date.
13481 */
13482static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13483{
13484 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13485#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
13486 Assert(pVCpu->hm.s.fUsingDebugLoop);
13487#endif
13488
13489 /* Re-inject the exception into the guest. This cannot be a double-fault condition which would have been handled in
13490 hmR0VmxCheckExitDueToEventDelivery(). */
13491 int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13492 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13493 AssertRCReturn(rc, rc);
13494 Assert(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO);
13495
13496#ifdef DEBUG_ramshankar
13497 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
13498 uint8_t uVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVmxTransient->uExitIntInfo);
13499 Log(("hmR0VmxExitXcptGeneric: Reinjecting Xcpt. uVector=%#x cs:rip=%#04x:%#RX64\n", uVector, pCtx->cs.Sel, pCtx->rip));
13500#endif
13501
13502 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13503 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13504 return VINF_SUCCESS;
13505}
13506
13507
13508/**
13509 * VM-exit exception handler for \#PF (Page-fault exception).
13510 */
13511static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13512{
13513 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13514 PVM pVM = pVCpu->CTX_SUFF(pVM);
13515 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
13516 rc |= hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13517 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13518 AssertRCReturn(rc, rc);
13519
13520 if (!pVM->hm.s.fNestedPaging)
13521 { /* likely */ }
13522 else
13523 {
13524#if !defined(HMVMX_ALWAYS_TRAP_ALL_XCPTS) && !defined(HMVMX_ALWAYS_TRAP_PF)
13525 Assert(pVCpu->hm.s.fUsingDebugLoop);
13526#endif
13527 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
13528 if (RT_LIKELY(!pVmxTransient->fVectoringDoublePF))
13529 {
13530 pMixedCtx->cr2 = pVmxTransient->uExitQualification; /* Update here in case we go back to ring-3 before injection. */
13531 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13532 0 /* cbInstr */, pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQualification);
13533 }
13534 else
13535 {
13536 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
13537 hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
13538 Log4(("Pending #DF due to vectoring #PF. NP\n"));
13539 }
13540 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
13541 return rc;
13542 }
13543
13544 /* If it's a vectoring #PF, emulate injecting the original event injection as PGMTrap0eHandler() is incapable
13545 of differentiating between instruction emulation and event injection that caused a #PF. See @bugref{6607}. */
13546 if (pVmxTransient->fVectoringPF)
13547 {
13548 Assert(pVCpu->hm.s.Event.fPending);
13549 return VINF_EM_RAW_INJECT_TRPM_EVENT;
13550 }
13551
13552 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
13553 AssertRCReturn(rc, rc);
13554
13555 Log4(("#PF: cr2=%#RX64 cs:rip=%#04x:%#RX64 uErrCode %#RX32 cr3=%#RX64\n", pVmxTransient->uExitQualification,
13556 pMixedCtx->cs.Sel, pMixedCtx->rip, pVmxTransient->uExitIntErrorCode, pMixedCtx->cr3));
13557
13558 TRPMAssertXcptPF(pVCpu, pVmxTransient->uExitQualification, (RTGCUINT)pVmxTransient->uExitIntErrorCode);
13559 rc = PGMTrap0eHandler(pVCpu, pVmxTransient->uExitIntErrorCode, CPUMCTX2CORE(pMixedCtx),
13560 (RTGCPTR)pVmxTransient->uExitQualification);
13561
13562 Log4(("#PF: rc=%Rrc\n", rc));
13563 if (rc == VINF_SUCCESS)
13564 {
13565#if 0
13566 /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
13567 /** @todo this isn't quite right, what if guest does lgdt with some MMIO
13568 * memory? We don't update the whole state here... */
13569 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
13570 | HM_CHANGED_GUEST_RSP
13571 | HM_CHANGED_GUEST_RFLAGS
13572 | HM_CHANGED_VMX_GUEST_APIC_STATE);
13573#else
13574 /*
13575 * This is typically a shadow page table sync or a MMIO instruction. But we may have
13576 * emulated something like LTR or a far jump. Any part of the CPU context may have changed.
13577 */
13578 /** @todo take advantage of CPUM changed flags instead of brute forcing. */
13579 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
13580#endif
13581 TRPMResetTrap(pVCpu);
13582 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
13583 return rc;
13584 }
13585
13586 if (rc == VINF_EM_RAW_GUEST_TRAP)
13587 {
13588 if (!pVmxTransient->fVectoringDoublePF)
13589 {
13590 /* It's a guest page fault and needs to be reflected to the guest. */
13591 uint32_t uGstErrorCode = TRPMGetErrorCode(pVCpu);
13592 TRPMResetTrap(pVCpu);
13593 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory #PF. */
13594 pMixedCtx->cr2 = pVmxTransient->uExitQualification; /* Update here in case we go back to ring-3 before injection. */
13595 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13596 0 /* cbInstr */, uGstErrorCode, pVmxTransient->uExitQualification);
13597 }
13598 else
13599 {
13600 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
13601 TRPMResetTrap(pVCpu);
13602 pVCpu->hm.s.Event.fPending = false; /* Clear pending #PF to replace it with #DF. */
13603 hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
13604 Log4(("#PF: Pending #DF due to vectoring #PF\n"));
13605 }
13606
13607 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
13608 return VINF_SUCCESS;
13609 }
13610
13611 TRPMResetTrap(pVCpu);
13612 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
13613 return rc;
13614}
13615
13616/** @} */
13617
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette