VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMVMXR0.cpp@ 66706

Last change on this file since 66706 was 66706, checked in by vboxsync, 8 years ago

VMM/HMVMXR0: Disabled using IEM event reflection from r115095. Needs more debugging.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 596.8 KB
Line 
1/* $Id: HMVMXR0.cpp 66706 2017-04-27 17:56:12Z vboxsync $ */
2/** @file
3 * HM VMX (Intel VT-x) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2012-2016 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.215389.xyz. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#include <iprt/x86.h>
24#include <iprt/asm-amd64-x86.h>
25#include <iprt/thread.h>
26
27#include <VBox/vmm/pdmapi.h>
28#include <VBox/vmm/dbgf.h>
29#include <VBox/vmm/iem.h>
30#include <VBox/vmm/iom.h>
31#include <VBox/vmm/selm.h>
32#include <VBox/vmm/tm.h>
33#include <VBox/vmm/gim.h>
34#include <VBox/vmm/apic.h>
35#ifdef VBOX_WITH_REM
36# include <VBox/vmm/rem.h>
37#endif
38#include "HMInternal.h"
39#include <VBox/vmm/vm.h>
40#include "HMVMXR0.h"
41#include "dtrace/VBoxVMM.h"
42
43#ifdef DEBUG_ramshankar
44# define HMVMX_ALWAYS_SAVE_GUEST_RFLAGS
45# define HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE
46# define HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
47# define HMVMX_ALWAYS_CHECK_GUEST_STATE
48# define HMVMX_ALWAYS_TRAP_ALL_XCPTS
49# define HMVMX_ALWAYS_TRAP_PF
50# define HMVMX_ALWAYS_SWAP_FPU_STATE
51# define HMVMX_ALWAYS_FLUSH_TLB
52# define HMVMX_ALWAYS_SWAP_EFER
53# define HMVMX_USE_IEM_EVENT_REFLECTION
54#endif
55
56
57/*********************************************************************************************************************************
58* Defined Constants And Macros *
59*********************************************************************************************************************************/
60/** Use the function table. */
61#define HMVMX_USE_FUNCTION_TABLE
62
63/** Determine which tagged-TLB flush handler to use. */
64#define HMVMX_FLUSH_TAGGED_TLB_EPT_VPID 0
65#define HMVMX_FLUSH_TAGGED_TLB_EPT 1
66#define HMVMX_FLUSH_TAGGED_TLB_VPID 2
67#define HMVMX_FLUSH_TAGGED_TLB_NONE 3
68
69/** @name Updated-guest-state flags.
70 * @{ */
71#define HMVMX_UPDATED_GUEST_RIP RT_BIT(0)
72#define HMVMX_UPDATED_GUEST_RSP RT_BIT(1)
73#define HMVMX_UPDATED_GUEST_RFLAGS RT_BIT(2)
74#define HMVMX_UPDATED_GUEST_CR0 RT_BIT(3)
75#define HMVMX_UPDATED_GUEST_CR3 RT_BIT(4)
76#define HMVMX_UPDATED_GUEST_CR4 RT_BIT(5)
77#define HMVMX_UPDATED_GUEST_GDTR RT_BIT(6)
78#define HMVMX_UPDATED_GUEST_IDTR RT_BIT(7)
79#define HMVMX_UPDATED_GUEST_LDTR RT_BIT(8)
80#define HMVMX_UPDATED_GUEST_TR RT_BIT(9)
81#define HMVMX_UPDATED_GUEST_SEGMENT_REGS RT_BIT(10)
82#define HMVMX_UPDATED_GUEST_DR7 RT_BIT(11)
83#define HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR RT_BIT(12)
84#define HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR RT_BIT(13)
85#define HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR RT_BIT(14)
86#define HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS RT_BIT(15)
87#define HMVMX_UPDATED_GUEST_LAZY_MSRS RT_BIT(16)
88#define HMVMX_UPDATED_GUEST_ACTIVITY_STATE RT_BIT(17)
89#define HMVMX_UPDATED_GUEST_INTR_STATE RT_BIT(18)
90#define HMVMX_UPDATED_GUEST_APIC_STATE RT_BIT(19)
91#define HMVMX_UPDATED_GUEST_ALL ( HMVMX_UPDATED_GUEST_RIP \
92 | HMVMX_UPDATED_GUEST_RSP \
93 | HMVMX_UPDATED_GUEST_RFLAGS \
94 | HMVMX_UPDATED_GUEST_CR0 \
95 | HMVMX_UPDATED_GUEST_CR3 \
96 | HMVMX_UPDATED_GUEST_CR4 \
97 | HMVMX_UPDATED_GUEST_GDTR \
98 | HMVMX_UPDATED_GUEST_IDTR \
99 | HMVMX_UPDATED_GUEST_LDTR \
100 | HMVMX_UPDATED_GUEST_TR \
101 | HMVMX_UPDATED_GUEST_SEGMENT_REGS \
102 | HMVMX_UPDATED_GUEST_DR7 \
103 | HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR \
104 | HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR \
105 | HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR \
106 | HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS \
107 | HMVMX_UPDATED_GUEST_LAZY_MSRS \
108 | HMVMX_UPDATED_GUEST_ACTIVITY_STATE \
109 | HMVMX_UPDATED_GUEST_INTR_STATE \
110 | HMVMX_UPDATED_GUEST_APIC_STATE)
111/** @} */
112
113/** @name
114 * Flags to skip redundant reads of some common VMCS fields that are not part of
115 * the guest-CPU state but are in the transient structure.
116 */
117#define HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO RT_BIT(0)
118#define HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE RT_BIT(1)
119#define HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION RT_BIT(2)
120#define HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN RT_BIT(3)
121#define HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO RT_BIT(4)
122#define HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE RT_BIT(5)
123#define HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_INFO RT_BIT(6)
124/** @} */
125
126/** @name
127 * States of the VMCS.
128 *
129 * This does not reflect all possible VMCS states but currently only those
130 * needed for maintaining the VMCS consistently even when thread-context hooks
131 * are used. Maybe later this can be extended (i.e. Nested Virtualization).
132 */
133#define HMVMX_VMCS_STATE_CLEAR RT_BIT(0)
134#define HMVMX_VMCS_STATE_ACTIVE RT_BIT(1)
135#define HMVMX_VMCS_STATE_LAUNCHED RT_BIT(2)
136/** @} */
137
138/**
139 * Exception bitmap mask for real-mode guests (real-on-v86).
140 *
141 * We need to intercept all exceptions manually except:
142 * - \#NM, \#MF handled in hmR0VmxLoadSharedCR0().
143 * - \#AC and \#DB are always intercepted to prevent the CPU from deadlocking
144 * due to bugs in Intel CPUs.
145 * - \#PF need not be intercepted even in real-mode if we have Nested Paging
146 * support.
147 */
148#define HMVMX_REAL_MODE_XCPT_MASK ( RT_BIT(X86_XCPT_DE) /* always: | RT_BIT(X86_XCPT_DB) */ | RT_BIT(X86_XCPT_NMI) \
149 | RT_BIT(X86_XCPT_BP) | RT_BIT(X86_XCPT_OF) | RT_BIT(X86_XCPT_BR) \
150 | RT_BIT(X86_XCPT_UD) /* RT_BIT(X86_XCPT_NM) */ | RT_BIT(X86_XCPT_DF) \
151 | RT_BIT(X86_XCPT_CO_SEG_OVERRUN) | RT_BIT(X86_XCPT_TS) | RT_BIT(X86_XCPT_NP) \
152 | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_GP) /* RT_BIT(X86_XCPT_PF) */ \
153 /* RT_BIT(X86_XCPT_MF) always: | RT_BIT(X86_XCPT_AC) */ | RT_BIT(X86_XCPT_MC) \
154 | RT_BIT(X86_XCPT_XF))
155
156/**
157 * Exception bitmap mask for all contributory exceptions.
158 *
159 * Page fault is deliberately excluded here as it's conditional as to whether
160 * it's contributory or benign. Page faults are handled separately.
161 */
162#define HMVMX_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
163 | RT_BIT(X86_XCPT_DE))
164
165/** Maximum VM-instruction error number. */
166#define HMVMX_INSTR_ERROR_MAX 28
167
168/** Profiling macro. */
169#ifdef HM_PROFILE_EXIT_DISPATCH
170# define HMVMX_START_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitDispatch, ed)
171# define HMVMX_STOP_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitDispatch, ed)
172#else
173# define HMVMX_START_EXIT_DISPATCH_PROF() do { } while (0)
174# define HMVMX_STOP_EXIT_DISPATCH_PROF() do { } while (0)
175#endif
176
177/** Assert that preemption is disabled or covered by thread-context hooks. */
178#define HMVMX_ASSERT_PREEMPT_SAFE() Assert( VMMR0ThreadCtxHookIsEnabled(pVCpu) \
179 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
180
181/** Assert that we haven't migrated CPUs when thread-context hooks are not
182 * used. */
183#define HMVMX_ASSERT_CPU_SAFE() AssertMsg( VMMR0ThreadCtxHookIsEnabled(pVCpu) \
184 || pVCpu->hm.s.idEnteredCpu == RTMpCpuId(), \
185 ("Illegal migration! Entered on CPU %u Current %u\n", \
186 pVCpu->hm.s.idEnteredCpu, RTMpCpuId())); \
187
188/** Helper macro for VM-exit handlers called unexpectedly. */
189#define HMVMX_RETURN_UNEXPECTED_EXIT() \
190 do { \
191 pVCpu->hm.s.u32HMError = pVmxTransient->uExitReason; \
192 return VERR_VMX_UNEXPECTED_EXIT; \
193 } while (0)
194
195
196/*********************************************************************************************************************************
197* Structures and Typedefs *
198*********************************************************************************************************************************/
199/**
200 * VMX transient state.
201 *
202 * A state structure for holding miscellaneous information across
203 * VMX non-root operation and restored after the transition.
204 */
205typedef struct VMXTRANSIENT
206{
207 /** The host's rflags/eflags. */
208 RTCCUINTREG fEFlags;
209#if HC_ARCH_BITS == 32
210 uint32_t u32Alignment0;
211#endif
212 /** The guest's TPR value used for TPR shadowing. */
213 uint8_t u8GuestTpr;
214 /** Alignment. */
215 uint8_t abAlignment0[7];
216
217 /** The basic VM-exit reason. */
218 uint16_t uExitReason;
219 /** Alignment. */
220 uint16_t u16Alignment0;
221 /** The VM-exit interruption error code. */
222 uint32_t uExitIntErrorCode;
223 /** The VM-exit exit code qualification. */
224 uint64_t uExitQualification;
225
226 /** The VM-exit interruption-information field. */
227 uint32_t uExitIntInfo;
228 /** The VM-exit instruction-length field. */
229 uint32_t cbInstr;
230 /** The VM-exit instruction-information field. */
231 union
232 {
233 /** Plain unsigned int representation. */
234 uint32_t u;
235 /** INS and OUTS information. */
236 struct
237 {
238 uint32_t u7Reserved0 : 7;
239 /** The address size; 0=16-bit, 1=32-bit, 2=64-bit, rest undefined. */
240 uint32_t u3AddrSize : 3;
241 uint32_t u5Reserved1 : 5;
242 /** The segment register (X86_SREG_XXX). */
243 uint32_t iSegReg : 3;
244 uint32_t uReserved2 : 14;
245 } StrIo;
246 } ExitInstrInfo;
247 /** Whether the VM-entry failed or not. */
248 bool fVMEntryFailed;
249 /** Alignment. */
250 uint8_t abAlignment1[3];
251
252 /** The VM-entry interruption-information field. */
253 uint32_t uEntryIntInfo;
254 /** The VM-entry exception error code field. */
255 uint32_t uEntryXcptErrorCode;
256 /** The VM-entry instruction length field. */
257 uint32_t cbEntryInstr;
258
259 /** IDT-vectoring information field. */
260 uint32_t uIdtVectoringInfo;
261 /** IDT-vectoring error code. */
262 uint32_t uIdtVectoringErrorCode;
263
264 /** Mask of currently read VMCS fields; HMVMX_UPDATED_TRANSIENT_*. */
265 uint32_t fVmcsFieldsRead;
266
267 /** Whether the guest FPU was active at the time of VM-exit. */
268 bool fWasGuestFPUStateActive;
269 /** Whether the guest debug state was active at the time of VM-exit. */
270 bool fWasGuestDebugStateActive;
271 /** Whether the hyper debug state was active at the time of VM-exit. */
272 bool fWasHyperDebugStateActive;
273 /** Whether TSC-offsetting should be setup before VM-entry. */
274 bool fUpdateTscOffsettingAndPreemptTimer;
275 /** Whether the VM-exit was caused by a page-fault during delivery of a
276 * contributory exception or a page-fault. */
277 bool fVectoringDoublePF;
278 /** Whether the VM-exit was caused by a page-fault during delivery of an
279 * external interrupt or NMI. */
280 bool fVectoringPF;
281} VMXTRANSIENT;
282AssertCompileMemberAlignment(VMXTRANSIENT, uExitReason, sizeof(uint64_t));
283AssertCompileMemberAlignment(VMXTRANSIENT, uExitIntInfo, sizeof(uint64_t));
284AssertCompileMemberAlignment(VMXTRANSIENT, uEntryIntInfo, sizeof(uint64_t));
285AssertCompileMemberAlignment(VMXTRANSIENT, fWasGuestFPUStateActive, sizeof(uint64_t));
286AssertCompileMemberSize(VMXTRANSIENT, ExitInstrInfo, sizeof(uint32_t));
287/** Pointer to VMX transient state. */
288typedef VMXTRANSIENT *PVMXTRANSIENT;
289
290
291/**
292 * MSR-bitmap read permissions.
293 */
294typedef enum VMXMSREXITREAD
295{
296 /** Reading this MSR causes a VM-exit. */
297 VMXMSREXIT_INTERCEPT_READ = 0xb,
298 /** Reading this MSR does not cause a VM-exit. */
299 VMXMSREXIT_PASSTHRU_READ
300} VMXMSREXITREAD;
301/** Pointer to MSR-bitmap read permissions. */
302typedef VMXMSREXITREAD* PVMXMSREXITREAD;
303
304/**
305 * MSR-bitmap write permissions.
306 */
307typedef enum VMXMSREXITWRITE
308{
309 /** Writing to this MSR causes a VM-exit. */
310 VMXMSREXIT_INTERCEPT_WRITE = 0xd,
311 /** Writing to this MSR does not cause a VM-exit. */
312 VMXMSREXIT_PASSTHRU_WRITE
313} VMXMSREXITWRITE;
314/** Pointer to MSR-bitmap write permissions. */
315typedef VMXMSREXITWRITE* PVMXMSREXITWRITE;
316
317
318/**
319 * VMX VM-exit handler.
320 *
321 * @returns Strict VBox status code (i.e. informational status codes too).
322 * @param pVCpu The cross context virtual CPU structure.
323 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
324 * out-of-sync. Make sure to update the required
325 * fields before using them.
326 * @param pVmxTransient Pointer to the VMX-transient structure.
327 */
328#ifndef HMVMX_USE_FUNCTION_TABLE
329typedef VBOXSTRICTRC FNVMXEXITHANDLER(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
330#else
331typedef DECLCALLBACK(VBOXSTRICTRC) FNVMXEXITHANDLER(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
332/** Pointer to VM-exit handler. */
333typedef FNVMXEXITHANDLER *PFNVMXEXITHANDLER;
334#endif
335
336/**
337 * VMX VM-exit handler, non-strict status code.
338 *
339 * This is generally the same as FNVMXEXITHANDLER, the NSRC bit is just FYI.
340 *
341 * @returns VBox status code, no informational status code returned.
342 * @param pVCpu The cross context virtual CPU structure.
343 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
344 * out-of-sync. Make sure to update the required
345 * fields before using them.
346 * @param pVmxTransient Pointer to the VMX-transient structure.
347 *
348 * @remarks This is not used on anything returning VERR_EM_INTERPRETER as the
349 * use of that status code will be replaced with VINF_EM_SOMETHING
350 * later when switching over to IEM.
351 */
352#ifndef HMVMX_USE_FUNCTION_TABLE
353typedef int FNVMXEXITHANDLERNSRC(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
354#else
355typedef FNVMXEXITHANDLER FNVMXEXITHANDLERNSRC;
356#endif
357
358
359/*********************************************************************************************************************************
360* Internal Functions *
361*********************************************************************************************************************************/
362static void hmR0VmxFlushEpt(PVMCPU pVCpu, VMXFLUSHEPT enmFlush);
363static void hmR0VmxFlushVpid(PVM pVM, PVMCPU pVCpu, VMXFLUSHVPID enmFlush, RTGCPTR GCPtr);
364static void hmR0VmxClearIntNmiWindowsVmcs(PVMCPU pVCpu);
365static VBOXSTRICTRC hmR0VmxInjectEventVmcs(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint64_t u64IntInfo, uint32_t cbInstr,
366 uint32_t u32ErrCode, RTGCUINTREG GCPtrFaultAddress,
367 bool fStepping, uint32_t *puIntState);
368#if HC_ARCH_BITS == 32
369static int hmR0VmxInitVmcsReadCache(PVM pVM, PVMCPU pVCpu);
370#endif
371#ifndef HMVMX_USE_FUNCTION_TABLE
372DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, uint32_t rcReason);
373# define HMVMX_EXIT_DECL DECLINLINE(VBOXSTRICTRC)
374# define HMVMX_EXIT_NSRC_DECL DECLINLINE(int)
375#else
376# define HMVMX_EXIT_DECL static DECLCALLBACK(VBOXSTRICTRC)
377# define HMVMX_EXIT_NSRC_DECL HMVMX_EXIT_DECL
378#endif
379
380
381/** @name VM-exit handlers.
382 * @{
383 */
384static FNVMXEXITHANDLER hmR0VmxExitXcptOrNmi;
385static FNVMXEXITHANDLER hmR0VmxExitExtInt;
386static FNVMXEXITHANDLER hmR0VmxExitTripleFault;
387static FNVMXEXITHANDLERNSRC hmR0VmxExitInitSignal;
388static FNVMXEXITHANDLERNSRC hmR0VmxExitSipi;
389static FNVMXEXITHANDLERNSRC hmR0VmxExitIoSmi;
390static FNVMXEXITHANDLERNSRC hmR0VmxExitSmi;
391static FNVMXEXITHANDLERNSRC hmR0VmxExitIntWindow;
392static FNVMXEXITHANDLERNSRC hmR0VmxExitNmiWindow;
393static FNVMXEXITHANDLER hmR0VmxExitTaskSwitch;
394static FNVMXEXITHANDLER hmR0VmxExitCpuid;
395static FNVMXEXITHANDLER hmR0VmxExitGetsec;
396static FNVMXEXITHANDLER hmR0VmxExitHlt;
397static FNVMXEXITHANDLERNSRC hmR0VmxExitInvd;
398static FNVMXEXITHANDLER hmR0VmxExitInvlpg;
399static FNVMXEXITHANDLER hmR0VmxExitRdpmc;
400static FNVMXEXITHANDLER hmR0VmxExitVmcall;
401static FNVMXEXITHANDLER hmR0VmxExitRdtsc;
402static FNVMXEXITHANDLERNSRC hmR0VmxExitRsm;
403static FNVMXEXITHANDLERNSRC hmR0VmxExitSetPendingXcptUD;
404static FNVMXEXITHANDLER hmR0VmxExitMovCRx;
405static FNVMXEXITHANDLER hmR0VmxExitMovDRx;
406static FNVMXEXITHANDLER hmR0VmxExitIoInstr;
407static FNVMXEXITHANDLER hmR0VmxExitRdmsr;
408static FNVMXEXITHANDLER hmR0VmxExitWrmsr;
409static FNVMXEXITHANDLERNSRC hmR0VmxExitErrInvalidGuestState;
410static FNVMXEXITHANDLERNSRC hmR0VmxExitErrMsrLoad;
411static FNVMXEXITHANDLERNSRC hmR0VmxExitErrUndefined;
412static FNVMXEXITHANDLER hmR0VmxExitMwait;
413static FNVMXEXITHANDLER hmR0VmxExitMtf;
414static FNVMXEXITHANDLER hmR0VmxExitMonitor;
415static FNVMXEXITHANDLER hmR0VmxExitPause;
416static FNVMXEXITHANDLERNSRC hmR0VmxExitErrMachineCheck;
417static FNVMXEXITHANDLERNSRC hmR0VmxExitTprBelowThreshold;
418static FNVMXEXITHANDLER hmR0VmxExitApicAccess;
419static FNVMXEXITHANDLER hmR0VmxExitXdtrAccess;
420static FNVMXEXITHANDLER hmR0VmxExitXdtrAccess;
421static FNVMXEXITHANDLER hmR0VmxExitEptViolation;
422static FNVMXEXITHANDLER hmR0VmxExitEptMisconfig;
423static FNVMXEXITHANDLER hmR0VmxExitRdtscp;
424static FNVMXEXITHANDLER hmR0VmxExitPreemptTimer;
425static FNVMXEXITHANDLERNSRC hmR0VmxExitWbinvd;
426static FNVMXEXITHANDLER hmR0VmxExitXsetbv;
427static FNVMXEXITHANDLER hmR0VmxExitRdrand;
428static FNVMXEXITHANDLER hmR0VmxExitInvpcid;
429/** @} */
430
431static int hmR0VmxExitXcptNM(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
432static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
433static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
434static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
435static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
436static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
437static int hmR0VmxExitXcptAC(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
438static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
439static uint32_t hmR0VmxCheckGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx);
440
441
442/*********************************************************************************************************************************
443* Global Variables *
444*********************************************************************************************************************************/
445#ifdef HMVMX_USE_FUNCTION_TABLE
446
447/**
448 * VMX_EXIT dispatch table.
449 */
450static const PFNVMXEXITHANDLER g_apfnVMExitHandlers[VMX_EXIT_MAX + 1] =
451{
452 /* 00 VMX_EXIT_XCPT_OR_NMI */ hmR0VmxExitXcptOrNmi,
453 /* 01 VMX_EXIT_EXT_INT */ hmR0VmxExitExtInt,
454 /* 02 VMX_EXIT_TRIPLE_FAULT */ hmR0VmxExitTripleFault,
455 /* 03 VMX_EXIT_INIT_SIGNAL */ hmR0VmxExitInitSignal,
456 /* 04 VMX_EXIT_SIPI */ hmR0VmxExitSipi,
457 /* 05 VMX_EXIT_IO_SMI */ hmR0VmxExitIoSmi,
458 /* 06 VMX_EXIT_SMI */ hmR0VmxExitSmi,
459 /* 07 VMX_EXIT_INT_WINDOW */ hmR0VmxExitIntWindow,
460 /* 08 VMX_EXIT_NMI_WINDOW */ hmR0VmxExitNmiWindow,
461 /* 09 VMX_EXIT_TASK_SWITCH */ hmR0VmxExitTaskSwitch,
462 /* 10 VMX_EXIT_CPUID */ hmR0VmxExitCpuid,
463 /* 11 VMX_EXIT_GETSEC */ hmR0VmxExitGetsec,
464 /* 12 VMX_EXIT_HLT */ hmR0VmxExitHlt,
465 /* 13 VMX_EXIT_INVD */ hmR0VmxExitInvd,
466 /* 14 VMX_EXIT_INVLPG */ hmR0VmxExitInvlpg,
467 /* 15 VMX_EXIT_RDPMC */ hmR0VmxExitRdpmc,
468 /* 16 VMX_EXIT_RDTSC */ hmR0VmxExitRdtsc,
469 /* 17 VMX_EXIT_RSM */ hmR0VmxExitRsm,
470 /* 18 VMX_EXIT_VMCALL */ hmR0VmxExitVmcall,
471 /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitSetPendingXcptUD,
472 /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitSetPendingXcptUD,
473 /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitSetPendingXcptUD,
474 /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitSetPendingXcptUD,
475 /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitSetPendingXcptUD,
476 /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitSetPendingXcptUD,
477 /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitSetPendingXcptUD,
478 /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitSetPendingXcptUD,
479 /* 27 VMX_EXIT_VMXON */ hmR0VmxExitSetPendingXcptUD,
480 /* 28 VMX_EXIT_MOV_CRX */ hmR0VmxExitMovCRx,
481 /* 29 VMX_EXIT_MOV_DRX */ hmR0VmxExitMovDRx,
482 /* 30 VMX_EXIT_IO_INSTR */ hmR0VmxExitIoInstr,
483 /* 31 VMX_EXIT_RDMSR */ hmR0VmxExitRdmsr,
484 /* 32 VMX_EXIT_WRMSR */ hmR0VmxExitWrmsr,
485 /* 33 VMX_EXIT_ERR_INVALID_GUEST_STATE */ hmR0VmxExitErrInvalidGuestState,
486 /* 34 VMX_EXIT_ERR_MSR_LOAD */ hmR0VmxExitErrMsrLoad,
487 /* 35 UNDEFINED */ hmR0VmxExitErrUndefined,
488 /* 36 VMX_EXIT_MWAIT */ hmR0VmxExitMwait,
489 /* 37 VMX_EXIT_MTF */ hmR0VmxExitMtf,
490 /* 38 UNDEFINED */ hmR0VmxExitErrUndefined,
491 /* 39 VMX_EXIT_MONITOR */ hmR0VmxExitMonitor,
492 /* 40 UNDEFINED */ hmR0VmxExitPause,
493 /* 41 VMX_EXIT_PAUSE */ hmR0VmxExitErrMachineCheck,
494 /* 42 VMX_EXIT_ERR_MACHINE_CHECK */ hmR0VmxExitErrUndefined,
495 /* 43 VMX_EXIT_TPR_BELOW_THRESHOLD */ hmR0VmxExitTprBelowThreshold,
496 /* 44 VMX_EXIT_APIC_ACCESS */ hmR0VmxExitApicAccess,
497 /* 45 UNDEFINED */ hmR0VmxExitErrUndefined,
498 /* 46 VMX_EXIT_XDTR_ACCESS */ hmR0VmxExitXdtrAccess,
499 /* 47 VMX_EXIT_TR_ACCESS */ hmR0VmxExitXdtrAccess,
500 /* 48 VMX_EXIT_EPT_VIOLATION */ hmR0VmxExitEptViolation,
501 /* 49 VMX_EXIT_EPT_MISCONFIG */ hmR0VmxExitEptMisconfig,
502 /* 50 VMX_EXIT_INVEPT */ hmR0VmxExitSetPendingXcptUD,
503 /* 51 VMX_EXIT_RDTSCP */ hmR0VmxExitRdtscp,
504 /* 52 VMX_EXIT_PREEMPT_TIMER */ hmR0VmxExitPreemptTimer,
505 /* 53 VMX_EXIT_INVVPID */ hmR0VmxExitSetPendingXcptUD,
506 /* 54 VMX_EXIT_WBINVD */ hmR0VmxExitWbinvd,
507 /* 55 VMX_EXIT_XSETBV */ hmR0VmxExitXsetbv,
508 /* 56 VMX_EXIT_APIC_WRITE */ hmR0VmxExitErrUndefined,
509 /* 57 VMX_EXIT_RDRAND */ hmR0VmxExitRdrand,
510 /* 58 VMX_EXIT_INVPCID */ hmR0VmxExitInvpcid,
511 /* 59 VMX_EXIT_VMFUNC */ hmR0VmxExitSetPendingXcptUD,
512 /* 60 VMX_EXIT_ENCLS */ hmR0VmxExitErrUndefined,
513 /* 61 VMX_EXIT_RDSEED */ hmR0VmxExitErrUndefined, /* only spurious exits, so undefined */
514 /* 62 VMX_EXIT_PML_FULL */ hmR0VmxExitErrUndefined,
515 /* 63 VMX_EXIT_XSAVES */ hmR0VmxExitSetPendingXcptUD,
516 /* 64 VMX_EXIT_XRSTORS */ hmR0VmxExitSetPendingXcptUD,
517};
518#endif /* HMVMX_USE_FUNCTION_TABLE */
519
520#ifdef VBOX_STRICT
521static const char * const g_apszVmxInstrErrors[HMVMX_INSTR_ERROR_MAX + 1] =
522{
523 /* 0 */ "(Not Used)",
524 /* 1 */ "VMCALL executed in VMX root operation.",
525 /* 2 */ "VMCLEAR with invalid physical address.",
526 /* 3 */ "VMCLEAR with VMXON pointer.",
527 /* 4 */ "VMLAUNCH with non-clear VMCS.",
528 /* 5 */ "VMRESUME with non-launched VMCS.",
529 /* 6 */ "VMRESUME after VMXOFF",
530 /* 7 */ "VM-entry with invalid control fields.",
531 /* 8 */ "VM-entry with invalid host state fields.",
532 /* 9 */ "VMPTRLD with invalid physical address.",
533 /* 10 */ "VMPTRLD with VMXON pointer.",
534 /* 11 */ "VMPTRLD with incorrect revision identifier.",
535 /* 12 */ "VMREAD/VMWRITE from/to unsupported VMCS component.",
536 /* 13 */ "VMWRITE to read-only VMCS component.",
537 /* 14 */ "(Not Used)",
538 /* 15 */ "VMXON executed in VMX root operation.",
539 /* 16 */ "VM-entry with invalid executive-VMCS pointer.",
540 /* 17 */ "VM-entry with non-launched executing VMCS.",
541 /* 18 */ "VM-entry with executive-VMCS pointer not VMXON pointer.",
542 /* 19 */ "VMCALL with non-clear VMCS.",
543 /* 20 */ "VMCALL with invalid VM-exit control fields.",
544 /* 21 */ "(Not Used)",
545 /* 22 */ "VMCALL with incorrect MSEG revision identifier.",
546 /* 23 */ "VMXOFF under dual monitor treatment of SMIs and SMM.",
547 /* 24 */ "VMCALL with invalid SMM-monitor features.",
548 /* 25 */ "VM-entry with invalid VM-execution control fields in executive VMCS.",
549 /* 26 */ "VM-entry with events blocked by MOV SS.",
550 /* 27 */ "(Not Used)",
551 /* 28 */ "Invalid operand to INVEPT/INVVPID."
552};
553#endif /* VBOX_STRICT */
554
555
556
557/**
558 * Updates the VM's last error record.
559 *
560 * If there was a VMX instruction error, reads the error data from the VMCS and
561 * updates VCPU's last error record as well.
562 *
563 * @param pVM The cross context VM structure.
564 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
565 * Can be NULL if @a rc is not VERR_VMX_UNABLE_TO_START_VM or
566 * VERR_VMX_INVALID_VMCS_FIELD.
567 * @param rc The error code.
568 */
569static void hmR0VmxUpdateErrorRecord(PVM pVM, PVMCPU pVCpu, int rc)
570{
571 AssertPtr(pVM);
572 if ( rc == VERR_VMX_INVALID_VMCS_FIELD
573 || rc == VERR_VMX_UNABLE_TO_START_VM)
574 {
575 AssertPtrReturnVoid(pVCpu);
576 VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
577 }
578 pVM->hm.s.lLastError = rc;
579}
580
581
582/**
583 * Reads the VM-entry interruption-information field from the VMCS into the VMX
584 * transient structure.
585 *
586 * @returns VBox status code.
587 * @param pVmxTransient Pointer to the VMX transient structure.
588 *
589 * @remarks No-long-jump zone!!!
590 */
591DECLINLINE(int) hmR0VmxReadEntryIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
592{
593 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &pVmxTransient->uEntryIntInfo);
594 AssertRCReturn(rc, rc);
595 return VINF_SUCCESS;
596}
597
598
599#ifdef VBOX_STRICT
600/**
601 * Reads the VM-entry exception error code field from the VMCS into
602 * the VMX transient structure.
603 *
604 * @returns VBox status code.
605 * @param pVmxTransient Pointer to the VMX transient structure.
606 *
607 * @remarks No-long-jump zone!!!
608 */
609DECLINLINE(int) hmR0VmxReadEntryXcptErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
610{
611 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &pVmxTransient->uEntryXcptErrorCode);
612 AssertRCReturn(rc, rc);
613 return VINF_SUCCESS;
614}
615#endif /* VBOX_STRICT */
616
617
618#ifdef VBOX_STRICT
619/**
620 * Reads the VM-entry exception error code field from the VMCS into
621 * the VMX transient structure.
622 *
623 * @returns VBox status code.
624 * @param pVmxTransient Pointer to the VMX transient structure.
625 *
626 * @remarks No-long-jump zone!!!
627 */
628DECLINLINE(int) hmR0VmxReadEntryInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
629{
630 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &pVmxTransient->cbEntryInstr);
631 AssertRCReturn(rc, rc);
632 return VINF_SUCCESS;
633}
634#endif /* VBOX_STRICT */
635
636
637/**
638 * Reads the VM-exit interruption-information field from the VMCS into the VMX
639 * transient structure.
640 *
641 * @returns VBox status code.
642 * @param pVmxTransient Pointer to the VMX transient structure.
643 */
644DECLINLINE(int) hmR0VmxReadExitIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
645{
646 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO))
647 {
648 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &pVmxTransient->uExitIntInfo);
649 AssertRCReturn(rc, rc);
650 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO;
651 }
652 return VINF_SUCCESS;
653}
654
655
656/**
657 * Reads the VM-exit interruption error code from the VMCS into the VMX
658 * transient structure.
659 *
660 * @returns VBox status code.
661 * @param pVmxTransient Pointer to the VMX transient structure.
662 */
663DECLINLINE(int) hmR0VmxReadExitIntErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
664{
665 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE))
666 {
667 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &pVmxTransient->uExitIntErrorCode);
668 AssertRCReturn(rc, rc);
669 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE;
670 }
671 return VINF_SUCCESS;
672}
673
674
675/**
676 * Reads the VM-exit instruction length field from the VMCS into the VMX
677 * transient structure.
678 *
679 * @returns VBox status code.
680 * @param pVmxTransient Pointer to the VMX transient structure.
681 */
682DECLINLINE(int) hmR0VmxReadExitInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
683{
684 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN))
685 {
686 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &pVmxTransient->cbInstr);
687 AssertRCReturn(rc, rc);
688 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN;
689 }
690 return VINF_SUCCESS;
691}
692
693
694/**
695 * Reads the VM-exit instruction-information field from the VMCS into
696 * the VMX transient structure.
697 *
698 * @returns VBox status code.
699 * @param pVmxTransient Pointer to the VMX transient structure.
700 */
701DECLINLINE(int) hmR0VmxReadExitInstrInfoVmcs(PVMXTRANSIENT pVmxTransient)
702{
703 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_INFO))
704 {
705 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_INFO, &pVmxTransient->ExitInstrInfo.u);
706 AssertRCReturn(rc, rc);
707 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_INFO;
708 }
709 return VINF_SUCCESS;
710}
711
712
713/**
714 * Reads the exit code qualification from the VMCS into the VMX transient
715 * structure.
716 *
717 * @returns VBox status code.
718 * @param pVCpu The cross context virtual CPU structure of the
719 * calling EMT. (Required for the VMCS cache case.)
720 * @param pVmxTransient Pointer to the VMX transient structure.
721 */
722DECLINLINE(int) hmR0VmxReadExitQualificationVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
723{
724 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION))
725 {
726 int rc = VMXReadVmcsGstN(VMX_VMCS_RO_EXIT_QUALIFICATION, &pVmxTransient->uExitQualification); NOREF(pVCpu);
727 AssertRCReturn(rc, rc);
728 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION;
729 }
730 return VINF_SUCCESS;
731}
732
733
734/**
735 * Reads the IDT-vectoring information field from the VMCS into the VMX
736 * transient structure.
737 *
738 * @returns VBox status code.
739 * @param pVmxTransient Pointer to the VMX transient structure.
740 *
741 * @remarks No-long-jump zone!!!
742 */
743DECLINLINE(int) hmR0VmxReadIdtVectoringInfoVmcs(PVMXTRANSIENT pVmxTransient)
744{
745 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO))
746 {
747 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_INFO, &pVmxTransient->uIdtVectoringInfo);
748 AssertRCReturn(rc, rc);
749 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO;
750 }
751 return VINF_SUCCESS;
752}
753
754
755/**
756 * Reads the IDT-vectoring error code from the VMCS into the VMX
757 * transient structure.
758 *
759 * @returns VBox status code.
760 * @param pVmxTransient Pointer to the VMX transient structure.
761 */
762DECLINLINE(int) hmR0VmxReadIdtVectoringErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
763{
764 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE))
765 {
766 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_ERROR_CODE, &pVmxTransient->uIdtVectoringErrorCode);
767 AssertRCReturn(rc, rc);
768 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE;
769 }
770 return VINF_SUCCESS;
771}
772
773
774/**
775 * Enters VMX root mode operation on the current CPU.
776 *
777 * @returns VBox status code.
778 * @param pVM The cross context VM structure. Can be
779 * NULL, after a resume.
780 * @param HCPhysCpuPage Physical address of the VMXON region.
781 * @param pvCpuPage Pointer to the VMXON region.
782 */
783static int hmR0VmxEnterRootMode(PVM pVM, RTHCPHYS HCPhysCpuPage, void *pvCpuPage)
784{
785 Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
786 Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
787 Assert(pvCpuPage);
788 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
789
790 if (pVM)
791 {
792 /* Write the VMCS revision dword to the VMXON region. */
793 *(uint32_t *)pvCpuPage = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hm.s.vmx.Msrs.u64BasicInfo);
794 }
795
796 /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with CR4. */
797 RTCCUINTREG fEFlags = ASMIntDisableFlags();
798
799 /* Enable the VMX bit in CR4 if necessary. */
800 RTCCUINTREG uOldCr4 = SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
801
802 /* Enter VMX root mode. */
803 int rc = VMXEnable(HCPhysCpuPage);
804 if (RT_FAILURE(rc))
805 {
806 if (!(uOldCr4 & X86_CR4_VMXE))
807 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
808
809 if (pVM)
810 pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
811 }
812
813 /* Restore interrupts. */
814 ASMSetFlags(fEFlags);
815 return rc;
816}
817
818
819/**
820 * Exits VMX root mode operation on the current CPU.
821 *
822 * @returns VBox status code.
823 */
824static int hmR0VmxLeaveRootMode(void)
825{
826 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
827
828 /* Paranoid: Disable interrupts as, in theory, interrupts handlers might mess with CR4. */
829 RTCCUINTREG fEFlags = ASMIntDisableFlags();
830
831 /* If we're for some reason not in VMX root mode, then don't leave it. */
832 RTCCUINTREG uHostCR4 = ASMGetCR4();
833
834 int rc;
835 if (uHostCR4 & X86_CR4_VMXE)
836 {
837 /* Exit VMX root mode and clear the VMX bit in CR4. */
838 VMXDisable();
839 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
840 rc = VINF_SUCCESS;
841 }
842 else
843 rc = VERR_VMX_NOT_IN_VMX_ROOT_MODE;
844
845 /* Restore interrupts. */
846 ASMSetFlags(fEFlags);
847 return rc;
848}
849
850
851/**
852 * Allocates and maps one physically contiguous page. The allocated page is
853 * zero'd out. (Used by various VT-x structures).
854 *
855 * @returns IPRT status code.
856 * @param pMemObj Pointer to the ring-0 memory object.
857 * @param ppVirt Where to store the virtual address of the
858 * allocation.
859 * @param pHCPhys Where to store the physical address of the
860 * allocation.
861 */
862DECLINLINE(int) hmR0VmxPageAllocZ(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
863{
864 AssertPtrReturn(pMemObj, VERR_INVALID_PARAMETER);
865 AssertPtrReturn(ppVirt, VERR_INVALID_PARAMETER);
866 AssertPtrReturn(pHCPhys, VERR_INVALID_PARAMETER);
867
868 int rc = RTR0MemObjAllocCont(pMemObj, PAGE_SIZE, false /* fExecutable */);
869 if (RT_FAILURE(rc))
870 return rc;
871 *ppVirt = RTR0MemObjAddress(*pMemObj);
872 *pHCPhys = RTR0MemObjGetPagePhysAddr(*pMemObj, 0 /* iPage */);
873 ASMMemZero32(*ppVirt, PAGE_SIZE);
874 return VINF_SUCCESS;
875}
876
877
878/**
879 * Frees and unmaps an allocated physical page.
880 *
881 * @param pMemObj Pointer to the ring-0 memory object.
882 * @param ppVirt Where to re-initialize the virtual address of
883 * allocation as 0.
884 * @param pHCPhys Where to re-initialize the physical address of the
885 * allocation as 0.
886 */
887DECLINLINE(void) hmR0VmxPageFree(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
888{
889 AssertPtr(pMemObj);
890 AssertPtr(ppVirt);
891 AssertPtr(pHCPhys);
892 if (*pMemObj != NIL_RTR0MEMOBJ)
893 {
894 int rc = RTR0MemObjFree(*pMemObj, true /* fFreeMappings */);
895 AssertRC(rc);
896 *pMemObj = NIL_RTR0MEMOBJ;
897 *ppVirt = 0;
898 *pHCPhys = 0;
899 }
900}
901
902
903/**
904 * Worker function to free VT-x related structures.
905 *
906 * @returns IPRT status code.
907 * @param pVM The cross context VM structure.
908 */
909static void hmR0VmxStructsFree(PVM pVM)
910{
911 for (VMCPUID i = 0; i < pVM->cCpus; i++)
912 {
913 PVMCPU pVCpu = &pVM->aCpus[i];
914 AssertPtr(pVCpu);
915
916 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
917 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
918
919 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
920 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap, &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
921
922 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
923 }
924
925 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess, &pVM->hm.s.vmx.HCPhysApicAccess);
926#ifdef VBOX_WITH_CRASHDUMP_MAGIC
927 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
928#endif
929}
930
931
932/**
933 * Worker function to allocate VT-x related VM structures.
934 *
935 * @returns IPRT status code.
936 * @param pVM The cross context VM structure.
937 */
938static int hmR0VmxStructsAlloc(PVM pVM)
939{
940 /*
941 * Initialize members up-front so we can cleanup properly on allocation failure.
942 */
943#define VMXLOCAL_INIT_VM_MEMOBJ(a_Name, a_VirtPrefix) \
944 pVM->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
945 pVM->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
946 pVM->hm.s.vmx.HCPhys##a_Name = 0;
947
948#define VMXLOCAL_INIT_VMCPU_MEMOBJ(a_Name, a_VirtPrefix) \
949 pVCpu->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
950 pVCpu->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
951 pVCpu->hm.s.vmx.HCPhys##a_Name = 0;
952
953#ifdef VBOX_WITH_CRASHDUMP_MAGIC
954 VMXLOCAL_INIT_VM_MEMOBJ(Scratch, pv);
955#endif
956 VMXLOCAL_INIT_VM_MEMOBJ(ApicAccess, pb);
957
958 AssertCompile(sizeof(VMCPUID) == sizeof(pVM->cCpus));
959 for (VMCPUID i = 0; i < pVM->cCpus; i++)
960 {
961 PVMCPU pVCpu = &pVM->aCpus[i];
962 VMXLOCAL_INIT_VMCPU_MEMOBJ(Vmcs, pv);
963 VMXLOCAL_INIT_VMCPU_MEMOBJ(MsrBitmap, pv);
964 VMXLOCAL_INIT_VMCPU_MEMOBJ(GuestMsr, pv);
965 VMXLOCAL_INIT_VMCPU_MEMOBJ(HostMsr, pv);
966 }
967#undef VMXLOCAL_INIT_VMCPU_MEMOBJ
968#undef VMXLOCAL_INIT_VM_MEMOBJ
969
970 /* The VMCS size cannot be more than 4096 bytes. See Intel spec. Appendix A.1 "Basic VMX Information". */
971 AssertReturnStmt(MSR_IA32_VMX_BASIC_INFO_VMCS_SIZE(pVM->hm.s.vmx.Msrs.u64BasicInfo) <= PAGE_SIZE,
972 (&pVM->aCpus[0])->hm.s.u32HMError = VMX_UFC_INVALID_VMCS_SIZE,
973 VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO);
974
975 /*
976 * Allocate all the VT-x structures.
977 */
978 int rc = VINF_SUCCESS;
979#ifdef VBOX_WITH_CRASHDUMP_MAGIC
980 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
981 if (RT_FAILURE(rc))
982 goto cleanup;
983 strcpy((char *)pVM->hm.s.vmx.pbScratch, "SCRATCH Magic");
984 *(uint64_t *)(pVM->hm.s.vmx.pbScratch + 16) = UINT64_C(0xdeadbeefdeadbeef);
985#endif
986
987 /* Allocate the APIC-access page for trapping APIC accesses from the guest. */
988 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)
989 {
990 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess,
991 &pVM->hm.s.vmx.HCPhysApicAccess);
992 if (RT_FAILURE(rc))
993 goto cleanup;
994 }
995
996 /*
997 * Initialize per-VCPU VT-x structures.
998 */
999 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1000 {
1001 PVMCPU pVCpu = &pVM->aCpus[i];
1002 AssertPtr(pVCpu);
1003
1004 /* Allocate the VM control structure (VMCS). */
1005 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
1006 if (RT_FAILURE(rc))
1007 goto cleanup;
1008
1009 /* Get the allocated virtual-APIC page from the APIC device for transparent TPR accesses. */
1010 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
1011 {
1012 rc = APICGetApicPageForCpu(pVCpu, &pVCpu->hm.s.vmx.HCPhysVirtApic, (PRTR0PTR)&pVCpu->hm.s.vmx.pbVirtApic,
1013 NULL /* pR3Ptr */, NULL /* pRCPtr */);
1014 if (RT_FAILURE(rc))
1015 goto cleanup;
1016 }
1017
1018 /*
1019 * Allocate the MSR-bitmap if supported by the CPU. The MSR-bitmap is for
1020 * transparent accesses of specific MSRs.
1021 *
1022 * If the condition for enabling MSR bitmaps changes here, don't forget to
1023 * update HMAreMsrBitmapsAvailable().
1024 */
1025 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1026 {
1027 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap,
1028 &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
1029 if (RT_FAILURE(rc))
1030 goto cleanup;
1031 ASMMemFill32(pVCpu->hm.s.vmx.pvMsrBitmap, PAGE_SIZE, UINT32_C(0xffffffff));
1032 }
1033
1034 /* Allocate the VM-entry MSR-load and VM-exit MSR-store page for the guest MSRs. */
1035 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
1036 if (RT_FAILURE(rc))
1037 goto cleanup;
1038
1039 /* Allocate the VM-exit MSR-load page for the host MSRs. */
1040 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
1041 if (RT_FAILURE(rc))
1042 goto cleanup;
1043 }
1044
1045 return VINF_SUCCESS;
1046
1047cleanup:
1048 hmR0VmxStructsFree(pVM);
1049 return rc;
1050}
1051
1052
1053/**
1054 * Does global VT-x initialization (called during module initialization).
1055 *
1056 * @returns VBox status code.
1057 */
1058VMMR0DECL(int) VMXR0GlobalInit(void)
1059{
1060#ifdef HMVMX_USE_FUNCTION_TABLE
1061 AssertCompile(VMX_EXIT_MAX + 1 == RT_ELEMENTS(g_apfnVMExitHandlers));
1062# ifdef VBOX_STRICT
1063 for (unsigned i = 0; i < RT_ELEMENTS(g_apfnVMExitHandlers); i++)
1064 Assert(g_apfnVMExitHandlers[i]);
1065# endif
1066#endif
1067 return VINF_SUCCESS;
1068}
1069
1070
1071/**
1072 * Does global VT-x termination (called during module termination).
1073 */
1074VMMR0DECL(void) VMXR0GlobalTerm()
1075{
1076 /* Nothing to do currently. */
1077}
1078
1079
1080/**
1081 * Sets up and activates VT-x on the current CPU.
1082 *
1083 * @returns VBox status code.
1084 * @param pCpu Pointer to the global CPU info struct.
1085 * @param pVM The cross context VM structure. Can be
1086 * NULL after a host resume operation.
1087 * @param pvCpuPage Pointer to the VMXON region (can be NULL if @a
1088 * fEnabledByHost is @c true).
1089 * @param HCPhysCpuPage Physical address of the VMXON region (can be 0 if
1090 * @a fEnabledByHost is @c true).
1091 * @param fEnabledByHost Set if SUPR0EnableVTx() or similar was used to
1092 * enable VT-x on the host.
1093 * @param pvMsrs Opaque pointer to VMXMSRS struct.
1094 */
1095VMMR0DECL(int) VMXR0EnableCpu(PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
1096 void *pvMsrs)
1097{
1098 Assert(pCpu);
1099 Assert(pvMsrs);
1100 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1101
1102 /* Enable VT-x if it's not already enabled by the host. */
1103 if (!fEnabledByHost)
1104 {
1105 int rc = hmR0VmxEnterRootMode(pVM, HCPhysCpuPage, pvCpuPage);
1106 if (RT_FAILURE(rc))
1107 return rc;
1108 }
1109
1110 /*
1111 * Flush all EPT tagged-TLB entries (in case VirtualBox or any other hypervisor have been using EPTPs) so
1112 * we don't retain any stale guest-physical mappings which won't get invalidated when flushing by VPID.
1113 */
1114 PVMXMSRS pMsrs = (PVMXMSRS)pvMsrs;
1115 if (pMsrs->u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
1116 {
1117 hmR0VmxFlushEpt(NULL /* pVCpu */, VMXFLUSHEPT_ALL_CONTEXTS);
1118 pCpu->fFlushAsidBeforeUse = false;
1119 }
1120 else
1121 pCpu->fFlushAsidBeforeUse = true;
1122
1123 /* Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}. */
1124 ++pCpu->cTlbFlushes;
1125
1126 return VINF_SUCCESS;
1127}
1128
1129
1130/**
1131 * Deactivates VT-x on the current CPU.
1132 *
1133 * @returns VBox status code.
1134 * @param pCpu Pointer to the global CPU info struct.
1135 * @param pvCpuPage Pointer to the VMXON region.
1136 * @param HCPhysCpuPage Physical address of the VMXON region.
1137 *
1138 * @remarks This function should never be called when SUPR0EnableVTx() or
1139 * similar was used to enable VT-x on the host.
1140 */
1141VMMR0DECL(int) VMXR0DisableCpu(PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
1142{
1143 NOREF(pCpu);
1144 NOREF(pvCpuPage);
1145 NOREF(HCPhysCpuPage);
1146
1147 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1148 return hmR0VmxLeaveRootMode();
1149}
1150
1151
1152/**
1153 * Sets the permission bits for the specified MSR in the MSR bitmap.
1154 *
1155 * @param pVCpu The cross context virtual CPU structure.
1156 * @param uMsr The MSR value.
1157 * @param enmRead Whether reading this MSR causes a VM-exit.
1158 * @param enmWrite Whether writing this MSR causes a VM-exit.
1159 */
1160static void hmR0VmxSetMsrPermission(PVMCPU pVCpu, uint32_t uMsr, VMXMSREXITREAD enmRead, VMXMSREXITWRITE enmWrite)
1161{
1162 int32_t iBit;
1163 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.vmx.pvMsrBitmap;
1164
1165 /*
1166 * Layout:
1167 * 0x000 - 0x3ff - Low MSR read bits
1168 * 0x400 - 0x7ff - High MSR read bits
1169 * 0x800 - 0xbff - Low MSR write bits
1170 * 0xc00 - 0xfff - High MSR write bits
1171 */
1172 if (uMsr <= 0x00001FFF)
1173 iBit = uMsr;
1174 else if (uMsr - UINT32_C(0xC0000000) <= UINT32_C(0x00001FFF))
1175 {
1176 iBit = uMsr - UINT32_C(0xC0000000);
1177 pbMsrBitmap += 0x400;
1178 }
1179 else
1180 AssertMsgFailedReturnVoid(("hmR0VmxSetMsrPermission: Invalid MSR %#RX32\n", uMsr));
1181
1182 Assert(iBit <= 0x1fff);
1183 if (enmRead == VMXMSREXIT_INTERCEPT_READ)
1184 ASMBitSet(pbMsrBitmap, iBit);
1185 else
1186 ASMBitClear(pbMsrBitmap, iBit);
1187
1188 if (enmWrite == VMXMSREXIT_INTERCEPT_WRITE)
1189 ASMBitSet(pbMsrBitmap + 0x800, iBit);
1190 else
1191 ASMBitClear(pbMsrBitmap + 0x800, iBit);
1192}
1193
1194
1195#ifdef VBOX_STRICT
1196/**
1197 * Gets the permission bits for the specified MSR in the MSR bitmap.
1198 *
1199 * @returns VBox status code.
1200 * @retval VINF_SUCCESS if the specified MSR is found.
1201 * @retval VERR_NOT_FOUND if the specified MSR is not found.
1202 * @retval VERR_NOT_SUPPORTED if VT-x doesn't allow the MSR.
1203 *
1204 * @param pVCpu The cross context virtual CPU structure.
1205 * @param uMsr The MSR.
1206 * @param penmRead Where to store the read permissions.
1207 * @param penmWrite Where to store the write permissions.
1208 */
1209static int hmR0VmxGetMsrPermission(PVMCPU pVCpu, uint32_t uMsr, PVMXMSREXITREAD penmRead, PVMXMSREXITWRITE penmWrite)
1210{
1211 AssertPtrReturn(penmRead, VERR_INVALID_PARAMETER);
1212 AssertPtrReturn(penmWrite, VERR_INVALID_PARAMETER);
1213 int32_t iBit;
1214 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.vmx.pvMsrBitmap;
1215
1216 /* See hmR0VmxSetMsrPermission() for the layout. */
1217 if (uMsr <= 0x00001FFF)
1218 iBit = uMsr;
1219 else if ( uMsr >= 0xC0000000
1220 && uMsr <= 0xC0001FFF)
1221 {
1222 iBit = (uMsr - 0xC0000000);
1223 pbMsrBitmap += 0x400;
1224 }
1225 else
1226 AssertMsgFailedReturn(("hmR0VmxGetMsrPermission: Invalid MSR %#RX32\n", uMsr), VERR_NOT_SUPPORTED);
1227
1228 Assert(iBit <= 0x1fff);
1229 if (ASMBitTest(pbMsrBitmap, iBit))
1230 *penmRead = VMXMSREXIT_INTERCEPT_READ;
1231 else
1232 *penmRead = VMXMSREXIT_PASSTHRU_READ;
1233
1234 if (ASMBitTest(pbMsrBitmap + 0x800, iBit))
1235 *penmWrite = VMXMSREXIT_INTERCEPT_WRITE;
1236 else
1237 *penmWrite = VMXMSREXIT_PASSTHRU_WRITE;
1238 return VINF_SUCCESS;
1239}
1240#endif /* VBOX_STRICT */
1241
1242
1243/**
1244 * Updates the VMCS with the number of effective MSRs in the auto-load/store MSR
1245 * area.
1246 *
1247 * @returns VBox status code.
1248 * @param pVCpu The cross context virtual CPU structure.
1249 * @param cMsrs The number of MSRs.
1250 */
1251DECLINLINE(int) hmR0VmxSetAutoLoadStoreMsrCount(PVMCPU pVCpu, uint32_t cMsrs)
1252{
1253 /* Shouldn't ever happen but there -is- a number. We're well within the recommended 512. */
1254 uint32_t const cMaxSupportedMsrs = MSR_IA32_VMX_MISC_MAX_MSR(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.u64Misc);
1255 if (RT_UNLIKELY(cMsrs > cMaxSupportedMsrs))
1256 {
1257 LogRel(("CPU auto-load/store MSR count in VMCS exceeded cMsrs=%u Supported=%u.\n", cMsrs, cMaxSupportedMsrs));
1258 pVCpu->hm.s.u32HMError = VMX_UFC_INSUFFICIENT_GUEST_MSR_STORAGE;
1259 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1260 }
1261
1262 /* Update number of guest MSRs to load/store across the world-switch. */
1263 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, cMsrs);
1264 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, cMsrs);
1265
1266 /* Update number of host MSRs to load after the world-switch. Identical to guest-MSR count as it's always paired. */
1267 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, cMsrs);
1268 AssertRCReturn(rc, rc);
1269
1270 /* Update the VCPU's copy of the MSR count. */
1271 pVCpu->hm.s.vmx.cMsrs = cMsrs;
1272
1273 return VINF_SUCCESS;
1274}
1275
1276
1277/**
1278 * Adds a new (or updates the value of an existing) guest/host MSR
1279 * pair to be swapped during the world-switch as part of the
1280 * auto-load/store MSR area in the VMCS.
1281 *
1282 * @returns VBox status code.
1283 * @param pVCpu The cross context virtual CPU structure.
1284 * @param uMsr The MSR.
1285 * @param uGuestMsrValue Value of the guest MSR.
1286 * @param fUpdateHostMsr Whether to update the value of the host MSR if
1287 * necessary.
1288 * @param pfAddedAndUpdated Where to store whether the MSR was added -and-
1289 * its value was updated. Optional, can be NULL.
1290 */
1291static int hmR0VmxAddAutoLoadStoreMsr(PVMCPU pVCpu, uint32_t uMsr, uint64_t uGuestMsrValue, bool fUpdateHostMsr,
1292 bool *pfAddedAndUpdated)
1293{
1294 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1295 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1296 uint32_t i;
1297 for (i = 0; i < cMsrs; i++)
1298 {
1299 if (pGuestMsr->u32Msr == uMsr)
1300 break;
1301 pGuestMsr++;
1302 }
1303
1304 bool fAdded = false;
1305 if (i == cMsrs)
1306 {
1307 ++cMsrs;
1308 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, cMsrs);
1309 AssertMsgRCReturn(rc, ("hmR0VmxAddAutoLoadStoreMsr: Insufficient space to add MSR %u\n", uMsr), rc);
1310
1311 /* Now that we're swapping MSRs during the world-switch, allow the guest to read/write them without causing VM-exits. */
1312 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1313 hmR0VmxSetMsrPermission(pVCpu, uMsr, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
1314
1315 fAdded = true;
1316 }
1317
1318 /* Update the MSR values in the auto-load/store MSR area. */
1319 pGuestMsr->u32Msr = uMsr;
1320 pGuestMsr->u64Value = uGuestMsrValue;
1321
1322 /* Create/update the MSR slot in the host MSR area. */
1323 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1324 pHostMsr += i;
1325 pHostMsr->u32Msr = uMsr;
1326
1327 /*
1328 * Update the host MSR only when requested by the caller AND when we're
1329 * adding it to the auto-load/store area. Otherwise, it would have been
1330 * updated by hmR0VmxSaveHostMsrs(). We do this for performance reasons.
1331 */
1332 bool fUpdatedMsrValue = false;
1333 if ( fAdded
1334 && fUpdateHostMsr)
1335 {
1336 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1337 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1338 pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
1339 fUpdatedMsrValue = true;
1340 }
1341
1342 if (pfAddedAndUpdated)
1343 *pfAddedAndUpdated = fUpdatedMsrValue;
1344 return VINF_SUCCESS;
1345}
1346
1347
1348/**
1349 * Removes a guest/host MSR pair to be swapped during the world-switch from the
1350 * auto-load/store MSR area in the VMCS.
1351 *
1352 * @returns VBox status code.
1353 * @param pVCpu The cross context virtual CPU structure.
1354 * @param uMsr The MSR.
1355 */
1356static int hmR0VmxRemoveAutoLoadStoreMsr(PVMCPU pVCpu, uint32_t uMsr)
1357{
1358 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1359 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1360 for (uint32_t i = 0; i < cMsrs; i++)
1361 {
1362 /* Find the MSR. */
1363 if (pGuestMsr->u32Msr == uMsr)
1364 {
1365 /* If it's the last MSR, simply reduce the count. */
1366 if (i == cMsrs - 1)
1367 {
1368 --cMsrs;
1369 break;
1370 }
1371
1372 /* Remove it by swapping the last MSR in place of it, and reducing the count. */
1373 PVMXAUTOMSR pLastGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1374 pLastGuestMsr += cMsrs - 1;
1375 pGuestMsr->u32Msr = pLastGuestMsr->u32Msr;
1376 pGuestMsr->u64Value = pLastGuestMsr->u64Value;
1377
1378 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1379 PVMXAUTOMSR pLastHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1380 pLastHostMsr += cMsrs - 1;
1381 pHostMsr->u32Msr = pLastHostMsr->u32Msr;
1382 pHostMsr->u64Value = pLastHostMsr->u64Value;
1383 --cMsrs;
1384 break;
1385 }
1386 pGuestMsr++;
1387 }
1388
1389 /* Update the VMCS if the count changed (meaning the MSR was found). */
1390 if (cMsrs != pVCpu->hm.s.vmx.cMsrs)
1391 {
1392 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, cMsrs);
1393 AssertRCReturn(rc, rc);
1394
1395 /* We're no longer swapping MSRs during the world-switch, intercept guest read/writes to them. */
1396 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1397 hmR0VmxSetMsrPermission(pVCpu, uMsr, VMXMSREXIT_INTERCEPT_READ, VMXMSREXIT_INTERCEPT_WRITE);
1398
1399 Log4(("Removed MSR %#RX32 new cMsrs=%u\n", uMsr, pVCpu->hm.s.vmx.cMsrs));
1400 return VINF_SUCCESS;
1401 }
1402
1403 return VERR_NOT_FOUND;
1404}
1405
1406
1407/**
1408 * Checks if the specified guest MSR is part of the auto-load/store area in
1409 * the VMCS.
1410 *
1411 * @returns true if found, false otherwise.
1412 * @param pVCpu The cross context virtual CPU structure.
1413 * @param uMsr The MSR to find.
1414 */
1415static bool hmR0VmxIsAutoLoadStoreGuestMsr(PVMCPU pVCpu, uint32_t uMsr)
1416{
1417 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1418 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1419
1420 for (uint32_t i = 0; i < cMsrs; i++, pGuestMsr++)
1421 {
1422 if (pGuestMsr->u32Msr == uMsr)
1423 return true;
1424 }
1425 return false;
1426}
1427
1428
1429/**
1430 * Updates the value of all host MSRs in the auto-load/store area in the VMCS.
1431 *
1432 * @param pVCpu The cross context virtual CPU structure.
1433 *
1434 * @remarks No-long-jump zone!!!
1435 */
1436static void hmR0VmxUpdateAutoLoadStoreHostMsrs(PVMCPU pVCpu)
1437{
1438 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1439 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1440 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1441 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1442
1443 for (uint32_t i = 0; i < cMsrs; i++, pHostMsr++, pGuestMsr++)
1444 {
1445 AssertReturnVoid(pHostMsr->u32Msr == pGuestMsr->u32Msr);
1446
1447 /*
1448 * Performance hack for the host EFER MSR. We use the cached value rather than re-read it.
1449 * Strict builds will catch mismatches in hmR0VmxCheckAutoLoadStoreMsrs(). See @bugref{7368}.
1450 */
1451 if (pHostMsr->u32Msr == MSR_K6_EFER)
1452 pHostMsr->u64Value = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.u64HostEfer;
1453 else
1454 pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
1455 }
1456
1457 pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
1458}
1459
1460
1461/**
1462 * Saves a set of host MSRs to allow read/write passthru access to the guest and
1463 * perform lazy restoration of the host MSRs while leaving VT-x.
1464 *
1465 * @param pVCpu The cross context virtual CPU structure.
1466 *
1467 * @remarks No-long-jump zone!!!
1468 */
1469static void hmR0VmxLazySaveHostMsrs(PVMCPU pVCpu)
1470{
1471 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1472
1473 /*
1474 * Note: If you're adding MSRs here, make sure to update the MSR-bitmap permissions in hmR0VmxSetupProcCtls().
1475 */
1476 if (!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST))
1477 {
1478 Assert(!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)); /* Guest MSRs better not be loaded now. */
1479#if HC_ARCH_BITS == 64
1480 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1481 {
1482 pVCpu->hm.s.vmx.u64HostLStarMsr = ASMRdMsr(MSR_K8_LSTAR);
1483 pVCpu->hm.s.vmx.u64HostStarMsr = ASMRdMsr(MSR_K6_STAR);
1484 pVCpu->hm.s.vmx.u64HostSFMaskMsr = ASMRdMsr(MSR_K8_SF_MASK);
1485 pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
1486 }
1487#endif
1488 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_SAVED_HOST;
1489 }
1490}
1491
1492
1493/**
1494 * Checks whether the MSR belongs to the set of guest MSRs that we restore
1495 * lazily while leaving VT-x.
1496 *
1497 * @returns true if it does, false otherwise.
1498 * @param pVCpu The cross context virtual CPU structure.
1499 * @param uMsr The MSR to check.
1500 */
1501static bool hmR0VmxIsLazyGuestMsr(PVMCPU pVCpu, uint32_t uMsr)
1502{
1503 NOREF(pVCpu);
1504#if HC_ARCH_BITS == 64
1505 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1506 {
1507 switch (uMsr)
1508 {
1509 case MSR_K8_LSTAR:
1510 case MSR_K6_STAR:
1511 case MSR_K8_SF_MASK:
1512 case MSR_K8_KERNEL_GS_BASE:
1513 return true;
1514 }
1515 }
1516#else
1517 RT_NOREF(pVCpu, uMsr);
1518#endif
1519 return false;
1520}
1521
1522
1523/**
1524 * Saves a set of guest MSRs back into the guest-CPU context.
1525 *
1526 * @param pVCpu The cross context virtual CPU structure.
1527 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
1528 * out-of-sync. Make sure to update the required fields
1529 * before using them.
1530 *
1531 * @remarks No-long-jump zone!!!
1532 */
1533static void hmR0VmxLazySaveGuestMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
1534{
1535 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1536 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1537
1538 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
1539 {
1540 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1541#if HC_ARCH_BITS == 64
1542 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1543 {
1544 pMixedCtx->msrLSTAR = ASMRdMsr(MSR_K8_LSTAR);
1545 pMixedCtx->msrSTAR = ASMRdMsr(MSR_K6_STAR);
1546 pMixedCtx->msrSFMASK = ASMRdMsr(MSR_K8_SF_MASK);
1547 pMixedCtx->msrKERNELGSBASE = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
1548 }
1549#else
1550 NOREF(pMixedCtx);
1551#endif
1552 }
1553}
1554
1555
1556/**
1557 * Loads a set of guests MSRs to allow read/passthru to the guest.
1558 *
1559 * The name of this function is slightly confusing. This function does NOT
1560 * postpone loading, but loads the MSR right now. "hmR0VmxLazy" is simply a
1561 * common prefix for functions dealing with "lazy restoration" of the shared
1562 * MSRs.
1563 *
1564 * @param pVCpu The cross context virtual CPU structure.
1565 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
1566 * out-of-sync. Make sure to update the required fields
1567 * before using them.
1568 *
1569 * @remarks No-long-jump zone!!!
1570 */
1571static void hmR0VmxLazyLoadGuestMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
1572{
1573 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1574 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1575
1576 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1577#if HC_ARCH_BITS == 64
1578 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1579 {
1580 /*
1581 * If the guest MSRs are not loaded -and- if all the guest MSRs are identical
1582 * to the MSRs on the CPU (which are the saved host MSRs, see assertion above) then
1583 * we can skip a few MSR writes.
1584 *
1585 * Otherwise, it implies either 1. they're not loaded, or 2. they're loaded but the
1586 * guest MSR values in the guest-CPU context might be different to what's currently
1587 * loaded in the CPU. In either case, we need to write the new guest MSR values to the
1588 * CPU, see @bugref{8728}.
1589 */
1590 if ( !(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
1591 && pMixedCtx->msrKERNELGSBASE == pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr
1592 && pMixedCtx->msrLSTAR == pVCpu->hm.s.vmx.u64HostLStarMsr
1593 && pMixedCtx->msrSTAR == pVCpu->hm.s.vmx.u64HostStarMsr
1594 && pMixedCtx->msrSFMASK == pVCpu->hm.s.vmx.u64HostSFMaskMsr)
1595 {
1596#ifdef VBOX_STRICT
1597 Assert(ASMRdMsr(MSR_K8_KERNEL_GS_BASE) == pMixedCtx->msrKERNELGSBASE);
1598 Assert(ASMRdMsr(MSR_K8_LSTAR) == pMixedCtx->msrLSTAR);
1599 Assert(ASMRdMsr(MSR_K6_STAR) == pMixedCtx->msrSTAR);
1600 Assert(ASMRdMsr(MSR_K8_SF_MASK) == pMixedCtx->msrSFMASK);
1601#endif
1602 }
1603 else
1604 {
1605 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pMixedCtx->msrKERNELGSBASE);
1606 ASMWrMsr(MSR_K8_LSTAR, pMixedCtx->msrLSTAR);
1607 ASMWrMsr(MSR_K6_STAR, pMixedCtx->msrSTAR);
1608 ASMWrMsr(MSR_K8_SF_MASK, pMixedCtx->msrSFMASK);
1609 }
1610 }
1611#else
1612 RT_NOREF(pMixedCtx);
1613#endif
1614 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_LOADED_GUEST;
1615}
1616
1617
1618/**
1619 * Performs lazy restoration of the set of host MSRs if they were previously
1620 * loaded with guest MSR values.
1621 *
1622 * @param pVCpu The cross context virtual CPU structure.
1623 *
1624 * @remarks No-long-jump zone!!!
1625 * @remarks The guest MSRs should have been saved back into the guest-CPU
1626 * context by hmR0VmxSaveGuestLazyMsrs()!!!
1627 */
1628static void hmR0VmxLazyRestoreHostMsrs(PVMCPU pVCpu)
1629{
1630 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1631 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1632
1633 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
1634 {
1635 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1636#if HC_ARCH_BITS == 64
1637 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1638 {
1639 ASMWrMsr(MSR_K8_LSTAR, pVCpu->hm.s.vmx.u64HostLStarMsr);
1640 ASMWrMsr(MSR_K6_STAR, pVCpu->hm.s.vmx.u64HostStarMsr);
1641 ASMWrMsr(MSR_K8_SF_MASK, pVCpu->hm.s.vmx.u64HostSFMaskMsr);
1642 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr);
1643 }
1644#endif
1645 }
1646 pVCpu->hm.s.vmx.fLazyMsrs &= ~(VMX_LAZY_MSRS_LOADED_GUEST | VMX_LAZY_MSRS_SAVED_HOST);
1647}
1648
1649
1650/**
1651 * Verifies that our cached values of the VMCS controls are all
1652 * consistent with what's actually present in the VMCS.
1653 *
1654 * @returns VBox status code.
1655 * @param pVCpu The cross context virtual CPU structure.
1656 */
1657static int hmR0VmxCheckVmcsCtls(PVMCPU pVCpu)
1658{
1659 uint32_t u32Val;
1660 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
1661 AssertRCReturn(rc, rc);
1662 AssertMsgReturn(pVCpu->hm.s.vmx.u32EntryCtls == u32Val, ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32EntryCtls, u32Val),
1663 VERR_VMX_ENTRY_CTLS_CACHE_INVALID);
1664
1665 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val);
1666 AssertRCReturn(rc, rc);
1667 AssertMsgReturn(pVCpu->hm.s.vmx.u32ExitCtls == u32Val, ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32ExitCtls, u32Val),
1668 VERR_VMX_EXIT_CTLS_CACHE_INVALID);
1669
1670 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val);
1671 AssertRCReturn(rc, rc);
1672 AssertMsgReturn(pVCpu->hm.s.vmx.u32PinCtls == u32Val, ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32PinCtls, u32Val),
1673 VERR_VMX_PIN_EXEC_CTLS_CACHE_INVALID);
1674
1675 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val);
1676 AssertRCReturn(rc, rc);
1677 AssertMsgReturn(pVCpu->hm.s.vmx.u32ProcCtls == u32Val, ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32ProcCtls, u32Val),
1678 VERR_VMX_PROC_EXEC_CTLS_CACHE_INVALID);
1679
1680 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
1681 {
1682 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val);
1683 AssertRCReturn(rc, rc);
1684 AssertMsgReturn(pVCpu->hm.s.vmx.u32ProcCtls2 == u32Val,
1685 ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32ProcCtls2, u32Val),
1686 VERR_VMX_PROC_EXEC2_CTLS_CACHE_INVALID);
1687 }
1688
1689 return VINF_SUCCESS;
1690}
1691
1692
1693#ifdef VBOX_STRICT
1694/**
1695 * Verifies that our cached host EFER value has not changed
1696 * since we cached it.
1697 *
1698 * @param pVCpu The cross context virtual CPU structure.
1699 */
1700static void hmR0VmxCheckHostEferMsr(PVMCPU pVCpu)
1701{
1702 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1703
1704 if (pVCpu->hm.s.vmx.u32ExitCtls & VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR)
1705 {
1706 uint64_t u64Val;
1707 int rc = VMXReadVmcs64(VMX_VMCS64_HOST_EFER_FULL, &u64Val);
1708 AssertRC(rc);
1709
1710 uint64_t u64HostEferMsr = ASMRdMsr(MSR_K6_EFER);
1711 AssertMsgReturnVoid(u64HostEferMsr == u64Val, ("u64HostEferMsr=%#RX64 u64Val=%#RX64\n", u64HostEferMsr, u64Val));
1712 }
1713}
1714
1715
1716/**
1717 * Verifies whether the guest/host MSR pairs in the auto-load/store area in the
1718 * VMCS are correct.
1719 *
1720 * @param pVCpu The cross context virtual CPU structure.
1721 */
1722static void hmR0VmxCheckAutoLoadStoreMsrs(PVMCPU pVCpu)
1723{
1724 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1725
1726 /* Verify MSR counts in the VMCS are what we think it should be. */
1727 uint32_t cMsrs;
1728 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &cMsrs); AssertRC(rc);
1729 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1730
1731 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &cMsrs); AssertRC(rc);
1732 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1733
1734 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &cMsrs); AssertRC(rc);
1735 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1736
1737 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1738 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1739 for (uint32_t i = 0; i < cMsrs; i++, pHostMsr++, pGuestMsr++)
1740 {
1741 /* Verify that the MSRs are paired properly and that the host MSR has the correct value. */
1742 AssertMsgReturnVoid(pHostMsr->u32Msr == pGuestMsr->u32Msr, ("HostMsr=%#RX32 GuestMsr=%#RX32 cMsrs=%u\n", pHostMsr->u32Msr,
1743 pGuestMsr->u32Msr, cMsrs));
1744
1745 uint64_t u64Msr = ASMRdMsr(pHostMsr->u32Msr);
1746 AssertMsgReturnVoid(pHostMsr->u64Value == u64Msr, ("u32Msr=%#RX32 VMCS Value=%#RX64 ASMRdMsr=%#RX64 cMsrs=%u\n",
1747 pHostMsr->u32Msr, pHostMsr->u64Value, u64Msr, cMsrs));
1748
1749 /* Verify that the permissions are as expected in the MSR bitmap. */
1750 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1751 {
1752 VMXMSREXITREAD enmRead;
1753 VMXMSREXITWRITE enmWrite;
1754 rc = hmR0VmxGetMsrPermission(pVCpu, pGuestMsr->u32Msr, &enmRead, &enmWrite);
1755 AssertMsgReturnVoid(rc == VINF_SUCCESS, ("hmR0VmxGetMsrPermission! failed. rc=%Rrc\n", rc));
1756 if (pGuestMsr->u32Msr == MSR_K6_EFER)
1757 {
1758 AssertMsgReturnVoid(enmRead == VMXMSREXIT_INTERCEPT_READ, ("Passthru read for EFER!?\n"));
1759 AssertMsgReturnVoid(enmWrite == VMXMSREXIT_INTERCEPT_WRITE, ("Passthru write for EFER!?\n"));
1760 }
1761 else
1762 {
1763 AssertMsgReturnVoid(enmRead == VMXMSREXIT_PASSTHRU_READ, ("u32Msr=%#RX32 cMsrs=%u No passthru read!\n",
1764 pGuestMsr->u32Msr, cMsrs));
1765 AssertMsgReturnVoid(enmWrite == VMXMSREXIT_PASSTHRU_WRITE, ("u32Msr=%#RX32 cMsrs=%u No passthru write!\n",
1766 pGuestMsr->u32Msr, cMsrs));
1767 }
1768 }
1769 }
1770}
1771#endif /* VBOX_STRICT */
1772
1773
1774/**
1775 * Flushes the TLB using EPT.
1776 *
1777 * @returns VBox status code.
1778 * @param pVCpu The cross context virtual CPU structure of the calling
1779 * EMT. Can be NULL depending on @a enmFlush.
1780 * @param enmFlush Type of flush.
1781 *
1782 * @remarks Caller is responsible for making sure this function is called only
1783 * when NestedPaging is supported and providing @a enmFlush that is
1784 * supported by the CPU.
1785 * @remarks Can be called with interrupts disabled.
1786 */
1787static void hmR0VmxFlushEpt(PVMCPU pVCpu, VMXFLUSHEPT enmFlush)
1788{
1789 uint64_t au64Descriptor[2];
1790 if (enmFlush == VMXFLUSHEPT_ALL_CONTEXTS)
1791 au64Descriptor[0] = 0;
1792 else
1793 {
1794 Assert(pVCpu);
1795 au64Descriptor[0] = pVCpu->hm.s.vmx.HCPhysEPTP;
1796 }
1797 au64Descriptor[1] = 0; /* MBZ. Intel spec. 33.3 "VMX Instructions" */
1798
1799 int rc = VMXR0InvEPT(enmFlush, &au64Descriptor[0]);
1800 AssertMsg(rc == VINF_SUCCESS, ("VMXR0InvEPT %#x %RGv failed with %Rrc\n", enmFlush, pVCpu ? pVCpu->hm.s.vmx.HCPhysEPTP : 0,
1801 rc));
1802 if ( RT_SUCCESS(rc)
1803 && pVCpu)
1804 {
1805 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushNestedPaging);
1806 }
1807}
1808
1809
1810/**
1811 * Flushes the TLB using VPID.
1812 *
1813 * @returns VBox status code.
1814 * @param pVM The cross context VM structure.
1815 * @param pVCpu The cross context virtual CPU structure of the calling
1816 * EMT. Can be NULL depending on @a enmFlush.
1817 * @param enmFlush Type of flush.
1818 * @param GCPtr Virtual address of the page to flush (can be 0 depending
1819 * on @a enmFlush).
1820 *
1821 * @remarks Can be called with interrupts disabled.
1822 */
1823static void hmR0VmxFlushVpid(PVM pVM, PVMCPU pVCpu, VMXFLUSHVPID enmFlush, RTGCPTR GCPtr)
1824{
1825 NOREF(pVM);
1826 AssertPtr(pVM);
1827 Assert(pVM->hm.s.vmx.fVpid);
1828
1829 uint64_t au64Descriptor[2];
1830 if (enmFlush == VMXFLUSHVPID_ALL_CONTEXTS)
1831 {
1832 au64Descriptor[0] = 0;
1833 au64Descriptor[1] = 0;
1834 }
1835 else
1836 {
1837 AssertPtr(pVCpu);
1838 AssertMsg(pVCpu->hm.s.uCurrentAsid != 0, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
1839 AssertMsg(pVCpu->hm.s.uCurrentAsid <= UINT16_MAX, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
1840 au64Descriptor[0] = pVCpu->hm.s.uCurrentAsid;
1841 au64Descriptor[1] = GCPtr;
1842 }
1843
1844 int rc = VMXR0InvVPID(enmFlush, &au64Descriptor[0]); NOREF(rc);
1845 AssertMsg(rc == VINF_SUCCESS,
1846 ("VMXR0InvVPID %#x %u %RGv failed with %d\n", enmFlush, pVCpu ? pVCpu->hm.s.uCurrentAsid : 0, GCPtr, rc));
1847 if ( RT_SUCCESS(rc)
1848 && pVCpu)
1849 {
1850 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
1851 }
1852}
1853
1854
1855/**
1856 * Invalidates a guest page by guest virtual address. Only relevant for
1857 * EPT/VPID, otherwise there is nothing really to invalidate.
1858 *
1859 * @returns VBox status code.
1860 * @param pVM The cross context VM structure.
1861 * @param pVCpu The cross context virtual CPU structure.
1862 * @param GCVirt Guest virtual address of the page to invalidate.
1863 */
1864VMMR0DECL(int) VMXR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
1865{
1866 AssertPtr(pVM);
1867 AssertPtr(pVCpu);
1868 LogFlowFunc(("pVM=%p pVCpu=%p GCVirt=%RGv\n", pVM, pVCpu, GCVirt));
1869
1870 bool fFlushPending = VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_FLUSH);
1871 if (!fFlushPending)
1872 {
1873 /*
1874 * We must invalidate the guest TLB entry in either case, we cannot ignore it even for the EPT case
1875 * See @bugref{6043} and @bugref{6177}.
1876 *
1877 * Set the VMCPU_FF_TLB_FLUSH force flag and flush before VM-entry in hmR0VmxFlushTLB*() as this
1878 * function maybe called in a loop with individual addresses.
1879 */
1880 if (pVM->hm.s.vmx.fVpid)
1881 {
1882 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
1883 {
1884 hmR0VmxFlushVpid(pVM, pVCpu, VMXFLUSHVPID_INDIV_ADDR, GCVirt);
1885 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
1886 }
1887 else
1888 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1889 }
1890 else if (pVM->hm.s.fNestedPaging)
1891 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1892 }
1893
1894 return VINF_SUCCESS;
1895}
1896
1897
1898/**
1899 * Invalidates a guest page by physical address. Only relevant for EPT/VPID,
1900 * otherwise there is nothing really to invalidate.
1901 *
1902 * @returns VBox status code.
1903 * @param pVM The cross context VM structure.
1904 * @param pVCpu The cross context virtual CPU structure.
1905 * @param GCPhys Guest physical address of the page to invalidate.
1906 */
1907VMMR0DECL(int) VMXR0InvalidatePhysPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
1908{
1909 NOREF(pVM); NOREF(GCPhys);
1910 LogFlowFunc(("%RGp\n", GCPhys));
1911
1912 /*
1913 * We cannot flush a page by guest-physical address. invvpid takes only a linear address while invept only flushes
1914 * by EPT not individual addresses. We update the force flag here and flush before the next VM-entry in hmR0VmxFlushTLB*().
1915 * This function might be called in a loop. This should cause a flush-by-EPT if EPT is in use. See @bugref{6568}.
1916 */
1917 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1918 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgPhys);
1919 return VINF_SUCCESS;
1920}
1921
1922
1923/**
1924 * Dummy placeholder for tagged-TLB flush handling before VM-entry. Used in the
1925 * case where neither EPT nor VPID is supported by the CPU.
1926 *
1927 * @param pVM The cross context VM structure.
1928 * @param pVCpu The cross context virtual CPU structure.
1929 * @param pCpu Pointer to the global HM struct.
1930 *
1931 * @remarks Called with interrupts disabled.
1932 */
1933static void hmR0VmxFlushTaggedTlbNone(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1934{
1935 AssertPtr(pVCpu);
1936 AssertPtr(pCpu);
1937 NOREF(pVM);
1938
1939 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
1940
1941 Assert(pCpu->idCpu != NIL_RTCPUID);
1942 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1943 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1944 pVCpu->hm.s.fForceTLBFlush = false;
1945 return;
1946}
1947
1948
1949/**
1950 * Flushes the tagged-TLB entries for EPT+VPID CPUs as necessary.
1951 *
1952 * @param pVM The cross context VM structure.
1953 * @param pVCpu The cross context virtual CPU structure.
1954 * @param pCpu Pointer to the global HM CPU struct.
1955 * @remarks All references to "ASID" in this function pertains to "VPID" in
1956 * Intel's nomenclature. The reason is, to avoid confusion in compare
1957 * statements since the host-CPU copies are named "ASID".
1958 *
1959 * @remarks Called with interrupts disabled.
1960 */
1961static void hmR0VmxFlushTaggedTlbBoth(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1962{
1963#ifdef VBOX_WITH_STATISTICS
1964 bool fTlbFlushed = false;
1965# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { fTlbFlushed = true; } while (0)
1966# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { \
1967 if (!fTlbFlushed) \
1968 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch); \
1969 } while (0)
1970#else
1971# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { } while (0)
1972# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { } while (0)
1973#endif
1974
1975 AssertPtr(pVM);
1976 AssertPtr(pCpu);
1977 AssertPtr(pVCpu);
1978 Assert(pCpu->idCpu != NIL_RTCPUID);
1979
1980 AssertMsg(pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid,
1981 ("hmR0VmxFlushTaggedTlbBoth cannot be invoked unless NestedPaging & VPID are enabled."
1982 "fNestedPaging=%RTbool fVpid=%RTbool", pVM->hm.s.fNestedPaging, pVM->hm.s.vmx.fVpid));
1983
1984 /*
1985 * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
1986 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB
1987 * or the host CPU is online after a suspend/resume, so we cannot reuse the current ASID anymore.
1988 */
1989 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
1990 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
1991 {
1992 ++pCpu->uCurrentAsid;
1993 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
1994 {
1995 pCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0. */
1996 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
1997 pCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
1998 }
1999
2000 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
2001 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
2002 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
2003
2004 /*
2005 * Flush by EPT when we get rescheduled to a new host CPU to ensure EPT-only tagged mappings are also
2006 * invalidated. We don't need to flush-by-VPID here as flushing by EPT covers it. See @bugref{6568}.
2007 */
2008 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
2009 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2010 HMVMX_SET_TAGGED_TLB_FLUSHED();
2011 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH); /* Already flushed-by-EPT, skip doing it again below. */
2012 }
2013
2014 /* Check for explicit TLB flushes. */
2015 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2016 {
2017 /*
2018 * Changes to the EPT paging structure by VMM requires flushing by EPT as the CPU creates
2019 * guest-physical (only EPT-tagged) mappings while traversing the EPT tables when EPT is in use.
2020 * Flushing by VPID will only flush linear (only VPID-tagged) and combined (EPT+VPID tagged) mappings
2021 * but not guest-physical mappings.
2022 * See Intel spec. 28.3.2 "Creating and Using Cached Translation Information". See @bugref{6568}.
2023 */
2024 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
2025 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2026 HMVMX_SET_TAGGED_TLB_FLUSHED();
2027 }
2028
2029 pVCpu->hm.s.fForceTLBFlush = false;
2030 HMVMX_UPDATE_FLUSH_SKIPPED_STAT();
2031
2032 Assert(pVCpu->hm.s.idLastCpu == pCpu->idCpu);
2033 Assert(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes);
2034 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
2035 ("Flush count mismatch for cpu %d (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
2036 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
2037 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pCpu->idCpu,
2038 pCpu->uCurrentAsid, pCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
2039 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
2040 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
2041
2042 /* Update VMCS with the VPID. */
2043 int rc = VMXWriteVmcs32(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
2044 AssertRC(rc);
2045
2046#undef HMVMX_SET_TAGGED_TLB_FLUSHED
2047}
2048
2049
2050/**
2051 * Flushes the tagged-TLB entries for EPT CPUs as necessary.
2052 *
2053 * @returns VBox status code.
2054 * @param pVM The cross context VM structure.
2055 * @param pVCpu The cross context virtual CPU structure.
2056 * @param pCpu Pointer to the global HM CPU struct.
2057 *
2058 * @remarks Called with interrupts disabled.
2059 */
2060static void hmR0VmxFlushTaggedTlbEpt(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2061{
2062 AssertPtr(pVM);
2063 AssertPtr(pVCpu);
2064 AssertPtr(pCpu);
2065 Assert(pCpu->idCpu != NIL_RTCPUID);
2066 AssertMsg(pVM->hm.s.fNestedPaging, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with NestedPaging disabled."));
2067 AssertMsg(!pVM->hm.s.vmx.fVpid, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with VPID enabled."));
2068
2069 /*
2070 * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
2071 * A change in the TLB flush count implies the host CPU is online after a suspend/resume.
2072 */
2073 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
2074 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
2075 {
2076 pVCpu->hm.s.fForceTLBFlush = true;
2077 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2078 }
2079
2080 /* Check for explicit TLB flushes. */
2081 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2082 {
2083 pVCpu->hm.s.fForceTLBFlush = true;
2084 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2085 }
2086
2087 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
2088 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
2089
2090 if (pVCpu->hm.s.fForceTLBFlush)
2091 {
2092 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
2093 pVCpu->hm.s.fForceTLBFlush = false;
2094 }
2095}
2096
2097
2098/**
2099 * Flushes the tagged-TLB entries for VPID CPUs as necessary.
2100 *
2101 * @returns VBox status code.
2102 * @param pVM The cross context VM structure.
2103 * @param pVCpu The cross context virtual CPU structure.
2104 * @param pCpu Pointer to the global HM CPU struct.
2105 *
2106 * @remarks Called with interrupts disabled.
2107 */
2108static void hmR0VmxFlushTaggedTlbVpid(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2109{
2110 AssertPtr(pVM);
2111 AssertPtr(pVCpu);
2112 AssertPtr(pCpu);
2113 Assert(pCpu->idCpu != NIL_RTCPUID);
2114 AssertMsg(pVM->hm.s.vmx.fVpid, ("hmR0VmxFlushTlbVpid cannot be invoked with VPID disabled."));
2115 AssertMsg(!pVM->hm.s.fNestedPaging, ("hmR0VmxFlushTlbVpid cannot be invoked with NestedPaging enabled"));
2116
2117 /*
2118 * Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last.
2119 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB
2120 * or the host CPU is online after a suspend/resume, so we cannot reuse the current ASID anymore.
2121 */
2122 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
2123 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
2124 {
2125 pVCpu->hm.s.fForceTLBFlush = true;
2126 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2127 }
2128
2129 /* Check for explicit TLB flushes. */
2130 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2131 {
2132 /*
2133 * If we ever support VPID flush combinations other than ALL or SINGLE-context (see hmR0VmxSetupTaggedTlb())
2134 * we would need to explicitly flush in this case (add an fExplicitFlush = true here and change the
2135 * pCpu->fFlushAsidBeforeUse check below to include fExplicitFlush's too) - an obscure corner case.
2136 */
2137 pVCpu->hm.s.fForceTLBFlush = true;
2138 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2139 }
2140
2141 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
2142 if (pVCpu->hm.s.fForceTLBFlush)
2143 {
2144 ++pCpu->uCurrentAsid;
2145 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
2146 {
2147 pCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0 */
2148 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
2149 pCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
2150 }
2151
2152 pVCpu->hm.s.fForceTLBFlush = false;
2153 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
2154 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
2155 if (pCpu->fFlushAsidBeforeUse)
2156 {
2157 if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_SINGLE_CONTEXT)
2158 hmR0VmxFlushVpid(pVM, pVCpu, VMXFLUSHVPID_SINGLE_CONTEXT, 0 /* GCPtr */);
2159 else if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_ALL_CONTEXTS)
2160 {
2161 hmR0VmxFlushVpid(pVM, pVCpu, VMXFLUSHVPID_ALL_CONTEXTS, 0 /* GCPtr */);
2162 pCpu->fFlushAsidBeforeUse = false;
2163 }
2164 else
2165 {
2166 /* hmR0VmxSetupTaggedTlb() ensures we never get here. Paranoia. */
2167 AssertMsgFailed(("Unsupported VPID-flush context type.\n"));
2168 }
2169 }
2170 }
2171
2172 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
2173 ("Flush count mismatch for cpu %d (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
2174 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
2175 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pCpu->idCpu,
2176 pCpu->uCurrentAsid, pCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
2177 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
2178 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
2179
2180 int rc = VMXWriteVmcs32(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
2181 AssertRC(rc);
2182}
2183
2184
2185/**
2186 * Flushes the guest TLB entry based on CPU capabilities.
2187 *
2188 * @param pVCpu The cross context virtual CPU structure.
2189 * @param pCpu Pointer to the global HM CPU struct.
2190 */
2191DECLINLINE(void) hmR0VmxFlushTaggedTlb(PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2192{
2193#ifdef HMVMX_ALWAYS_FLUSH_TLB
2194 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
2195#endif
2196 PVM pVM = pVCpu->CTX_SUFF(pVM);
2197 switch (pVM->hm.s.vmx.uFlushTaggedTlb)
2198 {
2199 case HMVMX_FLUSH_TAGGED_TLB_EPT_VPID: hmR0VmxFlushTaggedTlbBoth(pVM, pVCpu, pCpu); break;
2200 case HMVMX_FLUSH_TAGGED_TLB_EPT: hmR0VmxFlushTaggedTlbEpt(pVM, pVCpu, pCpu); break;
2201 case HMVMX_FLUSH_TAGGED_TLB_VPID: hmR0VmxFlushTaggedTlbVpid(pVM, pVCpu, pCpu); break;
2202 case HMVMX_FLUSH_TAGGED_TLB_NONE: hmR0VmxFlushTaggedTlbNone(pVM, pVCpu, pCpu); break;
2203 default:
2204 AssertMsgFailed(("Invalid flush-tag function identifier\n"));
2205 break;
2206 }
2207
2208 /* Don't assert that VMCPU_FF_TLB_FLUSH should no longer be pending. It can be set by other EMTs. */
2209}
2210
2211
2212/**
2213 * Sets up the appropriate tagged TLB-flush level and handler for flushing guest
2214 * TLB entries from the host TLB before VM-entry.
2215 *
2216 * @returns VBox status code.
2217 * @param pVM The cross context VM structure.
2218 */
2219static int hmR0VmxSetupTaggedTlb(PVM pVM)
2220{
2221 /*
2222 * Determine optimal flush type for Nested Paging.
2223 * We cannot ignore EPT if no suitable flush-types is supported by the CPU as we've already setup unrestricted
2224 * guest execution (see hmR3InitFinalizeR0()).
2225 */
2226 if (pVM->hm.s.fNestedPaging)
2227 {
2228 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT)
2229 {
2230 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT)
2231 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_SINGLE_CONTEXT;
2232 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
2233 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_ALL_CONTEXTS;
2234 else
2235 {
2236 /* Shouldn't happen. EPT is supported but no suitable flush-types supported. */
2237 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NOT_SUPPORTED;
2238 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_FLUSH_TYPE_UNSUPPORTED;
2239 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2240 }
2241
2242 /* Make sure the write-back cacheable memory type for EPT is supported. */
2243 if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB)))
2244 {
2245 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NOT_SUPPORTED;
2246 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_MEM_TYPE_NOT_WB;
2247 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2248 }
2249
2250 /* EPT requires a page-walk length of 4. */
2251 if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_4)))
2252 {
2253 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NOT_SUPPORTED;
2254 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_PAGE_WALK_LENGTH_UNSUPPORTED;
2255 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2256 }
2257 }
2258 else
2259 {
2260 /* Shouldn't happen. EPT is supported but INVEPT instruction is not supported. */
2261 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NOT_SUPPORTED;
2262 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_INVEPT_UNAVAILABLE;
2263 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2264 }
2265 }
2266
2267 /*
2268 * Determine optimal flush type for VPID.
2269 */
2270 if (pVM->hm.s.vmx.fVpid)
2271 {
2272 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID)
2273 {
2274 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT)
2275 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_SINGLE_CONTEXT;
2276 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS)
2277 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_ALL_CONTEXTS;
2278 else
2279 {
2280 /* Neither SINGLE nor ALL-context flush types for VPID is supported by the CPU. Ignore VPID capability. */
2281 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
2282 LogRel(("hmR0VmxSetupTaggedTlb: Only INDIV_ADDR supported. Ignoring VPID.\n"));
2283 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
2284 LogRel(("hmR0VmxSetupTaggedTlb: Only SINGLE_CONTEXT_RETAIN_GLOBALS supported. Ignoring VPID.\n"));
2285 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_NOT_SUPPORTED;
2286 pVM->hm.s.vmx.fVpid = false;
2287 }
2288 }
2289 else
2290 {
2291 /* Shouldn't happen. VPID is supported but INVVPID is not supported by the CPU. Ignore VPID capability. */
2292 Log4(("hmR0VmxSetupTaggedTlb: VPID supported without INVEPT support. Ignoring VPID.\n"));
2293 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_NOT_SUPPORTED;
2294 pVM->hm.s.vmx.fVpid = false;
2295 }
2296 }
2297
2298 /*
2299 * Setup the handler for flushing tagged-TLBs.
2300 */
2301 if (pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid)
2302 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_EPT_VPID;
2303 else if (pVM->hm.s.fNestedPaging)
2304 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_EPT;
2305 else if (pVM->hm.s.vmx.fVpid)
2306 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_VPID;
2307 else
2308 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_NONE;
2309 return VINF_SUCCESS;
2310}
2311
2312
2313/**
2314 * Sets up pin-based VM-execution controls in the VMCS.
2315 *
2316 * @returns VBox status code.
2317 * @param pVM The cross context VM structure.
2318 * @param pVCpu The cross context virtual CPU structure.
2319 */
2320static int hmR0VmxSetupPinCtls(PVM pVM, PVMCPU pVCpu)
2321{
2322 AssertPtr(pVM);
2323 AssertPtr(pVCpu);
2324
2325 uint32_t val = pVM->hm.s.vmx.Msrs.VmxPinCtls.n.disallowed0; /* Bits set here must always be set. */
2326 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1; /* Bits cleared here must always be cleared. */
2327
2328 val |= VMX_VMCS_CTRL_PIN_EXEC_EXT_INT_EXIT /* External interrupts cause a VM-exit. */
2329 | VMX_VMCS_CTRL_PIN_EXEC_NMI_EXIT; /* Non-maskable interrupts (NMIs) cause a VM-exit. */
2330
2331 if (pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI)
2332 val |= VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI; /* Use virtual NMIs and virtual-NMI blocking features. */
2333
2334 /* Enable the VMX preemption timer. */
2335 if (pVM->hm.s.vmx.fUsePreemptTimer)
2336 {
2337 Assert(pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER);
2338 val |= VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER;
2339 }
2340
2341#if 0
2342 /* Enable posted-interrupt processing. */
2343 if (pVM->hm.s.fPostedIntrs)
2344 {
2345 Assert(pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_POSTED_INTR);
2346 Assert(pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_ACK_EXT_INT);
2347 val |= VMX_VMCS_CTRL_PIN_EXEC_POSTED_INTR;
2348 }
2349#endif
2350
2351 if ((val & zap) != val)
2352 {
2353 LogRel(("hmR0VmxSetupPinCtls: Invalid pin-based VM-execution controls combo! cpu=%#RX64 val=%#RX64 zap=%#RX64\n",
2354 pVM->hm.s.vmx.Msrs.VmxPinCtls.n.disallowed0, val, zap));
2355 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PIN_EXEC;
2356 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2357 }
2358
2359 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, val);
2360 AssertRCReturn(rc, rc);
2361
2362 pVCpu->hm.s.vmx.u32PinCtls = val;
2363 return rc;
2364}
2365
2366
2367/**
2368 * Sets up processor-based VM-execution controls in the VMCS.
2369 *
2370 * @returns VBox status code.
2371 * @param pVM The cross context VM structure.
2372 * @param pVCpu The cross context virtual CPU structure.
2373 */
2374static int hmR0VmxSetupProcCtls(PVM pVM, PVMCPU pVCpu)
2375{
2376 AssertPtr(pVM);
2377 AssertPtr(pVCpu);
2378
2379 int rc = VERR_INTERNAL_ERROR_5;
2380 uint32_t val = pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0; /* Bits set here must be set in the VMCS. */
2381 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2382
2383 val |= VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT /* HLT causes a VM-exit. */
2384 | VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING /* Use TSC-offsetting. */
2385 | VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT /* MOV DRx causes a VM-exit. */
2386 | VMX_VMCS_CTRL_PROC_EXEC_UNCOND_IO_EXIT /* All IO instructions cause a VM-exit. */
2387 | VMX_VMCS_CTRL_PROC_EXEC_RDPMC_EXIT /* RDPMC causes a VM-exit. */
2388 | VMX_VMCS_CTRL_PROC_EXEC_MONITOR_EXIT /* MONITOR causes a VM-exit. */
2389 | VMX_VMCS_CTRL_PROC_EXEC_MWAIT_EXIT; /* MWAIT causes a VM-exit. */
2390
2391 /* We toggle VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT later, check if it's not -always- needed to be set or clear. */
2392 if ( !(pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT)
2393 || (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0 & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT))
2394 {
2395 LogRel(("hmR0VmxSetupProcCtls: Unsupported VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT combo!"));
2396 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_MOV_DRX_EXIT;
2397 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2398 }
2399
2400 /* Without Nested Paging, INVLPG (also affects INVPCID) and MOV CR3 instructions should cause VM-exits. */
2401 if (!pVM->hm.s.fNestedPaging)
2402 {
2403 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest); /* Paranoia. */
2404 val |= VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT
2405 | VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT
2406 | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT;
2407 }
2408
2409 /* Use TPR shadowing if supported by the CPU. */
2410 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
2411 {
2412 Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
2413 Assert(!(pVCpu->hm.s.vmx.HCPhysVirtApic & 0xfff)); /* Bits 11:0 MBZ. */
2414 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, 0);
2415 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_VAPIC_PAGEADDR_FULL, pVCpu->hm.s.vmx.HCPhysVirtApic);
2416 AssertRCReturn(rc, rc);
2417
2418 val |= VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW; /* CR8 reads from the Virtual-APIC page. */
2419 /* CR8 writes cause a VM-exit based on TPR threshold. */
2420 Assert(!(val & VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT));
2421 Assert(!(val & VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT));
2422 }
2423 else
2424 {
2425 /*
2426 * Some 32-bit CPUs do not support CR8 load/store exiting as MOV CR8 is invalid on 32-bit Intel CPUs.
2427 * Set this control only for 64-bit guests.
2428 */
2429 if (pVM->hm.s.fAllow64BitGuests)
2430 {
2431 val |= VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT /* CR8 reads cause a VM-exit. */
2432 | VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT; /* CR8 writes cause a VM-exit. */
2433 }
2434 }
2435
2436 /* Use MSR-bitmaps if supported by the CPU. */
2437 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
2438 {
2439 val |= VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS;
2440
2441 Assert(pVCpu->hm.s.vmx.HCPhysMsrBitmap);
2442 Assert(!(pVCpu->hm.s.vmx.HCPhysMsrBitmap & 0xfff)); /* Bits 11:0 MBZ. */
2443 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_MSR_BITMAP_FULL, pVCpu->hm.s.vmx.HCPhysMsrBitmap);
2444 AssertRCReturn(rc, rc);
2445
2446 /*
2447 * The guest can access the following MSRs (read, write) without causing VM-exits; they are loaded/stored
2448 * automatically using dedicated fields in the VMCS.
2449 */
2450 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_CS, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2451 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_ESP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2452 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_EIP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2453 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2454 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_FS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2455
2456#if HC_ARCH_BITS == 64
2457 /*
2458 * Set passthru permissions for the following MSRs (mandatory for VT-x) required for 64-bit guests.
2459 */
2460 if (pVM->hm.s.fAllow64BitGuests)
2461 {
2462 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_LSTAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2463 hmR0VmxSetMsrPermission(pVCpu, MSR_K6_STAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2464 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_SF_MASK, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2465 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2466 }
2467#endif
2468 /* Though MSR_IA32_PERF_GLOBAL_CTRL is saved/restored lazily, we want intercept reads/write to it for now. */
2469 }
2470
2471 /* Use the secondary processor-based VM-execution controls if supported by the CPU. */
2472 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
2473 val |= VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL;
2474
2475 if ((val & zap) != val)
2476 {
2477 LogRel(("hmR0VmxSetupProcCtls: Invalid processor-based VM-execution controls combo! cpu=%#RX64 val=%#RX64 zap=%#RX64\n",
2478 pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0, val, zap));
2479 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC;
2480 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2481 }
2482
2483 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, val);
2484 AssertRCReturn(rc, rc);
2485
2486 pVCpu->hm.s.vmx.u32ProcCtls = val;
2487
2488 /*
2489 * Secondary processor-based VM-execution controls.
2490 */
2491 if (RT_LIKELY(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL))
2492 {
2493 val = pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.disallowed0; /* Bits set here must be set in the VMCS. */
2494 zap = pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2495
2496 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT)
2497 val |= VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT; /* WBINVD causes a VM-exit. */
2498
2499 if (pVM->hm.s.fNestedPaging)
2500 val |= VMX_VMCS_CTRL_PROC_EXEC2_EPT; /* Enable EPT. */
2501 else
2502 {
2503 /*
2504 * Without Nested Paging, INVPCID should cause a VM-exit. Enabling this bit causes the CPU to refer to
2505 * VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT when INVPCID is executed by the guest.
2506 * See Intel spec. 25.4 "Changes to instruction behaviour in VMX non-root operation".
2507 */
2508 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_INVPCID)
2509 val |= VMX_VMCS_CTRL_PROC_EXEC2_INVPCID;
2510 }
2511
2512 if (pVM->hm.s.vmx.fVpid)
2513 val |= VMX_VMCS_CTRL_PROC_EXEC2_VPID; /* Enable VPID. */
2514
2515 if (pVM->hm.s.vmx.fUnrestrictedGuest)
2516 val |= VMX_VMCS_CTRL_PROC_EXEC2_UNRESTRICTED_GUEST; /* Enable Unrestricted Execution. */
2517
2518#if 0
2519 if (pVM->hm.s.fVirtApicRegs)
2520 {
2521 Assert(pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_APIC_REG_VIRT);
2522 val |= VMX_VMCS_CTRL_PROC_EXEC2_APIC_REG_VIRT; /* Enable APIC-register virtualization. */
2523
2524 Assert(pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_INTR_DELIVERY);
2525 val |= VMX_VMCS_CTRL_PROC_EXEC2_VIRT_INTR_DELIVERY; /* Enable virtual-interrupt delivery. */
2526 }
2527#endif
2528
2529 /* Enable Virtual-APIC page accesses if supported by the CPU. This is essentially where the TPR shadow resides. */
2530 /** @todo VIRT_X2APIC support, it's mutually exclusive with this. So must be
2531 * done dynamically. */
2532 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)
2533 {
2534 Assert(pVM->hm.s.vmx.HCPhysApicAccess);
2535 Assert(!(pVM->hm.s.vmx.HCPhysApicAccess & 0xfff)); /* Bits 11:0 MBZ. */
2536 val |= VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC; /* Virtualize APIC accesses. */
2537 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL, pVM->hm.s.vmx.HCPhysApicAccess);
2538 AssertRCReturn(rc, rc);
2539 }
2540
2541 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP)
2542 val |= VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP; /* Enable RDTSCP support. */
2543
2544 if ( pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_PAUSE_LOOP_EXIT
2545 && pVM->hm.s.vmx.cPleGapTicks
2546 && pVM->hm.s.vmx.cPleWindowTicks)
2547 {
2548 val |= VMX_VMCS_CTRL_PROC_EXEC2_PAUSE_LOOP_EXIT; /* Enable pause-loop exiting. */
2549
2550 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_GAP, pVM->hm.s.vmx.cPleGapTicks);
2551 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_WINDOW, pVM->hm.s.vmx.cPleWindowTicks);
2552 AssertRCReturn(rc, rc);
2553 }
2554
2555 if ((val & zap) != val)
2556 {
2557 LogRel(("hmR0VmxSetupProcCtls: Invalid secondary processor-based VM-execution controls combo! "
2558 "cpu=%#RX64 val=%#RX64 zap=%#RX64\n", pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.disallowed0, val, zap));
2559 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC2;
2560 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2561 }
2562
2563 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, val);
2564 AssertRCReturn(rc, rc);
2565
2566 pVCpu->hm.s.vmx.u32ProcCtls2 = val;
2567 }
2568 else if (RT_UNLIKELY(pVM->hm.s.vmx.fUnrestrictedGuest))
2569 {
2570 LogRel(("hmR0VmxSetupProcCtls: Unrestricted Guest set as true when secondary processor-based VM-execution controls not "
2571 "available\n"));
2572 pVCpu->hm.s.u32HMError = VMX_UFC_INVALID_UX_COMBO;
2573 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2574 }
2575
2576 return VINF_SUCCESS;
2577}
2578
2579
2580/**
2581 * Sets up miscellaneous (everything other than Pin & Processor-based
2582 * VM-execution) control fields in the VMCS.
2583 *
2584 * @returns VBox status code.
2585 * @param pVM The cross context VM structure.
2586 * @param pVCpu The cross context virtual CPU structure.
2587 */
2588static int hmR0VmxSetupMiscCtls(PVM pVM, PVMCPU pVCpu)
2589{
2590 NOREF(pVM);
2591 AssertPtr(pVM);
2592 AssertPtr(pVCpu);
2593
2594 int rc = VERR_GENERAL_FAILURE;
2595
2596 /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
2597#if 0
2598 /* All CR3 accesses cause VM-exits. Later we optimize CR3 accesses (see hmR0VmxLoadGuestCR3AndCR4())*/
2599 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, 0);
2600 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, 0);
2601
2602 /*
2603 * Set MASK & MATCH to 0. VMX checks if GuestPFErrCode & MASK == MATCH. If equal (in our case it always is)
2604 * and if the X86_XCPT_PF bit in the exception bitmap is set it causes a VM-exit, if clear doesn't cause an exit.
2605 * We thus use the exception bitmap to control it rather than use both.
2606 */
2607 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, 0);
2608 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, 0);
2609
2610 /** @todo Explore possibility of using IO-bitmaps. */
2611 /* All IO & IOIO instructions cause VM-exits. */
2612 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_A_FULL, 0);
2613 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_B_FULL, 0);
2614
2615 /* Initialize the MSR-bitmap area. */
2616 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, 0);
2617 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, 0);
2618 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, 0);
2619 AssertRCReturn(rc, rc);
2620#endif
2621
2622 /* Setup MSR auto-load/store area. */
2623 Assert(pVCpu->hm.s.vmx.HCPhysGuestMsr);
2624 Assert(!(pVCpu->hm.s.vmx.HCPhysGuestMsr & 0xf)); /* Lower 4 bits MBZ. */
2625 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
2626 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
2627 AssertRCReturn(rc, rc);
2628
2629 Assert(pVCpu->hm.s.vmx.HCPhysHostMsr);
2630 Assert(!(pVCpu->hm.s.vmx.HCPhysHostMsr & 0xf)); /* Lower 4 bits MBZ. */
2631 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysHostMsr);
2632 AssertRCReturn(rc, rc);
2633
2634 /* Set VMCS link pointer. Reserved for future use, must be -1. Intel spec. 24.4 "Guest-State Area". */
2635 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, UINT64_C(0xffffffffffffffff));
2636 AssertRCReturn(rc, rc);
2637
2638 /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
2639#if 0
2640 /* Setup debug controls */
2641 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, 0); /** @todo We don't support IA32_DEBUGCTL MSR. Should we? */
2642 rc |= VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, 0);
2643 AssertRCReturn(rc, rc);
2644#endif
2645
2646 return rc;
2647}
2648
2649
2650/**
2651 * Sets up the initial exception bitmap in the VMCS based on static conditions.
2652 *
2653 * We shall setup those exception intercepts that don't change during the
2654 * lifetime of the VM here. The rest are done dynamically while loading the
2655 * guest state.
2656 *
2657 * @returns VBox status code.
2658 * @param pVM The cross context VM structure.
2659 * @param pVCpu The cross context virtual CPU structure.
2660 */
2661static int hmR0VmxInitXcptBitmap(PVM pVM, PVMCPU pVCpu)
2662{
2663 AssertPtr(pVM);
2664 AssertPtr(pVCpu);
2665
2666 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
2667
2668 uint32_t u32XcptBitmap = 0;
2669
2670 /* Must always intercept #AC to prevent the guest from hanging the CPU. */
2671 u32XcptBitmap |= RT_BIT_32(X86_XCPT_AC);
2672
2673 /* Because we need to maintain the DR6 state even when intercepting DRx reads
2674 and writes, and because recursive #DBs can cause the CPU hang, we must always
2675 intercept #DB. */
2676 u32XcptBitmap |= RT_BIT_32(X86_XCPT_DB);
2677
2678 /* Without Nested Paging, #PF must cause a VM-exit so we can sync our shadow page tables. */
2679 if (!pVM->hm.s.fNestedPaging)
2680 u32XcptBitmap |= RT_BIT(X86_XCPT_PF);
2681
2682 pVCpu->hm.s.vmx.u32XcptBitmap = u32XcptBitmap;
2683 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, u32XcptBitmap);
2684 AssertRCReturn(rc, rc);
2685 return rc;
2686}
2687
2688
2689/**
2690 * Sets up the initial guest-state mask. The guest-state mask is consulted
2691 * before reading guest-state fields from the VMCS as VMREADs can be expensive
2692 * for the nested virtualization case (as it would cause a VM-exit).
2693 *
2694 * @param pVCpu The cross context virtual CPU structure.
2695 */
2696static int hmR0VmxInitUpdatedGuestStateMask(PVMCPU pVCpu)
2697{
2698 /* Initially the guest-state is up-to-date as there is nothing in the VMCS. */
2699 HMVMXCPU_GST_RESET_TO(pVCpu, HMVMX_UPDATED_GUEST_ALL);
2700 return VINF_SUCCESS;
2701}
2702
2703
2704/**
2705 * Does per-VM VT-x initialization.
2706 *
2707 * @returns VBox status code.
2708 * @param pVM The cross context VM structure.
2709 */
2710VMMR0DECL(int) VMXR0InitVM(PVM pVM)
2711{
2712 LogFlowFunc(("pVM=%p\n", pVM));
2713
2714 int rc = hmR0VmxStructsAlloc(pVM);
2715 if (RT_FAILURE(rc))
2716 {
2717 LogRel(("VMXR0InitVM: hmR0VmxStructsAlloc failed! rc=%Rrc\n", rc));
2718 return rc;
2719 }
2720
2721 return VINF_SUCCESS;
2722}
2723
2724
2725/**
2726 * Does per-VM VT-x termination.
2727 *
2728 * @returns VBox status code.
2729 * @param pVM The cross context VM structure.
2730 */
2731VMMR0DECL(int) VMXR0TermVM(PVM pVM)
2732{
2733 LogFlowFunc(("pVM=%p\n", pVM));
2734
2735#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2736 if (pVM->hm.s.vmx.hMemObjScratch != NIL_RTR0MEMOBJ)
2737 ASMMemZero32(pVM->hm.s.vmx.pvScratch, PAGE_SIZE);
2738#endif
2739 hmR0VmxStructsFree(pVM);
2740 return VINF_SUCCESS;
2741}
2742
2743
2744/**
2745 * Sets up the VM for execution under VT-x.
2746 * This function is only called once per-VM during initialization.
2747 *
2748 * @returns VBox status code.
2749 * @param pVM The cross context VM structure.
2750 */
2751VMMR0DECL(int) VMXR0SetupVM(PVM pVM)
2752{
2753 AssertPtrReturn(pVM, VERR_INVALID_PARAMETER);
2754 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2755
2756 LogFlowFunc(("pVM=%p\n", pVM));
2757
2758 /*
2759 * Without UnrestrictedGuest, pRealModeTSS and pNonPagingModeEPTPageTable *must* always be allocated.
2760 * We no longer support the highly unlikely case of UnrestrictedGuest without pRealModeTSS. See hmR3InitFinalizeR0Intel().
2761 */
2762 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
2763 && ( !pVM->hm.s.vmx.pNonPagingModeEPTPageTable
2764 || !pVM->hm.s.vmx.pRealModeTSS))
2765 {
2766 LogRel(("VMXR0SetupVM: Invalid real-on-v86 state.\n"));
2767 return VERR_INTERNAL_ERROR;
2768 }
2769
2770 /* Initialize these always, see hmR3InitFinalizeR0().*/
2771 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NONE;
2772 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_NONE;
2773
2774 /* Setup the tagged-TLB flush handlers. */
2775 int rc = hmR0VmxSetupTaggedTlb(pVM);
2776 if (RT_FAILURE(rc))
2777 {
2778 LogRel(("VMXR0SetupVM: hmR0VmxSetupTaggedTlb failed! rc=%Rrc\n", rc));
2779 return rc;
2780 }
2781
2782 /* Check if we can use the VMCS controls for swapping the EFER MSR. */
2783 Assert(!pVM->hm.s.vmx.fSupportsVmcsEfer);
2784#if HC_ARCH_BITS == 64
2785 if ( (pVM->hm.s.vmx.Msrs.VmxEntry.n.allowed1 & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR)
2786 && (pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR)
2787 && (pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_SAVE_GUEST_EFER_MSR))
2788 {
2789 pVM->hm.s.vmx.fSupportsVmcsEfer = true;
2790 }
2791#endif
2792
2793 /* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
2794 RTCCUINTREG uHostCR4 = ASMGetCR4();
2795 if (RT_UNLIKELY(!(uHostCR4 & X86_CR4_VMXE)))
2796 return VERR_VMX_NOT_IN_VMX_ROOT_MODE;
2797
2798 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2799 {
2800 PVMCPU pVCpu = &pVM->aCpus[i];
2801 AssertPtr(pVCpu);
2802 AssertPtr(pVCpu->hm.s.vmx.pvVmcs);
2803
2804 /* Log the VCPU pointers, useful for debugging SMP VMs. */
2805 Log4(("VMXR0SetupVM: pVCpu=%p idCpu=%RU32\n", pVCpu, pVCpu->idCpu));
2806
2807 /* Initialize the VM-exit history array with end-of-array markers (UINT16_MAX). */
2808 Assert(!pVCpu->hm.s.idxExitHistoryFree);
2809 HMCPU_EXIT_HISTORY_RESET(pVCpu);
2810
2811 /* Set revision dword at the beginning of the VMCS structure. */
2812 *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hm.s.vmx.Msrs.u64BasicInfo);
2813
2814 /* Initialize our VMCS region in memory, set the VMCS launch state to "clear". */
2815 rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2816 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVmcs failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2817 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2818
2819 /* Load this VMCS as the current VMCS. */
2820 rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2821 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXActivateVmcs failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2822 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2823
2824 rc = hmR0VmxSetupPinCtls(pVM, pVCpu);
2825 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupPinCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2826 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2827
2828 rc = hmR0VmxSetupProcCtls(pVM, pVCpu);
2829 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupProcCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2830 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2831
2832 rc = hmR0VmxSetupMiscCtls(pVM, pVCpu);
2833 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupMiscCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2834 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2835
2836 rc = hmR0VmxInitXcptBitmap(pVM, pVCpu);
2837 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitXcptBitmap failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2838 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2839
2840 rc = hmR0VmxInitUpdatedGuestStateMask(pVCpu);
2841 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitUpdatedGuestStateMask failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2842 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2843
2844#if HC_ARCH_BITS == 32
2845 rc = hmR0VmxInitVmcsReadCache(pVM, pVCpu);
2846 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitVmcsReadCache failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2847 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2848#endif
2849
2850 /* Re-sync the CPU's internal data into our VMCS memory region & reset the launch state to "clear". */
2851 rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2852 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVmcs(2) failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2853 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2854
2855 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
2856
2857 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc);
2858 }
2859
2860 return VINF_SUCCESS;
2861}
2862
2863
2864/**
2865 * Saves the host control registers (CR0, CR3, CR4) into the host-state area in
2866 * the VMCS.
2867 *
2868 * @returns VBox status code.
2869 * @param pVM The cross context VM structure.
2870 * @param pVCpu The cross context virtual CPU structure.
2871 */
2872DECLINLINE(int) hmR0VmxSaveHostControlRegs(PVM pVM, PVMCPU pVCpu)
2873{
2874 NOREF(pVM); NOREF(pVCpu);
2875
2876 RTCCUINTREG uReg = ASMGetCR0();
2877 int rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR0, uReg);
2878 AssertRCReturn(rc, rc);
2879
2880 uReg = ASMGetCR3();
2881 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR3, uReg);
2882 AssertRCReturn(rc, rc);
2883
2884 uReg = ASMGetCR4();
2885 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR4, uReg);
2886 AssertRCReturn(rc, rc);
2887 return rc;
2888}
2889
2890
2891#if HC_ARCH_BITS == 64
2892/**
2893 * Macro for adjusting host segment selectors to satisfy VT-x's VM-entry
2894 * requirements. See hmR0VmxSaveHostSegmentRegs().
2895 */
2896# define VMXLOCAL_ADJUST_HOST_SEG(seg, selValue) \
2897 if ((selValue) & (X86_SEL_RPL | X86_SEL_LDT)) \
2898 { \
2899 bool fValidSelector = true; \
2900 if ((selValue) & X86_SEL_LDT) \
2901 { \
2902 uint32_t uAttr = ASMGetSegAttr((selValue)); \
2903 fValidSelector = RT_BOOL(uAttr != UINT32_MAX && (uAttr & X86_DESC_P)); \
2904 } \
2905 if (fValidSelector) \
2906 { \
2907 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_##seg; \
2908 pVCpu->hm.s.vmx.RestoreHost.uHostSel##seg = (selValue); \
2909 } \
2910 (selValue) = 0; \
2911 }
2912#endif
2913
2914
2915/**
2916 * Saves the host segment registers and GDTR, IDTR, (TR, GS and FS bases) into
2917 * the host-state area in the VMCS.
2918 *
2919 * @returns VBox status code.
2920 * @param pVM The cross context VM structure.
2921 * @param pVCpu The cross context virtual CPU structure.
2922 */
2923DECLINLINE(int) hmR0VmxSaveHostSegmentRegs(PVM pVM, PVMCPU pVCpu)
2924{
2925 int rc = VERR_INTERNAL_ERROR_5;
2926
2927#if HC_ARCH_BITS == 64
2928 /*
2929 * If we've executed guest code using VT-x, the host-state bits will be messed up. We
2930 * should -not- save the messed up state without restoring the original host-state. See @bugref{7240}.
2931 *
2932 * This apparently can happen (most likely the FPU changes), deal with it rather than asserting.
2933 * Was observed booting Solaris10u10 32-bit guest.
2934 */
2935 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
2936 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
2937 {
2938 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags,
2939 pVCpu->idCpu));
2940 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
2941 }
2942 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
2943#else
2944 RT_NOREF(pVCpu);
2945#endif
2946
2947 /*
2948 * Host DS, ES, FS and GS segment registers.
2949 */
2950#if HC_ARCH_BITS == 64
2951 RTSEL uSelDS = ASMGetDS();
2952 RTSEL uSelES = ASMGetES();
2953 RTSEL uSelFS = ASMGetFS();
2954 RTSEL uSelGS = ASMGetGS();
2955#else
2956 RTSEL uSelDS = 0;
2957 RTSEL uSelES = 0;
2958 RTSEL uSelFS = 0;
2959 RTSEL uSelGS = 0;
2960#endif
2961
2962 /*
2963 * Host CS and SS segment registers.
2964 */
2965 RTSEL uSelCS = ASMGetCS();
2966 RTSEL uSelSS = ASMGetSS();
2967
2968 /*
2969 * Host TR segment register.
2970 */
2971 RTSEL uSelTR = ASMGetTR();
2972
2973#if HC_ARCH_BITS == 64
2974 /*
2975 * Determine if the host segment registers are suitable for VT-x. Otherwise use zero to gain VM-entry and restore them
2976 * before we get preempted. See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers".
2977 */
2978 VMXLOCAL_ADJUST_HOST_SEG(DS, uSelDS);
2979 VMXLOCAL_ADJUST_HOST_SEG(ES, uSelES);
2980 VMXLOCAL_ADJUST_HOST_SEG(FS, uSelFS);
2981 VMXLOCAL_ADJUST_HOST_SEG(GS, uSelGS);
2982# undef VMXLOCAL_ADJUST_HOST_SEG
2983#endif
2984
2985 /* Verification based on Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers" */
2986 Assert(!(uSelCS & X86_SEL_RPL)); Assert(!(uSelCS & X86_SEL_LDT));
2987 Assert(!(uSelSS & X86_SEL_RPL)); Assert(!(uSelSS & X86_SEL_LDT));
2988 Assert(!(uSelDS & X86_SEL_RPL)); Assert(!(uSelDS & X86_SEL_LDT));
2989 Assert(!(uSelES & X86_SEL_RPL)); Assert(!(uSelES & X86_SEL_LDT));
2990 Assert(!(uSelFS & X86_SEL_RPL)); Assert(!(uSelFS & X86_SEL_LDT));
2991 Assert(!(uSelGS & X86_SEL_RPL)); Assert(!(uSelGS & X86_SEL_LDT));
2992 Assert(!(uSelTR & X86_SEL_RPL)); Assert(!(uSelTR & X86_SEL_LDT));
2993 Assert(uSelCS);
2994 Assert(uSelTR);
2995
2996 /* Assertion is right but we would not have updated u32ExitCtls yet. */
2997#if 0
2998 if (!(pVCpu->hm.s.vmx.u32ExitCtls & VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE))
2999 Assert(uSelSS != 0);
3000#endif
3001
3002 /* Write these host selector fields into the host-state area in the VMCS. */
3003 rc = VMXWriteVmcs32(VMX_VMCS16_HOST_CS_SEL, uSelCS);
3004 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_SS_SEL, uSelSS);
3005#if HC_ARCH_BITS == 64
3006 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_DS_SEL, uSelDS);
3007 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_ES_SEL, uSelES);
3008 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_FS_SEL, uSelFS);
3009 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_GS_SEL, uSelGS);
3010#else
3011 NOREF(uSelDS);
3012 NOREF(uSelES);
3013 NOREF(uSelFS);
3014 NOREF(uSelGS);
3015#endif
3016 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_TR_SEL, uSelTR);
3017 AssertRCReturn(rc, rc);
3018
3019 /*
3020 * Host GDTR and IDTR.
3021 */
3022 RTGDTR Gdtr;
3023 RTIDTR Idtr;
3024 RT_ZERO(Gdtr);
3025 RT_ZERO(Idtr);
3026 ASMGetGDTR(&Gdtr);
3027 ASMGetIDTR(&Idtr);
3028 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, Gdtr.pGdt);
3029 rc |= VMXWriteVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, Idtr.pIdt);
3030 AssertRCReturn(rc, rc);
3031
3032#if HC_ARCH_BITS == 64
3033 /*
3034 * Determine if we need to manually need to restore the GDTR and IDTR limits as VT-x zaps them to the
3035 * maximum limit (0xffff) on every VM-exit.
3036 */
3037 if (Gdtr.cbGdt != 0xffff)
3038 {
3039 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDTR;
3040 AssertCompile(sizeof(Gdtr) == sizeof(X86XDTR64));
3041 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostGdtr, &Gdtr, sizeof(X86XDTR64));
3042 }
3043
3044 /*
3045 * IDT limit is effectively capped at 0xfff. (See Intel spec. 6.14.1 "64-Bit Mode IDT"
3046 * and Intel spec. 6.2 "Exception and Interrupt Vectors".) Therefore if the host has the limit as 0xfff, VT-x
3047 * bloating the limit to 0xffff shouldn't cause any different CPU behavior. However, several hosts either insists
3048 * on 0xfff being the limit (Windows Patch Guard) or uses the limit for other purposes (darwin puts the CPU ID in there
3049 * but botches sidt alignment in at least one consumer). So, we're only allowing IDTR.LIMIT to be left at 0xffff on
3050 * hosts where we are pretty sure it won't cause trouble.
3051 */
3052# if defined(RT_OS_LINUX) || defined(RT_OS_SOLARIS)
3053 if (Idtr.cbIdt < 0x0fff)
3054# else
3055 if (Idtr.cbIdt != 0xffff)
3056# endif
3057 {
3058 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_IDTR;
3059 AssertCompile(sizeof(Idtr) == sizeof(X86XDTR64));
3060 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostIdtr, &Idtr, sizeof(X86XDTR64));
3061 }
3062#endif
3063
3064 /*
3065 * Host TR base. Verify that TR selector doesn't point past the GDT. Masking off the TI and RPL bits
3066 * is effectively what the CPU does for "scaling by 8". TI is always 0 and RPL should be too in most cases.
3067 */
3068 AssertMsgReturn((uSelTR | X86_SEL_RPL_LDT) <= Gdtr.cbGdt,
3069 ("hmR0VmxSaveHostSegmentRegs: TR selector exceeds limit. TR=%RTsel cbGdt=%#x\n", uSelTR, Gdtr.cbGdt),
3070 VERR_VMX_INVALID_HOST_STATE);
3071
3072 PCX86DESCHC pDesc = (PCX86DESCHC)(Gdtr.pGdt + (uSelTR & X86_SEL_MASK));
3073#if HC_ARCH_BITS == 64
3074 uintptr_t uTRBase = X86DESC64_BASE(pDesc);
3075
3076 /*
3077 * VT-x unconditionally restores the TR limit to 0x67 and type to 11 (32-bit busy TSS) on all VM-exits.
3078 * The type is the same for 64-bit busy TSS[1]. The limit needs manual restoration if the host has something else.
3079 * Task switching is not supported in 64-bit mode[2], but the limit still matters as IOPM is supported in 64-bit mode.
3080 * Restoring the limit lazily while returning to ring-3 is safe because IOPM is not applicable in ring-0.
3081 *
3082 * [1] See Intel spec. 3.5 "System Descriptor Types".
3083 * [2] See Intel spec. 7.2.3 "TSS Descriptor in 64-bit mode".
3084 */
3085 Assert(pDesc->System.u4Type == 11);
3086 if ( pDesc->System.u16LimitLow != 0x67
3087 || pDesc->System.u4LimitHigh)
3088 {
3089 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_TR;
3090 /* If the host has made GDT read-only, we would need to temporarily toggle CR0.WP before writing the GDT. */
3091 if (pVM->hm.s.fHostKernelFeatures & SUPKERNELFEATURES_GDT_READ_ONLY)
3092 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_READ_ONLY;
3093 pVCpu->hm.s.vmx.RestoreHost.uHostSelTR = uSelTR;
3094
3095 /* Store the GDTR here as we need it while restoring TR. */
3096 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostGdtr, &Gdtr, sizeof(X86XDTR64));
3097 }
3098#else
3099 NOREF(pVM);
3100 uintptr_t uTRBase = X86DESC_BASE(pDesc);
3101#endif
3102 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_TR_BASE, uTRBase);
3103 AssertRCReturn(rc, rc);
3104
3105 /*
3106 * Host FS base and GS base.
3107 */
3108#if HC_ARCH_BITS == 64
3109 uint64_t u64FSBase = ASMRdMsr(MSR_K8_FS_BASE);
3110 uint64_t u64GSBase = ASMRdMsr(MSR_K8_GS_BASE);
3111 rc = VMXWriteVmcs64(VMX_VMCS_HOST_FS_BASE, u64FSBase);
3112 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_GS_BASE, u64GSBase);
3113 AssertRCReturn(rc, rc);
3114
3115 /* Store the base if we have to restore FS or GS manually as we need to restore the base as well. */
3116 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_FS)
3117 pVCpu->hm.s.vmx.RestoreHost.uHostFSBase = u64FSBase;
3118 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_GS)
3119 pVCpu->hm.s.vmx.RestoreHost.uHostGSBase = u64GSBase;
3120#endif
3121 return rc;
3122}
3123
3124
3125/**
3126 * Saves certain host MSRs in the VM-exit MSR-load area and some in the
3127 * host-state area of the VMCS. Theses MSRs will be automatically restored on
3128 * the host after every successful VM-exit.
3129 *
3130 * @returns VBox status code.
3131 * @param pVM The cross context VM structure.
3132 * @param pVCpu The cross context virtual CPU structure.
3133 *
3134 * @remarks No-long-jump zone!!!
3135 */
3136DECLINLINE(int) hmR0VmxSaveHostMsrs(PVM pVM, PVMCPU pVCpu)
3137{
3138 NOREF(pVM);
3139
3140 AssertPtr(pVCpu);
3141 AssertPtr(pVCpu->hm.s.vmx.pvHostMsr);
3142
3143 /*
3144 * Save MSRs that we restore lazily (due to preemption or transition to ring-3)
3145 * rather than swapping them on every VM-entry.
3146 */
3147 hmR0VmxLazySaveHostMsrs(pVCpu);
3148
3149 /*
3150 * Host Sysenter MSRs.
3151 */
3152 int rc = VMXWriteVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, ASMRdMsr_Low(MSR_IA32_SYSENTER_CS));
3153#if HC_ARCH_BITS == 32
3154 rc |= VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP));
3155 rc |= VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP));
3156#else
3157 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP));
3158 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP));
3159#endif
3160 AssertRCReturn(rc, rc);
3161
3162 /*
3163 * Host EFER MSR.
3164 * If the CPU supports the newer VMCS controls for managing EFER, use it.
3165 * Otherwise it's done as part of auto-load/store MSR area in the VMCS, see hmR0VmxLoadGuestMsrs().
3166 */
3167 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
3168 {
3169 rc = VMXWriteVmcs64(VMX_VMCS64_HOST_EFER_FULL, pVM->hm.s.vmx.u64HostEfer);
3170 AssertRCReturn(rc, rc);
3171 }
3172
3173 /** @todo IA32_PERF_GLOBALCTRL, IA32_PAT also see
3174 * hmR0VmxLoadGuestExitCtls() !! */
3175
3176 return rc;
3177}
3178
3179
3180/**
3181 * Figures out if we need to swap the EFER MSR which is particularly expensive.
3182 *
3183 * We check all relevant bits. For now, that's everything besides LMA/LME, as
3184 * these two bits are handled by VM-entry, see hmR0VmxLoadGuestExitCtls() and
3185 * hmR0VMxLoadGuestEntryCtls().
3186 *
3187 * @returns true if we need to load guest EFER, false otherwise.
3188 * @param pVCpu The cross context virtual CPU structure.
3189 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3190 * out-of-sync. Make sure to update the required fields
3191 * before using them.
3192 *
3193 * @remarks Requires EFER, CR4.
3194 * @remarks No-long-jump zone!!!
3195 */
3196static bool hmR0VmxShouldSwapEferMsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3197{
3198#ifdef HMVMX_ALWAYS_SWAP_EFER
3199 return true;
3200#endif
3201
3202#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
3203 /* For 32-bit hosts running 64-bit guests, we always swap EFER in the world-switcher. Nothing to do here. */
3204 if (CPUMIsGuestInLongMode(pVCpu))
3205 return false;
3206#endif
3207
3208 PVM pVM = pVCpu->CTX_SUFF(pVM);
3209 uint64_t u64HostEfer = pVM->hm.s.vmx.u64HostEfer;
3210 uint64_t u64GuestEfer = pMixedCtx->msrEFER;
3211
3212 /*
3213 * For 64-bit guests, if EFER.SCE bit differs, we need to swap to ensure that the
3214 * guest's SYSCALL behaviour isn't screwed. See @bugref{7386}.
3215 */
3216 if ( CPUMIsGuestInLongMode(pVCpu)
3217 && (u64GuestEfer & MSR_K6_EFER_SCE) != (u64HostEfer & MSR_K6_EFER_SCE))
3218 {
3219 return true;
3220 }
3221
3222 /*
3223 * If the guest uses PAE and EFER.NXE bit differs, we need to swap EFER as it
3224 * affects guest paging. 64-bit paging implies CR4.PAE as well.
3225 * See Intel spec. 4.5 "IA-32e Paging" and Intel spec. 4.1.1 "Three Paging Modes".
3226 */
3227 if ( (pMixedCtx->cr4 & X86_CR4_PAE)
3228 && (pMixedCtx->cr0 & X86_CR0_PG)
3229 && (u64GuestEfer & MSR_K6_EFER_NXE) != (u64HostEfer & MSR_K6_EFER_NXE))
3230 {
3231 /* Assert that host is PAE capable. */
3232 Assert(pVM->hm.s.cpuid.u32AMDFeatureEDX & X86_CPUID_EXT_FEATURE_EDX_NX);
3233 return true;
3234 }
3235
3236 /** @todo Check the latest Intel spec. for any other bits,
3237 * like SMEP/SMAP? */
3238 return false;
3239}
3240
3241
3242/**
3243 * Sets up VM-entry controls in the VMCS. These controls can affect things done
3244 * on VM-exit; e.g. "load debug controls", see Intel spec. 24.8.1 "VM-entry
3245 * controls".
3246 *
3247 * @returns VBox status code.
3248 * @param pVCpu The cross context virtual CPU structure.
3249 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3250 * out-of-sync. Make sure to update the required fields
3251 * before using them.
3252 *
3253 * @remarks Requires EFER.
3254 * @remarks No-long-jump zone!!!
3255 */
3256DECLINLINE(int) hmR0VmxLoadGuestEntryCtls(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3257{
3258 int rc = VINF_SUCCESS;
3259 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_ENTRY_CTLS))
3260 {
3261 PVM pVM = pVCpu->CTX_SUFF(pVM);
3262 uint32_t val = pVM->hm.s.vmx.Msrs.VmxEntry.n.disallowed0; /* Bits set here must be set in the VMCS. */
3263 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxEntry.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3264
3265 /* Load debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x capable CPUs only supports the 1-setting of this bit. */
3266 val |= VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG;
3267
3268 /* Set if the guest is in long mode. This will set/clear the EFER.LMA bit on VM-entry. */
3269 if (CPUMIsGuestInLongModeEx(pMixedCtx))
3270 {
3271 val |= VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST;
3272 Log4(("Load[%RU32]: VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST\n", pVCpu->idCpu));
3273 }
3274 else
3275 Assert(!(val & VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST));
3276
3277 /* If the CPU supports the newer VMCS controls for managing guest/host EFER, use it. */
3278 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
3279 && hmR0VmxShouldSwapEferMsr(pVCpu, pMixedCtx))
3280 {
3281 val |= VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR;
3282 Log4(("Load[%RU32]: VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR\n", pVCpu->idCpu));
3283 }
3284
3285 /*
3286 * The following should -not- be set (since we're not in SMM mode):
3287 * - VMX_VMCS_CTRL_ENTRY_ENTRY_SMM
3288 * - VMX_VMCS_CTRL_ENTRY_DEACTIVATE_DUALMON
3289 */
3290
3291 /** @todo VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PERF_MSR,
3292 * VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PAT_MSR. */
3293
3294 if ((val & zap) != val)
3295 {
3296 LogRel(("hmR0VmxLoadGuestEntryCtls: Invalid VM-entry controls combo! cpu=%RX64 val=%RX64 zap=%RX64\n",
3297 pVM->hm.s.vmx.Msrs.VmxEntry.n.disallowed0, val, zap));
3298 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_ENTRY;
3299 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3300 }
3301
3302 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY, val);
3303 AssertRCReturn(rc, rc);
3304
3305 pVCpu->hm.s.vmx.u32EntryCtls = val;
3306 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_ENTRY_CTLS);
3307 }
3308 return rc;
3309}
3310
3311
3312/**
3313 * Sets up the VM-exit controls in the VMCS.
3314 *
3315 * @returns VBox status code.
3316 * @param pVCpu The cross context virtual CPU structure.
3317 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3318 * out-of-sync. Make sure to update the required fields
3319 * before using them.
3320 *
3321 * @remarks Requires EFER.
3322 */
3323DECLINLINE(int) hmR0VmxLoadGuestExitCtls(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3324{
3325 NOREF(pMixedCtx);
3326
3327 int rc = VINF_SUCCESS;
3328 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_EXIT_CTLS))
3329 {
3330 PVM pVM = pVCpu->CTX_SUFF(pVM);
3331 uint32_t val = pVM->hm.s.vmx.Msrs.VmxExit.n.disallowed0; /* Bits set here must be set in the VMCS. */
3332 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3333
3334 /* Save debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x CPUs only supported the 1-setting of this bit. */
3335 val |= VMX_VMCS_CTRL_EXIT_SAVE_DEBUG;
3336
3337 /*
3338 * Set the host long mode active (EFER.LMA) bit (which Intel calls "Host address-space size") if necessary.
3339 * On VM-exit, VT-x sets both the host EFER.LMA and EFER.LME bit to this value. See assertion in hmR0VmxSaveHostMsrs().
3340 */
3341#if HC_ARCH_BITS == 64
3342 val |= VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE;
3343 Log4(("Load[%RU32]: VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE\n", pVCpu->idCpu));
3344#else
3345 Assert( pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64
3346 || pVCpu->hm.s.vmx.pfnStartVM == VMXR0StartVM32);
3347 /* Set the host address-space size based on the switcher, not guest state. See @bugref{8432}. */
3348 if (pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64)
3349 {
3350 /* The switcher returns to long mode, EFER is managed by the switcher. */
3351 val |= VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE;
3352 Log4(("Load[%RU32]: VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE\n", pVCpu->idCpu));
3353 }
3354 else
3355 Assert(!(val & VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE));
3356#endif
3357
3358 /* If the newer VMCS fields for managing EFER exists, use it. */
3359 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
3360 && hmR0VmxShouldSwapEferMsr(pVCpu, pMixedCtx))
3361 {
3362 val |= VMX_VMCS_CTRL_EXIT_SAVE_GUEST_EFER_MSR
3363 | VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR;
3364 Log4(("Load[%RU32]: VMX_VMCS_CTRL_EXIT_SAVE_GUEST_EFER_MSR, VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR\n", pVCpu->idCpu));
3365 }
3366
3367 /* Don't acknowledge external interrupts on VM-exit. We want to let the host do that. */
3368 Assert(!(val & VMX_VMCS_CTRL_EXIT_ACK_EXT_INT));
3369
3370 /** @todo VMX_VMCS_CTRL_EXIT_LOAD_PERF_MSR,
3371 * VMX_VMCS_CTRL_EXIT_SAVE_GUEST_PAT_MSR,
3372 * VMX_VMCS_CTRL_EXIT_LOAD_HOST_PAT_MSR. */
3373
3374 if ( pVM->hm.s.vmx.fUsePreemptTimer
3375 && (pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_SAVE_VMX_PREEMPT_TIMER))
3376 val |= VMX_VMCS_CTRL_EXIT_SAVE_VMX_PREEMPT_TIMER;
3377
3378 if ((val & zap) != val)
3379 {
3380 LogRel(("hmR0VmxSetupProcCtls: Invalid VM-exit controls combo! cpu=%RX64 val=%RX64 zap=%RX64\n",
3381 pVM->hm.s.vmx.Msrs.VmxExit.n.disallowed0, val, zap));
3382 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_EXIT;
3383 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3384 }
3385
3386 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT, val);
3387 AssertRCReturn(rc, rc);
3388
3389 pVCpu->hm.s.vmx.u32ExitCtls = val;
3390 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_EXIT_CTLS);
3391 }
3392 return rc;
3393}
3394
3395
3396/**
3397 * Sets the TPR threshold in the VMCS.
3398 *
3399 * @returns VBox status code.
3400 * @param pVCpu The cross context virtual CPU structure.
3401 * @param u32TprThreshold The TPR threshold (task-priority class only).
3402 */
3403DECLINLINE(int) hmR0VmxApicSetTprThreshold(PVMCPU pVCpu, uint32_t u32TprThreshold)
3404{
3405 Assert(!(u32TprThreshold & 0xfffffff0)); /* Bits 31:4 MBZ. */
3406 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW); RT_NOREF_PV(pVCpu);
3407 return VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
3408}
3409
3410
3411/**
3412 * Loads the guest APIC and related state.
3413 *
3414 * @returns VBox status code.
3415 * @param pVCpu The cross context virtual CPU structure.
3416 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3417 * out-of-sync. Make sure to update the required fields
3418 * before using them.
3419 *
3420 * @remarks No-long-jump zone!!!
3421 */
3422DECLINLINE(int) hmR0VmxLoadGuestApicState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3423{
3424 NOREF(pMixedCtx);
3425
3426 int rc = VINF_SUCCESS;
3427 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE))
3428 {
3429 if ( PDMHasApic(pVCpu->CTX_SUFF(pVM))
3430 && APICIsEnabled(pVCpu))
3431 {
3432 /*
3433 * Setup TPR shadowing.
3434 */
3435 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
3436 {
3437 Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
3438
3439 bool fPendingIntr = false;
3440 uint8_t u8Tpr = 0;
3441 uint8_t u8PendingIntr = 0;
3442 rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, &u8PendingIntr);
3443 AssertRCReturn(rc, rc);
3444
3445 /*
3446 * If there are interrupts pending but masked by the TPR, instruct VT-x to cause a TPR-below-threshold VM-exit
3447 * when the guest lowers its TPR below the priority of the pending interrupt so we can deliver the interrupt.
3448 * If there are no interrupts pending, set threshold to 0 to not cause any TPR-below-threshold VM-exits.
3449 */
3450 pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR] = u8Tpr;
3451 uint32_t u32TprThreshold = 0;
3452 if (fPendingIntr)
3453 {
3454 /* Bits 3:0 of the TPR threshold field correspond to bits 7:4 of the TPR (which is the Task-Priority Class). */
3455 const uint8_t u8PendingPriority = u8PendingIntr >> 4;
3456 const uint8_t u8TprPriority = u8Tpr >> 4;
3457 if (u8PendingPriority <= u8TprPriority)
3458 u32TprThreshold = u8PendingPriority;
3459 }
3460
3461 rc = hmR0VmxApicSetTprThreshold(pVCpu, u32TprThreshold);
3462 AssertRCReturn(rc, rc);
3463 }
3464 }
3465 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
3466 }
3467
3468 return rc;
3469}
3470
3471
3472/**
3473 * Gets the guest's interruptibility-state ("interrupt shadow" as AMD calls it).
3474 *
3475 * @returns Guest's interruptibility-state.
3476 * @param pVCpu The cross context virtual CPU structure.
3477 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3478 * out-of-sync. Make sure to update the required fields
3479 * before using them.
3480 *
3481 * @remarks No-long-jump zone!!!
3482 */
3483DECLINLINE(uint32_t) hmR0VmxGetGuestIntrState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3484{
3485 /*
3486 * Check if we should inhibit interrupt delivery due to instructions like STI and MOV SS.
3487 */
3488 uint32_t uIntrState = 0;
3489 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3490 {
3491 /* If inhibition is active, RIP & RFLAGS should've been accessed (i.e. read previously from the VMCS or from ring-3). */
3492 AssertMsg(HMVMXCPU_GST_IS_SET(pVCpu, HMVMX_UPDATED_GUEST_RIP | HMVMX_UPDATED_GUEST_RFLAGS),
3493 ("%#x\n", HMVMXCPU_GST_VALUE(pVCpu)));
3494 if (pMixedCtx->rip == EMGetInhibitInterruptsPC(pVCpu))
3495 {
3496 if (pMixedCtx->eflags.Bits.u1IF)
3497 uIntrState = VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI;
3498 else
3499 uIntrState = VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS;
3500 }
3501 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3502 {
3503 /*
3504 * We can clear the inhibit force flag as even if we go back to the recompiler without executing guest code in
3505 * VT-x, the flag's condition to be cleared is met and thus the cleared state is correct.
3506 */
3507 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
3508 }
3509 }
3510
3511 /*
3512 * NMIs to the guest are blocked after an NMI is injected until the guest executes an IRET. We only
3513 * bother with virtual-NMI blocking when we have support for virtual NMIs in the CPU, otherwise
3514 * setting this would block host-NMIs and IRET will not clear the blocking.
3515 *
3516 * See Intel spec. 26.6.1 "Interruptibility state". See @bugref{7445}.
3517 */
3518 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS)
3519 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI))
3520 {
3521 uIntrState |= VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI;
3522 }
3523
3524 return uIntrState;
3525}
3526
3527
3528/**
3529 * Loads the guest's interruptibility-state into the guest-state area in the
3530 * VMCS.
3531 *
3532 * @returns VBox status code.
3533 * @param pVCpu The cross context virtual CPU structure.
3534 * @param uIntrState The interruptibility-state to set.
3535 */
3536static int hmR0VmxLoadGuestIntrState(PVMCPU pVCpu, uint32_t uIntrState)
3537{
3538 NOREF(pVCpu);
3539 AssertMsg(!(uIntrState & 0xfffffff0), ("%#x\n", uIntrState)); /* Bits 31:4 MBZ. */
3540 Assert((uIntrState & 0x3) != 0x3); /* Block-by-STI and MOV SS cannot be simultaneously set. */
3541 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, uIntrState);
3542 AssertRC(rc);
3543 return rc;
3544}
3545
3546
3547/**
3548 * Loads the exception intercepts required for guest execution in the VMCS.
3549 *
3550 * @returns VBox status code.
3551 * @param pVCpu The cross context virtual CPU structure.
3552 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3553 * out-of-sync. Make sure to update the required fields
3554 * before using them.
3555 */
3556static int hmR0VmxLoadGuestXcptIntercepts(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3557{
3558 NOREF(pMixedCtx);
3559 int rc = VINF_SUCCESS;
3560 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS))
3561 {
3562 /* The remaining exception intercepts are handled elsewhere, e.g. in hmR0VmxLoadSharedCR0(). */
3563 if (pVCpu->hm.s.fGIMTrapXcptUD)
3564 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_UD);
3565#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
3566 else
3567 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_UD);
3568#endif
3569
3570 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_AC));
3571 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_DB));
3572
3573 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
3574 AssertRCReturn(rc, rc);
3575
3576 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS);
3577 Log4(("Load[%RU32]: VMX_VMCS32_CTRL_EXCEPTION_BITMAP=%#RX64 fContextUseFlags=%#RX32\n", pVCpu->idCpu,
3578 pVCpu->hm.s.vmx.u32XcptBitmap, HMCPU_CF_VALUE(pVCpu)));
3579 }
3580 return rc;
3581}
3582
3583
3584/**
3585 * Loads the guest's RIP into the guest-state area in the VMCS.
3586 *
3587 * @returns VBox status code.
3588 * @param pVCpu The cross context virtual CPU structure.
3589 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3590 * out-of-sync. Make sure to update the required fields
3591 * before using them.
3592 *
3593 * @remarks No-long-jump zone!!!
3594 */
3595static int hmR0VmxLoadGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3596{
3597 int rc = VINF_SUCCESS;
3598 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RIP))
3599 {
3600 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RIP, pMixedCtx->rip);
3601 AssertRCReturn(rc, rc);
3602
3603 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RIP);
3604 Log4(("Load[%RU32]: VMX_VMCS_GUEST_RIP=%#RX64 fContextUseFlags=%#RX32\n", pVCpu->idCpu, pMixedCtx->rip,
3605 HMCPU_CF_VALUE(pVCpu)));
3606 }
3607 return rc;
3608}
3609
3610
3611/**
3612 * Loads the guest's RSP into the guest-state area in the VMCS.
3613 *
3614 * @returns VBox status code.
3615 * @param pVCpu The cross context virtual CPU structure.
3616 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3617 * out-of-sync. Make sure to update the required fields
3618 * before using them.
3619 *
3620 * @remarks No-long-jump zone!!!
3621 */
3622static int hmR0VmxLoadGuestRsp(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3623{
3624 int rc = VINF_SUCCESS;
3625 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RSP))
3626 {
3627 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RSP, pMixedCtx->rsp);
3628 AssertRCReturn(rc, rc);
3629
3630 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RSP);
3631 Log4(("Load[%RU32]: VMX_VMCS_GUEST_RSP=%#RX64\n", pVCpu->idCpu, pMixedCtx->rsp));
3632 }
3633 return rc;
3634}
3635
3636
3637/**
3638 * Loads the guest's RFLAGS into the guest-state area in the VMCS.
3639 *
3640 * @returns VBox status code.
3641 * @param pVCpu The cross context virtual CPU structure.
3642 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3643 * out-of-sync. Make sure to update the required fields
3644 * before using them.
3645 *
3646 * @remarks No-long-jump zone!!!
3647 */
3648static int hmR0VmxLoadGuestRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3649{
3650 int rc = VINF_SUCCESS;
3651 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RFLAGS))
3652 {
3653 /* Intel spec. 2.3.1 "System Flags and Fields in IA-32e Mode" claims the upper 32-bits of RFLAGS are reserved (MBZ).
3654 Let us assert it as such and use 32-bit VMWRITE. */
3655 Assert(!(pMixedCtx->rflags.u64 >> 32));
3656 X86EFLAGS Eflags = pMixedCtx->eflags;
3657 /** @todo r=bird: There shall be no need to OR in X86_EFL_1 here, nor
3658 * shall there be any reason for clearing bits 63:22, 15, 5 and 3.
3659 * These will never be cleared/set, unless some other part of the VMM
3660 * code is buggy - in which case we're better of finding and fixing
3661 * those bugs than hiding them. */
3662 Assert(Eflags.u32 & X86_EFL_RA1_MASK);
3663 Assert(!(Eflags.u32 & ~(X86_EFL_1 | X86_EFL_LIVE_MASK)));
3664 Eflags.u32 &= VMX_EFLAGS_RESERVED_0; /* Bits 22-31, 15, 5 & 3 MBZ. */
3665 Eflags.u32 |= VMX_EFLAGS_RESERVED_1; /* Bit 1 MB1. */
3666
3667 /*
3668 * If we're emulating real-mode using Virtual 8086 mode, save the real-mode eflags so we can restore them on VM-exit.
3669 * Modify the real-mode guest's eflags so that VT-x can run the real-mode guest code under Virtual 8086 mode.
3670 */
3671 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3672 {
3673 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
3674 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
3675 pVCpu->hm.s.vmx.RealMode.Eflags.u32 = Eflags.u32; /* Save the original eflags of the real-mode guest. */
3676 Eflags.Bits.u1VM = 1; /* Set the Virtual 8086 mode bit. */
3677 Eflags.Bits.u2IOPL = 0; /* Change IOPL to 0, otherwise certain instructions won't fault. */
3678 }
3679
3680 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_RFLAGS, Eflags.u32);
3681 AssertRCReturn(rc, rc);
3682
3683 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RFLAGS);
3684 Log4(("Load[%RU32]: VMX_VMCS_GUEST_RFLAGS=%#RX32\n", pVCpu->idCpu, Eflags.u32));
3685 }
3686 return rc;
3687}
3688
3689
3690/**
3691 * Loads the guest RIP, RSP and RFLAGS into the guest-state area in the VMCS.
3692 *
3693 * @returns VBox status code.
3694 * @param pVCpu The cross context virtual CPU structure.
3695 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3696 * out-of-sync. Make sure to update the required fields
3697 * before using them.
3698 *
3699 * @remarks No-long-jump zone!!!
3700 */
3701DECLINLINE(int) hmR0VmxLoadGuestRipRspRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3702{
3703 int rc = hmR0VmxLoadGuestRip(pVCpu, pMixedCtx);
3704 rc |= hmR0VmxLoadGuestRsp(pVCpu, pMixedCtx);
3705 rc |= hmR0VmxLoadGuestRflags(pVCpu, pMixedCtx);
3706 AssertRCReturn(rc, rc);
3707 return rc;
3708}
3709
3710
3711/**
3712 * Loads the guest CR0 control register into the guest-state area in the VMCS.
3713 * CR0 is partially shared with the host and we have to consider the FPU bits.
3714 *
3715 * @returns VBox status code.
3716 * @param pVCpu The cross context virtual CPU structure.
3717 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3718 * out-of-sync. Make sure to update the required fields
3719 * before using them.
3720 *
3721 * @remarks No-long-jump zone!!!
3722 */
3723static int hmR0VmxLoadSharedCR0(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3724{
3725 /*
3726 * Guest CR0.
3727 * Guest FPU.
3728 */
3729 int rc = VINF_SUCCESS;
3730 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0))
3731 {
3732 Assert(!(pMixedCtx->cr0 >> 32));
3733 uint32_t u32GuestCR0 = pMixedCtx->cr0;
3734 PVM pVM = pVCpu->CTX_SUFF(pVM);
3735
3736 /* The guest's view (read access) of its CR0 is unblemished. */
3737 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, u32GuestCR0);
3738 AssertRCReturn(rc, rc);
3739 Log4(("Load[%RU32]: VMX_VMCS_CTRL_CR0_READ_SHADOW=%#RX32\n", pVCpu->idCpu, u32GuestCR0));
3740
3741 /* Setup VT-x's view of the guest CR0. */
3742 /* Minimize VM-exits due to CR3 changes when we have NestedPaging. */
3743 if (pVM->hm.s.fNestedPaging)
3744 {
3745 if (CPUMIsGuestPagingEnabledEx(pMixedCtx))
3746 {
3747 /* The guest has paging enabled, let it access CR3 without causing a VM-exit if supported. */
3748 pVCpu->hm.s.vmx.u32ProcCtls &= ~( VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT
3749 | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT);
3750 }
3751 else
3752 {
3753 /* The guest doesn't have paging enabled, make CR3 access cause a VM-exit to update our shadow. */
3754 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT
3755 | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT;
3756 }
3757
3758 /* If we have unrestricted guest execution, we never have to intercept CR3 reads. */
3759 if (pVM->hm.s.vmx.fUnrestrictedGuest)
3760 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT;
3761
3762 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
3763 AssertRCReturn(rc, rc);
3764 }
3765 else
3766 u32GuestCR0 |= X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
3767
3768 /*
3769 * Guest FPU bits.
3770 * Intel spec. 23.8 "Restrictions on VMX operation" mentions that CR0.NE bit must always be set on the first
3771 * CPUs to support VT-x and no mention of with regards to UX in VM-entry checks.
3772 */
3773 u32GuestCR0 |= X86_CR0_NE;
3774 bool fInterceptNM = false;
3775 if (CPUMIsGuestFPUStateActive(pVCpu))
3776 {
3777 fInterceptNM = false; /* Guest FPU active, no need to VM-exit on #NM. */
3778 /* The guest should still get #NM exceptions when it expects it to, so we should not clear TS & MP bits here.
3779 We're only concerned about -us- not intercepting #NMs when the guest-FPU is active. Not the guest itself! */
3780 }
3781 else
3782 {
3783 fInterceptNM = true; /* Guest FPU inactive, VM-exit on #NM for lazy FPU loading. */
3784 u32GuestCR0 |= X86_CR0_TS /* Guest can task switch quickly and do lazy FPU syncing. */
3785 | X86_CR0_MP; /* FWAIT/WAIT should not ignore CR0.TS and should generate #NM. */
3786 }
3787
3788 /* Catch floating point exceptions if we need to report them to the guest in a different way. */
3789 bool fInterceptMF = false;
3790 if (!(pMixedCtx->cr0 & X86_CR0_NE))
3791 fInterceptMF = true;
3792
3793 /* Finally, intercept all exceptions as we cannot directly inject them in real-mode, see hmR0VmxInjectEventVmcs(). */
3794 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3795 {
3796 Assert(PDMVmmDevHeapIsEnabled(pVM));
3797 Assert(pVM->hm.s.vmx.pRealModeTSS);
3798 pVCpu->hm.s.vmx.u32XcptBitmap |= HMVMX_REAL_MODE_XCPT_MASK;
3799 fInterceptNM = true;
3800 fInterceptMF = true;
3801 }
3802 else
3803 {
3804 /* For now, cleared here as mode-switches can happen outside HM/VT-x. See @bugref{7626#c11}. */
3805 pVCpu->hm.s.vmx.u32XcptBitmap &= ~HMVMX_REAL_MODE_XCPT_MASK;
3806 }
3807 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS);
3808
3809 if (fInterceptNM)
3810 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_NM);
3811 else
3812 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_NM);
3813
3814 if (fInterceptMF)
3815 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_MF);
3816 else
3817 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_MF);
3818
3819 /* Additional intercepts for debugging, define these yourself explicitly. */
3820#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
3821 pVCpu->hm.s.vmx.u32XcptBitmap |= 0
3822 | RT_BIT(X86_XCPT_BP)
3823 | RT_BIT(X86_XCPT_DE)
3824 | RT_BIT(X86_XCPT_NM)
3825 | RT_BIT(X86_XCPT_TS)
3826 | RT_BIT(X86_XCPT_UD)
3827 | RT_BIT(X86_XCPT_NP)
3828 | RT_BIT(X86_XCPT_SS)
3829 | RT_BIT(X86_XCPT_GP)
3830 | RT_BIT(X86_XCPT_PF)
3831 | RT_BIT(X86_XCPT_MF)
3832 ;
3833#elif defined(HMVMX_ALWAYS_TRAP_PF)
3834 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_PF);
3835#endif
3836
3837 Assert(pVM->hm.s.fNestedPaging || (pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT(X86_XCPT_PF)));
3838
3839 /* Set/clear the CR0 specific bits along with their exceptions (PE, PG, CD, NW). */
3840 uint32_t uSetCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
3841 uint32_t uZapCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
3842 if (pVM->hm.s.vmx.fUnrestrictedGuest) /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG). */
3843 uSetCR0 &= ~(X86_CR0_PE | X86_CR0_PG);
3844 else
3845 Assert((uSetCR0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG));
3846
3847 u32GuestCR0 |= uSetCR0;
3848 u32GuestCR0 &= uZapCR0;
3849 u32GuestCR0 &= ~(X86_CR0_CD | X86_CR0_NW); /* Always enable caching. */
3850
3851 /* Write VT-x's view of the guest CR0 into the VMCS. */
3852 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR0, u32GuestCR0);
3853 AssertRCReturn(rc, rc);
3854 Log4(("Load[%RU32]: VMX_VMCS_GUEST_CR0=%#RX32 (uSetCR0=%#RX32 uZapCR0=%#RX32)\n", pVCpu->idCpu, u32GuestCR0, uSetCR0,
3855 uZapCR0));
3856
3857 /*
3858 * CR0 is shared between host and guest along with a CR0 read shadow. Therefore, certain bits must not be changed
3859 * by the guest because VT-x ignores saving/restoring them (namely CD, ET, NW) and for certain other bits
3860 * we want to be notified immediately of guest CR0 changes (e.g. PG to update our shadow page tables).
3861 */
3862 uint32_t u32CR0Mask = 0;
3863 u32CR0Mask = X86_CR0_PE
3864 | X86_CR0_NE
3865 | X86_CR0_WP
3866 | X86_CR0_PG
3867 | X86_CR0_ET /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.ET */
3868 | X86_CR0_CD /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.CD */
3869 | X86_CR0_NW; /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.NW */
3870
3871 /** @todo Avoid intercepting CR0.PE with unrestricted guests. Fix PGM
3872 * enmGuestMode to be in-sync with the current mode. See @bugref{6398}
3873 * and @bugref{6944}. */
3874#if 0
3875 if (pVM->hm.s.vmx.fUnrestrictedGuest)
3876 u32CR0Mask &= ~X86_CR0_PE;
3877#endif
3878 if (pVM->hm.s.fNestedPaging)
3879 u32CR0Mask &= ~X86_CR0_WP;
3880
3881 /* If the guest FPU state is active, don't need to VM-exit on writes to FPU related bits in CR0. */
3882 if (fInterceptNM)
3883 {
3884 u32CR0Mask |= X86_CR0_TS
3885 | X86_CR0_MP;
3886 }
3887
3888 /* Write the CR0 mask into the VMCS and update the VCPU's copy of the current CR0 mask. */
3889 pVCpu->hm.s.vmx.u32CR0Mask = u32CR0Mask;
3890 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_MASK, u32CR0Mask);
3891 AssertRCReturn(rc, rc);
3892 Log4(("Load[%RU32]: VMX_VMCS_CTRL_CR0_MASK=%#RX32\n", pVCpu->idCpu, u32CR0Mask));
3893
3894 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR0);
3895 }
3896 return rc;
3897}
3898
3899
3900/**
3901 * Loads the guest control registers (CR3, CR4) into the guest-state area
3902 * in the VMCS.
3903 *
3904 * @returns VBox strict status code.
3905 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
3906 * without unrestricted guest access and the VMMDev is not presently
3907 * mapped (e.g. EFI32).
3908 *
3909 * @param pVCpu The cross context virtual CPU structure.
3910 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3911 * out-of-sync. Make sure to update the required fields
3912 * before using them.
3913 *
3914 * @remarks No-long-jump zone!!!
3915 */
3916static VBOXSTRICTRC hmR0VmxLoadGuestCR3AndCR4(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3917{
3918 int rc = VINF_SUCCESS;
3919 PVM pVM = pVCpu->CTX_SUFF(pVM);
3920
3921 /*
3922 * Guest CR2.
3923 * It's always loaded in the assembler code. Nothing to do here.
3924 */
3925
3926 /*
3927 * Guest CR3.
3928 */
3929 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR3))
3930 {
3931 RTGCPHYS GCPhysGuestCR3 = NIL_RTGCPHYS;
3932 if (pVM->hm.s.fNestedPaging)
3933 {
3934 pVCpu->hm.s.vmx.HCPhysEPTP = PGMGetHyperCR3(pVCpu);
3935
3936 /* Validate. See Intel spec. 28.2.2 "EPT Translation Mechanism" and 24.6.11 "Extended-Page-Table Pointer (EPTP)" */
3937 Assert(pVCpu->hm.s.vmx.HCPhysEPTP);
3938 Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & UINT64_C(0xfff0000000000000)));
3939 Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & 0xfff));
3940
3941 /* VMX_EPT_MEMTYPE_WB support is already checked in hmR0VmxSetupTaggedTlb(). */
3942 pVCpu->hm.s.vmx.HCPhysEPTP |= VMX_EPT_MEMTYPE_WB
3943 | (VMX_EPT_PAGE_WALK_LENGTH_DEFAULT << VMX_EPT_PAGE_WALK_LENGTH_SHIFT);
3944
3945 /* Validate. See Intel spec. 26.2.1 "Checks on VMX Controls" */
3946 AssertMsg( ((pVCpu->hm.s.vmx.HCPhysEPTP >> 3) & 0x07) == 3 /* Bits 3:5 (EPT page walk length - 1) must be 3. */
3947 && ((pVCpu->hm.s.vmx.HCPhysEPTP >> 7) & 0x1f) == 0, /* Bits 7:11 MBZ. */
3948 ("EPTP %#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
3949 AssertMsg( !((pVCpu->hm.s.vmx.HCPhysEPTP >> 6) & 0x01) /* Bit 6 (EPT accessed & dirty bit). */
3950 || (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EPT_ACCESS_DIRTY),
3951 ("EPTP accessed/dirty bit not supported by CPU but set %#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
3952
3953 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, pVCpu->hm.s.vmx.HCPhysEPTP);
3954 AssertRCReturn(rc, rc);
3955 Log4(("Load[%RU32]: VMX_VMCS64_CTRL_EPTP_FULL=%#RX64\n", pVCpu->idCpu, pVCpu->hm.s.vmx.HCPhysEPTP));
3956
3957 if ( pVM->hm.s.vmx.fUnrestrictedGuest
3958 || CPUMIsGuestPagingEnabledEx(pMixedCtx))
3959 {
3960 /* If the guest is in PAE mode, pass the PDPEs to VT-x using the VMCS fields. */
3961 if (CPUMIsGuestInPAEModeEx(pMixedCtx))
3962 {
3963 rc = PGMGstGetPaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
3964 AssertRCReturn(rc, rc);
3965 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, pVCpu->hm.s.aPdpes[0].u);
3966 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, pVCpu->hm.s.aPdpes[1].u);
3967 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, pVCpu->hm.s.aPdpes[2].u);
3968 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, pVCpu->hm.s.aPdpes[3].u);
3969 AssertRCReturn(rc, rc);
3970 }
3971
3972 /* The guest's view of its CR3 is unblemished with Nested Paging when the guest is using paging or we
3973 have Unrestricted Execution to handle the guest when it's not using paging. */
3974 GCPhysGuestCR3 = pMixedCtx->cr3;
3975 }
3976 else
3977 {
3978 /*
3979 * The guest is not using paging, but the CPU (VT-x) has to. While the guest thinks it accesses physical memory
3980 * directly, we use our identity-mapped page table to map guest-linear to guest-physical addresses.
3981 * EPT takes care of translating it to host-physical addresses.
3982 */
3983 RTGCPHYS GCPhys;
3984 Assert(pVM->hm.s.vmx.pNonPagingModeEPTPageTable);
3985
3986 /* We obtain it here every time as the guest could have relocated this PCI region. */
3987 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
3988 if (RT_SUCCESS(rc))
3989 { /* likely */ }
3990 else if (rc == VERR_PDM_DEV_HEAP_R3_TO_GCPHYS)
3991 {
3992 Log4(("Load[%RU32]: VERR_PDM_DEV_HEAP_R3_TO_GCPHYS -> VINF_EM_RESCHEDULE_REM\n", pVCpu->idCpu));
3993 return VINF_EM_RESCHEDULE_REM; /* We cannot execute now, switch to REM/IEM till the guest maps in VMMDev. */
3994 }
3995 else
3996 AssertMsgFailedReturn(("%Rrc\n", rc), rc);
3997
3998 GCPhysGuestCR3 = GCPhys;
3999 }
4000
4001 Log4(("Load[%RU32]: VMX_VMCS_GUEST_CR3=%#RGp (GstN)\n", pVCpu->idCpu, GCPhysGuestCR3));
4002 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_CR3, GCPhysGuestCR3);
4003 }
4004 else
4005 {
4006 /* Non-nested paging case, just use the hypervisor's CR3. */
4007 RTHCPHYS HCPhysGuestCR3 = PGMGetHyperCR3(pVCpu);
4008
4009 Log4(("Load[%RU32]: VMX_VMCS_GUEST_CR3=%#RHv (HstN)\n", pVCpu->idCpu, HCPhysGuestCR3));
4010 rc = VMXWriteVmcsHstN(VMX_VMCS_GUEST_CR3, HCPhysGuestCR3);
4011 }
4012 AssertRCReturn(rc, rc);
4013
4014 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR3);
4015 }
4016
4017 /*
4018 * Guest CR4.
4019 * ASSUMES this is done everytime we get in from ring-3! (XCR0)
4020 */
4021 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR4))
4022 {
4023 Assert(!(pMixedCtx->cr4 >> 32));
4024 uint32_t u32GuestCR4 = pMixedCtx->cr4;
4025
4026 /* The guest's view of its CR4 is unblemished. */
4027 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, u32GuestCR4);
4028 AssertRCReturn(rc, rc);
4029 Log4(("Load[%RU32]: VMX_VMCS_CTRL_CR4_READ_SHADOW=%#RX32\n", pVCpu->idCpu, u32GuestCR4));
4030
4031 /* Setup VT-x's view of the guest CR4. */
4032 /*
4033 * If we're emulating real-mode using virtual-8086 mode, we want to redirect software interrupts to the 8086 program
4034 * interrupt handler. Clear the VME bit (the interrupt redirection bitmap is already all 0, see hmR3InitFinalizeR0())
4035 * See Intel spec. 20.2 "Software Interrupt Handling Methods While in Virtual-8086 Mode".
4036 */
4037 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4038 {
4039 Assert(pVM->hm.s.vmx.pRealModeTSS);
4040 Assert(PDMVmmDevHeapIsEnabled(pVM));
4041 u32GuestCR4 &= ~X86_CR4_VME;
4042 }
4043
4044 if (pVM->hm.s.fNestedPaging)
4045 {
4046 if ( !CPUMIsGuestPagingEnabledEx(pMixedCtx)
4047 && !pVM->hm.s.vmx.fUnrestrictedGuest)
4048 {
4049 /* We use 4 MB pages in our identity mapping page table when the guest doesn't have paging. */
4050 u32GuestCR4 |= X86_CR4_PSE;
4051 /* Our identity mapping is a 32-bit page directory. */
4052 u32GuestCR4 &= ~X86_CR4_PAE;
4053 }
4054 /* else use guest CR4.*/
4055 }
4056 else
4057 {
4058 /*
4059 * The shadow paging modes and guest paging modes are different, the shadow is in accordance with the host
4060 * paging mode and thus we need to adjust VT-x's view of CR4 depending on our shadow page tables.
4061 */
4062 switch (pVCpu->hm.s.enmShadowMode)
4063 {
4064 case PGMMODE_REAL: /* Real-mode. */
4065 case PGMMODE_PROTECTED: /* Protected mode without paging. */
4066 case PGMMODE_32_BIT: /* 32-bit paging. */
4067 {
4068 u32GuestCR4 &= ~X86_CR4_PAE;
4069 break;
4070 }
4071
4072 case PGMMODE_PAE: /* PAE paging. */
4073 case PGMMODE_PAE_NX: /* PAE paging with NX. */
4074 {
4075 u32GuestCR4 |= X86_CR4_PAE;
4076 break;
4077 }
4078
4079 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
4080 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
4081#ifdef VBOX_ENABLE_64_BITS_GUESTS
4082 break;
4083#endif
4084 default:
4085 AssertFailed();
4086 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
4087 }
4088 }
4089
4090 /* We need to set and clear the CR4 specific bits here (mainly the X86_CR4_VMXE bit). */
4091 uint64_t uSetCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
4092 uint64_t uZapCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
4093 u32GuestCR4 |= uSetCR4;
4094 u32GuestCR4 &= uZapCR4;
4095
4096 /* Write VT-x's view of the guest CR4 into the VMCS. */
4097 Log4(("Load[%RU32]: VMX_VMCS_GUEST_CR4=%#RX32 (Set=%#RX32 Zap=%#RX32)\n", pVCpu->idCpu, u32GuestCR4, uSetCR4, uZapCR4));
4098 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR4, u32GuestCR4);
4099 AssertRCReturn(rc, rc);
4100
4101 /* Setup CR4 mask. CR4 flags owned by the host, if the guest attempts to change them, that would cause a VM-exit. */
4102 uint32_t u32CR4Mask = X86_CR4_VME
4103 | X86_CR4_PAE
4104 | X86_CR4_PGE
4105 | X86_CR4_PSE
4106 | X86_CR4_VMXE;
4107 if (pVM->cpum.ro.HostFeatures.fXSaveRstor)
4108 u32CR4Mask |= X86_CR4_OSXSAVE;
4109 pVCpu->hm.s.vmx.u32CR4Mask = u32CR4Mask;
4110 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_MASK, u32CR4Mask);
4111 AssertRCReturn(rc, rc);
4112
4113 /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
4114 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pMixedCtx->cr4 & X86_CR4_OSXSAVE) && pMixedCtx->aXcr[0] != ASMGetXcr0();
4115
4116 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR4);
4117 }
4118 return rc;
4119}
4120
4121
4122/**
4123 * Loads the guest debug registers into the guest-state area in the VMCS.
4124 *
4125 * This also sets up whether \#DB and MOV DRx accesses cause VM-exits.
4126 *
4127 * The guest debug bits are partially shared with the host (e.g. DR6, DR0-3).
4128 *
4129 * @returns VBox status code.
4130 * @param pVCpu The cross context virtual CPU structure.
4131 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4132 * out-of-sync. Make sure to update the required fields
4133 * before using them.
4134 *
4135 * @remarks No-long-jump zone!!!
4136 */
4137static int hmR0VmxLoadSharedDebugState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4138{
4139 if (!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_DEBUG))
4140 return VINF_SUCCESS;
4141
4142#ifdef VBOX_STRICT
4143 /* Validate. Intel spec. 26.3.1.1 "Checks on Guest Controls Registers, Debug Registers, MSRs" */
4144 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG)
4145 {
4146 /* Validate. Intel spec. 17.2 "Debug Registers", recompiler paranoia checks. */
4147 Assert((pMixedCtx->dr[7] & (X86_DR7_MBZ_MASK | X86_DR7_RAZ_MASK)) == 0); /* Bits 63:32, 15, 14, 12, 11 are reserved. */
4148 Assert((pMixedCtx->dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK); /* Bit 10 is reserved (RA1). */
4149 }
4150#endif
4151
4152 int rc;
4153 PVM pVM = pVCpu->CTX_SUFF(pVM);
4154 bool fSteppingDB = false;
4155 bool fInterceptMovDRx = false;
4156 if (pVCpu->hm.s.fSingleInstruction)
4157 {
4158 /* If the CPU supports the monitor trap flag, use it for single stepping in DBGF and avoid intercepting #DB. */
4159 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG)
4160 {
4161 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG;
4162 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
4163 AssertRCReturn(rc, rc);
4164 Assert(fSteppingDB == false);
4165 }
4166 else
4167 {
4168 pMixedCtx->eflags.u32 |= X86_EFL_TF;
4169 pVCpu->hm.s.fClearTrapFlag = true;
4170 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RFLAGS);
4171 fSteppingDB = true;
4172 }
4173 }
4174
4175 if ( fSteppingDB
4176 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
4177 {
4178 /*
4179 * Use the combined guest and host DRx values found in the hypervisor
4180 * register set because the debugger has breakpoints active or someone
4181 * is single stepping on the host side without a monitor trap flag.
4182 *
4183 * Note! DBGF expects a clean DR6 state before executing guest code.
4184 */
4185#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4186 if ( CPUMIsGuestInLongModeEx(pMixedCtx)
4187 && !CPUMIsHyperDebugStateActivePending(pVCpu))
4188 {
4189 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
4190 Assert(CPUMIsHyperDebugStateActivePending(pVCpu));
4191 Assert(!CPUMIsGuestDebugStateActivePending(pVCpu));
4192 }
4193 else
4194#endif
4195 if (!CPUMIsHyperDebugStateActive(pVCpu))
4196 {
4197 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
4198 Assert(CPUMIsHyperDebugStateActive(pVCpu));
4199 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
4200 }
4201
4202 /* Update DR7. (The other DRx values are handled by CPUM one way or the other.) */
4203 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, (uint32_t)CPUMGetHyperDR7(pVCpu));
4204 AssertRCReturn(rc, rc);
4205
4206 pVCpu->hm.s.fUsingHyperDR7 = true;
4207 fInterceptMovDRx = true;
4208 }
4209 else
4210 {
4211 /*
4212 * If the guest has enabled debug registers, we need to load them prior to
4213 * executing guest code so they'll trigger at the right time.
4214 */
4215 if (pMixedCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD)) /** @todo Why GD? */
4216 {
4217#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4218 if ( CPUMIsGuestInLongModeEx(pMixedCtx)
4219 && !CPUMIsGuestDebugStateActivePending(pVCpu))
4220 {
4221 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
4222 Assert(CPUMIsGuestDebugStateActivePending(pVCpu));
4223 Assert(!CPUMIsHyperDebugStateActivePending(pVCpu));
4224 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
4225 }
4226 else
4227#endif
4228 if (!CPUMIsGuestDebugStateActive(pVCpu))
4229 {
4230 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
4231 Assert(CPUMIsGuestDebugStateActive(pVCpu));
4232 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
4233 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
4234 }
4235 Assert(!fInterceptMovDRx);
4236 }
4237 /*
4238 * If no debugging enabled, we'll lazy load DR0-3. Unlike on AMD-V, we
4239 * must intercept #DB in order to maintain a correct DR6 guest value, and
4240 * because we need to intercept it to prevent nested #DBs from hanging the
4241 * CPU, we end up always having to intercept it. See hmR0VmxInitXcptBitmap.
4242 */
4243#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4244 else if ( !CPUMIsGuestDebugStateActivePending(pVCpu)
4245 && !CPUMIsGuestDebugStateActive(pVCpu))
4246#else
4247 else if (!CPUMIsGuestDebugStateActive(pVCpu))
4248#endif
4249 {
4250 fInterceptMovDRx = true;
4251 }
4252
4253 /* Update guest DR7. */
4254 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, pMixedCtx->dr[7]);
4255 AssertRCReturn(rc, rc);
4256
4257 pVCpu->hm.s.fUsingHyperDR7 = false;
4258 }
4259
4260 /*
4261 * Update the processor-based VM-execution controls regarding intercepting MOV DRx instructions.
4262 */
4263 if (fInterceptMovDRx)
4264 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT;
4265 else
4266 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT;
4267 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
4268 AssertRCReturn(rc, rc);
4269
4270 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_DEBUG);
4271 return VINF_SUCCESS;
4272}
4273
4274
4275#ifdef VBOX_STRICT
4276/**
4277 * Strict function to validate segment registers.
4278 *
4279 * @remarks ASSUMES CR0 is up to date.
4280 */
4281static void hmR0VmxValidateSegmentRegs(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
4282{
4283 /* Validate segment registers. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers". */
4284 /* NOTE: The reason we check for attribute value 0 and not just the unusable bit here is because hmR0VmxWriteSegmentReg()
4285 * only updates the VMCS' copy of the value with the unusable bit and doesn't change the guest-context value. */
4286 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
4287 && ( !CPUMIsGuestInRealModeEx(pCtx)
4288 && !CPUMIsGuestInV86ModeEx(pCtx)))
4289 {
4290 /* Protected mode checks */
4291 /* CS */
4292 Assert(pCtx->cs.Attr.n.u1Present);
4293 Assert(!(pCtx->cs.Attr.u & 0xf00));
4294 Assert(!(pCtx->cs.Attr.u & 0xfffe0000));
4295 Assert( (pCtx->cs.u32Limit & 0xfff) == 0xfff
4296 || !(pCtx->cs.Attr.n.u1Granularity));
4297 Assert( !(pCtx->cs.u32Limit & 0xfff00000)
4298 || (pCtx->cs.Attr.n.u1Granularity));
4299 /* CS cannot be loaded with NULL in protected mode. */
4300 Assert(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE)); /** @todo is this really true even for 64-bit CS? */
4301 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
4302 Assert(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl);
4303 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
4304 Assert(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl);
4305 else
4306 AssertMsgFailed(("Invalid CS Type %#x\n", pCtx->cs.Attr.n.u2Dpl));
4307 /* SS */
4308 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
4309 Assert(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL));
4310 if ( !(pCtx->cr0 & X86_CR0_PE)
4311 || pCtx->cs.Attr.n.u4Type == 3)
4312 {
4313 Assert(!pCtx->ss.Attr.n.u2Dpl);
4314 }
4315 if (pCtx->ss.Attr.u && !(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
4316 {
4317 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
4318 Assert(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7);
4319 Assert(pCtx->ss.Attr.n.u1Present);
4320 Assert(!(pCtx->ss.Attr.u & 0xf00));
4321 Assert(!(pCtx->ss.Attr.u & 0xfffe0000));
4322 Assert( (pCtx->ss.u32Limit & 0xfff) == 0xfff
4323 || !(pCtx->ss.Attr.n.u1Granularity));
4324 Assert( !(pCtx->ss.u32Limit & 0xfff00000)
4325 || (pCtx->ss.Attr.n.u1Granularity));
4326 }
4327 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxWriteSegmentReg(). */
4328 if (pCtx->ds.Attr.u && !(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
4329 {
4330 Assert(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4331 Assert(pCtx->ds.Attr.n.u1Present);
4332 Assert(pCtx->ds.Attr.n.u4Type > 11 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL));
4333 Assert(!(pCtx->ds.Attr.u & 0xf00));
4334 Assert(!(pCtx->ds.Attr.u & 0xfffe0000));
4335 Assert( (pCtx->ds.u32Limit & 0xfff) == 0xfff
4336 || !(pCtx->ds.Attr.n.u1Granularity));
4337 Assert( !(pCtx->ds.u32Limit & 0xfff00000)
4338 || (pCtx->ds.Attr.n.u1Granularity));
4339 Assert( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4340 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ));
4341 }
4342 if (pCtx->es.Attr.u && !(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
4343 {
4344 Assert(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4345 Assert(pCtx->es.Attr.n.u1Present);
4346 Assert(pCtx->es.Attr.n.u4Type > 11 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL));
4347 Assert(!(pCtx->es.Attr.u & 0xf00));
4348 Assert(!(pCtx->es.Attr.u & 0xfffe0000));
4349 Assert( (pCtx->es.u32Limit & 0xfff) == 0xfff
4350 || !(pCtx->es.Attr.n.u1Granularity));
4351 Assert( !(pCtx->es.u32Limit & 0xfff00000)
4352 || (pCtx->es.Attr.n.u1Granularity));
4353 Assert( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4354 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ));
4355 }
4356 if (pCtx->fs.Attr.u && !(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
4357 {
4358 Assert(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4359 Assert(pCtx->fs.Attr.n.u1Present);
4360 Assert(pCtx->fs.Attr.n.u4Type > 11 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL));
4361 Assert(!(pCtx->fs.Attr.u & 0xf00));
4362 Assert(!(pCtx->fs.Attr.u & 0xfffe0000));
4363 Assert( (pCtx->fs.u32Limit & 0xfff) == 0xfff
4364 || !(pCtx->fs.Attr.n.u1Granularity));
4365 Assert( !(pCtx->fs.u32Limit & 0xfff00000)
4366 || (pCtx->fs.Attr.n.u1Granularity));
4367 Assert( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4368 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ));
4369 }
4370 if (pCtx->gs.Attr.u && !(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
4371 {
4372 Assert(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4373 Assert(pCtx->gs.Attr.n.u1Present);
4374 Assert(pCtx->gs.Attr.n.u4Type > 11 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL));
4375 Assert(!(pCtx->gs.Attr.u & 0xf00));
4376 Assert(!(pCtx->gs.Attr.u & 0xfffe0000));
4377 Assert( (pCtx->gs.u32Limit & 0xfff) == 0xfff
4378 || !(pCtx->gs.Attr.n.u1Granularity));
4379 Assert( !(pCtx->gs.u32Limit & 0xfff00000)
4380 || (pCtx->gs.Attr.n.u1Granularity));
4381 Assert( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4382 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ));
4383 }
4384 /* 64-bit capable CPUs. */
4385# if HC_ARCH_BITS == 64
4386 Assert(!(pCtx->cs.u64Base >> 32));
4387 Assert(!pCtx->ss.Attr.u || !(pCtx->ss.u64Base >> 32));
4388 Assert(!pCtx->ds.Attr.u || !(pCtx->ds.u64Base >> 32));
4389 Assert(!pCtx->es.Attr.u || !(pCtx->es.u64Base >> 32));
4390# endif
4391 }
4392 else if ( CPUMIsGuestInV86ModeEx(pCtx)
4393 || ( CPUMIsGuestInRealModeEx(pCtx)
4394 && !pVM->hm.s.vmx.fUnrestrictedGuest))
4395 {
4396 /* Real and v86 mode checks. */
4397 /* hmR0VmxWriteSegmentReg() writes the modified in VMCS. We want what we're feeding to VT-x. */
4398 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
4399 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4400 {
4401 u32CSAttr = 0xf3; u32SSAttr = 0xf3; u32DSAttr = 0xf3; u32ESAttr = 0xf3; u32FSAttr = 0xf3; u32GSAttr = 0xf3;
4402 }
4403 else
4404 {
4405 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u; u32DSAttr = pCtx->ds.Attr.u;
4406 u32ESAttr = pCtx->es.Attr.u; u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
4407 }
4408
4409 /* CS */
4410 AssertMsg((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), ("CS base %#x %#x\n", pCtx->cs.u64Base, pCtx->cs.Sel));
4411 Assert(pCtx->cs.u32Limit == 0xffff);
4412 Assert(u32CSAttr == 0xf3);
4413 /* SS */
4414 Assert(pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4);
4415 Assert(pCtx->ss.u32Limit == 0xffff);
4416 Assert(u32SSAttr == 0xf3);
4417 /* DS */
4418 Assert(pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4);
4419 Assert(pCtx->ds.u32Limit == 0xffff);
4420 Assert(u32DSAttr == 0xf3);
4421 /* ES */
4422 Assert(pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4);
4423 Assert(pCtx->es.u32Limit == 0xffff);
4424 Assert(u32ESAttr == 0xf3);
4425 /* FS */
4426 Assert(pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4);
4427 Assert(pCtx->fs.u32Limit == 0xffff);
4428 Assert(u32FSAttr == 0xf3);
4429 /* GS */
4430 Assert(pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4);
4431 Assert(pCtx->gs.u32Limit == 0xffff);
4432 Assert(u32GSAttr == 0xf3);
4433 /* 64-bit capable CPUs. */
4434# if HC_ARCH_BITS == 64
4435 Assert(!(pCtx->cs.u64Base >> 32));
4436 Assert(!u32SSAttr || !(pCtx->ss.u64Base >> 32));
4437 Assert(!u32DSAttr || !(pCtx->ds.u64Base >> 32));
4438 Assert(!u32ESAttr || !(pCtx->es.u64Base >> 32));
4439# endif
4440 }
4441}
4442#endif /* VBOX_STRICT */
4443
4444
4445/**
4446 * Writes a guest segment register into the guest-state area in the VMCS.
4447 *
4448 * @returns VBox status code.
4449 * @param pVCpu The cross context virtual CPU structure.
4450 * @param idxSel Index of the selector in the VMCS.
4451 * @param idxLimit Index of the segment limit in the VMCS.
4452 * @param idxBase Index of the segment base in the VMCS.
4453 * @param idxAccess Index of the access rights of the segment in the VMCS.
4454 * @param pSelReg Pointer to the segment selector.
4455 *
4456 * @remarks No-long-jump zone!!!
4457 */
4458static int hmR0VmxWriteSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase,
4459 uint32_t idxAccess, PCPUMSELREG pSelReg)
4460{
4461 int rc = VMXWriteVmcs32(idxSel, pSelReg->Sel); /* 16-bit guest selector field. */
4462 rc |= VMXWriteVmcs32(idxLimit, pSelReg->u32Limit); /* 32-bit guest segment limit field. */
4463 rc |= VMXWriteVmcsGstN(idxBase, pSelReg->u64Base); /* Natural width guest segment base field.*/
4464 AssertRCReturn(rc, rc);
4465
4466 uint32_t u32Access = pSelReg->Attr.u;
4467 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4468 {
4469 /* VT-x requires our real-using-v86 mode hack to override the segment access-right bits. */
4470 u32Access = 0xf3;
4471 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
4472 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
4473 }
4474 else
4475 {
4476 /*
4477 * The way to differentiate between whether this is really a null selector or was just a selector loaded with 0 in
4478 * real-mode is using the segment attributes. A selector loaded in real-mode with the value 0 is valid and usable in
4479 * protected-mode and we should -not- mark it as an unusable segment. Both the recompiler & VT-x ensures NULL selectors
4480 * loaded in protected-mode have their attribute as 0.
4481 */
4482 if (!u32Access)
4483 u32Access = X86DESCATTR_UNUSABLE;
4484 }
4485
4486 /* Validate segment access rights. Refer to Intel spec. "26.3.1.2 Checks on Guest Segment Registers". */
4487 AssertMsg((u32Access & X86DESCATTR_UNUSABLE) || (u32Access & X86_SEL_TYPE_ACCESSED),
4488 ("Access bit not set for usable segment. idx=%#x sel=%#x attr %#x\n", idxBase, pSelReg, pSelReg->Attr.u));
4489
4490 rc = VMXWriteVmcs32(idxAccess, u32Access); /* 32-bit guest segment access-rights field. */
4491 AssertRCReturn(rc, rc);
4492 return rc;
4493}
4494
4495
4496/**
4497 * Loads the guest segment registers, GDTR, IDTR, LDTR, (TR, FS and GS bases)
4498 * into the guest-state area in the VMCS.
4499 *
4500 * @returns VBox status code.
4501 * @param pVCpu The cross context virtual CPU structure.
4502 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4503 * out-of-sync. Make sure to update the required fields
4504 * before using them.
4505 *
4506 * @remarks ASSUMES pMixedCtx->cr0 is up to date (strict builds validation).
4507 * @remarks No-long-jump zone!!!
4508 */
4509static int hmR0VmxLoadGuestSegmentRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4510{
4511 int rc = VERR_INTERNAL_ERROR_5;
4512 PVM pVM = pVCpu->CTX_SUFF(pVM);
4513
4514 /*
4515 * Guest Segment registers: CS, SS, DS, ES, FS, GS.
4516 */
4517 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS))
4518 {
4519 /* Save the segment attributes for real-on-v86 mode hack, so we can restore them on VM-exit. */
4520 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4521 {
4522 pVCpu->hm.s.vmx.RealMode.AttrCS.u = pMixedCtx->cs.Attr.u;
4523 pVCpu->hm.s.vmx.RealMode.AttrSS.u = pMixedCtx->ss.Attr.u;
4524 pVCpu->hm.s.vmx.RealMode.AttrDS.u = pMixedCtx->ds.Attr.u;
4525 pVCpu->hm.s.vmx.RealMode.AttrES.u = pMixedCtx->es.Attr.u;
4526 pVCpu->hm.s.vmx.RealMode.AttrFS.u = pMixedCtx->fs.Attr.u;
4527 pVCpu->hm.s.vmx.RealMode.AttrGS.u = pMixedCtx->gs.Attr.u;
4528 }
4529
4530#ifdef VBOX_WITH_REM
4531 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
4532 {
4533 Assert(pVM->hm.s.vmx.pRealModeTSS);
4534 AssertCompile(PGMMODE_REAL < PGMMODE_PROTECTED);
4535 if ( pVCpu->hm.s.vmx.fWasInRealMode
4536 && PGMGetGuestMode(pVCpu) >= PGMMODE_PROTECTED)
4537 {
4538 /* Signal that the recompiler must flush its code-cache as the guest -may- rewrite code it will later execute
4539 in real-mode (e.g. OpenBSD 4.0) */
4540 REMFlushTBs(pVM);
4541 Log4(("Load[%RU32]: Switch to protected mode detected!\n", pVCpu->idCpu));
4542 pVCpu->hm.s.vmx.fWasInRealMode = false;
4543 }
4544 }
4545#endif
4546 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_CS_SEL, VMX_VMCS32_GUEST_CS_LIMIT, VMX_VMCS_GUEST_CS_BASE,
4547 VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS, &pMixedCtx->cs);
4548 AssertRCReturn(rc, rc);
4549 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_SS_SEL, VMX_VMCS32_GUEST_SS_LIMIT, VMX_VMCS_GUEST_SS_BASE,
4550 VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS, &pMixedCtx->ss);
4551 AssertRCReturn(rc, rc);
4552 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_DS_SEL, VMX_VMCS32_GUEST_DS_LIMIT, VMX_VMCS_GUEST_DS_BASE,
4553 VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS, &pMixedCtx->ds);
4554 AssertRCReturn(rc, rc);
4555 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_ES_SEL, VMX_VMCS32_GUEST_ES_LIMIT, VMX_VMCS_GUEST_ES_BASE,
4556 VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS, &pMixedCtx->es);
4557 AssertRCReturn(rc, rc);
4558 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FS_SEL, VMX_VMCS32_GUEST_FS_LIMIT, VMX_VMCS_GUEST_FS_BASE,
4559 VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS, &pMixedCtx->fs);
4560 AssertRCReturn(rc, rc);
4561 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_GS_SEL, VMX_VMCS32_GUEST_GS_LIMIT, VMX_VMCS_GUEST_GS_BASE,
4562 VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS, &pMixedCtx->gs);
4563 AssertRCReturn(rc, rc);
4564
4565#ifdef VBOX_STRICT
4566 /* Validate. */
4567 hmR0VmxValidateSegmentRegs(pVM, pVCpu, pMixedCtx);
4568#endif
4569
4570 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS);
4571 Log4(("Load[%RU32]: CS=%#RX16 Base=%#RX64 Limit=%#RX32 Attr=%#RX32\n", pVCpu->idCpu, pMixedCtx->cs.Sel,
4572 pMixedCtx->cs.u64Base, pMixedCtx->cs.u32Limit, pMixedCtx->cs.Attr.u));
4573 }
4574
4575 /*
4576 * Guest TR.
4577 */
4578 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_TR))
4579 {
4580 /*
4581 * Real-mode emulation using virtual-8086 mode with CR4.VME. Interrupt redirection is achieved
4582 * using the interrupt redirection bitmap (all bits cleared to let the guest handle INT-n's) in the TSS.
4583 * See hmR3InitFinalizeR0() to see how pRealModeTSS is setup.
4584 */
4585 uint16_t u16Sel = 0;
4586 uint32_t u32Limit = 0;
4587 uint64_t u64Base = 0;
4588 uint32_t u32AccessRights = 0;
4589
4590 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4591 {
4592 u16Sel = pMixedCtx->tr.Sel;
4593 u32Limit = pMixedCtx->tr.u32Limit;
4594 u64Base = pMixedCtx->tr.u64Base;
4595 u32AccessRights = pMixedCtx->tr.Attr.u;
4596 }
4597 else
4598 {
4599 Assert(pVM->hm.s.vmx.pRealModeTSS);
4600 Assert(PDMVmmDevHeapIsEnabled(pVM)); /* Guaranteed by HMR3CanExecuteGuest() -XXX- what about inner loop changes? */
4601
4602 /* We obtain it here every time as PCI regions could be reconfigured in the guest, changing the VMMDev base. */
4603 RTGCPHYS GCPhys;
4604 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
4605 AssertRCReturn(rc, rc);
4606
4607 X86DESCATTR DescAttr;
4608 DescAttr.u = 0;
4609 DescAttr.n.u1Present = 1;
4610 DescAttr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
4611
4612 u16Sel = 0;
4613 u32Limit = HM_VTX_TSS_SIZE;
4614 u64Base = GCPhys; /* in real-mode phys = virt. */
4615 u32AccessRights = DescAttr.u;
4616 }
4617
4618 /* Validate. */
4619 Assert(!(u16Sel & RT_BIT(2)));
4620 AssertMsg( (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_386_TSS_BUSY
4621 || (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_286_TSS_BUSY, ("TSS is not busy!? %#x\n", u32AccessRights));
4622 AssertMsg(!(u32AccessRights & X86DESCATTR_UNUSABLE), ("TR unusable bit is not clear!? %#x\n", u32AccessRights));
4623 Assert(!(u32AccessRights & RT_BIT(4))); /* System MBZ.*/
4624 Assert(u32AccessRights & RT_BIT(7)); /* Present MB1.*/
4625 Assert(!(u32AccessRights & 0xf00)); /* 11:8 MBZ. */
4626 Assert(!(u32AccessRights & 0xfffe0000)); /* 31:17 MBZ. */
4627 Assert( (u32Limit & 0xfff) == 0xfff
4628 || !(u32AccessRights & RT_BIT(15))); /* Granularity MBZ. */
4629 Assert( !(pMixedCtx->tr.u32Limit & 0xfff00000)
4630 || (u32AccessRights & RT_BIT(15))); /* Granularity MB1. */
4631
4632 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_TR_SEL, u16Sel);
4633 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_LIMIT, u32Limit);
4634 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_TR_BASE, u64Base);
4635 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, u32AccessRights);
4636 AssertRCReturn(rc, rc);
4637
4638 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_TR);
4639 Log4(("Load[%RU32]: VMX_VMCS_GUEST_TR_BASE=%#RX64\n", pVCpu->idCpu, u64Base));
4640 }
4641
4642 /*
4643 * Guest GDTR.
4644 */
4645 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_GDTR))
4646 {
4647 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, pMixedCtx->gdtr.cbGdt);
4648 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, pMixedCtx->gdtr.pGdt);
4649 AssertRCReturn(rc, rc);
4650
4651 /* Validate. */
4652 Assert(!(pMixedCtx->gdtr.cbGdt & 0xffff0000)); /* Bits 31:16 MBZ. */
4653
4654 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_GDTR);
4655 Log4(("Load[%RU32]: VMX_VMCS_GUEST_GDTR_BASE=%#RX64\n", pVCpu->idCpu, pMixedCtx->gdtr.pGdt));
4656 }
4657
4658 /*
4659 * Guest LDTR.
4660 */
4661 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LDTR))
4662 {
4663 /* The unusable bit is specific to VT-x, if it's a null selector mark it as an unusable segment. */
4664 uint32_t u32Access = 0;
4665 if (!pMixedCtx->ldtr.Attr.u)
4666 u32Access = X86DESCATTR_UNUSABLE;
4667 else
4668 u32Access = pMixedCtx->ldtr.Attr.u;
4669
4670 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_LDTR_SEL, pMixedCtx->ldtr.Sel);
4671 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_LIMIT, pMixedCtx->ldtr.u32Limit);
4672 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_LDTR_BASE, pMixedCtx->ldtr.u64Base);
4673 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, u32Access);
4674 AssertRCReturn(rc, rc);
4675
4676 /* Validate. */
4677 if (!(u32Access & X86DESCATTR_UNUSABLE))
4678 {
4679 Assert(!(pMixedCtx->ldtr.Sel & RT_BIT(2))); /* TI MBZ. */
4680 Assert(pMixedCtx->ldtr.Attr.n.u4Type == 2); /* Type MB2 (LDT). */
4681 Assert(!pMixedCtx->ldtr.Attr.n.u1DescType); /* System MBZ. */
4682 Assert(pMixedCtx->ldtr.Attr.n.u1Present == 1); /* Present MB1. */
4683 Assert(!pMixedCtx->ldtr.Attr.n.u4LimitHigh); /* 11:8 MBZ. */
4684 Assert(!(pMixedCtx->ldtr.Attr.u & 0xfffe0000)); /* 31:17 MBZ. */
4685 Assert( (pMixedCtx->ldtr.u32Limit & 0xfff) == 0xfff
4686 || !pMixedCtx->ldtr.Attr.n.u1Granularity); /* Granularity MBZ. */
4687 Assert( !(pMixedCtx->ldtr.u32Limit & 0xfff00000)
4688 || pMixedCtx->ldtr.Attr.n.u1Granularity); /* Granularity MB1. */
4689 }
4690
4691 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_LDTR);
4692 Log4(("Load[%RU32]: VMX_VMCS_GUEST_LDTR_BASE=%#RX64\n", pVCpu->idCpu, pMixedCtx->ldtr.u64Base));
4693 }
4694
4695 /*
4696 * Guest IDTR.
4697 */
4698 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_IDTR))
4699 {
4700 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, pMixedCtx->idtr.cbIdt);
4701 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, pMixedCtx->idtr.pIdt);
4702 AssertRCReturn(rc, rc);
4703
4704 /* Validate. */
4705 Assert(!(pMixedCtx->idtr.cbIdt & 0xffff0000)); /* Bits 31:16 MBZ. */
4706
4707 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_IDTR);
4708 Log4(("Load[%RU32]: VMX_VMCS_GUEST_IDTR_BASE=%#RX64\n", pVCpu->idCpu, pMixedCtx->idtr.pIdt));
4709 }
4710
4711 return VINF_SUCCESS;
4712}
4713
4714
4715/**
4716 * Loads certain guest MSRs into the VM-entry MSR-load and VM-exit MSR-store
4717 * areas.
4718 *
4719 * These MSRs will automatically be loaded to the host CPU on every successful
4720 * VM-entry and stored from the host CPU on every successful VM-exit. This also
4721 * creates/updates MSR slots for the host MSRs. The actual host MSR values are
4722 * -not- updated here for performance reasons. See hmR0VmxSaveHostMsrs().
4723 *
4724 * Also loads the sysenter MSRs into the guest-state area in the VMCS.
4725 *
4726 * @returns VBox status code.
4727 * @param pVCpu The cross context virtual CPU structure.
4728 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4729 * out-of-sync. Make sure to update the required fields
4730 * before using them.
4731 *
4732 * @remarks No-long-jump zone!!!
4733 */
4734static int hmR0VmxLoadGuestMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4735{
4736 AssertPtr(pVCpu);
4737 AssertPtr(pVCpu->hm.s.vmx.pvGuestMsr);
4738
4739 /*
4740 * MSRs that we use the auto-load/store MSR area in the VMCS.
4741 */
4742 PVM pVM = pVCpu->CTX_SUFF(pVM);
4743 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_GUEST_AUTO_MSRS))
4744 {
4745 /* For 64-bit hosts, we load/restore them lazily, see hmR0VmxLazyLoadGuestMsrs(). */
4746#if HC_ARCH_BITS == 32
4747 if (pVM->hm.s.fAllow64BitGuests)
4748 {
4749 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_LSTAR, pMixedCtx->msrLSTAR, false, NULL);
4750 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K6_STAR, pMixedCtx->msrSTAR, false, NULL);
4751 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_SF_MASK, pMixedCtx->msrSFMASK, false, NULL);
4752 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_KERNEL_GS_BASE, pMixedCtx->msrKERNELGSBASE, false, NULL);
4753 AssertRCReturn(rc, rc);
4754# ifdef LOG_ENABLED
4755 PVMXAUTOMSR pMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
4756 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.cMsrs; i++, pMsr++)
4757 {
4758 Log4(("Load[%RU32]: MSR[%RU32]: u32Msr=%#RX32 u64Value=%#RX64\n", pVCpu->idCpu, i, pMsr->u32Msr,
4759 pMsr->u64Value));
4760 }
4761# endif
4762 }
4763#endif
4764 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_GUEST_AUTO_MSRS);
4765 }
4766
4767 /*
4768 * Guest Sysenter MSRs.
4769 * These flags are only set when MSR-bitmaps are not supported by the CPU and we cause
4770 * VM-exits on WRMSRs for these MSRs.
4771 */
4772 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR))
4773 {
4774 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, pMixedCtx->SysEnter.cs); AssertRCReturn(rc, rc);
4775 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR);
4776 }
4777
4778 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR))
4779 {
4780 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, pMixedCtx->SysEnter.eip); AssertRCReturn(rc, rc);
4781 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR);
4782 }
4783
4784 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR))
4785 {
4786 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, pMixedCtx->SysEnter.esp); AssertRCReturn(rc, rc);
4787 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR);
4788 }
4789
4790 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_EFER_MSR))
4791 {
4792 if (hmR0VmxShouldSwapEferMsr(pVCpu, pMixedCtx))
4793 {
4794 /*
4795 * If the CPU supports VMCS controls for swapping EFER, use it. Otherwise, we have no option
4796 * but to use the auto-load store MSR area in the VMCS for swapping EFER. See @bugref{7368}.
4797 */
4798 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
4799 {
4800 int rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_EFER_FULL, pMixedCtx->msrEFER);
4801 AssertRCReturn(rc,rc);
4802 Log4(("Load[%RU32]: VMX_VMCS64_GUEST_EFER_FULL=%#RX64\n", pVCpu->idCpu, pMixedCtx->msrEFER));
4803 }
4804 else
4805 {
4806 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K6_EFER, pMixedCtx->msrEFER, false /* fUpdateHostMsr */,
4807 NULL /* pfAddedAndUpdated */);
4808 AssertRCReturn(rc, rc);
4809
4810 /* We need to intercept reads too, see @bugref{7386#c16}. */
4811 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
4812 hmR0VmxSetMsrPermission(pVCpu, MSR_K6_EFER, VMXMSREXIT_INTERCEPT_READ, VMXMSREXIT_INTERCEPT_WRITE);
4813 Log4(("Load[%RU32]: MSR[--]: u32Msr=%#RX32 u64Value=%#RX64 cMsrs=%u\n", pVCpu->idCpu, MSR_K6_EFER,
4814 pMixedCtx->msrEFER, pVCpu->hm.s.vmx.cMsrs));
4815 }
4816 }
4817 else if (!pVM->hm.s.vmx.fSupportsVmcsEfer)
4818 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, MSR_K6_EFER);
4819 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_EFER_MSR);
4820 }
4821
4822 return VINF_SUCCESS;
4823}
4824
4825
4826/**
4827 * Loads the guest activity state into the guest-state area in the VMCS.
4828 *
4829 * @returns VBox status code.
4830 * @param pVCpu The cross context virtual CPU structure.
4831 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4832 * out-of-sync. Make sure to update the required fields
4833 * before using them.
4834 *
4835 * @remarks No-long-jump zone!!!
4836 */
4837static int hmR0VmxLoadGuestActivityState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4838{
4839 NOREF(pMixedCtx);
4840 /** @todo See if we can make use of other states, e.g.
4841 * VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN or HLT. */
4842 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_GUEST_ACTIVITY_STATE))
4843 {
4844 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, VMX_VMCS_GUEST_ACTIVITY_ACTIVE);
4845 AssertRCReturn(rc, rc);
4846
4847 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_GUEST_ACTIVITY_STATE);
4848 }
4849 return VINF_SUCCESS;
4850}
4851
4852
4853#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
4854/**
4855 * Check if guest state allows safe use of 32-bit switcher again.
4856 *
4857 * Segment bases and protected mode structures must be 32-bit addressable
4858 * because the 32-bit switcher will ignore high dword when writing these VMCS
4859 * fields. See @bugref{8432} for details.
4860 *
4861 * @returns true if safe, false if must continue to use the 64-bit switcher.
4862 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4863 * out-of-sync. Make sure to update the required fields
4864 * before using them.
4865 *
4866 * @remarks No-long-jump zone!!!
4867 */
4868static bool hmR0VmxIs32BitSwitcherSafe(PCPUMCTX pMixedCtx)
4869{
4870 if (pMixedCtx->gdtr.pGdt & UINT64_C(0xffffffff00000000))
4871 return false;
4872 if (pMixedCtx->idtr.pIdt & UINT64_C(0xffffffff00000000))
4873 return false;
4874 if (pMixedCtx->ldtr.u64Base & UINT64_C(0xffffffff00000000))
4875 return false;
4876 if (pMixedCtx->tr.u64Base & UINT64_C(0xffffffff00000000))
4877 return false;
4878 if (pMixedCtx->es.u64Base & UINT64_C(0xffffffff00000000))
4879 return false;
4880 if (pMixedCtx->cs.u64Base & UINT64_C(0xffffffff00000000))
4881 return false;
4882 if (pMixedCtx->ss.u64Base & UINT64_C(0xffffffff00000000))
4883 return false;
4884 if (pMixedCtx->ds.u64Base & UINT64_C(0xffffffff00000000))
4885 return false;
4886 if (pMixedCtx->fs.u64Base & UINT64_C(0xffffffff00000000))
4887 return false;
4888 if (pMixedCtx->gs.u64Base & UINT64_C(0xffffffff00000000))
4889 return false;
4890 /* All good, bases are 32-bit. */
4891 return true;
4892}
4893#endif
4894
4895
4896/**
4897 * Sets up the appropriate function to run guest code.
4898 *
4899 * @returns VBox status code.
4900 * @param pVCpu The cross context virtual CPU structure.
4901 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4902 * out-of-sync. Make sure to update the required fields
4903 * before using them.
4904 *
4905 * @remarks No-long-jump zone!!!
4906 */
4907static int hmR0VmxSetupVMRunHandler(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4908{
4909 if (CPUMIsGuestInLongModeEx(pMixedCtx))
4910 {
4911#ifndef VBOX_ENABLE_64_BITS_GUESTS
4912 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
4913#endif
4914 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
4915#if HC_ARCH_BITS == 32
4916 /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
4917 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0SwitcherStartVM64)
4918 {
4919 if (pVCpu->hm.s.vmx.pfnStartVM != NULL) /* Very first entry would have saved host-state already, ignore it. */
4920 {
4921 /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
4922 AssertMsg(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_VMX_EXIT_CTLS
4923 | HM_CHANGED_VMX_ENTRY_CTLS
4924 | HM_CHANGED_GUEST_EFER_MSR), ("flags=%#x\n", HMCPU_CF_VALUE(pVCpu)));
4925 }
4926 pVCpu->hm.s.vmx.pfnStartVM = VMXR0SwitcherStartVM64;
4927
4928 /* Mark that we've switched to 64-bit handler, we can't safely switch back to 32-bit for
4929 the rest of the VM run (until VM reset). See @bugref{8432#c7}. */
4930 pVCpu->hm.s.vmx.fSwitchedTo64on32 = true;
4931 Log4(("Load[%RU32]: hmR0VmxSetupVMRunHandler: selected 64-bit switcher\n", pVCpu->idCpu));
4932 }
4933#else
4934 /* 64-bit host. */
4935 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM64;
4936#endif
4937 }
4938 else
4939 {
4940 /* Guest is not in long mode, use the 32-bit handler. */
4941#if HC_ARCH_BITS == 32
4942 if ( pVCpu->hm.s.vmx.pfnStartVM != VMXR0StartVM32
4943 && !pVCpu->hm.s.vmx.fSwitchedTo64on32 /* If set, guest mode change does not imply switcher change. */
4944 && pVCpu->hm.s.vmx.pfnStartVM != NULL) /* Very first entry would have saved host-state already, ignore it. */
4945 {
4946 /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
4947 AssertMsg(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_VMX_EXIT_CTLS
4948 | HM_CHANGED_VMX_ENTRY_CTLS
4949 | HM_CHANGED_GUEST_EFER_MSR), ("flags=%#x\n", HMCPU_CF_VALUE(pVCpu)));
4950 }
4951# ifdef VBOX_ENABLE_64_BITS_GUESTS
4952 /*
4953 * Keep using the 64-bit switcher even though we're in 32-bit because of bad Intel design, see @bugref{8432#c7}.
4954 * If real-on-v86 mode is active, clear the 64-bit switcher flag because now we know the guest is in a sane
4955 * state where it's safe to use the 32-bit switcher. Otherwise check the guest state if it's safe to use
4956 * the much faster 32-bit switcher again.
4957 */
4958 if (!pVCpu->hm.s.vmx.fSwitchedTo64on32)
4959 {
4960 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0StartVM32)
4961 Log4(("Load[%RU32]: hmR0VmxSetupVMRunHandler: selected 32-bit switcher\n", pVCpu->idCpu));
4962 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4963 }
4964 else
4965 {
4966 Assert(pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64);
4967 if ( pVCpu->hm.s.vmx.RealMode.fRealOnV86Active
4968 || hmR0VmxIs32BitSwitcherSafe(pMixedCtx))
4969 {
4970 pVCpu->hm.s.vmx.fSwitchedTo64on32 = false;
4971 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4972 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_EFER_MSR
4973 | HM_CHANGED_VMX_ENTRY_CTLS
4974 | HM_CHANGED_VMX_EXIT_CTLS
4975 | HM_CHANGED_HOST_CONTEXT);
4976 Log4(("Load[%RU32]: hmR0VmxSetupVMRunHandler: selected 32-bit switcher (safe)\n", pVCpu->idCpu));
4977 }
4978 }
4979# else
4980 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4981# endif
4982#else
4983 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4984#endif
4985 }
4986 Assert(pVCpu->hm.s.vmx.pfnStartVM);
4987 return VINF_SUCCESS;
4988}
4989
4990
4991/**
4992 * Wrapper for running the guest code in VT-x.
4993 *
4994 * @returns VBox status code, no informational status codes.
4995 * @param pVM The cross context VM structure.
4996 * @param pVCpu The cross context virtual CPU structure.
4997 * @param pCtx Pointer to the guest-CPU context.
4998 *
4999 * @remarks No-long-jump zone!!!
5000 */
5001DECLINLINE(int) hmR0VmxRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
5002{
5003 /*
5004 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses floating-point operations
5005 * using SSE instructions. Some XMM registers (XMM6-XMM15) are callee-saved and thus the need for this XMM wrapper.
5006 * Refer MSDN docs. "Configuring Programs for 64-bit / x64 Software Conventions / Register Usage" for details.
5007 */
5008 bool const fResumeVM = RT_BOOL(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_LAUNCHED);
5009 /** @todo Add stats for resume vs launch. */
5010#ifdef VBOX_WITH_KERNEL_USING_XMM
5011 int rc = hmR0VMXStartVMWrapXMM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu, pVCpu->hm.s.vmx.pfnStartVM);
5012#else
5013 int rc = pVCpu->hm.s.vmx.pfnStartVM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu);
5014#endif
5015 AssertMsg(rc <= VINF_SUCCESS, ("%Rrc\n", rc));
5016 return rc;
5017}
5018
5019
5020/**
5021 * Reports world-switch error and dumps some useful debug info.
5022 *
5023 * @param pVM The cross context VM structure.
5024 * @param pVCpu The cross context virtual CPU structure.
5025 * @param rcVMRun The return code from VMLAUNCH/VMRESUME.
5026 * @param pCtx Pointer to the guest-CPU context.
5027 * @param pVmxTransient Pointer to the VMX transient structure (only
5028 * exitReason updated).
5029 */
5030static void hmR0VmxReportWorldSwitchError(PVM pVM, PVMCPU pVCpu, int rcVMRun, PCPUMCTX pCtx, PVMXTRANSIENT pVmxTransient)
5031{
5032 Assert(pVM);
5033 Assert(pVCpu);
5034 Assert(pCtx);
5035 Assert(pVmxTransient);
5036 HMVMX_ASSERT_PREEMPT_SAFE();
5037
5038 Log4(("VM-entry failure: %Rrc\n", rcVMRun));
5039 switch (rcVMRun)
5040 {
5041 case VERR_VMX_INVALID_VMXON_PTR:
5042 AssertFailed();
5043 break;
5044 case VINF_SUCCESS: /* VMLAUNCH/VMRESUME succeeded but VM-entry failed... yeah, true story. */
5045 case VERR_VMX_UNABLE_TO_START_VM: /* VMLAUNCH/VMRESUME itself failed. */
5046 {
5047 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &pVCpu->hm.s.vmx.LastError.u32ExitReason);
5048 rc |= VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
5049 rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
5050 AssertRC(rc);
5051
5052 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
5053 /* LastError.idCurrentCpu was already updated in hmR0VmxPreRunGuestCommitted().
5054 Cannot do it here as we may have been long preempted. */
5055
5056#ifdef VBOX_STRICT
5057 Log4(("uExitReason %#RX32 (VmxTransient %#RX16)\n", pVCpu->hm.s.vmx.LastError.u32ExitReason,
5058 pVmxTransient->uExitReason));
5059 Log4(("Exit Qualification %#RX64\n", pVmxTransient->uExitQualification));
5060 Log4(("InstrError %#RX32\n", pVCpu->hm.s.vmx.LastError.u32InstrError));
5061 if (pVCpu->hm.s.vmx.LastError.u32InstrError <= HMVMX_INSTR_ERROR_MAX)
5062 Log4(("InstrError Desc. \"%s\"\n", g_apszVmxInstrErrors[pVCpu->hm.s.vmx.LastError.u32InstrError]));
5063 else
5064 Log4(("InstrError Desc. Range exceeded %u\n", HMVMX_INSTR_ERROR_MAX));
5065 Log4(("Entered host CPU %u\n", pVCpu->hm.s.vmx.LastError.idEnteredCpu));
5066 Log4(("Current host CPU %u\n", pVCpu->hm.s.vmx.LastError.idCurrentCpu));
5067
5068 /* VMX control bits. */
5069 uint32_t u32Val;
5070 uint64_t u64Val;
5071 RTHCUINTREG uHCReg;
5072 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val); AssertRC(rc);
5073 Log4(("VMX_VMCS32_CTRL_PIN_EXEC %#RX32\n", u32Val));
5074 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val); AssertRC(rc);
5075 Log4(("VMX_VMCS32_CTRL_PROC_EXEC %#RX32\n", u32Val));
5076 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
5077 {
5078 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val); AssertRC(rc);
5079 Log4(("VMX_VMCS32_CTRL_PROC_EXEC2 %#RX32\n", u32Val));
5080 }
5081 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val); AssertRC(rc);
5082 Log4(("VMX_VMCS32_CTRL_ENTRY %#RX32\n", u32Val));
5083 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val); AssertRC(rc);
5084 Log4(("VMX_VMCS32_CTRL_EXIT %#RX32\n", u32Val));
5085 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, &u32Val); AssertRC(rc);
5086 Log4(("VMX_VMCS32_CTRL_CR3_TARGET_COUNT %#RX32\n", u32Val));
5087 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32Val); AssertRC(rc);
5088 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", u32Val));
5089 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &u32Val); AssertRC(rc);
5090 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", u32Val));
5091 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &u32Val); AssertRC(rc);
5092 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %u\n", u32Val));
5093 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, &u32Val); AssertRC(rc);
5094 Log4(("VMX_VMCS32_CTRL_TPR_THRESHOLD %u\n", u32Val));
5095 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &u32Val); AssertRC(rc);
5096 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT %u (guest MSRs)\n", u32Val));
5097 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
5098 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT %u (host MSRs)\n", u32Val));
5099 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
5100 Log4(("VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT %u (guest MSRs)\n", u32Val));
5101 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val); AssertRC(rc);
5102 Log4(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP %#RX32\n", u32Val));
5103 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, &u32Val); AssertRC(rc);
5104 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK %#RX32\n", u32Val));
5105 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, &u32Val); AssertRC(rc);
5106 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH %#RX32\n", u32Val));
5107 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
5108 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
5109 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
5110 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
5111 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
5112 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
5113 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
5114 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
5115 if (pVM->hm.s.fNestedPaging)
5116 {
5117 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
5118 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
5119 }
5120
5121 /* Guest bits. */
5122 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val); AssertRC(rc);
5123 Log4(("Old Guest Rip %#RX64 New %#RX64\n", pCtx->rip, u64Val));
5124 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val); AssertRC(rc);
5125 Log4(("Old Guest Rsp %#RX64 New %#RX64\n", pCtx->rsp, u64Val));
5126 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Val); AssertRC(rc);
5127 Log4(("Old Guest Rflags %#RX32 New %#RX32\n", pCtx->eflags.u32, u32Val));
5128 if (pVM->hm.s.vmx.fVpid)
5129 {
5130 rc = VMXReadVmcs32(VMX_VMCS16_VPID, &u32Val); AssertRC(rc);
5131 Log4(("VMX_VMCS16_VPID %u\n", u32Val));
5132 }
5133
5134 /* Host bits. */
5135 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR0, &uHCReg); AssertRC(rc);
5136 Log4(("Host CR0 %#RHr\n", uHCReg));
5137 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR3, &uHCReg); AssertRC(rc);
5138 Log4(("Host CR3 %#RHr\n", uHCReg));
5139 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR4, &uHCReg); AssertRC(rc);
5140 Log4(("Host CR4 %#RHr\n", uHCReg));
5141
5142 RTGDTR HostGdtr;
5143 PCX86DESCHC pDesc;
5144 ASMGetGDTR(&HostGdtr);
5145 rc = VMXReadVmcs32(VMX_VMCS16_HOST_CS_SEL, &u32Val); AssertRC(rc);
5146 Log4(("Host CS %#08x\n", u32Val));
5147 if (u32Val < HostGdtr.cbGdt)
5148 {
5149 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5150 hmR0DumpDescriptor(pDesc, u32Val, "CS: ");
5151 }
5152
5153 rc = VMXReadVmcs32(VMX_VMCS16_HOST_DS_SEL, &u32Val); AssertRC(rc);
5154 Log4(("Host DS %#08x\n", u32Val));
5155 if (u32Val < HostGdtr.cbGdt)
5156 {
5157 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5158 hmR0DumpDescriptor(pDesc, u32Val, "DS: ");
5159 }
5160
5161 rc = VMXReadVmcs32(VMX_VMCS16_HOST_ES_SEL, &u32Val); AssertRC(rc);
5162 Log4(("Host ES %#08x\n", u32Val));
5163 if (u32Val < HostGdtr.cbGdt)
5164 {
5165 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5166 hmR0DumpDescriptor(pDesc, u32Val, "ES: ");
5167 }
5168
5169 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FS_SEL, &u32Val); AssertRC(rc);
5170 Log4(("Host FS %#08x\n", u32Val));
5171 if (u32Val < HostGdtr.cbGdt)
5172 {
5173 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5174 hmR0DumpDescriptor(pDesc, u32Val, "FS: ");
5175 }
5176
5177 rc = VMXReadVmcs32(VMX_VMCS16_HOST_GS_SEL, &u32Val); AssertRC(rc);
5178 Log4(("Host GS %#08x\n", u32Val));
5179 if (u32Val < HostGdtr.cbGdt)
5180 {
5181 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5182 hmR0DumpDescriptor(pDesc, u32Val, "GS: ");
5183 }
5184
5185 rc = VMXReadVmcs32(VMX_VMCS16_HOST_SS_SEL, &u32Val); AssertRC(rc);
5186 Log4(("Host SS %#08x\n", u32Val));
5187 if (u32Val < HostGdtr.cbGdt)
5188 {
5189 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5190 hmR0DumpDescriptor(pDesc, u32Val, "SS: ");
5191 }
5192
5193 rc = VMXReadVmcs32(VMX_VMCS16_HOST_TR_SEL, &u32Val); AssertRC(rc);
5194 Log4(("Host TR %#08x\n", u32Val));
5195 if (u32Val < HostGdtr.cbGdt)
5196 {
5197 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5198 hmR0DumpDescriptor(pDesc, u32Val, "TR: ");
5199 }
5200
5201 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_TR_BASE, &uHCReg); AssertRC(rc);
5202 Log4(("Host TR Base %#RHv\n", uHCReg));
5203 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, &uHCReg); AssertRC(rc);
5204 Log4(("Host GDTR Base %#RHv\n", uHCReg));
5205 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, &uHCReg); AssertRC(rc);
5206 Log4(("Host IDTR Base %#RHv\n", uHCReg));
5207 rc = VMXReadVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, &u32Val); AssertRC(rc);
5208 Log4(("Host SYSENTER CS %#08x\n", u32Val));
5209 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_EIP, &uHCReg); AssertRC(rc);
5210 Log4(("Host SYSENTER EIP %#RHv\n", uHCReg));
5211 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_ESP, &uHCReg); AssertRC(rc);
5212 Log4(("Host SYSENTER ESP %#RHv\n", uHCReg));
5213 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RSP, &uHCReg); AssertRC(rc);
5214 Log4(("Host RSP %#RHv\n", uHCReg));
5215 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RIP, &uHCReg); AssertRC(rc);
5216 Log4(("Host RIP %#RHv\n", uHCReg));
5217# if HC_ARCH_BITS == 64
5218 Log4(("MSR_K6_EFER = %#RX64\n", ASMRdMsr(MSR_K6_EFER)));
5219 Log4(("MSR_K8_CSTAR = %#RX64\n", ASMRdMsr(MSR_K8_CSTAR)));
5220 Log4(("MSR_K8_LSTAR = %#RX64\n", ASMRdMsr(MSR_K8_LSTAR)));
5221 Log4(("MSR_K6_STAR = %#RX64\n", ASMRdMsr(MSR_K6_STAR)));
5222 Log4(("MSR_K8_SF_MASK = %#RX64\n", ASMRdMsr(MSR_K8_SF_MASK)));
5223 Log4(("MSR_K8_KERNEL_GS_BASE = %#RX64\n", ASMRdMsr(MSR_K8_KERNEL_GS_BASE)));
5224# endif
5225#endif /* VBOX_STRICT */
5226 break;
5227 }
5228
5229 default:
5230 /* Impossible */
5231 AssertMsgFailed(("hmR0VmxReportWorldSwitchError %Rrc (%#x)\n", rcVMRun, rcVMRun));
5232 break;
5233 }
5234 NOREF(pVM); NOREF(pCtx);
5235}
5236
5237
5238#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
5239#ifndef VMX_USE_CACHED_VMCS_ACCESSES
5240# error "VMX_USE_CACHED_VMCS_ACCESSES not defined when it should be!"
5241#endif
5242#ifdef VBOX_STRICT
5243static bool hmR0VmxIsValidWriteField(uint32_t idxField)
5244{
5245 switch (idxField)
5246 {
5247 case VMX_VMCS_GUEST_RIP:
5248 case VMX_VMCS_GUEST_RSP:
5249 case VMX_VMCS_GUEST_SYSENTER_EIP:
5250 case VMX_VMCS_GUEST_SYSENTER_ESP:
5251 case VMX_VMCS_GUEST_GDTR_BASE:
5252 case VMX_VMCS_GUEST_IDTR_BASE:
5253 case VMX_VMCS_GUEST_CS_BASE:
5254 case VMX_VMCS_GUEST_DS_BASE:
5255 case VMX_VMCS_GUEST_ES_BASE:
5256 case VMX_VMCS_GUEST_FS_BASE:
5257 case VMX_VMCS_GUEST_GS_BASE:
5258 case VMX_VMCS_GUEST_SS_BASE:
5259 case VMX_VMCS_GUEST_LDTR_BASE:
5260 case VMX_VMCS_GUEST_TR_BASE:
5261 case VMX_VMCS_GUEST_CR3:
5262 return true;
5263 }
5264 return false;
5265}
5266
5267static bool hmR0VmxIsValidReadField(uint32_t idxField)
5268{
5269 switch (idxField)
5270 {
5271 /* Read-only fields. */
5272 case VMX_VMCS_RO_EXIT_QUALIFICATION:
5273 return true;
5274 }
5275 /* Remaining readable fields should also be writable. */
5276 return hmR0VmxIsValidWriteField(idxField);
5277}
5278#endif /* VBOX_STRICT */
5279
5280
5281/**
5282 * Executes the specified handler in 64-bit mode.
5283 *
5284 * @returns VBox status code (no informational status codes).
5285 * @param pVM The cross context VM structure.
5286 * @param pVCpu The cross context virtual CPU structure.
5287 * @param pCtx Pointer to the guest CPU context.
5288 * @param enmOp The operation to perform.
5289 * @param cParams Number of parameters.
5290 * @param paParam Array of 32-bit parameters.
5291 */
5292VMMR0DECL(int) VMXR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, HM64ON32OP enmOp,
5293 uint32_t cParams, uint32_t *paParam)
5294{
5295 NOREF(pCtx);
5296
5297 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
5298 Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
5299 Assert(pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Write.aField));
5300 Assert(pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Read.aField));
5301
5302#ifdef VBOX_STRICT
5303 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries; i++)
5304 Assert(hmR0VmxIsValidWriteField(pVCpu->hm.s.vmx.VMCSCache.Write.aField[i]));
5305
5306 for (uint32_t i = 0; i <pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries; i++)
5307 Assert(hmR0VmxIsValidReadField(pVCpu->hm.s.vmx.VMCSCache.Read.aField[i]));
5308#endif
5309
5310 /* Disable interrupts. */
5311 RTCCUINTREG fOldEFlags = ASMIntDisableFlags();
5312
5313#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
5314 RTCPUID idHostCpu = RTMpCpuId();
5315 CPUMR0SetLApic(pVCpu, idHostCpu);
5316#endif
5317
5318 PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
5319 RTHCPHYS HCPhysCpuPage = pCpu->HCPhysMemObj;
5320
5321 /* Clear VMCS. Marking it inactive, clearing implementation-specific data and writing VMCS data back to memory. */
5322 VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
5323 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
5324
5325 /* Leave VMX Root Mode. */
5326 VMXDisable();
5327
5328 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
5329
5330 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
5331 CPUMSetHyperEIP(pVCpu, enmOp);
5332 for (int i = (int)cParams - 1; i >= 0; i--)
5333 CPUMPushHyper(pVCpu, paParam[i]);
5334
5335 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
5336
5337 /* Call the switcher. */
5338 int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum));
5339 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
5340
5341 /** @todo replace with hmR0VmxEnterRootMode() and hmR0VmxLeaveRootMode(). */
5342 /* Make sure the VMX instructions don't cause #UD faults. */
5343 SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
5344
5345 /* Re-enter VMX Root Mode */
5346 int rc2 = VMXEnable(HCPhysCpuPage);
5347 if (RT_FAILURE(rc2))
5348 {
5349 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
5350 ASMSetFlags(fOldEFlags);
5351 pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
5352 return rc2;
5353 }
5354
5355 rc2 = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
5356 AssertRC(rc2);
5357 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
5358 Assert(!(ASMGetFlags() & X86_EFL_IF));
5359 ASMSetFlags(fOldEFlags);
5360 return rc;
5361}
5362
5363
5364/**
5365 * Prepares for and executes VMLAUNCH (64-bit guests) for 32-bit hosts
5366 * supporting 64-bit guests.
5367 *
5368 * @returns VBox status code.
5369 * @param fResume Whether to VMLAUNCH or VMRESUME.
5370 * @param pCtx Pointer to the guest-CPU context.
5371 * @param pCache Pointer to the VMCS cache.
5372 * @param pVM The cross context VM structure.
5373 * @param pVCpu The cross context virtual CPU structure.
5374 */
5375DECLASM(int) VMXR0SwitcherStartVM64(RTHCUINT fResume, PCPUMCTX pCtx, PVMCSCACHE pCache, PVM pVM, PVMCPU pVCpu)
5376{
5377 NOREF(fResume);
5378
5379 PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
5380 RTHCPHYS HCPhysCpuPage = pCpu->HCPhysMemObj;
5381
5382#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5383 pCache->uPos = 1;
5384 pCache->interPD = PGMGetInterPaeCR3(pVM);
5385 pCache->pSwitcher = (uint64_t)pVM->hm.s.pfnHost32ToGuest64R0;
5386#endif
5387
5388#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
5389 pCache->TestIn.HCPhysCpuPage = 0;
5390 pCache->TestIn.HCPhysVmcs = 0;
5391 pCache->TestIn.pCache = 0;
5392 pCache->TestOut.HCPhysVmcs = 0;
5393 pCache->TestOut.pCache = 0;
5394 pCache->TestOut.pCtx = 0;
5395 pCache->TestOut.eflags = 0;
5396#else
5397 NOREF(pCache);
5398#endif
5399
5400 uint32_t aParam[10];
5401 aParam[0] = (uint32_t)(HCPhysCpuPage); /* Param 1: VMXON physical address - Lo. */
5402 aParam[1] = (uint32_t)(HCPhysCpuPage >> 32); /* Param 1: VMXON physical address - Hi. */
5403 aParam[2] = (uint32_t)(pVCpu->hm.s.vmx.HCPhysVmcs); /* Param 2: VMCS physical address - Lo. */
5404 aParam[3] = (uint32_t)(pVCpu->hm.s.vmx.HCPhysVmcs >> 32); /* Param 2: VMCS physical address - Hi. */
5405 aParam[4] = VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache);
5406 aParam[5] = 0;
5407 aParam[6] = VM_RC_ADDR(pVM, pVM);
5408 aParam[7] = 0;
5409 aParam[8] = VM_RC_ADDR(pVM, pVCpu);
5410 aParam[9] = 0;
5411
5412#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5413 pCtx->dr[4] = pVM->hm.s.vmx.pScratchPhys + 16 + 8;
5414 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 1;
5415#endif
5416 int rc = VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_VMXRCStartVM64, RT_ELEMENTS(aParam), &aParam[0]);
5417
5418#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5419 Assert(*(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) == 5);
5420 Assert(pCtx->dr[4] == 10);
5421 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 0xff;
5422#endif
5423
5424#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
5425 AssertMsg(pCache->TestIn.HCPhysCpuPage == HCPhysCpuPage, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysCpuPage, HCPhysCpuPage));
5426 AssertMsg(pCache->TestIn.HCPhysVmcs == pVCpu->hm.s.vmx.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
5427 pVCpu->hm.s.vmx.HCPhysVmcs));
5428 AssertMsg(pCache->TestIn.HCPhysVmcs == pCache->TestOut.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
5429 pCache->TestOut.HCPhysVmcs));
5430 AssertMsg(pCache->TestIn.pCache == pCache->TestOut.pCache, ("%RGv vs %RGv\n", pCache->TestIn.pCache,
5431 pCache->TestOut.pCache));
5432 AssertMsg(pCache->TestIn.pCache == VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache),
5433 ("%RGv vs %RGv\n", pCache->TestIn.pCache, VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache)));
5434 AssertMsg(pCache->TestIn.pCtx == pCache->TestOut.pCtx, ("%RGv vs %RGv\n", pCache->TestIn.pCtx,
5435 pCache->TestOut.pCtx));
5436 Assert(!(pCache->TestOut.eflags & X86_EFL_IF));
5437#endif
5438 return rc;
5439}
5440
5441
5442/**
5443 * Initialize the VMCS-Read cache.
5444 *
5445 * The VMCS cache is used for 32-bit hosts running 64-bit guests (except 32-bit
5446 * Darwin which runs with 64-bit paging in 32-bit mode) for 64-bit fields that
5447 * cannot be accessed in 32-bit mode. Some 64-bit fields -can- be accessed
5448 * (those that have a 32-bit FULL & HIGH part).
5449 *
5450 * @returns VBox status code.
5451 * @param pVM The cross context VM structure.
5452 * @param pVCpu The cross context virtual CPU structure.
5453 */
5454static int hmR0VmxInitVmcsReadCache(PVM pVM, PVMCPU pVCpu)
5455{
5456#define VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, idxField) \
5457{ \
5458 Assert(pCache->Read.aField[idxField##_CACHE_IDX] == 0); \
5459 pCache->Read.aField[idxField##_CACHE_IDX] = idxField; \
5460 pCache->Read.aFieldVal[idxField##_CACHE_IDX] = 0; \
5461 ++cReadFields; \
5462}
5463
5464 AssertPtr(pVM);
5465 AssertPtr(pVCpu);
5466 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
5467 uint32_t cReadFields = 0;
5468
5469 /*
5470 * Don't remove the #if 0'd fields in this code. They're listed here for consistency
5471 * and serve to indicate exceptions to the rules.
5472 */
5473
5474 /* Guest-natural selector base fields. */
5475#if 0
5476 /* These are 32-bit in practice. See Intel spec. 2.5 "Control Registers". */
5477 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR0);
5478 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR4);
5479#endif
5480 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_ES_BASE);
5481 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CS_BASE);
5482 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SS_BASE);
5483 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_DS_BASE);
5484 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_FS_BASE);
5485 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GS_BASE);
5486 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_LDTR_BASE);
5487 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_TR_BASE);
5488 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GDTR_BASE);
5489 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_IDTR_BASE);
5490 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RSP);
5491 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RIP);
5492#if 0
5493 /* Unused natural width guest-state fields. */
5494 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS);
5495 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3); /* Handled in Nested Paging case */
5496#endif
5497 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_ESP);
5498 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_EIP);
5499
5500 /* 64-bit guest-state fields; unused as we use two 32-bit VMREADs for these 64-bit fields (using "FULL" and "HIGH" fields). */
5501#if 0
5502 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL);
5503 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_DEBUGCTL_FULL);
5504 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PAT_FULL);
5505 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_EFER_FULL);
5506 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL);
5507 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE0_FULL);
5508 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE1_FULL);
5509 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE2_FULL);
5510 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE3_FULL);
5511#endif
5512
5513 /* Natural width guest-state fields. */
5514 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_QUALIFICATION);
5515#if 0
5516 /* Currently unused field. */
5517 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_GUEST_LINEAR_ADDR);
5518#endif
5519
5520 if (pVM->hm.s.fNestedPaging)
5521 {
5522 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3);
5523 AssertMsg(cReadFields == VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields,
5524 VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX));
5525 pCache->Read.cValidEntries = VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX;
5526 }
5527 else
5528 {
5529 AssertMsg(cReadFields == VMX_VMCS_MAX_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields, VMX_VMCS_MAX_CACHE_IDX));
5530 pCache->Read.cValidEntries = VMX_VMCS_MAX_CACHE_IDX;
5531 }
5532
5533#undef VMXLOCAL_INIT_READ_CACHE_FIELD
5534 return VINF_SUCCESS;
5535}
5536
5537
5538/**
5539 * Writes a field into the VMCS. This can either directly invoke a VMWRITE or
5540 * queue up the VMWRITE by using the VMCS write cache (on 32-bit hosts, except
5541 * darwin, running 64-bit guests).
5542 *
5543 * @returns VBox status code.
5544 * @param pVCpu The cross context virtual CPU structure.
5545 * @param idxField The VMCS field encoding.
5546 * @param u64Val 16, 32 or 64-bit value.
5547 */
5548VMMR0DECL(int) VMXWriteVmcs64Ex(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
5549{
5550 int rc;
5551 switch (idxField)
5552 {
5553 /*
5554 * These fields consists of a "FULL" and a "HIGH" part which can be written to individually.
5555 */
5556 /* 64-bit Control fields. */
5557 case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL:
5558 case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL:
5559 case VMX_VMCS64_CTRL_MSR_BITMAP_FULL:
5560 case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL:
5561 case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL:
5562 case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL:
5563 case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL:
5564 case VMX_VMCS64_CTRL_TSC_OFFSET_FULL:
5565 case VMX_VMCS64_CTRL_VAPIC_PAGEADDR_FULL:
5566 case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL:
5567 case VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL:
5568 case VMX_VMCS64_CTRL_EPTP_FULL:
5569 case VMX_VMCS64_CTRL_EPTP_LIST_FULL:
5570 /* 64-bit Guest-state fields. */
5571 case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL:
5572 case VMX_VMCS64_GUEST_DEBUGCTL_FULL:
5573 case VMX_VMCS64_GUEST_PAT_FULL:
5574 case VMX_VMCS64_GUEST_EFER_FULL:
5575 case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL:
5576 case VMX_VMCS64_GUEST_PDPTE0_FULL:
5577 case VMX_VMCS64_GUEST_PDPTE1_FULL:
5578 case VMX_VMCS64_GUEST_PDPTE2_FULL:
5579 case VMX_VMCS64_GUEST_PDPTE3_FULL:
5580 /* 64-bit Host-state fields. */
5581 case VMX_VMCS64_HOST_PAT_FULL:
5582 case VMX_VMCS64_HOST_EFER_FULL:
5583 case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL:
5584 {
5585 rc = VMXWriteVmcs32(idxField, u64Val);
5586 rc |= VMXWriteVmcs32(idxField + 1, (uint32_t)(u64Val >> 32));
5587 break;
5588 }
5589
5590 /*
5591 * These fields do not have high and low parts. Queue up the VMWRITE by using the VMCS write-cache (for 64-bit
5592 * values). When we switch the host to 64-bit mode for running 64-bit guests, these VMWRITEs get executed then.
5593 */
5594 /* Natural-width Guest-state fields. */
5595 case VMX_VMCS_GUEST_CR3:
5596 case VMX_VMCS_GUEST_ES_BASE:
5597 case VMX_VMCS_GUEST_CS_BASE:
5598 case VMX_VMCS_GUEST_SS_BASE:
5599 case VMX_VMCS_GUEST_DS_BASE:
5600 case VMX_VMCS_GUEST_FS_BASE:
5601 case VMX_VMCS_GUEST_GS_BASE:
5602 case VMX_VMCS_GUEST_LDTR_BASE:
5603 case VMX_VMCS_GUEST_TR_BASE:
5604 case VMX_VMCS_GUEST_GDTR_BASE:
5605 case VMX_VMCS_GUEST_IDTR_BASE:
5606 case VMX_VMCS_GUEST_RSP:
5607 case VMX_VMCS_GUEST_RIP:
5608 case VMX_VMCS_GUEST_SYSENTER_ESP:
5609 case VMX_VMCS_GUEST_SYSENTER_EIP:
5610 {
5611 if (!(u64Val >> 32))
5612 {
5613 /* If this field is 64-bit, VT-x will zero out the top bits. */
5614 rc = VMXWriteVmcs32(idxField, (uint32_t)u64Val);
5615 }
5616 else
5617 {
5618 /* Assert that only the 32->64 switcher case should ever come here. */
5619 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests);
5620 rc = VMXWriteCachedVmcsEx(pVCpu, idxField, u64Val);
5621 }
5622 break;
5623 }
5624
5625 default:
5626 {
5627 AssertMsgFailed(("VMXWriteVmcs64Ex: Invalid field %#RX32 (pVCpu=%p u64Val=%#RX64)\n", idxField, pVCpu, u64Val));
5628 rc = VERR_INVALID_PARAMETER;
5629 break;
5630 }
5631 }
5632 AssertRCReturn(rc, rc);
5633 return rc;
5634}
5635
5636
5637/**
5638 * Queue up a VMWRITE by using the VMCS write cache.
5639 * This is only used on 32-bit hosts (except darwin) for 64-bit guests.
5640 *
5641 * @param pVCpu The cross context virtual CPU structure.
5642 * @param idxField The VMCS field encoding.
5643 * @param u64Val 16, 32 or 64-bit value.
5644 */
5645VMMR0DECL(int) VMXWriteCachedVmcsEx(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
5646{
5647 AssertPtr(pVCpu);
5648 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
5649
5650 AssertMsgReturn(pCache->Write.cValidEntries < VMCSCACHE_MAX_ENTRY - 1,
5651 ("entries=%u\n", pCache->Write.cValidEntries), VERR_ACCESS_DENIED);
5652
5653 /* Make sure there are no duplicates. */
5654 for (uint32_t i = 0; i < pCache->Write.cValidEntries; i++)
5655 {
5656 if (pCache->Write.aField[i] == idxField)
5657 {
5658 pCache->Write.aFieldVal[i] = u64Val;
5659 return VINF_SUCCESS;
5660 }
5661 }
5662
5663 pCache->Write.aField[pCache->Write.cValidEntries] = idxField;
5664 pCache->Write.aFieldVal[pCache->Write.cValidEntries] = u64Val;
5665 pCache->Write.cValidEntries++;
5666 return VINF_SUCCESS;
5667}
5668#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
5669
5670
5671/**
5672 * Sets up the usage of TSC-offsetting and updates the VMCS.
5673 *
5674 * If offsetting is not possible, cause VM-exits on RDTSC(P)s. Also sets up the
5675 * VMX preemption timer.
5676 *
5677 * @returns VBox status code.
5678 * @param pVM The cross context VM structure.
5679 * @param pVCpu The cross context virtual CPU structure.
5680 *
5681 * @remarks No-long-jump zone!!!
5682 */
5683static void hmR0VmxUpdateTscOffsettingAndPreemptTimer(PVM pVM, PVMCPU pVCpu)
5684{
5685 int rc;
5686 bool fOffsettedTsc;
5687 bool fParavirtTsc;
5688 if (pVM->hm.s.vmx.fUsePreemptTimer)
5689 {
5690 uint64_t cTicksToDeadline = TMCpuTickGetDeadlineAndTscOffset(pVM, pVCpu, &pVCpu->hm.s.vmx.u64TSCOffset,
5691 &fOffsettedTsc, &fParavirtTsc);
5692
5693 /* Make sure the returned values have sane upper and lower boundaries. */
5694 uint64_t u64CpuHz = SUPGetCpuHzFromGipBySetIndex(g_pSUPGlobalInfoPage, pVCpu->iHostCpuSet);
5695 cTicksToDeadline = RT_MIN(cTicksToDeadline, u64CpuHz / 64); /* 1/64th of a second */
5696 cTicksToDeadline = RT_MAX(cTicksToDeadline, u64CpuHz / 2048); /* 1/2048th of a second */
5697 cTicksToDeadline >>= pVM->hm.s.vmx.cPreemptTimerShift;
5698
5699 uint32_t cPreemptionTickCount = (uint32_t)RT_MIN(cTicksToDeadline, UINT32_MAX - 16);
5700 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_PREEMPT_TIMER_VALUE, cPreemptionTickCount); AssertRC(rc);
5701 }
5702 else
5703 fOffsettedTsc = TMCpuTickCanUseRealTSC(pVM, pVCpu, &pVCpu->hm.s.vmx.u64TSCOffset, &fParavirtTsc);
5704
5705 /** @todo later optimize this to be done elsewhere and not before every
5706 * VM-entry. */
5707 if (fParavirtTsc)
5708 {
5709 /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
5710 information before every VM-entry, hence disable it for performance sake. */
5711#if 0
5712 rc = GIMR0UpdateParavirtTsc(pVM, 0 /* u64Offset */);
5713 AssertRC(rc);
5714#endif
5715 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
5716 }
5717
5718 if (fOffsettedTsc && RT_LIKELY(!pVCpu->hm.s.fDebugWantRdTscExit))
5719 {
5720 /* Note: VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT takes precedence over TSC_OFFSET, applies to RDTSCP too. */
5721 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, pVCpu->hm.s.vmx.u64TSCOffset); AssertRC(rc);
5722
5723 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT;
5724 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc);
5725 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
5726 }
5727 else
5728 {
5729 /* We can't use TSC-offsetting (non-fixed TSC, warp drive active etc.), VM-exit on RDTSC(P). */
5730 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT;
5731 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc);
5732 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
5733 }
5734}
5735
5736
5737#ifdef HMVMX_USE_IEM_EVENT_REFLECTION
5738/**
5739 * Gets the IEM exception flags for the specified vector and IDT vectoring /
5740 * VM-exit interruption info type.
5741 *
5742 * @returns The IEM exception flags.
5743 * @param uVector The event vector.
5744 * @param uVmxVectorType The VMX event type.
5745 */
5746static uint32_t hmR0VmxGetIemXcptFlags(uint8_t uVector, uint32_t uVmxVectorType)
5747{
5748 uint32_t fIemXcptFlags;
5749 switch (uVmxVectorType)
5750 {
5751 case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
5752 case VMX_IDT_VECTORING_INFO_TYPE_NMI:
5753 fIemXcptFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
5754 break;
5755
5756 case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
5757 fIemXcptFlags = IEM_XCPT_FLAGS_T_EXT_INT;
5758 break;
5759
5760 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
5761 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_ICEBP_INSTR;
5762 break;
5763
5764 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT:
5765 {
5766 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
5767 if (uVector == X86_XCPT_BP)
5768 fIemXcptFlags |= IEM_XCPT_FLAGS_BP_INSTR;
5769 else if (uVector == X86_XCPT_OF)
5770 fIemXcptFlags |= IEM_XCPT_FLAGS_OF_INSTR;
5771 else
5772 {
5773 fIemXcptFlags = 0;
5774 AssertMsgFailed(("Unexpected vector for software int. uVector=%#x", uVector));
5775 }
5776 break;
5777 }
5778
5779 default:
5780 fIemXcptFlags = 0;
5781 AssertMsgFailed(("Unexpected vector type! uVmxVectorType=%#x uVector=%#x", uVmxVectorType, uVector));
5782 break;
5783 }
5784 return fIemXcptFlags;
5785}
5786
5787#else
5788/**
5789 * Determines if an exception is a contributory exception.
5790 *
5791 * Contributory exceptions are ones which can cause double-faults unless the
5792 * original exception was a benign exception. Page-fault is intentionally not
5793 * included here as it's a conditional contributory exception.
5794 *
5795 * @returns true if the exception is contributory, false otherwise.
5796 * @param uVector The exception vector.
5797 */
5798DECLINLINE(bool) hmR0VmxIsContributoryXcpt(const uint32_t uVector)
5799{
5800 switch (uVector)
5801 {
5802 case X86_XCPT_GP:
5803 case X86_XCPT_SS:
5804 case X86_XCPT_NP:
5805 case X86_XCPT_TS:
5806 case X86_XCPT_DE:
5807 return true;
5808 default:
5809 break;
5810 }
5811 return false;
5812}
5813#endif /* HMVMX_USE_IEM_EVENT_REFLECTION */
5814
5815
5816/**
5817 * Sets an event as a pending event to be injected into the guest.
5818 *
5819 * @param pVCpu The cross context virtual CPU structure.
5820 * @param u32IntInfo The VM-entry interruption-information field.
5821 * @param cbInstr The VM-entry instruction length in bytes (for software
5822 * interrupts, exceptions and privileged software
5823 * exceptions).
5824 * @param u32ErrCode The VM-entry exception error code.
5825 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
5826 * page-fault.
5827 *
5828 * @remarks Statistics counter assumes this is a guest event being injected or
5829 * re-injected into the guest, i.e. 'StatInjectPendingReflect' is
5830 * always incremented.
5831 */
5832DECLINLINE(void) hmR0VmxSetPendingEvent(PVMCPU pVCpu, uint32_t u32IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
5833 RTGCUINTPTR GCPtrFaultAddress)
5834{
5835 Assert(!pVCpu->hm.s.Event.fPending);
5836 pVCpu->hm.s.Event.fPending = true;
5837 pVCpu->hm.s.Event.u64IntInfo = u32IntInfo;
5838 pVCpu->hm.s.Event.u32ErrCode = u32ErrCode;
5839 pVCpu->hm.s.Event.cbInstr = cbInstr;
5840 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
5841}
5842
5843
5844/**
5845 * Sets a double-fault (\#DF) exception as pending-for-injection into the VM.
5846 *
5847 * @param pVCpu The cross context virtual CPU structure.
5848 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
5849 * out-of-sync. Make sure to update the required fields
5850 * before using them.
5851 */
5852DECLINLINE(void) hmR0VmxSetPendingXcptDF(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5853{
5854 NOREF(pMixedCtx);
5855 uint32_t u32IntInfo = X86_XCPT_DF | VMX_EXIT_INTERRUPTION_INFO_VALID;
5856 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
5857 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
5858 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
5859}
5860
5861
5862/**
5863 * Handle a condition that occurred while delivering an event through the guest
5864 * IDT.
5865 *
5866 * @returns Strict VBox status code (i.e. informational status codes too).
5867 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
5868 * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought
5869 * to continue execution of the guest which will delivery the \#DF.
5870 * @retval VINF_EM_RESET if we detected a triple-fault condition.
5871 * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
5872 *
5873 * @param pVCpu The cross context virtual CPU structure.
5874 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
5875 * out-of-sync. Make sure to update the required fields
5876 * before using them.
5877 * @param pVmxTransient Pointer to the VMX transient structure.
5878 *
5879 * @remarks No-long-jump zone!!!
5880 */
5881static VBOXSTRICTRC hmR0VmxCheckExitDueToEventDelivery(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
5882{
5883 uint32_t const uExitVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVmxTransient->uExitIntInfo);
5884
5885 int rc2 = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient); AssertRCReturn(rc2, rc2);
5886 rc2 = hmR0VmxReadExitIntInfoVmcs(pVmxTransient); AssertRCReturn(rc2, rc2);
5887
5888 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
5889 if (VMX_IDT_VECTORING_INFO_VALID(pVmxTransient->uIdtVectoringInfo))
5890 {
5891 uint32_t const uIdtVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
5892 uint32_t const uIdtVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
5893#ifdef HMVMX_USE_IEM_EVENT_REFLECTION
5894 /* See Intel spec. 30.7.1.1 "Reflecting Exceptions to Guest Software". */
5895 IEMXCPTRAISE enmRaise;
5896 IEMXCPTRAISEINFO fRaiseInfo;
5897 if (VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo))
5898 {
5899 uint32_t const uExitVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uExitIntInfo);
5900 uint32_t const fIdtVectorFlags = hmR0VmxGetIemXcptFlags(uIdtVector, uIdtVectorType);
5901 uint32_t const fExitVectorFlags = hmR0VmxGetIemXcptFlags(uExitVector, uExitVectorType);
5902 AssertMsg( uExitVectorType == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT
5903 || uExitVectorType == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI,
5904 ("hmR0VmxCheckExitDueToEventDelivery: Unexpected VM-exit interruption info. type %#x!\n", uExitVectorType));
5905 enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fIdtVectorFlags, uIdtVector, fExitVectorFlags, uExitVector,
5906 &fRaiseInfo);
5907 }
5908 else
5909 {
5910 /*
5911 * If event delivery caused an EPT violation/misconfig or APIC access VM-exit, then the VM-exit
5912 * interruption-information will not be valid as it's not an exception and we end up here.
5913 *
5914 * If the event was an external interrupt or hardare exception (incl. NMI) it is sufficient to
5915 * reflect this event to the guest after handling the VM-exit.
5916 *
5917 * If the event was a software interrupt (generated with INT n) or a software exception (generated
5918 * by INT3/INTO) or a privileged software exception (generated by INT1), we can handle the VM-exit
5919 * and continue guest execution which will re-execute the instruction rather than re-injecting the
5920 * event, as that can cause premature trips to ring-3 before injection and involve TRPM which
5921 * currently has no way of storing that the exceptions were caused by these special instructions.
5922 */
5923 if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
5924 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
5925 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT)
5926 enmRaise = IEMXCPTRAISE_PREV_EVENT;
5927 else
5928 enmRaise = IEMXCPTRAISE_REEXEC_INSTR;
5929 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
5930 }
5931
5932 /*
5933 * On CPUs that support Virtual NMIs, if this VM-exit (be it an exception or EPT violation/misconfig
5934 * etc.) occurred while delivering the NMI, we need to clear the block-by-NMI field in the guest
5935 * interruptibility-state before re-delivering the NMI after handling the VM-exit. Otherwise the
5936 * subsequent VM-entry would fail.
5937 *
5938 * See Intel spec. 30.7.1.2 "Resuming Guest Software after Handling an Exception". See @bugref{7445}.
5939 */
5940 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS)
5941 && uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
5942 && ( enmRaise == IEMXCPTRAISE_PREV_EVENT
5943 || fRaiseInfo == IEMXCPTRAISEINFO_NMI_PF)
5944 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI))
5945 {
5946 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
5947 }
5948
5949 switch (enmRaise)
5950 {
5951 case IEMXCPTRAISE_CURRENT_XCPT:
5952 {
5953 /*
5954 * Determine a vectoring #PF condition, see comment in hmR0VmxExitXcptPF().
5955 */
5956 if (fRaiseInfo & (IEMXCPTRAISEINFO_EXT_INT_PF | IEMXCPTRAISEINFO_NMI_PF))
5957 pVmxTransient->fVectoringPF = true;
5958
5959 /*
5960 * Determing a vectoring double #PF condition. Used later, when PGM evaluates the
5961 * second #PF as a guest #PF (and not a nested #PF) and needs to be converted into a #DF.
5962 */
5963 if (fRaiseInfo & IEMXCPTRAISEINFO_PF_PF)
5964 pVmxTransient->fVectoringDoublePF = true;
5965
5966 Assert(rcStrict == VINF_SUCCESS);
5967 break;
5968 }
5969
5970 case IEMXCPTRAISE_PREV_EVENT:
5971 {
5972 /*
5973 * Re-raise the previous (first) exception/interrupt as delivery caused a premature VM-exit.
5974 */
5975 Assert( uIdtVectorType != VMX_IDT_VECTORING_INFO_TYPE_SW_INT
5976 && uIdtVectorType != VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
5977 && uIdtVectorType != VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT);
5978
5979 uint32_t u32ErrCode;
5980 if (VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVmxTransient->uIdtVectoringInfo))
5981 {
5982 rc2 = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
5983 AssertRCReturn(rc2, rc2);
5984 u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
5985 }
5986 else
5987 u32ErrCode = 0;
5988
5989 /* If uExitVector is #PF, CR2 value will be updated from the VMCS if it's a guest #PF, see hmR0VmxExitXcptPF(). */
5990 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
5991 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
5992 0 /* cbInstr */, u32ErrCode, pMixedCtx->cr2);
5993
5994 Log4(("IDT: vcpu[%RU32] Pending vectoring event %#RX64 Err=%#RX32\n", pVCpu->idCpu, pVCpu->hm.s.Event.u64IntInfo,
5995 pVCpu->hm.s.Event.u32ErrCode));
5996 Assert(rcStrict == VINF_SUCCESS);
5997 break;
5998 }
5999
6000 case IEMXCPTRAISE_DOUBLE_FAULT:
6001 {
6002 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
6003 hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
6004
6005 Log4(("IDT: vcpu[%RU32] Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->idCpu,
6006 pVCpu->hm.s.Event.u64IntInfo, uIdtVector, uExitVector));
6007 rcStrict = VINF_HM_DOUBLE_FAULT;
6008 break;
6009 }
6010
6011 case IEMXCPTRAISE_TRIPLE_FAULT:
6012 {
6013 Log4(("IDT: vcpu[%RU32] Pending vectoring triple-fault uIdt=%#x uExit=%#x\n", pVCpu->idCpu, uIdtVector,
6014 uExitVector));
6015 rcStrict = VINF_EM_RESET;
6016 break;
6017 }
6018
6019 case IEMXCPTRAISE_CPU_HANG:
6020 {
6021 Log4(("IDT: vcpu[%RU32] Bad guest! Entering CPU hang. fRaiseInfo=%#x\n", pVCpu->idCpu, fRaiseInfo));
6022 rcStrict = VERR_EM_GUEST_CPU_HANG;
6023 break;
6024 }
6025
6026 case IEMXCPTRAISE_REEXEC_INSTR:
6027 Assert(rcStrict == VINF_SUCCESS);
6028 break;
6029
6030 default:
6031 {
6032 AssertMsgFailed(("IDT: vcpu[%RU32] Unexpected/invalid value! enmRaise=%#x\n", pVCpu->idCpu, enmRaise));
6033 rcStrict = VERR_VMX_IPE_2;
6034 break;
6035 }
6036 }
6037#else
6038 typedef enum
6039 {
6040 VMXREFLECTXCPT_XCPT, /* Reflect the exception to the guest or for further evaluation by VMM. */
6041 VMXREFLECTXCPT_DF, /* Reflect the exception as a double-fault to the guest. */
6042 VMXREFLECTXCPT_TF, /* Indicate a triple faulted state to the VMM. */
6043 VMXREFLECTXCPT_HANG, /* Indicate bad VM trying to deadlock the CPU. */
6044 VMXREFLECTXCPT_NONE /* Nothing to reflect. */
6045 } VMXREFLECTXCPT;
6046
6047 /* See Intel spec. 30.7.1.1 "Reflecting Exceptions to Guest Software". */
6048 VMXREFLECTXCPT enmReflect = VMXREFLECTXCPT_NONE;
6049 if (VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo))
6050 {
6051 if (uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT)
6052 {
6053 enmReflect = VMXREFLECTXCPT_XCPT;
6054#ifdef VBOX_STRICT
6055 if ( hmR0VmxIsContributoryXcpt(uIdtVector)
6056 && uExitVector == X86_XCPT_PF)
6057 {
6058 Log4(("IDT: vcpu[%RU32] Contributory #PF uCR2=%#RX64\n", pVCpu->idCpu, pMixedCtx->cr2));
6059 }
6060#endif
6061 if ( uExitVector == X86_XCPT_PF
6062 && uIdtVector == X86_XCPT_PF)
6063 {
6064 pVmxTransient->fVectoringDoublePF = true;
6065 Log4(("IDT: vcpu[%RU32] Vectoring Double #PF uCR2=%#RX64\n", pVCpu->idCpu, pMixedCtx->cr2));
6066 }
6067 else if ( uExitVector == X86_XCPT_AC
6068 && uIdtVector == X86_XCPT_AC)
6069 {
6070 enmReflect = VMXREFLECTXCPT_HANG;
6071 Log4(("IDT: Nested #AC - Bad guest\n"));
6072 }
6073 else if ( (pVCpu->hm.s.vmx.u32XcptBitmap & HMVMX_CONTRIBUTORY_XCPT_MASK)
6074 && hmR0VmxIsContributoryXcpt(uExitVector)
6075 && ( hmR0VmxIsContributoryXcpt(uIdtVector)
6076 || uIdtVector == X86_XCPT_PF))
6077 {
6078 enmReflect = VMXREFLECTXCPT_DF;
6079 }
6080 else if (uIdtVector == X86_XCPT_DF)
6081 enmReflect = VMXREFLECTXCPT_TF;
6082 }
6083 else if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT
6084 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI)
6085 {
6086 /*
6087 * Ignore software interrupts (INT n), software exceptions (#BP, #OF) and
6088 * privileged software exception (#DB from ICEBP) as they reoccur when restarting the instruction.
6089 */
6090 enmReflect = VMXREFLECTXCPT_XCPT;
6091
6092 if (uExitVector == X86_XCPT_PF)
6093 {
6094 pVmxTransient->fVectoringPF = true;
6095 Log4(("IDT: vcpu[%RU32] Vectoring #PF due to Ext-Int/NMI. uCR2=%#RX64\n", pVCpu->idCpu, pMixedCtx->cr2));
6096 }
6097 }
6098 }
6099 else if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
6100 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT
6101 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI)
6102 {
6103 /*
6104 * If event delivery caused an EPT violation/misconfig or APIC access VM-exit, then the VM-exit
6105 * interruption-information will not be valid as it's not an exception and we end up here. In such cases,
6106 * it is sufficient to reflect the original exception to the guest after handling the VM-exit.
6107 */
6108 enmReflect = VMXREFLECTXCPT_XCPT;
6109 }
6110
6111 /*
6112 * On CPUs that support Virtual NMIs, if this VM-exit (be it an exception or EPT violation/misconfig etc.) occurred
6113 * while delivering the NMI, we need to clear the block-by-NMI field in the guest interruptibility-state before
6114 * re-delivering the NMI after handling the VM-exit. Otherwise the subsequent VM-entry would fail.
6115 *
6116 * See Intel spec. 30.7.1.2 "Resuming Guest Software after Handling an Exception". See @bugref{7445}.
6117 */
6118 if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
6119 && enmReflect == VMXREFLECTXCPT_XCPT
6120 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI)
6121 && VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6122 {
6123 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6124 }
6125
6126 switch (enmReflect)
6127 {
6128 case VMXREFLECTXCPT_XCPT:
6129 {
6130 Assert( uIdtVectorType != VMX_IDT_VECTORING_INFO_TYPE_SW_INT
6131 && uIdtVectorType != VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
6132 && uIdtVectorType != VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT);
6133
6134 uint32_t u32ErrCode = 0;
6135 if (VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVmxTransient->uIdtVectoringInfo))
6136 {
6137 rc2 = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
6138 AssertRCReturn(rc2, rc2);
6139 u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
6140 }
6141
6142 /* If uExitVector is #PF, CR2 value will be updated from the VMCS if it's a guest #PF. See hmR0VmxExitXcptPF(). */
6143 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
6144 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
6145 0 /* cbInstr */, u32ErrCode, pMixedCtx->cr2);
6146 rcStrict = VINF_SUCCESS;
6147 Log4(("IDT: vcpu[%RU32] Pending vectoring event %#RX64 Err=%#RX32\n", pVCpu->idCpu,
6148 pVCpu->hm.s.Event.u64IntInfo, pVCpu->hm.s.Event.u32ErrCode));
6149
6150 break;
6151 }
6152
6153 case VMXREFLECTXCPT_DF:
6154 {
6155 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
6156 hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
6157 rcStrict = VINF_HM_DOUBLE_FAULT;
6158 Log4(("IDT: vcpu[%RU32] Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->idCpu,
6159 pVCpu->hm.s.Event.u64IntInfo, uIdtVector, uExitVector));
6160
6161 break;
6162 }
6163
6164 case VMXREFLECTXCPT_TF:
6165 {
6166 rcStrict = VINF_EM_RESET;
6167 Log4(("IDT: vcpu[%RU32] Pending vectoring triple-fault uIdt=%#x uExit=%#x\n", pVCpu->idCpu, uIdtVector,
6168 uExitVector));
6169 break;
6170 }
6171
6172 case VMXREFLECTXCPT_HANG:
6173 {
6174 rcStrict = VERR_EM_GUEST_CPU_HANG;
6175 break;
6176 }
6177
6178 default:
6179 Assert(rcStrict == VINF_SUCCESS);
6180 break;
6181 }
6182#endif /* HMVMX_USE_IEM_EVENT_REFLECTION */
6183 }
6184 else if ( VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo)
6185 && VMX_EXIT_INTERRUPTION_INFO_NMI_UNBLOCK_IRET(pVmxTransient->uExitIntInfo)
6186 && uExitVector != X86_XCPT_DF
6187 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI))
6188 {
6189 /*
6190 * Execution of IRET caused this fault when NMI blocking was in effect (i.e we're in the guest NMI handler).
6191 * We need to set the block-by-NMI field so that NMIs remain blocked until the IRET execution is restarted.
6192 * See Intel spec. 30.7.1.2 "Resuming guest software after handling an exception".
6193 */
6194 if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6195 {
6196 Log4(("hmR0VmxCheckExitDueToEventDelivery: vcpu[%RU32] Setting VMCPU_FF_BLOCK_NMIS. Valid=%RTbool uExitReason=%u\n",
6197 pVCpu->idCpu, VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo), pVmxTransient->uExitReason));
6198 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
6199 }
6200 }
6201
6202 Assert( rcStrict == VINF_SUCCESS || rcStrict == VINF_HM_DOUBLE_FAULT
6203 || rcStrict == VINF_EM_RESET || rcStrict == VERR_EM_GUEST_CPU_HANG);
6204 return rcStrict;
6205}
6206
6207
6208/**
6209 * Saves the guest's CR0 register from the VMCS into the guest-CPU context.
6210 *
6211 * @returns VBox status code.
6212 * @param pVCpu The cross context virtual CPU structure.
6213 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6214 * out-of-sync. Make sure to update the required fields
6215 * before using them.
6216 *
6217 * @remarks No-long-jump zone!!!
6218 */
6219static int hmR0VmxSaveGuestCR0(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6220{
6221 NOREF(pMixedCtx);
6222
6223 /*
6224 * While in the middle of saving guest-CR0, we could get preempted and re-invoked from the preemption hook,
6225 * see hmR0VmxLeave(). Safer to just make this code non-preemptible.
6226 */
6227 VMMRZCallRing3Disable(pVCpu);
6228 HM_DISABLE_PREEMPT();
6229
6230 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0))
6231 {
6232#ifndef DEBUG_bird /** @todo this triggers running bs3-cpu-generated-1.img with --debug-command-line
6233 * and 'dbgc-init' containing:
6234 * sxe "xcpt_de"
6235 * sxe "xcpt_bp"
6236 * sxi "xcpt_gp"
6237 * sxi "xcpt_ss"
6238 * sxi "xcpt_np"
6239 */
6240 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0));
6241#endif
6242 uint32_t uVal = 0;
6243 uint32_t uShadow = 0;
6244 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &uVal);
6245 rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uShadow);
6246 AssertRCReturn(rc, rc);
6247
6248 uVal = (uShadow & pVCpu->hm.s.vmx.u32CR0Mask) | (uVal & ~pVCpu->hm.s.vmx.u32CR0Mask);
6249 CPUMSetGuestCR0(pVCpu, uVal);
6250 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0);
6251 }
6252
6253 HM_RESTORE_PREEMPT();
6254 VMMRZCallRing3Enable(pVCpu);
6255 return VINF_SUCCESS;
6256}
6257
6258
6259/**
6260 * Saves the guest's CR4 register from the VMCS into the guest-CPU context.
6261 *
6262 * @returns VBox status code.
6263 * @param pVCpu The cross context virtual CPU structure.
6264 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6265 * out-of-sync. Make sure to update the required fields
6266 * before using them.
6267 *
6268 * @remarks No-long-jump zone!!!
6269 */
6270static int hmR0VmxSaveGuestCR4(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6271{
6272 NOREF(pMixedCtx);
6273
6274 int rc = VINF_SUCCESS;
6275 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR4))
6276 {
6277 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR4));
6278 uint32_t uVal = 0;
6279 uint32_t uShadow = 0;
6280 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &uVal);
6281 rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uShadow);
6282 AssertRCReturn(rc, rc);
6283
6284 uVal = (uShadow & pVCpu->hm.s.vmx.u32CR4Mask) | (uVal & ~pVCpu->hm.s.vmx.u32CR4Mask);
6285 CPUMSetGuestCR4(pVCpu, uVal);
6286 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR4);
6287 }
6288 return rc;
6289}
6290
6291
6292/**
6293 * Saves the guest's RIP register from the VMCS into the guest-CPU context.
6294 *
6295 * @returns VBox status code.
6296 * @param pVCpu The cross context virtual CPU structure.
6297 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6298 * out-of-sync. Make sure to update the required fields
6299 * before using them.
6300 *
6301 * @remarks No-long-jump zone!!!
6302 */
6303static int hmR0VmxSaveGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6304{
6305 int rc = VINF_SUCCESS;
6306 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RIP))
6307 {
6308 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RIP));
6309 uint64_t u64Val = 0;
6310 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val);
6311 AssertRCReturn(rc, rc);
6312
6313 pMixedCtx->rip = u64Val;
6314 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RIP);
6315 }
6316 return rc;
6317}
6318
6319
6320/**
6321 * Saves the guest's RSP register from the VMCS into the guest-CPU context.
6322 *
6323 * @returns VBox status code.
6324 * @param pVCpu The cross context virtual CPU structure.
6325 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6326 * out-of-sync. Make sure to update the required fields
6327 * before using them.
6328 *
6329 * @remarks No-long-jump zone!!!
6330 */
6331static int hmR0VmxSaveGuestRsp(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6332{
6333 int rc = VINF_SUCCESS;
6334 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RSP))
6335 {
6336 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RSP));
6337 uint64_t u64Val = 0;
6338 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val);
6339 AssertRCReturn(rc, rc);
6340
6341 pMixedCtx->rsp = u64Val;
6342 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RSP);
6343 }
6344 return rc;
6345}
6346
6347
6348/**
6349 * Saves the guest's RFLAGS from the VMCS into the guest-CPU context.
6350 *
6351 * @returns VBox status code.
6352 * @param pVCpu The cross context virtual CPU structure.
6353 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6354 * out-of-sync. Make sure to update the required fields
6355 * before using them.
6356 *
6357 * @remarks No-long-jump zone!!!
6358 */
6359static int hmR0VmxSaveGuestRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6360{
6361 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS))
6362 {
6363 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RFLAGS));
6364 uint32_t uVal = 0;
6365 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &uVal);
6366 AssertRCReturn(rc, rc);
6367
6368 pMixedCtx->eflags.u32 = uVal;
6369 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active) /* Undo our real-on-v86-mode changes to eflags if necessary. */
6370 {
6371 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
6372 Log4(("Saving real-mode EFLAGS VT-x view=%#RX32\n", pMixedCtx->eflags.u32));
6373
6374 pMixedCtx->eflags.Bits.u1VM = 0;
6375 pMixedCtx->eflags.Bits.u2IOPL = pVCpu->hm.s.vmx.RealMode.Eflags.Bits.u2IOPL;
6376 }
6377
6378 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS);
6379 }
6380 return VINF_SUCCESS;
6381}
6382
6383
6384/**
6385 * Wrapper for saving the guest's RIP, RSP and RFLAGS from the VMCS into the
6386 * guest-CPU context.
6387 */
6388DECLINLINE(int) hmR0VmxSaveGuestRipRspRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6389{
6390 int rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
6391 rc |= hmR0VmxSaveGuestRsp(pVCpu, pMixedCtx);
6392 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
6393 return rc;
6394}
6395
6396
6397/**
6398 * Saves the guest's interruptibility-state ("interrupt shadow" as AMD calls it)
6399 * from the guest-state area in the VMCS.
6400 *
6401 * @param pVCpu The cross context virtual CPU structure.
6402 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6403 * out-of-sync. Make sure to update the required fields
6404 * before using them.
6405 *
6406 * @remarks No-long-jump zone!!!
6407 */
6408static void hmR0VmxSaveGuestIntrState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6409{
6410 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_INTR_STATE))
6411 {
6412 uint32_t uIntrState = 0;
6413 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &uIntrState);
6414 AssertRC(rc);
6415
6416 if (!uIntrState)
6417 {
6418 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
6419 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
6420
6421 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6422 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6423 }
6424 else
6425 {
6426 if (uIntrState & ( VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS
6427 | VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI))
6428 {
6429 rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
6430 AssertRC(rc);
6431 rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx); /* for hmR0VmxGetGuestIntrState(). */
6432 AssertRC(rc);
6433
6434 EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
6435 Assert(VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS));
6436 }
6437 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
6438 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
6439
6440 if (uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI)
6441 {
6442 if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6443 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
6444 }
6445 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6446 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6447 }
6448
6449 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_INTR_STATE);
6450 }
6451}
6452
6453
6454/**
6455 * Saves the guest's activity state.
6456 *
6457 * @returns VBox status code.
6458 * @param pVCpu The cross context virtual CPU structure.
6459 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6460 * out-of-sync. Make sure to update the required fields
6461 * before using them.
6462 *
6463 * @remarks No-long-jump zone!!!
6464 */
6465static int hmR0VmxSaveGuestActivityState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6466{
6467 NOREF(pMixedCtx);
6468 /* Nothing to do for now until we make use of different guest-CPU activity state. Just update the flag. */
6469 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_ACTIVITY_STATE);
6470 return VINF_SUCCESS;
6471}
6472
6473
6474/**
6475 * Saves the guest SYSENTER MSRs (SYSENTER_CS, SYSENTER_EIP, SYSENTER_ESP) from
6476 * the current VMCS into the guest-CPU context.
6477 *
6478 * @returns VBox status code.
6479 * @param pVCpu The cross context virtual CPU structure.
6480 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6481 * out-of-sync. Make sure to update the required fields
6482 * before using them.
6483 *
6484 * @remarks No-long-jump zone!!!
6485 */
6486static int hmR0VmxSaveGuestSysenterMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6487{
6488 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR))
6489 {
6490 Assert(!HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR));
6491 uint32_t u32Val = 0;
6492 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, &u32Val); AssertRCReturn(rc, rc);
6493 pMixedCtx->SysEnter.cs = u32Val;
6494 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR);
6495 }
6496
6497 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR))
6498 {
6499 Assert(!HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR));
6500 uint64_t u64Val = 0;
6501 int rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, &u64Val); AssertRCReturn(rc, rc);
6502 pMixedCtx->SysEnter.eip = u64Val;
6503 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR);
6504 }
6505 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR))
6506 {
6507 Assert(!HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR));
6508 uint64_t u64Val = 0;
6509 int rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, &u64Val); AssertRCReturn(rc, rc);
6510 pMixedCtx->SysEnter.esp = u64Val;
6511 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR);
6512 }
6513 return VINF_SUCCESS;
6514}
6515
6516
6517/**
6518 * Saves the set of guest MSRs (that we restore lazily while leaving VT-x) from
6519 * the CPU back into the guest-CPU context.
6520 *
6521 * @returns VBox status code.
6522 * @param pVCpu The cross context virtual CPU structure.
6523 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6524 * out-of-sync. Make sure to update the required fields
6525 * before using them.
6526 *
6527 * @remarks No-long-jump zone!!!
6528 */
6529static int hmR0VmxSaveGuestLazyMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6530{
6531 /* Since this can be called from our preemption hook it's safer to make the guest-MSRs update non-preemptible. */
6532 VMMRZCallRing3Disable(pVCpu);
6533 HM_DISABLE_PREEMPT();
6534
6535 /* Doing the check here ensures we don't overwrite already-saved guest MSRs from a preemption hook. */
6536 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS))
6537 {
6538 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS));
6539 hmR0VmxLazySaveGuestMsrs(pVCpu, pMixedCtx);
6540 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS);
6541 }
6542
6543 HM_RESTORE_PREEMPT();
6544 VMMRZCallRing3Enable(pVCpu);
6545
6546 return VINF_SUCCESS;
6547}
6548
6549
6550/**
6551 * Saves the auto load/store'd guest MSRs from the current VMCS into
6552 * the guest-CPU context.
6553 *
6554 * @returns VBox status code.
6555 * @param pVCpu The cross context virtual CPU structure.
6556 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6557 * out-of-sync. Make sure to update the required fields
6558 * before using them.
6559 *
6560 * @remarks No-long-jump zone!!!
6561 */
6562static int hmR0VmxSaveGuestAutoLoadStoreMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6563{
6564 if (HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS))
6565 return VINF_SUCCESS;
6566
6567 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_GUEST_AUTO_MSRS));
6568 PVMXAUTOMSR pMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
6569 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
6570 Log4(("hmR0VmxSaveGuestAutoLoadStoreMsrs: cMsrs=%u\n", cMsrs));
6571 for (uint32_t i = 0; i < cMsrs; i++, pMsr++)
6572 {
6573 switch (pMsr->u32Msr)
6574 {
6575 case MSR_K8_TSC_AUX: CPUMR0SetGuestTscAux(pVCpu, pMsr->u64Value); break;
6576 case MSR_K8_LSTAR: pMixedCtx->msrLSTAR = pMsr->u64Value; break;
6577 case MSR_K6_STAR: pMixedCtx->msrSTAR = pMsr->u64Value; break;
6578 case MSR_K8_SF_MASK: pMixedCtx->msrSFMASK = pMsr->u64Value; break;
6579 case MSR_K8_KERNEL_GS_BASE: pMixedCtx->msrKERNELGSBASE = pMsr->u64Value; break;
6580 case MSR_K6_EFER: /* Nothing to do here since we intercept writes, see hmR0VmxLoadGuestMsrs(). */
6581 break;
6582
6583 default:
6584 {
6585 AssertMsgFailed(("Unexpected MSR in auto-load/store area. uMsr=%#RX32 cMsrs=%u\n", pMsr->u32Msr, cMsrs));
6586 pVCpu->hm.s.u32HMError = pMsr->u32Msr;
6587 return VERR_HM_UNEXPECTED_LD_ST_MSR;
6588 }
6589 }
6590 }
6591
6592 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS);
6593 return VINF_SUCCESS;
6594}
6595
6596
6597/**
6598 * Saves the guest control registers from the current VMCS into the guest-CPU
6599 * context.
6600 *
6601 * @returns VBox status code.
6602 * @param pVCpu The cross context virtual CPU structure.
6603 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6604 * out-of-sync. Make sure to update the required fields
6605 * before using them.
6606 *
6607 * @remarks No-long-jump zone!!!
6608 */
6609static int hmR0VmxSaveGuestControlRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6610{
6611 /* Guest CR0. Guest FPU. */
6612 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
6613 AssertRCReturn(rc, rc);
6614
6615 /* Guest CR4. */
6616 rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
6617 AssertRCReturn(rc, rc);
6618
6619 /* Guest CR2 - updated always during the world-switch or in #PF. */
6620 /* Guest CR3. Only changes with Nested Paging. This must be done -after- saving CR0 and CR4 from the guest! */
6621 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR3))
6622 {
6623 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR3));
6624 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0));
6625 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR4));
6626
6627 PVM pVM = pVCpu->CTX_SUFF(pVM);
6628 if ( pVM->hm.s.vmx.fUnrestrictedGuest
6629 || ( pVM->hm.s.fNestedPaging
6630 && CPUMIsGuestPagingEnabledEx(pMixedCtx)))
6631 {
6632 uint64_t u64Val = 0;
6633 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_CR3, &u64Val);
6634 if (pMixedCtx->cr3 != u64Val)
6635 {
6636 CPUMSetGuestCR3(pVCpu, u64Val);
6637 if (VMMRZCallRing3IsEnabled(pVCpu))
6638 {
6639 PGMUpdateCR3(pVCpu, u64Val);
6640 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
6641 }
6642 else
6643 {
6644 /* Set the force flag to inform PGM about it when necessary. It is cleared by PGMUpdateCR3().*/
6645 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
6646 }
6647 }
6648
6649 /* If the guest is in PAE mode, sync back the PDPE's into the guest state. */
6650 if (CPUMIsGuestInPAEModeEx(pMixedCtx)) /* Reads CR0, CR4 and EFER MSR (EFER is always up-to-date). */
6651 {
6652 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &pVCpu->hm.s.aPdpes[0].u);
6653 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &pVCpu->hm.s.aPdpes[1].u);
6654 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &pVCpu->hm.s.aPdpes[2].u);
6655 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &pVCpu->hm.s.aPdpes[3].u);
6656 AssertRCReturn(rc, rc);
6657
6658 if (VMMRZCallRing3IsEnabled(pVCpu))
6659 {
6660 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
6661 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
6662 }
6663 else
6664 {
6665 /* Set the force flag to inform PGM about it when necessary. It is cleared by PGMGstUpdatePaePdpes(). */
6666 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES);
6667 }
6668 }
6669 }
6670
6671 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR3);
6672 }
6673
6674 /*
6675 * Consider this scenario: VM-exit -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp -> hmR0VmxCallRing3Callback()
6676 * -> VMMRZCallRing3Disable() -> hmR0VmxSaveGuestState() -> Set VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp
6677 * -> continue with VM-exit handling -> hmR0VmxSaveGuestControlRegs() and here we are.
6678 *
6679 * The reason for such complicated handling is because VM-exits that call into PGM expect CR3 to be up-to-date and thus
6680 * if any CR3-saves -before- the VM-exit (longjmp) postponed the CR3 update via the force-flag, any VM-exit handler that
6681 * calls into PGM when it re-saves CR3 will end up here and we call PGMUpdateCR3(). This is why the code below should
6682 * -NOT- check if HMVMX_UPDATED_GUEST_CR3 is already set or not!
6683 *
6684 * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again. We cover for it here.
6685 */
6686 if (VMMRZCallRing3IsEnabled(pVCpu))
6687 {
6688 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
6689 PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
6690
6691 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
6692 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
6693
6694 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
6695 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
6696 }
6697
6698 return rc;
6699}
6700
6701
6702/**
6703 * Reads a guest segment register from the current VMCS into the guest-CPU
6704 * context.
6705 *
6706 * @returns VBox status code.
6707 * @param pVCpu The cross context virtual CPU structure.
6708 * @param idxSel Index of the selector in the VMCS.
6709 * @param idxLimit Index of the segment limit in the VMCS.
6710 * @param idxBase Index of the segment base in the VMCS.
6711 * @param idxAccess Index of the access rights of the segment in the VMCS.
6712 * @param pSelReg Pointer to the segment selector.
6713 *
6714 * @remarks No-long-jump zone!!!
6715 * @remarks Never call this function directly!!! Use the VMXLOCAL_READ_SEG()
6716 * macro as that takes care of whether to read from the VMCS cache or
6717 * not.
6718 */
6719DECLINLINE(int) hmR0VmxReadSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase, uint32_t idxAccess,
6720 PCPUMSELREG pSelReg)
6721{
6722 NOREF(pVCpu);
6723
6724 uint32_t u32Val = 0;
6725 int rc = VMXReadVmcs32(idxSel, &u32Val);
6726 AssertRCReturn(rc, rc);
6727 pSelReg->Sel = (uint16_t)u32Val;
6728 pSelReg->ValidSel = (uint16_t)u32Val;
6729 pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
6730
6731 rc = VMXReadVmcs32(idxLimit, &u32Val);
6732 AssertRCReturn(rc, rc);
6733 pSelReg->u32Limit = u32Val;
6734
6735 uint64_t u64Val = 0;
6736 rc = VMXReadVmcsGstNByIdxVal(idxBase, &u64Val);
6737 AssertRCReturn(rc, rc);
6738 pSelReg->u64Base = u64Val;
6739
6740 rc = VMXReadVmcs32(idxAccess, &u32Val);
6741 AssertRCReturn(rc, rc);
6742 pSelReg->Attr.u = u32Val;
6743
6744 /*
6745 * If VT-x marks the segment as unusable, most other bits remain undefined:
6746 * - For CS the L, D and G bits have meaning.
6747 * - For SS the DPL has meaning (it -is- the CPL for Intel and VBox).
6748 * - For the remaining data segments no bits are defined.
6749 *
6750 * The present bit and the unusable bit has been observed to be set at the
6751 * same time (the selector was supposed to be invalid as we started executing
6752 * a V8086 interrupt in ring-0).
6753 *
6754 * What should be important for the rest of the VBox code, is that the P bit is
6755 * cleared. Some of the other VBox code recognizes the unusable bit, but
6756 * AMD-V certainly don't, and REM doesn't really either. So, to be on the
6757 * safe side here, we'll strip off P and other bits we don't care about. If
6758 * any code breaks because Attr.u != 0 when Sel < 4, it should be fixed.
6759 *
6760 * See Intel spec. 27.3.2 "Saving Segment Registers and Descriptor-Table Registers".
6761 */
6762 if (pSelReg->Attr.u & X86DESCATTR_UNUSABLE)
6763 {
6764 Assert(idxSel != VMX_VMCS16_GUEST_TR_SEL); /* TR is the only selector that can never be unusable. */
6765
6766 /* Masking off: X86DESCATTR_P, X86DESCATTR_LIMIT_HIGH, and X86DESCATTR_AVL. The latter two are really irrelevant. */
6767 pSelReg->Attr.u &= X86DESCATTR_UNUSABLE | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
6768 | X86DESCATTR_DPL | X86DESCATTR_TYPE | X86DESCATTR_DT;
6769
6770 Log4(("hmR0VmxReadSegmentReg: Unusable idxSel=%#x attr=%#x -> %#x\n", idxSel, u32Val, pSelReg->Attr.u));
6771#ifdef DEBUG_bird
6772 AssertMsg((u32Val & ~X86DESCATTR_P) == pSelReg->Attr.u,
6773 ("%#x: %#x != %#x (sel=%#x base=%#llx limit=%#x)\n",
6774 idxSel, u32Val, pSelReg->Attr.u, pSelReg->Sel, pSelReg->u64Base, pSelReg->u32Limit));
6775#endif
6776 }
6777 return VINF_SUCCESS;
6778}
6779
6780
6781#ifdef VMX_USE_CACHED_VMCS_ACCESSES
6782# define VMXLOCAL_READ_SEG(Sel, CtxSel) \
6783 hmR0VmxReadSegmentReg(pVCpu, VMX_VMCS16_GUEST_##Sel##_SEL, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
6784 VMX_VMCS_GUEST_##Sel##_BASE_CACHE_IDX, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, &pMixedCtx->CtxSel)
6785#else
6786# define VMXLOCAL_READ_SEG(Sel, CtxSel) \
6787 hmR0VmxReadSegmentReg(pVCpu, VMX_VMCS16_GUEST_##Sel##_SEL, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
6788 VMX_VMCS_GUEST_##Sel##_BASE, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, &pMixedCtx->CtxSel)
6789#endif
6790
6791
6792/**
6793 * Saves the guest segment registers from the current VMCS into the guest-CPU
6794 * context.
6795 *
6796 * @returns VBox status code.
6797 * @param pVCpu The cross context virtual CPU structure.
6798 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6799 * out-of-sync. Make sure to update the required fields
6800 * before using them.
6801 *
6802 * @remarks No-long-jump zone!!!
6803 */
6804static int hmR0VmxSaveGuestSegmentRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6805{
6806 /* Guest segment registers. */
6807 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SEGMENT_REGS))
6808 {
6809 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS));
6810 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
6811 AssertRCReturn(rc, rc);
6812
6813 rc = VMXLOCAL_READ_SEG(CS, cs);
6814 rc |= VMXLOCAL_READ_SEG(SS, ss);
6815 rc |= VMXLOCAL_READ_SEG(DS, ds);
6816 rc |= VMXLOCAL_READ_SEG(ES, es);
6817 rc |= VMXLOCAL_READ_SEG(FS, fs);
6818 rc |= VMXLOCAL_READ_SEG(GS, gs);
6819 AssertRCReturn(rc, rc);
6820
6821 /* Restore segment attributes for real-on-v86 mode hack. */
6822 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6823 {
6824 pMixedCtx->cs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrCS.u;
6825 pMixedCtx->ss.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrSS.u;
6826 pMixedCtx->ds.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrDS.u;
6827 pMixedCtx->es.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrES.u;
6828 pMixedCtx->fs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrFS.u;
6829 pMixedCtx->gs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrGS.u;
6830 }
6831 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SEGMENT_REGS);
6832 }
6833
6834 return VINF_SUCCESS;
6835}
6836
6837
6838/**
6839 * Saves the guest descriptor table registers and task register from the current
6840 * VMCS into the guest-CPU context.
6841 *
6842 * @returns VBox status code.
6843 * @param pVCpu The cross context virtual CPU structure.
6844 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6845 * out-of-sync. Make sure to update the required fields
6846 * before using them.
6847 *
6848 * @remarks No-long-jump zone!!!
6849 */
6850static int hmR0VmxSaveGuestTableRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6851{
6852 int rc = VINF_SUCCESS;
6853
6854 /* Guest LDTR. */
6855 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LDTR))
6856 {
6857 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LDTR));
6858 rc = VMXLOCAL_READ_SEG(LDTR, ldtr);
6859 AssertRCReturn(rc, rc);
6860 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LDTR);
6861 }
6862
6863 /* Guest GDTR. */
6864 uint64_t u64Val = 0;
6865 uint32_t u32Val = 0;
6866 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_GDTR))
6867 {
6868 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_GDTR));
6869 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
6870 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val); AssertRCReturn(rc, rc);
6871 pMixedCtx->gdtr.pGdt = u64Val;
6872 pMixedCtx->gdtr.cbGdt = u32Val;
6873 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_GDTR);
6874 }
6875
6876 /* Guest IDTR. */
6877 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_IDTR))
6878 {
6879 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_IDTR));
6880 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
6881 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val); AssertRCReturn(rc, rc);
6882 pMixedCtx->idtr.pIdt = u64Val;
6883 pMixedCtx->idtr.cbIdt = u32Val;
6884 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_IDTR);
6885 }
6886
6887 /* Guest TR. */
6888 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_TR))
6889 {
6890 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_TR));
6891 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
6892 AssertRCReturn(rc, rc);
6893
6894 /* For real-mode emulation using virtual-8086 mode we have the fake TSS (pRealModeTSS) in TR, don't save the fake one. */
6895 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6896 {
6897 rc = VMXLOCAL_READ_SEG(TR, tr);
6898 AssertRCReturn(rc, rc);
6899 }
6900 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_TR);
6901 }
6902 return rc;
6903}
6904
6905#undef VMXLOCAL_READ_SEG
6906
6907
6908/**
6909 * Saves the guest debug-register DR7 from the current VMCS into the guest-CPU
6910 * context.
6911 *
6912 * @returns VBox status code.
6913 * @param pVCpu The cross context virtual CPU structure.
6914 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6915 * out-of-sync. Make sure to update the required fields
6916 * before using them.
6917 *
6918 * @remarks No-long-jump zone!!!
6919 */
6920static int hmR0VmxSaveGuestDR7(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6921{
6922 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_DR7))
6923 {
6924 if (!pVCpu->hm.s.fUsingHyperDR7)
6925 {
6926 /* Upper 32-bits are always zero. See Intel spec. 2.7.3 "Loading and Storing Debug Registers". */
6927 uint32_t u32Val;
6928 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_DR7, &u32Val); AssertRCReturn(rc, rc);
6929 pMixedCtx->dr[7] = u32Val;
6930 }
6931
6932 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_DR7);
6933 }
6934 return VINF_SUCCESS;
6935}
6936
6937
6938/**
6939 * Saves the guest APIC state from the current VMCS into the guest-CPU context.
6940 *
6941 * @returns VBox status code.
6942 * @param pVCpu The cross context virtual CPU structure.
6943 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6944 * out-of-sync. Make sure to update the required fields
6945 * before using them.
6946 *
6947 * @remarks No-long-jump zone!!!
6948 */
6949static int hmR0VmxSaveGuestApicState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6950{
6951 NOREF(pMixedCtx);
6952
6953 /* Updating TPR is already done in hmR0VmxPostRunGuest(). Just update the flag. */
6954 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_APIC_STATE);
6955 return VINF_SUCCESS;
6956}
6957
6958
6959/**
6960 * Saves the entire guest state from the currently active VMCS into the
6961 * guest-CPU context.
6962 *
6963 * This essentially VMREADs all guest-data.
6964 *
6965 * @returns VBox status code.
6966 * @param pVCpu The cross context virtual CPU structure.
6967 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
6968 * out-of-sync. Make sure to update the required fields
6969 * before using them.
6970 */
6971static int hmR0VmxSaveGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6972{
6973 Assert(pVCpu);
6974 Assert(pMixedCtx);
6975
6976 if (HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL)
6977 return VINF_SUCCESS;
6978
6979 /* Though we can longjmp to ring-3 due to log-flushes here and get recalled
6980 again on the ring-3 callback path, there is no real need to. */
6981 if (VMMRZCallRing3IsEnabled(pVCpu))
6982 VMMR0LogFlushDisable(pVCpu);
6983 else
6984 Assert(VMMR0IsLogFlushDisabled(pVCpu));
6985 Log4Func(("vcpu[%RU32]\n", pVCpu->idCpu));
6986
6987 int rc = hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
6988 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestRipRspRflags failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6989
6990 rc = hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
6991 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestControlRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6992
6993 rc = hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
6994 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestSegmentRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6995
6996 rc = hmR0VmxSaveGuestTableRegs(pVCpu, pMixedCtx);
6997 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestTableRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6998
6999 rc = hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
7000 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestDR7 failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
7001
7002 rc = hmR0VmxSaveGuestSysenterMsrs(pVCpu, pMixedCtx);
7003 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestSysenterMsrs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
7004
7005 rc = hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
7006 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestLazyMsrs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
7007
7008 rc = hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
7009 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestAutoLoadStoreMsrs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
7010
7011 rc = hmR0VmxSaveGuestActivityState(pVCpu, pMixedCtx);
7012 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestActivityState failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
7013
7014 rc = hmR0VmxSaveGuestApicState(pVCpu, pMixedCtx);
7015 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestApicState failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
7016
7017 AssertMsg(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL,
7018 ("Missed guest state bits while saving state; missing %RX32 (got %RX32, want %RX32) - check log for any previous errors!\n",
7019 HMVMX_UPDATED_GUEST_ALL ^ HMVMXCPU_GST_VALUE(pVCpu), HMVMXCPU_GST_VALUE(pVCpu), HMVMX_UPDATED_GUEST_ALL));
7020
7021 if (VMMRZCallRing3IsEnabled(pVCpu))
7022 VMMR0LogFlushEnable(pVCpu);
7023
7024 return VINF_SUCCESS;
7025}
7026
7027
7028/**
7029 * Saves basic guest registers needed for IEM instruction execution.
7030 *
7031 * @returns VBox status code (OR-able).
7032 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
7033 * @param pMixedCtx Pointer to the CPU context of the guest.
7034 * @param fMemory Whether the instruction being executed operates on
7035 * memory or not. Only CR0 is synced up if clear.
7036 * @param fNeedRsp Need RSP (any instruction working on GPRs or stack).
7037 */
7038static int hmR0VmxSaveGuestRegsForIemExec(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fMemory, bool fNeedRsp)
7039{
7040 /*
7041 * We assume all general purpose registers other than RSP are available.
7042 *
7043 * - RIP is a must, as it will be incremented or otherwise changed.
7044 * - RFLAGS are always required to figure the CPL.
7045 * - RSP isn't always required, however it's a GPR, so frequently required.
7046 * - SS and CS are the only segment register needed if IEM doesn't do memory
7047 * access (CPL + 16/32/64-bit mode), but we can only get all segment registers.
7048 * - CR0 is always required by IEM for the CPL, while CR3 and CR4 will only
7049 * be required for memory accesses.
7050 *
7051 * Note! Before IEM dispatches an exception, it will call us to sync in everything.
7052 */
7053 int rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
7054 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
7055 if (fNeedRsp)
7056 rc |= hmR0VmxSaveGuestRsp(pVCpu, pMixedCtx);
7057 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
7058 if (!fMemory)
7059 rc |= hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
7060 else
7061 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
7062 AssertRCReturn(rc, rc);
7063 return rc;
7064}
7065
7066
7067/**
7068 * Ensures that we've got a complete basic guest-context.
7069 *
7070 * This excludes the FPU, SSE, AVX, and similar extended state. The interface
7071 * is for the interpreter.
7072 *
7073 * @returns VBox status code.
7074 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
7075 * @param pMixedCtx Pointer to the guest-CPU context which may have data
7076 * needing to be synced in.
7077 * @thread EMT(pVCpu)
7078 */
7079VMMR0_INT_DECL(int) HMR0EnsureCompleteBasicContext(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7080{
7081 /* Note! Since this is only applicable to VT-x, the implementation is placed
7082 in the VT-x part of the sources instead of the generic stuff. */
7083 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fSupported)
7084 {
7085 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
7086 /*
7087 * For now, imply that the caller might change everything too. Do this after
7088 * saving the guest state so as to not trigger assertions.
7089 */
7090 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
7091 return rc;
7092 }
7093 return VINF_SUCCESS;
7094}
7095
7096
7097/**
7098 * Check per-VM and per-VCPU force flag actions that require us to go back to
7099 * ring-3 for one reason or another.
7100 *
7101 * @returns Strict VBox status code (i.e. informational status codes too)
7102 * @retval VINF_SUCCESS if we don't have any actions that require going back to
7103 * ring-3.
7104 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
7105 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
7106 * interrupts)
7107 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
7108 * all EMTs to be in ring-3.
7109 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
7110 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
7111 * to the EM loop.
7112 *
7113 * @param pVM The cross context VM structure.
7114 * @param pVCpu The cross context virtual CPU structure.
7115 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7116 * out-of-sync. Make sure to update the required fields
7117 * before using them.
7118 * @param fStepping Running in hmR0VmxRunGuestCodeStep().
7119 */
7120static VBOXSTRICTRC hmR0VmxCheckForceFlags(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fStepping)
7121{
7122 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7123
7124 /*
7125 * Anything pending? Should be more likely than not if we're doing a good job.
7126 */
7127 if ( !fStepping
7128 ? !VM_FF_IS_PENDING(pVM, VM_FF_HP_R0_PRE_HM_MASK)
7129 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HP_R0_PRE_HM_MASK)
7130 : !VM_FF_IS_PENDING(pVM, VM_FF_HP_R0_PRE_HM_STEP_MASK)
7131 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
7132 return VINF_SUCCESS;
7133
7134 /* We need the control registers now, make sure the guest-CPU context is updated. */
7135 int rc3 = hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
7136 AssertRCReturn(rc3, rc3);
7137
7138 /* Pending HM CR3 sync. */
7139 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
7140 {
7141 int rc2 = PGMUpdateCR3(pVCpu, pMixedCtx->cr3);
7142 AssertMsgReturn(rc2 == VINF_SUCCESS || rc2 == VINF_PGM_SYNC_CR3,
7143 ("%Rrc\n", rc2), RT_FAILURE_NP(rc2) ? rc2 : VERR_IPE_UNEXPECTED_INFO_STATUS);
7144 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
7145 }
7146
7147 /* Pending HM PAE PDPEs. */
7148 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
7149 {
7150 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
7151 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
7152 }
7153
7154 /* Pending PGM C3 sync. */
7155 if (VMCPU_FF_IS_PENDING(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
7156 {
7157 VBOXSTRICTRC rcStrict2 = PGMSyncCR3(pVCpu, pMixedCtx->cr0, pMixedCtx->cr3, pMixedCtx->cr4,
7158 VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
7159 if (rcStrict2 != VINF_SUCCESS)
7160 {
7161 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
7162 Log4(("hmR0VmxCheckForceFlags: PGMSyncCR3 forcing us back to ring-3. rc2=%d\n", VBOXSTRICTRC_VAL(rcStrict2)));
7163 return rcStrict2;
7164 }
7165 }
7166
7167 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
7168 if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK)
7169 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
7170 {
7171 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
7172 int rc2 = RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
7173 Log4(("hmR0VmxCheckForceFlags: HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc2));
7174 return rc2;
7175 }
7176
7177 /* Pending VM request packets, such as hardware interrupts. */
7178 if ( VM_FF_IS_PENDING(pVM, VM_FF_REQUEST)
7179 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_REQUEST))
7180 {
7181 Log4(("hmR0VmxCheckForceFlags: Pending VM request forcing us back to ring-3\n"));
7182 return VINF_EM_PENDING_REQUEST;
7183 }
7184
7185 /* Pending PGM pool flushes. */
7186 if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
7187 {
7188 Log4(("hmR0VmxCheckForceFlags: PGM pool flush pending forcing us back to ring-3\n"));
7189 return VINF_PGM_POOL_FLUSH_PENDING;
7190 }
7191
7192 /* Pending DMA requests. */
7193 if (VM_FF_IS_PENDING(pVM, VM_FF_PDM_DMA))
7194 {
7195 Log4(("hmR0VmxCheckForceFlags: Pending DMA request forcing us back to ring-3\n"));
7196 return VINF_EM_RAW_TO_R3;
7197 }
7198
7199 return VINF_SUCCESS;
7200}
7201
7202
7203/**
7204 * Converts any TRPM trap into a pending HM event. This is typically used when
7205 * entering from ring-3 (not longjmp returns).
7206 *
7207 * @param pVCpu The cross context virtual CPU structure.
7208 */
7209static void hmR0VmxTrpmTrapToPendingEvent(PVMCPU pVCpu)
7210{
7211 Assert(TRPMHasTrap(pVCpu));
7212 Assert(!pVCpu->hm.s.Event.fPending);
7213
7214 uint8_t uVector;
7215 TRPMEVENT enmTrpmEvent;
7216 RTGCUINT uErrCode;
7217 RTGCUINTPTR GCPtrFaultAddress;
7218 uint8_t cbInstr;
7219
7220 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
7221 AssertRC(rc);
7222
7223 /* Refer Intel spec. 24.8.3 "VM-entry Controls for Event Injection" for the format of u32IntInfo. */
7224 uint32_t u32IntInfo = uVector | VMX_EXIT_INTERRUPTION_INFO_VALID;
7225 if (enmTrpmEvent == TRPM_TRAP)
7226 {
7227 switch (uVector)
7228 {
7229 case X86_XCPT_NMI:
7230 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7231 break;
7232
7233 case X86_XCPT_BP:
7234 case X86_XCPT_OF:
7235 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7236 break;
7237
7238 case X86_XCPT_PF:
7239 case X86_XCPT_DF:
7240 case X86_XCPT_TS:
7241 case X86_XCPT_NP:
7242 case X86_XCPT_SS:
7243 case X86_XCPT_GP:
7244 case X86_XCPT_AC:
7245 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
7246 /* fall thru */
7247 default:
7248 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7249 break;
7250 }
7251 }
7252 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
7253 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7254 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
7255 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7256 else
7257 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
7258
7259 rc = TRPMResetTrap(pVCpu);
7260 AssertRC(rc);
7261 Log4(("TRPM->HM event: u32IntInfo=%#RX32 enmTrpmEvent=%d cbInstr=%u uErrCode=%#RX32 GCPtrFaultAddress=%#RGv\n",
7262 u32IntInfo, enmTrpmEvent, cbInstr, uErrCode, GCPtrFaultAddress));
7263
7264 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, uErrCode, GCPtrFaultAddress);
7265}
7266
7267
7268/**
7269 * Converts the pending HM event into a TRPM trap.
7270 *
7271 * @param pVCpu The cross context virtual CPU structure.
7272 */
7273static void hmR0VmxPendingEventToTrpmTrap(PVMCPU pVCpu)
7274{
7275 Assert(pVCpu->hm.s.Event.fPending);
7276
7277 uint32_t uVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
7278 uint32_t uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVCpu->hm.s.Event.u64IntInfo);
7279 bool fErrorCodeValid = VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVCpu->hm.s.Event.u64IntInfo);
7280 uint32_t uErrorCode = pVCpu->hm.s.Event.u32ErrCode;
7281
7282 /* If a trap was already pending, we did something wrong! */
7283 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
7284
7285 TRPMEVENT enmTrapType;
7286 switch (uVectorType)
7287 {
7288 case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
7289 enmTrapType = TRPM_HARDWARE_INT;
7290 break;
7291
7292 case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
7293 enmTrapType = TRPM_SOFTWARE_INT;
7294 break;
7295
7296 case VMX_IDT_VECTORING_INFO_TYPE_NMI:
7297 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
7298 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT: /* #BP and #OF */
7299 case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
7300 enmTrapType = TRPM_TRAP;
7301 break;
7302
7303 default:
7304 AssertMsgFailed(("Invalid trap type %#x\n", uVectorType));
7305 enmTrapType = TRPM_32BIT_HACK;
7306 break;
7307 }
7308
7309 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, enmTrapType));
7310
7311 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
7312 AssertRC(rc);
7313
7314 if (fErrorCodeValid)
7315 TRPMSetErrorCode(pVCpu, uErrorCode);
7316
7317 if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
7318 && uVector == X86_XCPT_PF)
7319 {
7320 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
7321 }
7322 else if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
7323 || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
7324 || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
7325 {
7326 AssertMsg( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
7327 || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
7328 ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
7329 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
7330 }
7331
7332 /* Clear any pending events from the VMCS. */
7333 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, 0); AssertRC(rc);
7334 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, 0); AssertRC(rc);
7335
7336 /* We're now done converting the pending event. */
7337 pVCpu->hm.s.Event.fPending = false;
7338}
7339
7340
7341/**
7342 * Does the necessary state syncing before returning to ring-3 for any reason
7343 * (longjmp, preemption, voluntary exits to ring-3) from VT-x.
7344 *
7345 * @returns VBox status code.
7346 * @param pVCpu The cross context virtual CPU structure.
7347 * @param pMixedCtx Pointer to the guest-CPU context. The data may
7348 * be out-of-sync. Make sure to update the required
7349 * fields before using them.
7350 * @param fSaveGuestState Whether to save the guest state or not.
7351 *
7352 * @remarks No-long-jmp zone!!!
7353 */
7354static int hmR0VmxLeave(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fSaveGuestState)
7355{
7356 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7357 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
7358
7359 RTCPUID idCpu = RTMpCpuId();
7360 Log4Func(("HostCpuId=%u\n", idCpu));
7361
7362 /*
7363 * !!! IMPORTANT !!!
7364 * If you modify code here, check whether hmR0VmxCallRing3Callback() needs to be updated too.
7365 */
7366
7367 /* Save the guest state if necessary. */
7368 if ( fSaveGuestState
7369 && HMVMXCPU_GST_VALUE(pVCpu) != HMVMX_UPDATED_GUEST_ALL)
7370 {
7371 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
7372 AssertRCReturn(rc, rc);
7373 Assert(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL);
7374 }
7375
7376 /* Restore host FPU state if necessary and resync on next R0 reentry .*/
7377 if (CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu))
7378 {
7379 /* We shouldn't reload CR0 without saving it first. */
7380 if (!fSaveGuestState)
7381 {
7382 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
7383 AssertRCReturn(rc, rc);
7384 }
7385 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
7386 }
7387
7388 /* Restore host debug registers if necessary and resync on next R0 reentry. */
7389#ifdef VBOX_STRICT
7390 if (CPUMIsHyperDebugStateActive(pVCpu))
7391 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT);
7392#endif
7393 if (CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */))
7394 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
7395 Assert(!CPUMIsGuestDebugStateActive(pVCpu) && !CPUMIsGuestDebugStateActivePending(pVCpu));
7396 Assert(!CPUMIsHyperDebugStateActive(pVCpu) && !CPUMIsHyperDebugStateActivePending(pVCpu));
7397
7398#if HC_ARCH_BITS == 64
7399 /* Restore host-state bits that VT-x only restores partially. */
7400 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
7401 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
7402 {
7403 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags, idCpu));
7404 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
7405 }
7406 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
7407#endif
7408
7409 /* Restore the lazy host MSRs as we're leaving VT-x context. */
7410 if (pVCpu->hm.s.vmx.fLazyMsrs)
7411 {
7412 /* We shouldn't reload the guest MSRs without saving it first. */
7413 if (!fSaveGuestState)
7414 {
7415 int rc = hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
7416 AssertRCReturn(rc, rc);
7417 }
7418 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS));
7419 hmR0VmxLazyRestoreHostMsrs(pVCpu);
7420 Assert(!pVCpu->hm.s.vmx.fLazyMsrs);
7421 }
7422
7423 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
7424 pVCpu->hm.s.vmx.fUpdatedHostMsrs = false;
7425
7426 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
7427 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatLoadGuestState);
7428 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit1);
7429 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit2);
7430 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitIO);
7431 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitMovCRx);
7432 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitXcptNmi);
7433 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
7434
7435 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
7436
7437 /** @todo This partially defeats the purpose of having preemption hooks.
7438 * The problem is, deregistering the hooks should be moved to a place that
7439 * lasts until the EMT is about to be destroyed not everytime while leaving HM
7440 * context.
7441 */
7442 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_ACTIVE)
7443 {
7444 int rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
7445 AssertRCReturn(rc, rc);
7446
7447 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
7448 Log4Func(("Cleared Vmcs. HostCpuId=%u\n", idCpu));
7449 }
7450 Assert(!(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_LAUNCHED));
7451 NOREF(idCpu);
7452
7453 return VINF_SUCCESS;
7454}
7455
7456
7457/**
7458 * Leaves the VT-x session.
7459 *
7460 * @returns VBox status code.
7461 * @param pVCpu The cross context virtual CPU structure.
7462 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7463 * out-of-sync. Make sure to update the required fields
7464 * before using them.
7465 *
7466 * @remarks No-long-jmp zone!!!
7467 */
7468DECLINLINE(int) hmR0VmxLeaveSession(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7469{
7470 HM_DISABLE_PREEMPT();
7471 HMVMX_ASSERT_CPU_SAFE();
7472 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
7473 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7474
7475 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
7476 and done this from the VMXR0ThreadCtxCallback(). */
7477 if (!pVCpu->hm.s.fLeaveDone)
7478 {
7479 int rc2 = hmR0VmxLeave(pVCpu, pMixedCtx, true /* fSaveGuestState */);
7480 AssertRCReturnStmt(rc2, HM_RESTORE_PREEMPT(), rc2);
7481 pVCpu->hm.s.fLeaveDone = true;
7482 }
7483 Assert(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL);
7484
7485 /*
7486 * !!! IMPORTANT !!!
7487 * If you modify code here, make sure to check whether hmR0VmxCallRing3Callback() needs to be updated too.
7488 */
7489
7490 /* Deregister hook now that we've left HM context before re-enabling preemption. */
7491 /** @todo Deregistering here means we need to VMCLEAR always
7492 * (longjmp/exit-to-r3) in VT-x which is not efficient. */
7493 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
7494 VMMR0ThreadCtxHookDisable(pVCpu);
7495
7496 /* Leave HM context. This takes care of local init (term). */
7497 int rc = HMR0LeaveCpu(pVCpu);
7498
7499 HM_RESTORE_PREEMPT();
7500 return rc;
7501}
7502
7503
7504/**
7505 * Does the necessary state syncing before doing a longjmp to ring-3.
7506 *
7507 * @returns VBox status code.
7508 * @param pVCpu The cross context virtual CPU structure.
7509 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7510 * out-of-sync. Make sure to update the required fields
7511 * before using them.
7512 *
7513 * @remarks No-long-jmp zone!!!
7514 */
7515DECLINLINE(int) hmR0VmxLongJmpToRing3(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7516{
7517 return hmR0VmxLeaveSession(pVCpu, pMixedCtx);
7518}
7519
7520
7521/**
7522 * Take necessary actions before going back to ring-3.
7523 *
7524 * An action requires us to go back to ring-3. This function does the necessary
7525 * steps before we can safely return to ring-3. This is not the same as longjmps
7526 * to ring-3, this is voluntary and prepares the guest so it may continue
7527 * executing outside HM (recompiler/IEM).
7528 *
7529 * @returns VBox status code.
7530 * @param pVM The cross context VM structure.
7531 * @param pVCpu The cross context virtual CPU structure.
7532 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7533 * out-of-sync. Make sure to update the required fields
7534 * before using them.
7535 * @param rcExit The reason for exiting to ring-3. Can be
7536 * VINF_VMM_UNKNOWN_RING3_CALL.
7537 */
7538static int hmR0VmxExitToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, VBOXSTRICTRC rcExit)
7539{
7540 Assert(pVM);
7541 Assert(pVCpu);
7542 Assert(pMixedCtx);
7543 HMVMX_ASSERT_PREEMPT_SAFE();
7544
7545 if (RT_UNLIKELY(rcExit == VERR_VMX_INVALID_VMCS_PTR))
7546 {
7547 VMXGetActivatedVmcs(&pVCpu->hm.s.vmx.LastError.u64VMCSPhys);
7548 pVCpu->hm.s.vmx.LastError.u32VMCSRevision = *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs;
7549 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
7550 /* LastError.idCurrentCpu was updated in hmR0VmxPreRunGuestCommitted(). */
7551 }
7552
7553 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
7554 VMMRZCallRing3Disable(pVCpu);
7555 Log4(("hmR0VmxExitToRing3: pVCpu=%p idCpu=%RU32 rcExit=%d\n", pVCpu, pVCpu->idCpu, VBOXSTRICTRC_VAL(rcExit)));
7556
7557 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
7558 if (pVCpu->hm.s.Event.fPending)
7559 {
7560 hmR0VmxPendingEventToTrpmTrap(pVCpu);
7561 Assert(!pVCpu->hm.s.Event.fPending);
7562 }
7563
7564 /* Clear interrupt-window and NMI-window controls as we re-evaluate it when we return from ring-3. */
7565 hmR0VmxClearIntNmiWindowsVmcs(pVCpu);
7566
7567 /* If we're emulating an instruction, we shouldn't have any TRPM traps pending
7568 and if we're injecting an event we should have a TRPM trap pending. */
7569 AssertMsg(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
7570#ifndef DEBUG_bird /* Triggered after firing an NMI against NT4SP1, possibly a tripple fault in progress. */
7571 AssertMsg(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
7572#endif
7573
7574 /* Save guest state and restore host state bits. */
7575 int rc = hmR0VmxLeaveSession(pVCpu, pMixedCtx);
7576 AssertRCReturn(rc, rc);
7577 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
7578 /* Thread-context hooks are unregistered at this point!!! */
7579
7580 /* Sync recompiler state. */
7581 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
7582 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
7583 | CPUM_CHANGED_LDTR
7584 | CPUM_CHANGED_GDTR
7585 | CPUM_CHANGED_IDTR
7586 | CPUM_CHANGED_TR
7587 | CPUM_CHANGED_HIDDEN_SEL_REGS);
7588 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0));
7589 if ( pVM->hm.s.fNestedPaging
7590 && CPUMIsGuestPagingEnabledEx(pMixedCtx))
7591 {
7592 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
7593 }
7594
7595 Assert(!pVCpu->hm.s.fClearTrapFlag);
7596
7597 /* On our way back from ring-3 reload the guest state if there is a possibility of it being changed. */
7598 if (rcExit != VINF_EM_RAW_INTERRUPT)
7599 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
7600
7601 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
7602
7603 /* We do -not- want any longjmp notifications after this! We must return to ring-3 ASAP. */
7604 VMMRZCallRing3RemoveNotification(pVCpu);
7605 VMMRZCallRing3Enable(pVCpu);
7606
7607 return rc;
7608}
7609
7610
7611/**
7612 * VMMRZCallRing3() callback wrapper which saves the guest state before we
7613 * longjump to ring-3 and possibly get preempted.
7614 *
7615 * @returns VBox status code.
7616 * @param pVCpu The cross context virtual CPU structure.
7617 * @param enmOperation The operation causing the ring-3 longjump.
7618 * @param pvUser Opaque pointer to the guest-CPU context. The data
7619 * may be out-of-sync. Make sure to update the required
7620 * fields before using them.
7621 */
7622static DECLCALLBACK(int) hmR0VmxCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
7623{
7624 if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
7625 {
7626 /*
7627 * !!! IMPORTANT !!!
7628 * If you modify code here, check whether hmR0VmxLeave() and hmR0VmxLeaveSession() needs to be updated too.
7629 * This is a stripped down version which gets out ASAP, trying to not trigger any further assertions.
7630 */
7631 VMMRZCallRing3RemoveNotification(pVCpu);
7632 VMMRZCallRing3Disable(pVCpu);
7633 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
7634 RTThreadPreemptDisable(&PreemptState);
7635
7636 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
7637 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
7638
7639#if HC_ARCH_BITS == 64
7640 /* Restore host-state bits that VT-x only restores partially. */
7641 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
7642 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
7643 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
7644 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
7645#endif
7646 /* Restore the lazy host MSRs as we're leaving VT-x context. */
7647 if (pVCpu->hm.s.vmx.fLazyMsrs)
7648 hmR0VmxLazyRestoreHostMsrs(pVCpu);
7649
7650 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
7651 pVCpu->hm.s.vmx.fUpdatedHostMsrs = false;
7652 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
7653 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_ACTIVE)
7654 {
7655 VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
7656 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
7657 }
7658
7659 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
7660 VMMR0ThreadCtxHookDisable(pVCpu);
7661 HMR0LeaveCpu(pVCpu);
7662 RTThreadPreemptRestore(&PreemptState);
7663 return VINF_SUCCESS;
7664 }
7665
7666 Assert(pVCpu);
7667 Assert(pvUser);
7668 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7669 HMVMX_ASSERT_PREEMPT_SAFE();
7670
7671 VMMRZCallRing3Disable(pVCpu);
7672 Assert(VMMR0IsLogFlushDisabled(pVCpu));
7673
7674 Log4(("hmR0VmxCallRing3Callback->hmR0VmxLongJmpToRing3 pVCpu=%p idCpu=%RU32 enmOperation=%d\n", pVCpu, pVCpu->idCpu,
7675 enmOperation));
7676
7677 int rc = hmR0VmxLongJmpToRing3(pVCpu, (PCPUMCTX)pvUser);
7678 AssertRCReturn(rc, rc);
7679
7680 VMMRZCallRing3Enable(pVCpu);
7681 return VINF_SUCCESS;
7682}
7683
7684
7685/**
7686 * Sets the interrupt-window exiting control in the VMCS which instructs VT-x to
7687 * cause a VM-exit as soon as the guest is in a state to receive interrupts.
7688 *
7689 * @param pVCpu The cross context virtual CPU structure.
7690 */
7691DECLINLINE(void) hmR0VmxSetIntWindowExitVmcs(PVMCPU pVCpu)
7692{
7693 if (RT_LIKELY(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT))
7694 {
7695 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT))
7696 {
7697 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT;
7698 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7699 AssertRC(rc);
7700 Log4(("Setup interrupt-window exiting\n"));
7701 }
7702 } /* else we will deliver interrupts whenever the guest exits next and is in a state to receive events. */
7703}
7704
7705
7706/**
7707 * Clears the interrupt-window exiting control in the VMCS.
7708 *
7709 * @param pVCpu The cross context virtual CPU structure.
7710 */
7711DECLINLINE(void) hmR0VmxClearIntWindowExitVmcs(PVMCPU pVCpu)
7712{
7713 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT);
7714 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT;
7715 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7716 AssertRC(rc);
7717 Log4(("Cleared interrupt-window exiting\n"));
7718}
7719
7720
7721/**
7722 * Sets the NMI-window exiting control in the VMCS which instructs VT-x to
7723 * cause a VM-exit as soon as the guest is in a state to receive NMIs.
7724 *
7725 * @param pVCpu The cross context virtual CPU structure.
7726 */
7727DECLINLINE(void) hmR0VmxSetNmiWindowExitVmcs(PVMCPU pVCpu)
7728{
7729 if (RT_LIKELY(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT))
7730 {
7731 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT))
7732 {
7733 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT;
7734 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7735 AssertRC(rc);
7736 Log4(("Setup NMI-window exiting\n"));
7737 }
7738 } /* else we will deliver NMIs whenever we VM-exit next, even possibly nesting NMIs. Can't be helped on ancient CPUs. */
7739}
7740
7741
7742/**
7743 * Clears the NMI-window exiting control in the VMCS.
7744 *
7745 * @param pVCpu The cross context virtual CPU structure.
7746 */
7747DECLINLINE(void) hmR0VmxClearNmiWindowExitVmcs(PVMCPU pVCpu)
7748{
7749 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT);
7750 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT;
7751 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7752 AssertRC(rc);
7753 Log4(("Cleared NMI-window exiting\n"));
7754}
7755
7756
7757/**
7758 * Evaluates the event to be delivered to the guest and sets it as the pending
7759 * event.
7760 *
7761 * @returns The VT-x guest-interruptibility state.
7762 * @param pVCpu The cross context virtual CPU structure.
7763 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7764 * out-of-sync. Make sure to update the required fields
7765 * before using them.
7766 */
7767static uint32_t hmR0VmxEvaluatePendingEvent(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7768{
7769 /* Get the current interruptibility-state of the guest and then figure out what can be injected. */
7770 uint32_t const uIntrState = hmR0VmxGetGuestIntrState(pVCpu, pMixedCtx);
7771 bool const fBlockMovSS = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
7772 bool const fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
7773 bool const fBlockNmi = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI);
7774
7775 Assert(!fBlockSti || HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS));
7776 Assert(!(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
7777 Assert(!fBlockSti || pMixedCtx->eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
7778 Assert(!TRPMHasTrap(pVCpu));
7779
7780 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
7781 APICUpdatePendingInterrupts(pVCpu);
7782
7783 /*
7784 * Toggling of interrupt force-flags here is safe since we update TRPM on premature exits
7785 * to ring-3 before executing guest code, see hmR0VmxExitToRing3(). We must NOT restore these force-flags.
7786 */
7787 /** @todo SMI. SMIs take priority over NMIs. */
7788 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts. */
7789 {
7790 /* On some CPUs block-by-STI also blocks NMIs. See Intel spec. 26.3.1.5 "Checks On Guest Non-Register State". */
7791 if ( !pVCpu->hm.s.Event.fPending
7792 && !fBlockNmi
7793 && !fBlockSti
7794 && !fBlockMovSS)
7795 {
7796 Log4(("Pending NMI vcpu[%RU32]\n", pVCpu->idCpu));
7797 uint32_t u32IntInfo = X86_XCPT_NMI | VMX_EXIT_INTERRUPTION_INFO_VALID;
7798 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7799
7800 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7801 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
7802 }
7803 else
7804 hmR0VmxSetNmiWindowExitVmcs(pVCpu);
7805 }
7806 /*
7807 * Check if the guest can receive external interrupts (PIC/APIC). Once PDMGetInterrupt() returns
7808 * a valid interrupt we must- deliver the interrupt. We can no longer re-request it from the APIC.
7809 */
7810 else if ( VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
7811 && !pVCpu->hm.s.fSingleInstruction)
7812 {
7813 Assert(!DBGFIsStepping(pVCpu));
7814 int rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
7815 AssertRC(rc);
7816 bool const fBlockInt = !(pMixedCtx->eflags.u32 & X86_EFL_IF);
7817 if ( !pVCpu->hm.s.Event.fPending
7818 && !fBlockInt
7819 && !fBlockSti
7820 && !fBlockMovSS)
7821 {
7822 uint8_t u8Interrupt;
7823 rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
7824 if (RT_SUCCESS(rc))
7825 {
7826 Log4(("Pending interrupt vcpu[%RU32] u8Interrupt=%#x \n", pVCpu->idCpu, u8Interrupt));
7827 uint32_t u32IntInfo = u8Interrupt | VMX_EXIT_INTERRUPTION_INFO_VALID;
7828 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7829
7830 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrfaultAddress */);
7831 }
7832 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
7833 {
7834 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
7835 hmR0VmxApicSetTprThreshold(pVCpu, u8Interrupt >> 4);
7836 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
7837
7838 /*
7839 * If the CPU doesn't have TPR shadowing, we will always get a VM-exit on TPR changes and
7840 * APICSetTpr() will end up setting the VMCPU_FF_INTERRUPT_APIC if required, so there is no
7841 * need to re-set this force-flag here.
7842 */
7843 }
7844 else
7845 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
7846 }
7847 else
7848 hmR0VmxSetIntWindowExitVmcs(pVCpu);
7849 }
7850
7851 return uIntrState;
7852}
7853
7854
7855/**
7856 * Sets a pending-debug exception to be delivered to the guest if the guest is
7857 * single-stepping in the VMCS.
7858 *
7859 * @param pVCpu The cross context virtual CPU structure.
7860 */
7861DECLINLINE(void) hmR0VmxSetPendingDebugXcptVmcs(PVMCPU pVCpu)
7862{
7863 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS)); NOREF(pVCpu);
7864 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, VMX_VMCS_GUEST_DEBUG_EXCEPTIONS_BS);
7865 AssertRC(rc);
7866}
7867
7868
7869/**
7870 * Injects any pending events into the guest if the guest is in a state to
7871 * receive them.
7872 *
7873 * @returns Strict VBox status code (i.e. informational status codes too).
7874 * @param pVCpu The cross context virtual CPU structure.
7875 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7876 * out-of-sync. Make sure to update the required fields
7877 * before using them.
7878 * @param uIntrState The VT-x guest-interruptibility state.
7879 * @param fStepping Running in hmR0VmxRunGuestCodeStep() and we should
7880 * return VINF_EM_DBG_STEPPED if the event was
7881 * dispatched directly.
7882 */
7883static VBOXSTRICTRC hmR0VmxInjectPendingEvent(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t uIntrState, bool fStepping)
7884{
7885 HMVMX_ASSERT_PREEMPT_SAFE();
7886 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7887
7888 bool fBlockMovSS = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
7889 bool fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
7890
7891 Assert(!fBlockSti || HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS));
7892 Assert(!(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
7893 Assert(!fBlockSti || pMixedCtx->eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
7894 Assert(!TRPMHasTrap(pVCpu));
7895
7896 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
7897 if (pVCpu->hm.s.Event.fPending)
7898 {
7899 /*
7900 * Do -not- clear any interrupt-window exiting control here. We might have an interrupt
7901 * pending even while injecting an event and in this case, we want a VM-exit as soon as
7902 * the guest is ready for the next interrupt, see @bugref{6208#c45}.
7903 *
7904 * See Intel spec. 26.6.5 "Interrupt-Window Exiting and Virtual-Interrupt Delivery".
7905 */
7906 uint32_t const uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
7907#ifdef VBOX_STRICT
7908 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
7909 {
7910 bool const fBlockInt = !(pMixedCtx->eflags.u32 & X86_EFL_IF);
7911 Assert(!fBlockInt);
7912 Assert(!fBlockSti);
7913 Assert(!fBlockMovSS);
7914 }
7915 else if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
7916 {
7917 bool const fBlockNmi = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI);
7918 Assert(!fBlockSti);
7919 Assert(!fBlockMovSS);
7920 Assert(!fBlockNmi);
7921 }
7922#endif
7923 Log4(("Injecting pending event vcpu[%RU32] u64IntInfo=%#RX64 Type=%#x\n", pVCpu->idCpu, pVCpu->hm.s.Event.u64IntInfo,
7924 (uint8_t)uIntType));
7925 rcStrict = hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, pVCpu->hm.s.Event.u64IntInfo, pVCpu->hm.s.Event.cbInstr,
7926 pVCpu->hm.s.Event.u32ErrCode, pVCpu->hm.s.Event.GCPtrFaultAddress,
7927 fStepping, &uIntrState);
7928 AssertRCReturn(VBOXSTRICTRC_VAL(rcStrict), rcStrict);
7929
7930 /* Update the interruptibility-state as it could have been changed by
7931 hmR0VmxInjectEventVmcs() (e.g. real-on-v86 guest injecting software interrupts) */
7932 fBlockMovSS = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
7933 fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
7934
7935 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
7936 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
7937 else
7938 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
7939 }
7940
7941 /* Deliver pending debug exception if the guest is single-stepping. Evaluate and set the BS bit. */
7942 if ( fBlockSti
7943 || fBlockMovSS)
7944 {
7945 if (!pVCpu->hm.s.fSingleInstruction)
7946 {
7947 /*
7948 * The pending-debug exceptions field is cleared on all VM-exits except VMX_EXIT_TPR_BELOW_THRESHOLD,
7949 * VMX_EXIT_MTF, VMX_EXIT_APIC_WRITE and VMX_EXIT_VIRTUALIZED_EOI.
7950 * See Intel spec. 27.3.4 "Saving Non-Register State".
7951 */
7952 Assert(!DBGFIsStepping(pVCpu));
7953 int rc2 = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
7954 AssertRCReturn(rc2, rc2);
7955 if (pMixedCtx->eflags.Bits.u1TF)
7956 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
7957 }
7958 else if (pMixedCtx->eflags.Bits.u1TF)
7959 {
7960 /*
7961 * We are single-stepping in the hypervisor debugger using EFLAGS.TF. Clear interrupt inhibition as setting the
7962 * BS bit would mean delivering a #DB to the guest upon VM-entry when it shouldn't be.
7963 */
7964 Assert(!(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG));
7965 uIntrState = 0;
7966 }
7967 }
7968
7969 /*
7970 * There's no need to clear the VM-entry interruption-information field here if we're not injecting anything.
7971 * VT-x clears the valid bit on every VM-exit. See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
7972 */
7973 int rc2 = hmR0VmxLoadGuestIntrState(pVCpu, uIntrState);
7974 AssertRC(rc2);
7975
7976 Assert(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping));
7977 NOREF(fBlockMovSS); NOREF(fBlockSti);
7978 return rcStrict;
7979}
7980
7981
7982/**
7983 * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
7984 *
7985 * @param pVCpu The cross context virtual CPU structure.
7986 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7987 * out-of-sync. Make sure to update the required fields
7988 * before using them.
7989 */
7990DECLINLINE(void) hmR0VmxSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7991{
7992 NOREF(pMixedCtx);
7993 uint32_t u32IntInfo = X86_XCPT_UD | VMX_EXIT_INTERRUPTION_INFO_VALID;
7994 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7995}
7996
7997
7998/**
7999 * Injects a double-fault (\#DF) exception into the VM.
8000 *
8001 * @returns Strict VBox status code (i.e. informational status codes too).
8002 * @param pVCpu The cross context virtual CPU structure.
8003 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8004 * out-of-sync. Make sure to update the required fields
8005 * before using them.
8006 * @param fStepping Whether we're running in hmR0VmxRunGuestCodeStep()
8007 * and should return VINF_EM_DBG_STEPPED if the event
8008 * is injected directly (register modified by us, not
8009 * by hardware on VM-entry).
8010 * @param puIntrState Pointer to the current guest interruptibility-state.
8011 * This interruptibility-state will be updated if
8012 * necessary. This cannot not be NULL.
8013 */
8014DECLINLINE(VBOXSTRICTRC) hmR0VmxInjectXcptDF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fStepping, uint32_t *puIntrState)
8015{
8016 uint32_t u32IntInfo = X86_XCPT_DF | VMX_EXIT_INTERRUPTION_INFO_VALID;
8017 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
8018 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
8019 return hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */,
8020 fStepping, puIntrState);
8021}
8022
8023
8024/**
8025 * Sets a debug (\#DB) exception as pending-for-injection into the VM.
8026 *
8027 * @param pVCpu The cross context virtual CPU structure.
8028 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8029 * out-of-sync. Make sure to update the required fields
8030 * before using them.
8031 */
8032DECLINLINE(void) hmR0VmxSetPendingXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
8033{
8034 NOREF(pMixedCtx);
8035 uint32_t u32IntInfo = X86_XCPT_DB | VMX_EXIT_INTERRUPTION_INFO_VALID;
8036 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
8037 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
8038}
8039
8040
8041/**
8042 * Sets an overflow (\#OF) exception as pending-for-injection into the VM.
8043 *
8044 * @param pVCpu The cross context virtual CPU structure.
8045 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8046 * out-of-sync. Make sure to update the required fields
8047 * before using them.
8048 * @param cbInstr The value of RIP that is to be pushed on the guest
8049 * stack.
8050 */
8051DECLINLINE(void) hmR0VmxSetPendingXcptOF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t cbInstr)
8052{
8053 NOREF(pMixedCtx);
8054 uint32_t u32IntInfo = X86_XCPT_OF | VMX_EXIT_INTERRUPTION_INFO_VALID;
8055 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
8056 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
8057}
8058
8059
8060/**
8061 * Injects a general-protection (\#GP) fault into the VM.
8062 *
8063 * @returns Strict VBox status code (i.e. informational status codes too).
8064 * @param pVCpu The cross context virtual CPU structure.
8065 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8066 * out-of-sync. Make sure to update the required fields
8067 * before using them.
8068 * @param fErrorCodeValid Whether the error code is valid (depends on the CPU
8069 * mode, i.e. in real-mode it's not valid).
8070 * @param u32ErrorCode The error code associated with the \#GP.
8071 * @param fStepping Whether we're running in
8072 * hmR0VmxRunGuestCodeStep() and should return
8073 * VINF_EM_DBG_STEPPED if the event is injected
8074 * directly (register modified by us, not by
8075 * hardware on VM-entry).
8076 * @param puIntrState Pointer to the current guest interruptibility-state.
8077 * This interruptibility-state will be updated if
8078 * necessary. This cannot not be NULL.
8079 */
8080DECLINLINE(VBOXSTRICTRC) hmR0VmxInjectXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fErrorCodeValid, uint32_t u32ErrorCode,
8081 bool fStepping, uint32_t *puIntrState)
8082{
8083 uint32_t u32IntInfo = X86_XCPT_GP | VMX_EXIT_INTERRUPTION_INFO_VALID;
8084 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
8085 if (fErrorCodeValid)
8086 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
8087 return hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, u32IntInfo, 0 /* cbInstr */, u32ErrorCode, 0 /* GCPtrFaultAddress */,
8088 fStepping, puIntrState);
8089}
8090
8091
8092#if 0 /* unused */
8093/**
8094 * Sets a general-protection (\#GP) exception as pending-for-injection into the
8095 * VM.
8096 *
8097 * @param pVCpu The cross context virtual CPU structure.
8098 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8099 * out-of-sync. Make sure to update the required fields
8100 * before using them.
8101 * @param u32ErrorCode The error code associated with the \#GP.
8102 */
8103DECLINLINE(void) hmR0VmxSetPendingXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t u32ErrorCode)
8104{
8105 NOREF(pMixedCtx);
8106 uint32_t u32IntInfo = X86_XCPT_GP | VMX_EXIT_INTERRUPTION_INFO_VALID;
8107 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
8108 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
8109 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrorCode, 0 /* GCPtrFaultAddress */);
8110}
8111#endif /* unused */
8112
8113
8114/**
8115 * Sets a software interrupt (INTn) as pending-for-injection into the VM.
8116 *
8117 * @param pVCpu The cross context virtual CPU structure.
8118 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8119 * out-of-sync. Make sure to update the required fields
8120 * before using them.
8121 * @param uVector The software interrupt vector number.
8122 * @param cbInstr The value of RIP that is to be pushed on the guest
8123 * stack.
8124 */
8125DECLINLINE(void) hmR0VmxSetPendingIntN(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint16_t uVector, uint32_t cbInstr)
8126{
8127 NOREF(pMixedCtx);
8128 uint32_t u32IntInfo = uVector | VMX_EXIT_INTERRUPTION_INFO_VALID;
8129 if ( uVector == X86_XCPT_BP
8130 || uVector == X86_XCPT_OF)
8131 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
8132 else
8133 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
8134 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
8135}
8136
8137
8138/**
8139 * Pushes a 2-byte value onto the real-mode (in virtual-8086 mode) guest's
8140 * stack.
8141 *
8142 * @returns Strict VBox status code (i.e. informational status codes too).
8143 * @retval VINF_EM_RESET if pushing a value to the stack caused a triple-fault.
8144 * @param pVM The cross context VM structure.
8145 * @param pMixedCtx Pointer to the guest-CPU context.
8146 * @param uValue The value to push to the guest stack.
8147 */
8148DECLINLINE(VBOXSTRICTRC) hmR0VmxRealModeGuestStackPush(PVM pVM, PCPUMCTX pMixedCtx, uint16_t uValue)
8149{
8150 /*
8151 * The stack limit is 0xffff in real-on-virtual 8086 mode. Real-mode with weird stack limits cannot be run in
8152 * virtual 8086 mode in VT-x. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
8153 * See Intel Instruction reference for PUSH and Intel spec. 22.33.1 "Segment Wraparound".
8154 */
8155 if (pMixedCtx->sp == 1)
8156 return VINF_EM_RESET;
8157 pMixedCtx->sp -= sizeof(uint16_t); /* May wrap around which is expected behaviour. */
8158 int rc = PGMPhysSimpleWriteGCPhys(pVM, pMixedCtx->ss.u64Base + pMixedCtx->sp, &uValue, sizeof(uint16_t));
8159 AssertRC(rc);
8160 return rc;
8161}
8162
8163
8164/**
8165 * Injects an event into the guest upon VM-entry by updating the relevant fields
8166 * in the VM-entry area in the VMCS.
8167 *
8168 * @returns Strict VBox status code (i.e. informational status codes too).
8169 * @retval VINF_SUCCESS if the event is successfully injected into the VMCS.
8170 * @retval VINF_EM_RESET if event injection resulted in a triple-fault.
8171 *
8172 * @param pVCpu The cross context virtual CPU structure.
8173 * @param pMixedCtx Pointer to the guest-CPU context. The data may
8174 * be out-of-sync. Make sure to update the required
8175 * fields before using them.
8176 * @param u64IntInfo The VM-entry interruption-information field.
8177 * @param cbInstr The VM-entry instruction length in bytes (for
8178 * software interrupts, exceptions and privileged
8179 * software exceptions).
8180 * @param u32ErrCode The VM-entry exception error code.
8181 * @param GCPtrFaultAddress The page-fault address for \#PF exceptions.
8182 * @param puIntrState Pointer to the current guest interruptibility-state.
8183 * This interruptibility-state will be updated if
8184 * necessary. This cannot not be NULL.
8185 * @param fStepping Whether we're running in
8186 * hmR0VmxRunGuestCodeStep() and should return
8187 * VINF_EM_DBG_STEPPED if the event is injected
8188 * directly (register modified by us, not by
8189 * hardware on VM-entry).
8190 *
8191 * @remarks Requires CR0!
8192 */
8193static VBOXSTRICTRC hmR0VmxInjectEventVmcs(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint64_t u64IntInfo, uint32_t cbInstr,
8194 uint32_t u32ErrCode, RTGCUINTREG GCPtrFaultAddress, bool fStepping,
8195 uint32_t *puIntrState)
8196{
8197 /* Intel spec. 24.8.3 "VM-Entry Controls for Event Injection" specifies the interruption-information field to be 32-bits. */
8198 AssertMsg(u64IntInfo >> 32 == 0, ("%#RX64\n", u64IntInfo));
8199 Assert(puIntrState);
8200 uint32_t u32IntInfo = (uint32_t)u64IntInfo;
8201
8202 uint32_t const uVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(u32IntInfo);
8203 uint32_t const uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(u32IntInfo);
8204
8205#ifdef VBOX_STRICT
8206 /* Validate the error-code-valid bit for hardware exceptions. */
8207 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT)
8208 {
8209 switch (uVector)
8210 {
8211 case X86_XCPT_PF:
8212 case X86_XCPT_DF:
8213 case X86_XCPT_TS:
8214 case X86_XCPT_NP:
8215 case X86_XCPT_SS:
8216 case X86_XCPT_GP:
8217 case X86_XCPT_AC:
8218 AssertMsg(VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(u32IntInfo),
8219 ("Error-code-valid bit not set for exception that has an error code uVector=%#x\n", uVector));
8220 /* fall thru */
8221 default:
8222 break;
8223 }
8224 }
8225#endif
8226
8227 /* Cannot inject an NMI when block-by-MOV SS is in effect. */
8228 Assert( uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI
8229 || !(*puIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS));
8230
8231 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[uVector & MASK_INJECT_IRQ_STAT]);
8232
8233 /* We require CR0 to check if the guest is in real-mode. */
8234 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
8235 AssertRCReturn(rc, rc);
8236
8237 /*
8238 * Hardware interrupts & exceptions cannot be delivered through the software interrupt redirection bitmap to the real
8239 * mode task in virtual-8086 mode. We must jump to the interrupt handler in the (real-mode) guest.
8240 * See Intel spec. 20.3 "Interrupt and Exception handling in Virtual-8086 Mode" for interrupt & exception classes.
8241 * See Intel spec. 20.1.4 "Interrupt and Exception Handling" for real-mode interrupt handling.
8242 */
8243 if (CPUMIsGuestInRealModeEx(pMixedCtx))
8244 {
8245 PVM pVM = pVCpu->CTX_SUFF(pVM);
8246 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
8247 {
8248 Assert(PDMVmmDevHeapIsEnabled(pVM));
8249 Assert(pVM->hm.s.vmx.pRealModeTSS);
8250
8251 /* We require RIP, RSP, RFLAGS, CS, IDTR. Save the required ones from the VMCS. */
8252 rc = hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
8253 rc |= hmR0VmxSaveGuestTableRegs(pVCpu, pMixedCtx);
8254 rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
8255 AssertRCReturn(rc, rc);
8256 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RIP));
8257
8258 /* Check if the interrupt handler is present in the IVT (real-mode IDT). IDT limit is (4N - 1). */
8259 size_t const cbIdtEntry = sizeof(X86IDTR16);
8260 if (uVector * cbIdtEntry + (cbIdtEntry - 1) > pMixedCtx->idtr.cbIdt)
8261 {
8262 /* If we are trying to inject a #DF with no valid IDT entry, return a triple-fault. */
8263 if (uVector == X86_XCPT_DF)
8264 return VINF_EM_RESET;
8265
8266 /* If we're injecting a #GP with no valid IDT entry, inject a double-fault. */
8267 if (uVector == X86_XCPT_GP)
8268 return hmR0VmxInjectXcptDF(pVCpu, pMixedCtx, fStepping, puIntrState);
8269
8270 /* If we're injecting an interrupt/exception with no valid IDT entry, inject a general-protection fault. */
8271 /* No error codes for exceptions in real-mode. See Intel spec. 20.1.4 "Interrupt and Exception Handling" */
8272 return hmR0VmxInjectXcptGP(pVCpu, pMixedCtx, false /* fErrCodeValid */, 0 /* u32ErrCode */,
8273 fStepping, puIntrState);
8274 }
8275
8276 /* Software exceptions (#BP and #OF exceptions thrown as a result of INT3 or INTO) */
8277 uint16_t uGuestIp = pMixedCtx->ip;
8278 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT)
8279 {
8280 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF);
8281 /* #BP and #OF are both benign traps, we need to resume the next instruction. */
8282 uGuestIp = pMixedCtx->ip + (uint16_t)cbInstr;
8283 }
8284 else if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT)
8285 uGuestIp = pMixedCtx->ip + (uint16_t)cbInstr;
8286
8287 /* Get the code segment selector and offset from the IDT entry for the interrupt handler. */
8288 X86IDTR16 IdtEntry;
8289 RTGCPHYS GCPhysIdtEntry = (RTGCPHYS)pMixedCtx->idtr.pIdt + uVector * cbIdtEntry;
8290 rc = PGMPhysSimpleReadGCPhys(pVM, &IdtEntry, GCPhysIdtEntry, cbIdtEntry);
8291 AssertRCReturn(rc, rc);
8292
8293 /* Construct the stack frame for the interrupt/exception handler. */
8294 VBOXSTRICTRC rcStrict;
8295 rcStrict = hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, pMixedCtx->eflags.u32);
8296 if (rcStrict == VINF_SUCCESS)
8297 rcStrict = hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, pMixedCtx->cs.Sel);
8298 if (rcStrict == VINF_SUCCESS)
8299 rcStrict = hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, uGuestIp);
8300
8301 /* Clear the required eflag bits and jump to the interrupt/exception handler. */
8302 if (rcStrict == VINF_SUCCESS)
8303 {
8304 pMixedCtx->eflags.u32 &= ~(X86_EFL_IF | X86_EFL_TF | X86_EFL_RF | X86_EFL_AC);
8305 pMixedCtx->rip = IdtEntry.offSel;
8306 pMixedCtx->cs.Sel = IdtEntry.uSel;
8307 pMixedCtx->cs.ValidSel = IdtEntry.uSel;
8308 pMixedCtx->cs.u64Base = IdtEntry.uSel << cbIdtEntry;
8309 if ( uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT
8310 && uVector == X86_XCPT_PF)
8311 pMixedCtx->cr2 = GCPtrFaultAddress;
8312
8313 /* If any other guest-state bits are changed here, make sure to update
8314 hmR0VmxPreRunGuestCommitted() when thread-context hooks are used. */
8315 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS
8316 | HM_CHANGED_GUEST_RIP
8317 | HM_CHANGED_GUEST_RFLAGS
8318 | HM_CHANGED_GUEST_RSP);
8319
8320 /* We're clearing interrupts, which means no block-by-STI interrupt-inhibition. */
8321 if (*puIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
8322 {
8323 Assert( uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI
8324 && uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT);
8325 Log4(("Clearing inhibition due to STI.\n"));
8326 *puIntrState &= ~VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI;
8327 }
8328 Log4(("Injecting real-mode: u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x Eflags=%#x CS:EIP=%04x:%04x\n",
8329 u32IntInfo, u32ErrCode, cbInstr, pMixedCtx->eflags.u, pMixedCtx->cs.Sel, pMixedCtx->eip));
8330
8331 /* The event has been truly dispatched. Mark it as no longer pending so we don't attempt to 'undo'
8332 it, if we are returning to ring-3 before executing guest code. */
8333 pVCpu->hm.s.Event.fPending = false;
8334
8335 /* Make hmR0VmxPreRunGuest return if we're stepping since we've changed cs:rip. */
8336 if (fStepping)
8337 rcStrict = VINF_EM_DBG_STEPPED;
8338 }
8339 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
8340 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8341 return rcStrict;
8342 }
8343
8344 /*
8345 * For unrestricted execution enabled CPUs running real-mode guests, we must not set the deliver-error-code bit.
8346 * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
8347 */
8348 u32IntInfo &= ~VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
8349 }
8350
8351 /* Validate. */
8352 Assert(VMX_EXIT_INTERRUPTION_INFO_IS_VALID(u32IntInfo)); /* Bit 31 (Valid bit) must be set by caller. */
8353 Assert(!VMX_EXIT_INTERRUPTION_INFO_NMI_UNBLOCK_IRET(u32IntInfo)); /* Bit 12 MBZ. */
8354 Assert(!(u32IntInfo & 0x7ffff000)); /* Bits 30:12 MBZ. */
8355
8356 /* Inject. */
8357 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, u32IntInfo);
8358 if (VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(u32IntInfo))
8359 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, u32ErrCode);
8360 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, cbInstr);
8361
8362 if ( VMX_EXIT_INTERRUPTION_INFO_TYPE(u32IntInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT
8363 && uVector == X86_XCPT_PF)
8364 pMixedCtx->cr2 = GCPtrFaultAddress;
8365
8366 Log4(("Injecting vcpu[%RU32] u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x pMixedCtx->uCR2=%#RX64\n", pVCpu->idCpu,
8367 u32IntInfo, u32ErrCode, cbInstr, pMixedCtx->cr2));
8368
8369 AssertRCReturn(rc, rc);
8370 return VINF_SUCCESS;
8371}
8372
8373
8374/**
8375 * Clears the interrupt-window exiting control in the VMCS and if necessary
8376 * clears the current event in the VMCS as well.
8377 *
8378 * @returns VBox status code.
8379 * @param pVCpu The cross context virtual CPU structure.
8380 *
8381 * @remarks Use this function only to clear events that have not yet been
8382 * delivered to the guest but are injected in the VMCS!
8383 * @remarks No-long-jump zone!!!
8384 */
8385static void hmR0VmxClearIntNmiWindowsVmcs(PVMCPU pVCpu)
8386{
8387 Log4Func(("vcpu[%d]\n", pVCpu->idCpu));
8388
8389 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT)
8390 hmR0VmxClearIntWindowExitVmcs(pVCpu);
8391
8392 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT)
8393 hmR0VmxClearNmiWindowExitVmcs(pVCpu);
8394}
8395
8396
8397/**
8398 * Enters the VT-x session.
8399 *
8400 * @returns VBox status code.
8401 * @param pVM The cross context VM structure.
8402 * @param pVCpu The cross context virtual CPU structure.
8403 * @param pCpu Pointer to the CPU info struct.
8404 */
8405VMMR0DECL(int) VMXR0Enter(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
8406{
8407 AssertPtr(pVM);
8408 AssertPtr(pVCpu);
8409 Assert(pVM->hm.s.vmx.fSupported);
8410 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8411 NOREF(pCpu); NOREF(pVM);
8412
8413 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
8414 Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
8415
8416#ifdef VBOX_STRICT
8417 /* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
8418 RTCCUINTREG uHostCR4 = ASMGetCR4();
8419 if (!(uHostCR4 & X86_CR4_VMXE))
8420 {
8421 LogRel(("VMXR0Enter: X86_CR4_VMXE bit in CR4 is not set!\n"));
8422 return VERR_VMX_X86_CR4_VMXE_CLEARED;
8423 }
8424#endif
8425
8426 /*
8427 * Load the VCPU's VMCS as the current (and active) one.
8428 */
8429 Assert(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_CLEAR);
8430 int rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
8431 if (RT_FAILURE(rc))
8432 return rc;
8433
8434 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
8435 pVCpu->hm.s.fLeaveDone = false;
8436 Log4Func(("Activated Vmcs. HostCpuId=%u\n", RTMpCpuId()));
8437
8438 return VINF_SUCCESS;
8439}
8440
8441
8442/**
8443 * The thread-context callback (only on platforms which support it).
8444 *
8445 * @param enmEvent The thread-context event.
8446 * @param pVCpu The cross context virtual CPU structure.
8447 * @param fGlobalInit Whether global VT-x/AMD-V init. was used.
8448 * @thread EMT(pVCpu)
8449 */
8450VMMR0DECL(void) VMXR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
8451{
8452 NOREF(fGlobalInit);
8453
8454 switch (enmEvent)
8455 {
8456 case RTTHREADCTXEVENT_OUT:
8457 {
8458 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8459 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
8460 VMCPU_ASSERT_EMT(pVCpu);
8461
8462 PCPUMCTX pMixedCtx = CPUMQueryGuestCtxPtr(pVCpu);
8463
8464 /* No longjmps (logger flushes, locks) in this fragile context. */
8465 VMMRZCallRing3Disable(pVCpu);
8466 Log4Func(("Preempting: HostCpuId=%u\n", RTMpCpuId()));
8467
8468 /*
8469 * Restore host-state (FPU, debug etc.)
8470 */
8471 if (!pVCpu->hm.s.fLeaveDone)
8472 {
8473 /* Do -not- save guest-state here as we might already be in the middle of saving it (esp. bad if we are
8474 holding the PGM lock while saving the guest state (see hmR0VmxSaveGuestControlRegs()). */
8475 hmR0VmxLeave(pVCpu, pMixedCtx, false /* fSaveGuestState */);
8476 pVCpu->hm.s.fLeaveDone = true;
8477 }
8478
8479 /* Leave HM context, takes care of local init (term). */
8480 int rc = HMR0LeaveCpu(pVCpu);
8481 AssertRC(rc); NOREF(rc);
8482
8483 /* Restore longjmp state. */
8484 VMMRZCallRing3Enable(pVCpu);
8485 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
8486 break;
8487 }
8488
8489 case RTTHREADCTXEVENT_IN:
8490 {
8491 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8492 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
8493 VMCPU_ASSERT_EMT(pVCpu);
8494
8495 /* No longjmps here, as we don't want to trigger preemption (& its hook) while resuming. */
8496 VMMRZCallRing3Disable(pVCpu);
8497 Log4Func(("Resumed: HostCpuId=%u\n", RTMpCpuId()));
8498
8499 /* Initialize the bare minimum state required for HM. This takes care of
8500 initializing VT-x if necessary (onlined CPUs, local init etc.) */
8501 int rc = HMR0EnterCpu(pVCpu);
8502 AssertRC(rc);
8503 Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
8504
8505 /* Load the active VMCS as the current one. */
8506 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_CLEAR)
8507 {
8508 rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
8509 AssertRC(rc); NOREF(rc);
8510 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
8511 Log4Func(("Resumed: Activated Vmcs. HostCpuId=%u\n", RTMpCpuId()));
8512 }
8513 pVCpu->hm.s.fLeaveDone = false;
8514
8515 /* Restore longjmp state. */
8516 VMMRZCallRing3Enable(pVCpu);
8517 break;
8518 }
8519
8520 default:
8521 break;
8522 }
8523}
8524
8525
8526/**
8527 * Saves the host state in the VMCS host-state.
8528 * Sets up the VM-exit MSR-load area.
8529 *
8530 * The CPU state will be loaded from these fields on every successful VM-exit.
8531 *
8532 * @returns VBox status code.
8533 * @param pVM The cross context VM structure.
8534 * @param pVCpu The cross context virtual CPU structure.
8535 *
8536 * @remarks No-long-jump zone!!!
8537 */
8538static int hmR0VmxSaveHostState(PVM pVM, PVMCPU pVCpu)
8539{
8540 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8541
8542 int rc = VINF_SUCCESS;
8543 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_CONTEXT))
8544 {
8545 rc = hmR0VmxSaveHostControlRegs(pVM, pVCpu);
8546 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostControlRegisters failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8547
8548 rc = hmR0VmxSaveHostSegmentRegs(pVM, pVCpu);
8549 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostSegmentRegisters failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8550
8551 rc = hmR0VmxSaveHostMsrs(pVM, pVCpu);
8552 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostMsrs failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8553
8554 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_HOST_CONTEXT);
8555 }
8556 return rc;
8557}
8558
8559
8560/**
8561 * Saves the host state in the VMCS host-state.
8562 *
8563 * @returns VBox status code.
8564 * @param pVM The cross context VM structure.
8565 * @param pVCpu The cross context virtual CPU structure.
8566 *
8567 * @remarks No-long-jump zone!!!
8568 */
8569VMMR0DECL(int) VMXR0SaveHostState(PVM pVM, PVMCPU pVCpu)
8570{
8571 AssertPtr(pVM);
8572 AssertPtr(pVCpu);
8573
8574 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
8575
8576 /* Save the host state here while entering HM context. When thread-context hooks are used, we might get preempted
8577 and have to resave the host state but most of the time we won't be, so do it here before we disable interrupts. */
8578 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8579 return hmR0VmxSaveHostState(pVM, pVCpu);
8580}
8581
8582
8583/**
8584 * Loads the guest state into the VMCS guest-state area.
8585 *
8586 * The will typically be done before VM-entry when the guest-CPU state and the
8587 * VMCS state may potentially be out of sync.
8588 *
8589 * Sets up the VM-entry MSR-load and VM-exit MSR-store areas. Sets up the
8590 * VM-entry controls.
8591 * Sets up the appropriate VMX non-root function to execute guest code based on
8592 * the guest CPU mode.
8593 *
8594 * @returns VBox strict status code.
8595 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
8596 * without unrestricted guest access and the VMMDev is not presently
8597 * mapped (e.g. EFI32).
8598 *
8599 * @param pVM The cross context VM structure.
8600 * @param pVCpu The cross context virtual CPU structure.
8601 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8602 * out-of-sync. Make sure to update the required fields
8603 * before using them.
8604 *
8605 * @remarks No-long-jump zone!!!
8606 */
8607static VBOXSTRICTRC hmR0VmxLoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
8608{
8609 AssertPtr(pVM);
8610 AssertPtr(pVCpu);
8611 AssertPtr(pMixedCtx);
8612 HMVMX_ASSERT_PREEMPT_SAFE();
8613
8614 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
8615
8616 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestState, x);
8617
8618 /* Determine real-on-v86 mode. */
8619 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = false;
8620 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
8621 && CPUMIsGuestInRealModeEx(pMixedCtx))
8622 {
8623 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = true;
8624 }
8625
8626 /*
8627 * Load the guest-state into the VMCS.
8628 * Any ordering dependency among the sub-functions below must be explicitly stated using comments.
8629 * Ideally, assert that the cross-dependent bits are up-to-date at the point of using it.
8630 */
8631 int rc = hmR0VmxSetupVMRunHandler(pVCpu, pMixedCtx);
8632 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSetupVMRunHandler! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8633
8634 /* This needs to be done after hmR0VmxSetupVMRunHandler() as changing pfnStartVM may require VM-entry control updates. */
8635 rc = hmR0VmxLoadGuestEntryCtls(pVCpu, pMixedCtx);
8636 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestEntryCtls! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8637
8638 /* This needs to be done after hmR0VmxSetupVMRunHandler() as changing pfnStartVM may require VM-exit control updates. */
8639 rc = hmR0VmxLoadGuestExitCtls(pVCpu, pMixedCtx);
8640 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSetupExitCtls failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8641
8642 rc = hmR0VmxLoadGuestActivityState(pVCpu, pMixedCtx);
8643 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestActivityState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8644
8645 VBOXSTRICTRC rcStrict = hmR0VmxLoadGuestCR3AndCR4(pVCpu, pMixedCtx);
8646 if (rcStrict == VINF_SUCCESS)
8647 { /* likely */ }
8648 else
8649 {
8650 Assert(rcStrict == VINF_EM_RESCHEDULE_REM || RT_FAILURE_NP(rcStrict));
8651 return rcStrict;
8652 }
8653
8654 /* Assumes pMixedCtx->cr0 is up-to-date (strict builds require CR0 for segment register validation checks). */
8655 rc = hmR0VmxLoadGuestSegmentRegs(pVCpu, pMixedCtx);
8656 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestSegmentRegs: rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8657
8658 /* This needs to be done after hmR0VmxLoadGuestEntryCtls() and hmR0VmxLoadGuestExitCtls() as it may alter controls if we
8659 determine we don't have to swap EFER after all. */
8660 rc = hmR0VmxLoadGuestMsrs(pVCpu, pMixedCtx);
8661 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestMsrs! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8662
8663 rc = hmR0VmxLoadGuestApicState(pVCpu, pMixedCtx);
8664 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestApicState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8665
8666 rc = hmR0VmxLoadGuestXcptIntercepts(pVCpu, pMixedCtx);
8667 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestXcptIntercepts! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8668
8669 /*
8670 * Loading Rflags here is fine, even though Rflags.TF might depend on guest debug state (which is not loaded here).
8671 * It is re-evaluated and updated if necessary in hmR0VmxLoadSharedState().
8672 */
8673 rc = hmR0VmxLoadGuestRipRspRflags(pVCpu, pMixedCtx);
8674 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestRipRspRflags! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8675
8676 /* Clear any unused and reserved bits. */
8677 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR2);
8678
8679 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestState, x);
8680 return rc;
8681}
8682
8683
8684/**
8685 * Loads the state shared between the host and guest into the VMCS.
8686 *
8687 * @param pVM The cross context VM structure.
8688 * @param pVCpu The cross context virtual CPU structure.
8689 * @param pCtx Pointer to the guest-CPU context.
8690 *
8691 * @remarks No-long-jump zone!!!
8692 */
8693static void hmR0VmxLoadSharedState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
8694{
8695 NOREF(pVM);
8696
8697 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8698 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8699
8700 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0))
8701 {
8702 int rc = hmR0VmxLoadSharedCR0(pVCpu, pCtx);
8703 AssertRC(rc);
8704 }
8705
8706 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_DEBUG))
8707 {
8708 int rc = hmR0VmxLoadSharedDebugState(pVCpu, pCtx);
8709 AssertRC(rc);
8710
8711 /* Loading shared debug bits might have changed eflags.TF bit for debugging purposes. */
8712 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RFLAGS))
8713 {
8714 rc = hmR0VmxLoadGuestRflags(pVCpu, pCtx);
8715 AssertRC(rc);
8716 }
8717 }
8718
8719 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS))
8720 {
8721 hmR0VmxLazyLoadGuestMsrs(pVCpu, pCtx);
8722 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS);
8723 }
8724
8725 /* Loading CR0, debug state might have changed intercepts, update VMCS. */
8726 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS))
8727 {
8728 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_AC));
8729 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_DB));
8730 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
8731 AssertRC(rc);
8732 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS);
8733 }
8734
8735 AssertMsg(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE),
8736 ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
8737}
8738
8739
8740/**
8741 * Worker for loading the guest-state bits in the inner VT-x execution loop.
8742 *
8743 * @returns Strict VBox status code (i.e. informational status codes too).
8744 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
8745 * without unrestricted guest access and the VMMDev is not presently
8746 * mapped (e.g. EFI32).
8747 *
8748 * @param pVM The cross context VM structure.
8749 * @param pVCpu The cross context virtual CPU structure.
8750 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8751 * out-of-sync. Make sure to update the required fields
8752 * before using them.
8753 *
8754 * @remarks No-long-jump zone!!!
8755 */
8756static VBOXSTRICTRC hmR0VmxLoadGuestStateOptimal(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
8757{
8758 HMVMX_ASSERT_PREEMPT_SAFE();
8759 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8760 Assert(VMMR0IsLogFlushDisabled(pVCpu));
8761
8762 Log5(("LoadFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
8763#ifdef HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
8764 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
8765#endif
8766
8767 /*
8768 * RIP is what changes the most often and hence if it's the only bit needing to be
8769 * updated, we shall handle it early for performance reasons.
8770 */
8771 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
8772 if (HMCPU_CF_IS_SET_ONLY(pVCpu, HM_CHANGED_GUEST_RIP))
8773 {
8774 rcStrict = hmR0VmxLoadGuestRip(pVCpu, pMixedCtx);
8775 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8776 { /* likely */}
8777 else
8778 {
8779 AssertMsgFailedReturn(("hmR0VmxLoadGuestStateOptimal: hmR0VmxLoadGuestRip failed! rc=%Rrc\n",
8780 VBOXSTRICTRC_VAL(rcStrict)), rcStrict);
8781 }
8782 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadMinimal);
8783 }
8784 else if (HMCPU_CF_VALUE(pVCpu))
8785 {
8786 rcStrict = hmR0VmxLoadGuestState(pVM, pVCpu, pMixedCtx);
8787 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8788 { /* likely */}
8789 else
8790 {
8791 AssertMsg(rcStrict == VINF_EM_RESCHEDULE_REM,
8792 ("hmR0VmxLoadGuestStateOptimal: hmR0VmxLoadGuestState failed! rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8793 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8794 return rcStrict;
8795 }
8796 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadFull);
8797 }
8798
8799 /* All the guest state bits should be loaded except maybe the host context and/or the shared host/guest bits. */
8800 AssertMsg( !HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_ALL_GUEST)
8801 || HMCPU_CF_IS_PENDING_ONLY(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE),
8802 ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
8803 return rcStrict;
8804}
8805
8806
8807/**
8808 * Does the preparations before executing guest code in VT-x.
8809 *
8810 * This may cause longjmps to ring-3 and may even result in rescheduling to the
8811 * recompiler/IEM. We must be cautious what we do here regarding committing
8812 * guest-state information into the VMCS assuming we assuredly execute the
8813 * guest in VT-x mode.
8814 *
8815 * If we fall back to the recompiler/IEM after updating the VMCS and clearing
8816 * the common-state (TRPM/forceflags), we must undo those changes so that the
8817 * recompiler/IEM can (and should) use them when it resumes guest execution.
8818 * Otherwise such operations must be done when we can no longer exit to ring-3.
8819 *
8820 * @returns Strict VBox status code (i.e. informational status codes too).
8821 * @retval VINF_SUCCESS if we can proceed with running the guest, interrupts
8822 * have been disabled.
8823 * @retval VINF_EM_RESET if a triple-fault occurs while injecting a
8824 * double-fault into the guest.
8825 * @retval VINF_EM_DBG_STEPPED if @a fStepping is true and an event was
8826 * dispatched directly.
8827 * @retval VINF_* scheduling changes, we have to go back to ring-3.
8828 *
8829 * @param pVM The cross context VM structure.
8830 * @param pVCpu The cross context virtual CPU structure.
8831 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8832 * out-of-sync. Make sure to update the required fields
8833 * before using them.
8834 * @param pVmxTransient Pointer to the VMX transient structure.
8835 * @param fStepping Set if called from hmR0VmxRunGuestCodeStep(). Makes
8836 * us ignore some of the reasons for returning to
8837 * ring-3, and return VINF_EM_DBG_STEPPED if event
8838 * dispatching took place.
8839 */
8840static VBOXSTRICTRC hmR0VmxPreRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, bool fStepping)
8841{
8842 Assert(VMMRZCallRing3IsEnabled(pVCpu));
8843
8844#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
8845 PGMRZDynMapFlushAutoSet(pVCpu);
8846#endif
8847
8848 /* Check force flag actions that might require us to go back to ring-3. */
8849 VBOXSTRICTRC rcStrict = hmR0VmxCheckForceFlags(pVM, pVCpu, pMixedCtx, fStepping);
8850 if (rcStrict == VINF_SUCCESS)
8851 { /* FFs doesn't get set all the time. */ }
8852 else
8853 return rcStrict;
8854
8855#ifndef IEM_VERIFICATION_MODE_FULL
8856 /*
8857 * Setup the virtualized-APIC accesses.
8858 *
8859 * Note! This can cause a longjumps to R3 due to the acquisition of the PGM lock
8860 * in both PGMHandlerPhysicalReset() and IOMMMIOMapMMIOHCPage(), see @bugref{8721}.
8861 *
8862 * This is the reason we do it here and not in hmR0VmxLoadGuestState().
8863 */
8864 if ( !pVCpu->hm.s.vmx.u64MsrApicBase
8865 && (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)
8866 && PDMHasApic(pVM))
8867 {
8868 uint64_t const u64MsrApicBase = APICGetBaseMsrNoCheck(pVCpu);
8869 Assert(u64MsrApicBase);
8870 Assert(pVM->hm.s.vmx.HCPhysApicAccess);
8871
8872 RTGCPHYS const GCPhysApicBase = u64MsrApicBase & PAGE_BASE_GC_MASK;
8873
8874 /* Unalias any existing mapping. */
8875 int rc = PGMHandlerPhysicalReset(pVM, GCPhysApicBase);
8876 AssertRCReturn(rc, rc);
8877
8878 /* Map the HC APIC-access page in place of the MMIO page, also updates the shadow page tables if necessary. */
8879 Log4(("hmR0VmxPreRunGuest: VCPU%u: Mapped HC APIC-access page at %#RGp\n", pVCpu->idCpu, GCPhysApicBase));
8880 rc = IOMMMIOMapMMIOHCPage(pVM, pVCpu, GCPhysApicBase, pVM->hm.s.vmx.HCPhysApicAccess, X86_PTE_RW | X86_PTE_P);
8881 AssertRCReturn(rc, rc);
8882
8883 /* Update the per-VCPU cache of the APIC base MSR. */
8884 pVCpu->hm.s.vmx.u64MsrApicBase = u64MsrApicBase;
8885 }
8886#endif /* !IEM_VERIFICATION_MODE_FULL */
8887
8888 if (TRPMHasTrap(pVCpu))
8889 hmR0VmxTrpmTrapToPendingEvent(pVCpu);
8890 uint32_t uIntrState = hmR0VmxEvaluatePendingEvent(pVCpu, pMixedCtx);
8891
8892 /*
8893 * Event injection may take locks (currently the PGM lock for real-on-v86 case) and thus needs to be done with
8894 * longjmps or interrupts + preemption enabled. Event injection might also result in triple-faulting the VM.
8895 */
8896 rcStrict = hmR0VmxInjectPendingEvent(pVCpu, pMixedCtx, uIntrState, fStepping);
8897 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8898 { /* likely */ }
8899 else
8900 {
8901 AssertMsg(rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
8902 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8903 return rcStrict;
8904 }
8905
8906 /*
8907 * No longjmps to ring-3 from this point on!!!
8908 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
8909 * This also disables flushing of the R0-logger instance (if any).
8910 */
8911 VMMRZCallRing3Disable(pVCpu);
8912
8913 /*
8914 * Load the guest state bits.
8915 *
8916 * We cannot perform longjmps while loading the guest state because we do not preserve the
8917 * host/guest state (although the VMCS will be preserved) across longjmps which can cause
8918 * CPU migration.
8919 *
8920 * If we are injecting events to a real-on-v86 mode guest, we will have to update
8921 * RIP and some segment registers, i.e. hmR0VmxInjectPendingEvent()->hmR0VmxInjectEventVmcs().
8922 * Hence, loading of the guest state needs to be done -after- injection of events.
8923 */
8924 rcStrict = hmR0VmxLoadGuestStateOptimal(pVM, pVCpu, pMixedCtx);
8925 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8926 { /* likely */ }
8927 else
8928 {
8929 VMMRZCallRing3Enable(pVCpu);
8930 return rcStrict;
8931 }
8932
8933 /*
8934 * We disable interrupts so that we don't miss any interrupts that would flag preemption (IPI/timers etc.)
8935 * when thread-context hooks aren't used and we've been running with preemption disabled for a while.
8936 *
8937 * We need to check for force-flags that could've possible been altered since we last checked them (e.g.
8938 * by PDMGetInterrupt() leaving the PDM critical section, see @bugref{6398}).
8939 *
8940 * We also check a couple of other force-flags as a last opportunity to get the EMT back to ring-3 before
8941 * executing guest code.
8942 */
8943 pVmxTransient->fEFlags = ASMIntDisableFlags();
8944
8945 if ( ( !VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
8946 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
8947 || ( fStepping /* Optimized for the non-stepping case, so a bit of unnecessary work when stepping. */
8948 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK & ~(VMCPU_FF_TIMER | VMCPU_FF_PDM_CRITSECT))) )
8949 {
8950 if (!RTThreadPreemptIsPending(NIL_RTTHREAD))
8951 {
8952 pVCpu->hm.s.Event.fPending = false;
8953
8954 /*
8955 * We've injected any pending events. This is really the point of no return (to ring-3).
8956 *
8957 * Note! The caller expects to continue with interrupts & longjmps disabled on successful
8958 * returns from this function, so don't enable them here.
8959 */
8960 return VINF_SUCCESS;
8961 }
8962
8963 STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
8964 rcStrict = VINF_EM_RAW_INTERRUPT;
8965 }
8966 else
8967 {
8968 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
8969 rcStrict = VINF_EM_RAW_TO_R3;
8970 }
8971
8972 ASMSetFlags(pVmxTransient->fEFlags);
8973 VMMRZCallRing3Enable(pVCpu);
8974
8975 return rcStrict;
8976}
8977
8978
8979/**
8980 * Prepares to run guest code in VT-x and we've committed to doing so. This
8981 * means there is no backing out to ring-3 or anywhere else at this
8982 * point.
8983 *
8984 * @param pVM The cross context VM structure.
8985 * @param pVCpu The cross context virtual CPU structure.
8986 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8987 * out-of-sync. Make sure to update the required fields
8988 * before using them.
8989 * @param pVmxTransient Pointer to the VMX transient structure.
8990 *
8991 * @remarks Called with preemption disabled.
8992 * @remarks No-long-jump zone!!!
8993 */
8994static void hmR0VmxPreRunGuestCommitted(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
8995{
8996 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8997 Assert(VMMR0IsLogFlushDisabled(pVCpu));
8998 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8999
9000 /*
9001 * Indicate start of guest execution and where poking EMT out of guest-context is recognized.
9002 */
9003 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
9004 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
9005
9006#ifdef HMVMX_ALWAYS_SWAP_FPU_STATE
9007 if (!CPUMIsGuestFPUStateActive(pVCpu))
9008 if (CPUMR0LoadGuestFPU(pVM, pVCpu) == VINF_CPUM_HOST_CR0_MODIFIED)
9009 HMCPU_CF_SET(pVCpu, HM_CHANGED_HOST_CONTEXT);
9010 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
9011#endif
9012
9013 if ( pVCpu->hm.s.fPreloadGuestFpu
9014 && !CPUMIsGuestFPUStateActive(pVCpu))
9015 {
9016 if (CPUMR0LoadGuestFPU(pVM, pVCpu) == VINF_CPUM_HOST_CR0_MODIFIED)
9017 HMCPU_CF_SET(pVCpu, HM_CHANGED_HOST_CONTEXT);
9018 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0));
9019 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
9020 }
9021
9022 /*
9023 * Lazy-update of the host MSRs values in the auto-load/store MSR area.
9024 */
9025 if ( !pVCpu->hm.s.vmx.fUpdatedHostMsrs
9026 && pVCpu->hm.s.vmx.cMsrs > 0)
9027 {
9028 hmR0VmxUpdateAutoLoadStoreHostMsrs(pVCpu);
9029 }
9030
9031 /*
9032 * Load the host state bits as we may've been preempted (only happens when
9033 * thread-context hooks are used or when hmR0VmxSetupVMRunHandler() changes pfnStartVM).
9034 * Note that the 64-on-32 switcher saves the (64-bit) host state into the VMCS and
9035 * if we change the switcher back to 32-bit, we *must* save the 32-bit host state here.
9036 * See @bugref{8432}.
9037 */
9038 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_CONTEXT))
9039 {
9040 int rc = hmR0VmxSaveHostState(pVM, pVCpu);
9041 AssertRC(rc);
9042 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreemptSaveHostState);
9043 }
9044 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_CONTEXT));
9045
9046 /*
9047 * Load the state shared between host and guest (FPU, debug, lazy MSRs).
9048 */
9049 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE))
9050 hmR0VmxLoadSharedState(pVM, pVCpu, pMixedCtx);
9051 AssertMsg(!HMCPU_CF_VALUE(pVCpu), ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
9052
9053 /* Store status of the shared guest-host state at the time of VM-entry. */
9054#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
9055 if (CPUMIsGuestInLongModeEx(pMixedCtx))
9056 {
9057 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
9058 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
9059 }
9060 else
9061#endif
9062 {
9063 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
9064 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
9065 }
9066 pVmxTransient->fWasGuestFPUStateActive = CPUMIsGuestFPUStateActive(pVCpu);
9067
9068 /*
9069 * Cache the TPR-shadow for checking on every VM-exit if it might have changed.
9070 */
9071 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
9072 pVmxTransient->u8GuestTpr = pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR];
9073
9074 PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
9075 RTCPUID idCurrentCpu = pCpu->idCpu;
9076 if ( pVmxTransient->fUpdateTscOffsettingAndPreemptTimer
9077 || idCurrentCpu != pVCpu->hm.s.idLastCpu)
9078 {
9079 hmR0VmxUpdateTscOffsettingAndPreemptTimer(pVM, pVCpu);
9080 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = false;
9081 }
9082
9083 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
9084 hmR0VmxFlushTaggedTlb(pVCpu, pCpu); /* Invalidate the appropriate guest entries from the TLB. */
9085 Assert(idCurrentCpu == pVCpu->hm.s.idLastCpu);
9086 pVCpu->hm.s.vmx.LastError.idCurrentCpu = idCurrentCpu; /* Update the error reporting info. with the current host CPU. */
9087
9088 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
9089
9090 TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
9091 to start executing. */
9092
9093 /*
9094 * Load the TSC_AUX MSR when we are not intercepting RDTSCP.
9095 */
9096 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP)
9097 {
9098 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT))
9099 {
9100 bool fMsrUpdated;
9101 int rc2 = hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
9102 AssertRC(rc2);
9103 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS));
9104
9105 rc2 = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_TSC_AUX, CPUMR0GetGuestTscAux(pVCpu), true /* fUpdateHostMsr */,
9106 &fMsrUpdated);
9107 AssertRC(rc2);
9108 Assert(fMsrUpdated || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
9109
9110 /* Finally, mark that all host MSR values are updated so we don't redo it without leaving VT-x. See @bugref{6956}. */
9111 pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
9112 }
9113 else
9114 {
9115 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, MSR_K8_TSC_AUX);
9116 Assert(!pVCpu->hm.s.vmx.cMsrs || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
9117 }
9118 }
9119
9120#ifdef VBOX_STRICT
9121 hmR0VmxCheckAutoLoadStoreMsrs(pVCpu);
9122 hmR0VmxCheckHostEferMsr(pVCpu);
9123 AssertRC(hmR0VmxCheckVmcsCtls(pVCpu));
9124#endif
9125#ifdef HMVMX_ALWAYS_CHECK_GUEST_STATE
9126 uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVM, pVCpu, pMixedCtx);
9127 if (uInvalidReason != VMX_IGS_REASON_NOT_FOUND)
9128 Log4(("hmR0VmxCheckGuestState returned %#x\n", uInvalidReason));
9129#endif
9130}
9131
9132
9133/**
9134 * Performs some essential restoration of state after running guest code in
9135 * VT-x.
9136 *
9137 * @param pVM The cross context VM structure.
9138 * @param pVCpu The cross context virtual CPU structure.
9139 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
9140 * out-of-sync. Make sure to update the required fields
9141 * before using them.
9142 * @param pVmxTransient Pointer to the VMX transient structure.
9143 * @param rcVMRun Return code of VMLAUNCH/VMRESUME.
9144 *
9145 * @remarks Called with interrupts disabled, and returns with interrupts enabled!
9146 *
9147 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
9148 * unconditionally when it is safe to do so.
9149 */
9150static void hmR0VmxPostRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, int rcVMRun)
9151{
9152 NOREF(pVM);
9153
9154 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
9155
9156 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
9157 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
9158 HMVMXCPU_GST_RESET_TO(pVCpu, 0); /* Exits/longjmps to ring-3 requires saving the guest state. */
9159 pVmxTransient->fVmcsFieldsRead = 0; /* Transient fields need to be read from the VMCS. */
9160 pVmxTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
9161 pVmxTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
9162
9163 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT))
9164 TMCpuTickSetLastSeen(pVCpu, ASMReadTSC() + pVCpu->hm.s.vmx.u64TSCOffset);
9165
9166 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatExit1, x);
9167 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
9168 Assert(!ASMIntAreEnabled());
9169 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
9170
9171#ifdef HMVMX_ALWAYS_SWAP_FPU_STATE
9172 if (CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVM, pVCpu))
9173 {
9174 hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
9175 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
9176 }
9177#endif
9178
9179#if HC_ARCH_BITS == 64
9180 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_REQUIRED; /* Host state messed up by VT-x, we must restore. */
9181#endif
9182#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
9183 /* The 64-on-32 switcher maintains uVmcsState on its own and we need to leave it alone here. */
9184 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0SwitcherStartVM64)
9185 pVCpu->hm.s.vmx.uVmcsState |= HMVMX_VMCS_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
9186#else
9187 pVCpu->hm.s.vmx.uVmcsState |= HMVMX_VMCS_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
9188#endif
9189#ifdef VBOX_STRICT
9190 hmR0VmxCheckHostEferMsr(pVCpu); /* Verify that VMRUN/VMLAUNCH didn't modify host EFER. */
9191#endif
9192 ASMSetFlags(pVmxTransient->fEFlags); /* Enable interrupts. */
9193 VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
9194
9195 /* Save the basic VM-exit reason. Refer Intel spec. 24.9.1 "Basic VM-exit Information". */
9196 uint32_t uExitReason;
9197 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
9198 rc |= hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
9199 AssertRC(rc);
9200 pVmxTransient->uExitReason = (uint16_t)VMX_EXIT_REASON_BASIC(uExitReason);
9201 pVmxTransient->fVMEntryFailed = VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uEntryIntInfo);
9202
9203 /* If the VMLAUNCH/VMRESUME failed, we can bail out early. This does -not- cover VMX_EXIT_ERR_*. */
9204 if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
9205 {
9206 Log4(("VM-entry failure: pVCpu=%p idCpu=%RU32 rcVMRun=%Rrc fVMEntryFailed=%RTbool\n", pVCpu, pVCpu->idCpu, rcVMRun,
9207 pVmxTransient->fVMEntryFailed));
9208 return;
9209 }
9210
9211 /*
9212 * Update the VM-exit history array here even if the VM-entry failed due to:
9213 * - Invalid guest state.
9214 * - MSR loading.
9215 * - Machine-check event.
9216 *
9217 * In any of the above cases we will still have a "valid" VM-exit reason
9218 * despite @a fVMEntryFailed being false.
9219 *
9220 * See Intel spec. 26.7 "VM-Entry failures during or after loading guest state".
9221 */
9222 HMCPU_EXIT_HISTORY_ADD(pVCpu, pVmxTransient->uExitReason);
9223
9224 if (RT_LIKELY(!pVmxTransient->fVMEntryFailed))
9225 {
9226 /** @todo We can optimize this by only syncing with our force-flags when
9227 * really needed and keeping the VMCS state as it is for most
9228 * VM-exits. */
9229 /* Update the guest interruptibility-state from the VMCS. */
9230 hmR0VmxSaveGuestIntrState(pVCpu, pMixedCtx);
9231
9232#if defined(HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE) || defined(HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE)
9233 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
9234 AssertRC(rc);
9235#elif defined(HMVMX_ALWAYS_SAVE_GUEST_RFLAGS)
9236 rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
9237 AssertRC(rc);
9238#endif
9239
9240 /*
9241 * Sync the TPR shadow with our APIC state.
9242 */
9243 if ( (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
9244 && pVmxTransient->u8GuestTpr != pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR])
9245 {
9246 rc = APICSetTpr(pVCpu, pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR]);
9247 AssertRC(rc);
9248 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
9249 }
9250 }
9251}
9252
9253
9254/**
9255 * Runs the guest code using VT-x the normal way.
9256 *
9257 * @returns VBox status code.
9258 * @param pVM The cross context VM structure.
9259 * @param pVCpu The cross context virtual CPU structure.
9260 * @param pCtx Pointer to the guest-CPU context.
9261 *
9262 * @note Mostly the same as hmR0VmxRunGuestCodeStep().
9263 */
9264static VBOXSTRICTRC hmR0VmxRunGuestCodeNormal(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
9265{
9266 VMXTRANSIENT VmxTransient;
9267 VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
9268 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
9269 uint32_t cLoops = 0;
9270
9271 for (;; cLoops++)
9272 {
9273 Assert(!HMR0SuspendPending());
9274 HMVMX_ASSERT_CPU_SAFE();
9275
9276 /* Preparatory work for running guest code, this may force us to return
9277 to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
9278 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
9279 rcStrict = hmR0VmxPreRunGuest(pVM, pVCpu, pCtx, &VmxTransient, false /* fStepping */);
9280 if (rcStrict != VINF_SUCCESS)
9281 break;
9282
9283 hmR0VmxPreRunGuestCommitted(pVM, pVCpu, pCtx, &VmxTransient);
9284 int rcRun = hmR0VmxRunGuest(pVM, pVCpu, pCtx);
9285 /* The guest-CPU context is now outdated, 'pCtx' is to be treated as 'pMixedCtx' from this point on!!! */
9286
9287 /* Restore any residual host-state and save any bits shared between host
9288 and guest into the guest-CPU state. Re-enables interrupts! */
9289 hmR0VmxPostRunGuest(pVM, pVCpu, pCtx, &VmxTransient, rcRun);
9290
9291 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
9292 if (RT_SUCCESS(rcRun))
9293 { /* very likely */ }
9294 else
9295 {
9296 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
9297 hmR0VmxReportWorldSwitchError(pVM, pVCpu, rcRun, pCtx, &VmxTransient);
9298 return rcRun;
9299 }
9300
9301 /* Profile the VM-exit. */
9302 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
9303 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
9304 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
9305 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
9306 HMVMX_START_EXIT_DISPATCH_PROF();
9307
9308 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, pCtx, VmxTransient.uExitReason);
9309
9310 /* Handle the VM-exit. */
9311#ifdef HMVMX_USE_FUNCTION_TABLE
9312 rcStrict = g_apfnVMExitHandlers[VmxTransient.uExitReason](pVCpu, pCtx, &VmxTransient);
9313#else
9314 rcStrict = hmR0VmxHandleExit(pVCpu, pCtx, &VmxTransient, VmxTransient.uExitReason);
9315#endif
9316 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
9317 if (rcStrict == VINF_SUCCESS)
9318 {
9319 if (cLoops <= pVM->hm.s.cMaxResumeLoops)
9320 continue; /* likely */
9321 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
9322 rcStrict = VINF_EM_RAW_INTERRUPT;
9323 }
9324 break;
9325 }
9326
9327 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
9328 return rcStrict;
9329}
9330
9331
9332
9333/** @name Execution loop for single stepping, DBGF events and expensive Dtrace
9334 * probes.
9335 *
9336 * The following few functions and associated structure contains the bloat
9337 * necessary for providing detailed debug events and dtrace probes as well as
9338 * reliable host side single stepping. This works on the principle of
9339 * "subclassing" the normal execution loop and workers. We replace the loop
9340 * method completely and override selected helpers to add necessary adjustments
9341 * to their core operation.
9342 *
9343 * The goal is to keep the "parent" code lean and mean, so as not to sacrifice
9344 * any performance for debug and analysis features.
9345 *
9346 * @{
9347 */
9348
9349/**
9350 * Transient per-VCPU debug state of VMCS and related info. we save/restore in
9351 * the debug run loop.
9352 */
9353typedef struct VMXRUNDBGSTATE
9354{
9355 /** The RIP we started executing at. This is for detecting that we stepped. */
9356 uint64_t uRipStart;
9357 /** The CS we started executing with. */
9358 uint16_t uCsStart;
9359
9360 /** Whether we've actually modified the 1st execution control field. */
9361 bool fModifiedProcCtls : 1;
9362 /** Whether we've actually modified the 2nd execution control field. */
9363 bool fModifiedProcCtls2 : 1;
9364 /** Whether we've actually modified the exception bitmap. */
9365 bool fModifiedXcptBitmap : 1;
9366
9367 /** We desire the modified the CR0 mask to be cleared. */
9368 bool fClearCr0Mask : 1;
9369 /** We desire the modified the CR4 mask to be cleared. */
9370 bool fClearCr4Mask : 1;
9371 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC. */
9372 uint32_t fCpe1Extra;
9373 /** Stuff we do not want in VMX_VMCS32_CTRL_PROC_EXEC. */
9374 uint32_t fCpe1Unwanted;
9375 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC2. */
9376 uint32_t fCpe2Extra;
9377 /** Extra stuff we need in VMX_VMCS32_CTRL_EXCEPTION_BITMAP. */
9378 uint32_t bmXcptExtra;
9379 /** The sequence number of the Dtrace provider settings the state was
9380 * configured against. */
9381 uint32_t uDtraceSettingsSeqNo;
9382 /** VM-exits to check (one bit per VM-exit). */
9383 uint32_t bmExitsToCheck[3];
9384
9385 /** The initial VMX_VMCS32_CTRL_PROC_EXEC value (helps with restore). */
9386 uint32_t fProcCtlsInitial;
9387 /** The initial VMX_VMCS32_CTRL_PROC_EXEC2 value (helps with restore). */
9388 uint32_t fProcCtls2Initial;
9389 /** The initial VMX_VMCS32_CTRL_EXCEPTION_BITMAP value (helps with restore). */
9390 uint32_t bmXcptInitial;
9391} VMXRUNDBGSTATE;
9392AssertCompileMemberSize(VMXRUNDBGSTATE, bmExitsToCheck, (VMX_EXIT_MAX + 1 + 31) / 32 * 4);
9393typedef VMXRUNDBGSTATE *PVMXRUNDBGSTATE;
9394
9395
9396/**
9397 * Initializes the VMXRUNDBGSTATE structure.
9398 *
9399 * @param pVCpu The cross context virtual CPU structure of the
9400 * calling EMT.
9401 * @param pCtx The CPU register context to go with @a pVCpu.
9402 * @param pDbgState The structure to initialize.
9403 */
9404DECLINLINE(void) hmR0VmxRunDebugStateInit(PVMCPU pVCpu, PCCPUMCTX pCtx, PVMXRUNDBGSTATE pDbgState)
9405{
9406 pDbgState->uRipStart = pCtx->rip;
9407 pDbgState->uCsStart = pCtx->cs.Sel;
9408
9409 pDbgState->fModifiedProcCtls = false;
9410 pDbgState->fModifiedProcCtls2 = false;
9411 pDbgState->fModifiedXcptBitmap = false;
9412 pDbgState->fClearCr0Mask = false;
9413 pDbgState->fClearCr4Mask = false;
9414 pDbgState->fCpe1Extra = 0;
9415 pDbgState->fCpe1Unwanted = 0;
9416 pDbgState->fCpe2Extra = 0;
9417 pDbgState->bmXcptExtra = 0;
9418 pDbgState->fProcCtlsInitial = pVCpu->hm.s.vmx.u32ProcCtls;
9419 pDbgState->fProcCtls2Initial = pVCpu->hm.s.vmx.u32ProcCtls2;
9420 pDbgState->bmXcptInitial = pVCpu->hm.s.vmx.u32XcptBitmap;
9421}
9422
9423
9424/**
9425 * Updates the VMSC fields with changes requested by @a pDbgState.
9426 *
9427 * This is performed after hmR0VmxPreRunGuestDebugStateUpdate as well
9428 * immediately before executing guest code, i.e. when interrupts are disabled.
9429 * We don't check status codes here as we cannot easily assert or return in the
9430 * latter case.
9431 *
9432 * @param pVCpu The cross context virtual CPU structure.
9433 * @param pDbgState The debug state.
9434 */
9435DECLINLINE(void) hmR0VmxPreRunGuestDebugStateApply(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState)
9436{
9437 /*
9438 * Ensure desired flags in VMCS control fields are set.
9439 * (Ignoring write failure here, as we're committed and it's just debug extras.)
9440 *
9441 * Note! We load the shadow CR0 & CR4 bits when we flag the clearing, so
9442 * there should be no stale data in pCtx at this point.
9443 */
9444 if ( (pVCpu->hm.s.vmx.u32ProcCtls & pDbgState->fCpe1Extra) != pDbgState->fCpe1Extra
9445 || (pVCpu->hm.s.vmx.u32ProcCtls & pDbgState->fCpe1Unwanted))
9446 {
9447 pVCpu->hm.s.vmx.u32ProcCtls |= pDbgState->fCpe1Extra;
9448 pVCpu->hm.s.vmx.u32ProcCtls &= ~pDbgState->fCpe1Unwanted;
9449 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
9450 Log6(("hmR0VmxRunDebugStateRevert: VMX_VMCS32_CTRL_PROC_EXEC: %#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls));
9451 pDbgState->fModifiedProcCtls = true;
9452 }
9453
9454 if ((pVCpu->hm.s.vmx.u32ProcCtls2 & pDbgState->fCpe2Extra) != pDbgState->fCpe2Extra)
9455 {
9456 pVCpu->hm.s.vmx.u32ProcCtls2 |= pDbgState->fCpe2Extra;
9457 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pVCpu->hm.s.vmx.u32ProcCtls2);
9458 Log6(("hmR0VmxRunDebugStateRevert: VMX_VMCS32_CTRL_PROC_EXEC2: %#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls2));
9459 pDbgState->fModifiedProcCtls2 = true;
9460 }
9461
9462 if ((pVCpu->hm.s.vmx.u32XcptBitmap & pDbgState->bmXcptExtra) != pDbgState->bmXcptExtra)
9463 {
9464 pVCpu->hm.s.vmx.u32XcptBitmap |= pDbgState->bmXcptExtra;
9465 VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
9466 Log6(("hmR0VmxRunDebugStateRevert: VMX_VMCS32_CTRL_EXCEPTION_BITMAP: %#RX32\n", pVCpu->hm.s.vmx.u32XcptBitmap));
9467 pDbgState->fModifiedXcptBitmap = true;
9468 }
9469
9470 if (pDbgState->fClearCr0Mask && pVCpu->hm.s.vmx.u32CR0Mask != 0)
9471 {
9472 pVCpu->hm.s.vmx.u32CR0Mask = 0;
9473 VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_MASK, 0);
9474 Log6(("hmR0VmxRunDebugStateRevert: VMX_VMCS_CTRL_CR0_MASK: 0\n"));
9475 }
9476
9477 if (pDbgState->fClearCr4Mask && pVCpu->hm.s.vmx.u32CR4Mask != 0)
9478 {
9479 pVCpu->hm.s.vmx.u32CR4Mask = 0;
9480 VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_MASK, 0);
9481 Log6(("hmR0VmxRunDebugStateRevert: VMX_VMCS_CTRL_CR4_MASK: 0\n"));
9482 }
9483}
9484
9485
9486DECLINLINE(VBOXSTRICTRC) hmR0VmxRunDebugStateRevert(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState, VBOXSTRICTRC rcStrict)
9487{
9488 /*
9489 * Restore VM-exit control settings as we may not reenter this function the
9490 * next time around.
9491 */
9492 /* We reload the initial value, trigger what we can of recalculations the
9493 next time around. From the looks of things, that's all that's required atm. */
9494 if (pDbgState->fModifiedProcCtls)
9495 {
9496 if (!(pDbgState->fProcCtlsInitial & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT) && CPUMIsHyperDebugStateActive(pVCpu))
9497 pDbgState->fProcCtlsInitial |= VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT; /* Avoid assertion in hmR0VmxLeave */
9498 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pDbgState->fProcCtlsInitial);
9499 AssertRCReturn(rc2, rc2);
9500 pVCpu->hm.s.vmx.u32ProcCtls = pDbgState->fProcCtlsInitial;
9501 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0 | HM_CHANGED_GUEST_DEBUG);
9502 }
9503
9504 /* We're currently the only ones messing with this one, so just restore the
9505 cached value and reload the field. */
9506 if ( pDbgState->fModifiedProcCtls2
9507 && pVCpu->hm.s.vmx.u32ProcCtls2 != pDbgState->fProcCtls2Initial)
9508 {
9509 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pDbgState->fProcCtls2Initial);
9510 AssertRCReturn(rc2, rc2);
9511 pVCpu->hm.s.vmx.u32ProcCtls2 = pDbgState->fProcCtls2Initial;
9512 }
9513
9514 /* If we've modified the exception bitmap, we restore it and trigger
9515 reloading and partial recalculation the next time around. */
9516 if (pDbgState->fModifiedXcptBitmap)
9517 {
9518 pVCpu->hm.s.vmx.u32XcptBitmap = pDbgState->bmXcptInitial;
9519 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS | HM_CHANGED_GUEST_CR0);
9520 }
9521
9522 /* We assume hmR0VmxLoadSharedCR0 will recalculate and load the CR0 mask. */
9523 if (pDbgState->fClearCr0Mask)
9524 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
9525
9526 /* We assume hmR0VmxLoadGuestCR3AndCR4 will recalculate and load the CR4 mask. */
9527 if (pDbgState->fClearCr4Mask)
9528 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR4);
9529
9530 return rcStrict;
9531}
9532
9533
9534/**
9535 * Configures VM-exit controls for current DBGF and DTrace settings.
9536 *
9537 * This updates @a pDbgState and the VMCS execution control fields to reflect
9538 * the necessary VM-exits demanded by DBGF and DTrace.
9539 *
9540 * @param pVM The cross context VM structure.
9541 * @param pVCpu The cross context virtual CPU structure.
9542 * @param pCtx Pointer to the guest-CPU context.
9543 * @param pDbgState The debug state.
9544 * @param pVmxTransient Pointer to the VMX transient structure. May update
9545 * fUpdateTscOffsettingAndPreemptTimer.
9546 */
9547static void hmR0VmxPreRunGuestDebugStateUpdate(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx,
9548 PVMXRUNDBGSTATE pDbgState, PVMXTRANSIENT pVmxTransient)
9549{
9550 /*
9551 * Take down the dtrace serial number so we can spot changes.
9552 */
9553 pDbgState->uDtraceSettingsSeqNo = VBOXVMM_GET_SETTINGS_SEQ_NO();
9554 ASMCompilerBarrier();
9555
9556 /*
9557 * We'll rebuild most of the middle block of data members (holding the
9558 * current settings) as we go along here, so start by clearing it all.
9559 */
9560 pDbgState->bmXcptExtra = 0;
9561 pDbgState->fCpe1Extra = 0;
9562 pDbgState->fCpe1Unwanted = 0;
9563 pDbgState->fCpe2Extra = 0;
9564 for (unsigned i = 0; i < RT_ELEMENTS(pDbgState->bmExitsToCheck); i++)
9565 pDbgState->bmExitsToCheck[i] = 0;
9566
9567 /*
9568 * Software interrupts (INT XXh) - no idea how to trigger these...
9569 */
9570 if ( DBGF_IS_EVENT_ENABLED(pVM, DBGFEVENT_INTERRUPT_SOFTWARE)
9571 || VBOXVMM_INT_SOFTWARE_ENABLED())
9572 {
9573 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
9574 }
9575
9576 /*
9577 * INT3 breakpoints - triggered by #BP exceptions.
9578 */
9579 if (pVM->dbgf.ro.cEnabledInt3Breakpoints > 0)
9580 pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
9581
9582 /*
9583 * Exception bitmap and XCPT events+probes.
9584 */
9585 for (int iXcpt = 0; iXcpt < (DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST + 1); iXcpt++)
9586 if (DBGF_IS_EVENT_ENABLED(pVM, (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + iXcpt)))
9587 pDbgState->bmXcptExtra |= RT_BIT_32(iXcpt);
9588
9589 if (VBOXVMM_XCPT_DE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DE);
9590 if (VBOXVMM_XCPT_DB_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DB);
9591 if (VBOXVMM_XCPT_BP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
9592 if (VBOXVMM_XCPT_OF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_OF);
9593 if (VBOXVMM_XCPT_BR_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BR);
9594 if (VBOXVMM_XCPT_UD_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_UD);
9595 if (VBOXVMM_XCPT_NM_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NM);
9596 if (VBOXVMM_XCPT_DF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DF);
9597 if (VBOXVMM_XCPT_TS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_TS);
9598 if (VBOXVMM_XCPT_NP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NP);
9599 if (VBOXVMM_XCPT_SS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SS);
9600 if (VBOXVMM_XCPT_GP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_GP);
9601 if (VBOXVMM_XCPT_PF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_PF);
9602 if (VBOXVMM_XCPT_MF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_MF);
9603 if (VBOXVMM_XCPT_AC_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_AC);
9604 if (VBOXVMM_XCPT_XF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_XF);
9605 if (VBOXVMM_XCPT_VE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_VE);
9606 if (VBOXVMM_XCPT_SX_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SX);
9607
9608 if (pDbgState->bmXcptExtra)
9609 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
9610
9611 /*
9612 * Process events and probes for VM-exits, making sure we get the wanted VM-exits.
9613 *
9614 * Note! This is the reverse of waft hmR0VmxHandleExitDtraceEvents does.
9615 * So, when adding/changing/removing please don't forget to update it.
9616 *
9617 * Some of the macros are picking up local variables to save horizontal space,
9618 * (being able to see it in a table is the lesser evil here).
9619 */
9620#define IS_EITHER_ENABLED(a_pVM, a_EventSubName) \
9621 ( DBGF_IS_EVENT_ENABLED(a_pVM, RT_CONCAT(DBGFEVENT_, a_EventSubName)) \
9622 || RT_CONCAT3(VBOXVMM_, a_EventSubName, _ENABLED)() )
9623#define SET_ONLY_XBM_IF_EITHER_EN(a_EventSubName, a_uExit) \
9624 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9625 { AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9626 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9627 } else do { } while (0)
9628#define SET_CPE1_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec) \
9629 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9630 { \
9631 (pDbgState)->fCpe1Extra |= (a_fCtrlProcExec); \
9632 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9633 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9634 } else do { } while (0)
9635#define SET_CPEU_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fUnwantedCtrlProcExec) \
9636 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9637 { \
9638 (pDbgState)->fCpe1Unwanted |= (a_fUnwantedCtrlProcExec); \
9639 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9640 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9641 } else do { } while (0)
9642#define SET_CPE2_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec2) \
9643 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9644 { \
9645 (pDbgState)->fCpe2Extra |= (a_fCtrlProcExec2); \
9646 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9647 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9648 } else do { } while (0)
9649
9650 SET_ONLY_XBM_IF_EITHER_EN(EXIT_TASK_SWITCH, VMX_EXIT_TASK_SWITCH); /* unconditional */
9651 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_VIOLATION, VMX_EXIT_EPT_VIOLATION); /* unconditional */
9652 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_MISCONFIG, VMX_EXIT_EPT_MISCONFIG); /* unconditional (unless #VE) */
9653 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_ACCESS, VMX_EXIT_APIC_ACCESS); /* feature dependent, nothing to enable here */
9654 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_WRITE, VMX_EXIT_APIC_WRITE); /* feature dependent, nothing to enable here */
9655
9656 SET_ONLY_XBM_IF_EITHER_EN(INSTR_CPUID, VMX_EXIT_CPUID); /* unconditional */
9657 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CPUID, VMX_EXIT_CPUID);
9658 SET_ONLY_XBM_IF_EITHER_EN(INSTR_GETSEC, VMX_EXIT_GETSEC); /* unconditional */
9659 SET_ONLY_XBM_IF_EITHER_EN( EXIT_GETSEC, VMX_EXIT_GETSEC);
9660 SET_CPE1_XBM_IF_EITHER_EN(INSTR_HALT, VMX_EXIT_HLT, VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT); /* paranoia */
9661 SET_ONLY_XBM_IF_EITHER_EN( EXIT_HALT, VMX_EXIT_HLT);
9662 SET_ONLY_XBM_IF_EITHER_EN(INSTR_INVD, VMX_EXIT_INVD); /* unconditional */
9663 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVD, VMX_EXIT_INVD);
9664 SET_CPE1_XBM_IF_EITHER_EN(INSTR_INVLPG, VMX_EXIT_INVLPG, VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT);
9665 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVLPG, VMX_EXIT_INVLPG);
9666 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDPMC, VMX_EXIT_RDPMC, VMX_VMCS_CTRL_PROC_EXEC_RDPMC_EXIT);
9667 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDPMC, VMX_EXIT_RDPMC);
9668 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSC, VMX_EXIT_RDTSC, VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT);
9669 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSC, VMX_EXIT_RDTSC);
9670 SET_ONLY_XBM_IF_EITHER_EN(INSTR_RSM, VMX_EXIT_RSM); /* unconditional */
9671 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RSM, VMX_EXIT_RSM);
9672 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMM_CALL, VMX_EXIT_VMCALL); /* unconditional */
9673 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMM_CALL, VMX_EXIT_VMCALL);
9674 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMCLEAR, VMX_EXIT_VMCLEAR); /* unconditional */
9675 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMCLEAR, VMX_EXIT_VMCLEAR);
9676 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH); /* unconditional */
9677 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH);
9678 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRLD, VMX_EXIT_VMPTRLD); /* unconditional */
9679 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRLD, VMX_EXIT_VMPTRLD);
9680 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRST, VMX_EXIT_VMPTRST); /* unconditional */
9681 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRST, VMX_EXIT_VMPTRST);
9682 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMREAD, VMX_EXIT_VMREAD); /* unconditional */
9683 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMREAD, VMX_EXIT_VMREAD);
9684 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMRESUME, VMX_EXIT_VMRESUME); /* unconditional */
9685 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMRESUME, VMX_EXIT_VMRESUME);
9686 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMWRITE, VMX_EXIT_VMWRITE); /* unconditional */
9687 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMWRITE, VMX_EXIT_VMWRITE);
9688 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXOFF, VMX_EXIT_VMXOFF); /* unconditional */
9689 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXOFF, VMX_EXIT_VMXOFF);
9690 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXON, VMX_EXIT_VMXON); /* unconditional */
9691 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXON, VMX_EXIT_VMXON);
9692
9693 if ( IS_EITHER_ENABLED(pVM, INSTR_CRX_READ)
9694 || IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
9695 {
9696 int rc2 = hmR0VmxSaveGuestCR0(pVCpu, pCtx);
9697 rc2 |= hmR0VmxSaveGuestCR4(pVCpu, pCtx);
9698 rc2 |= hmR0VmxSaveGuestApicState(pVCpu, pCtx);
9699 AssertRC(rc2);
9700
9701#if 0 /** @todo fix me */
9702 pDbgState->fClearCr0Mask = true;
9703 pDbgState->fClearCr4Mask = true;
9704#endif
9705 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_READ))
9706 pDbgState->fCpe1Extra |= VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT | VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT;
9707 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
9708 pDbgState->fCpe1Extra |= VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT | VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT;
9709 pDbgState->fCpe1Unwanted |= VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW; /* risky? */
9710 /* Note! We currently don't use VMX_VMCS32_CTRL_CR3_TARGET_COUNT. It would
9711 require clearing here and in the loop if we start using it. */
9712 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_CRX);
9713 }
9714 else
9715 {
9716 if (pDbgState->fClearCr0Mask)
9717 {
9718 pDbgState->fClearCr0Mask = false;
9719 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
9720 }
9721 if (pDbgState->fClearCr4Mask)
9722 {
9723 pDbgState->fClearCr4Mask = false;
9724 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR4);
9725 }
9726 }
9727 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_READ, VMX_EXIT_MOV_CRX);
9728 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_WRITE, VMX_EXIT_MOV_CRX);
9729
9730 if ( IS_EITHER_ENABLED(pVM, INSTR_DRX_READ)
9731 || IS_EITHER_ENABLED(pVM, INSTR_DRX_WRITE))
9732 {
9733 /** @todo later, need to fix handler as it assumes this won't usually happen. */
9734 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_DRX);
9735 }
9736 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_READ, VMX_EXIT_MOV_DRX);
9737 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_WRITE, VMX_EXIT_MOV_DRX);
9738
9739 SET_CPEU_XBM_IF_EITHER_EN(INSTR_RDMSR, VMX_EXIT_RDMSR, VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS); /* risky clearing this? */
9740 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDMSR, VMX_EXIT_RDMSR);
9741 SET_CPEU_XBM_IF_EITHER_EN(INSTR_WRMSR, VMX_EXIT_WRMSR, VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS);
9742 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WRMSR, VMX_EXIT_WRMSR);
9743 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MWAIT, VMX_EXIT_MWAIT, VMX_VMCS_CTRL_PROC_EXEC_MWAIT_EXIT); /* paranoia */
9744 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MWAIT, VMX_EXIT_MWAIT);
9745 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MONITOR, VMX_EXIT_MONITOR, VMX_VMCS_CTRL_PROC_EXEC_MONITOR_EXIT); /* paranoia */
9746 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MONITOR, VMX_EXIT_MONITOR);
9747#if 0 /** @todo too slow, fix handler. */
9748 SET_CPE1_XBM_IF_EITHER_EN(INSTR_PAUSE, VMX_EXIT_PAUSE, VMX_VMCS_CTRL_PROC_EXEC_PAUSE_EXIT);
9749#endif
9750 SET_ONLY_XBM_IF_EITHER_EN( EXIT_PAUSE, VMX_EXIT_PAUSE);
9751
9752 if ( IS_EITHER_ENABLED(pVM, INSTR_SGDT)
9753 || IS_EITHER_ENABLED(pVM, INSTR_SIDT)
9754 || IS_EITHER_ENABLED(pVM, INSTR_LGDT)
9755 || IS_EITHER_ENABLED(pVM, INSTR_LIDT))
9756 {
9757 pDbgState->fCpe2Extra |= VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT;
9758 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XDTR_ACCESS);
9759 }
9760 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SGDT, VMX_EXIT_XDTR_ACCESS);
9761 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SIDT, VMX_EXIT_XDTR_ACCESS);
9762 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LGDT, VMX_EXIT_XDTR_ACCESS);
9763 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LIDT, VMX_EXIT_XDTR_ACCESS);
9764
9765 if ( IS_EITHER_ENABLED(pVM, INSTR_SLDT)
9766 || IS_EITHER_ENABLED(pVM, INSTR_STR)
9767 || IS_EITHER_ENABLED(pVM, INSTR_LLDT)
9768 || IS_EITHER_ENABLED(pVM, INSTR_LTR))
9769 {
9770 pDbgState->fCpe2Extra |= VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT;
9771 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_TR_ACCESS);
9772 }
9773 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SLDT, VMX_EXIT_TR_ACCESS);
9774 SET_ONLY_XBM_IF_EITHER_EN( EXIT_STR, VMX_EXIT_TR_ACCESS);
9775 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LLDT, VMX_EXIT_TR_ACCESS);
9776 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LTR, VMX_EXIT_TR_ACCESS);
9777
9778 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVEPT, VMX_EXIT_INVEPT); /* unconditional */
9779 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVEPT, VMX_EXIT_INVEPT);
9780 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSCP, VMX_EXIT_RDTSCP, VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT);
9781 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSCP, VMX_EXIT_RDTSCP);
9782 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVVPID, VMX_EXIT_INVVPID); /* unconditional */
9783 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVVPID, VMX_EXIT_INVVPID);
9784 SET_CPE2_XBM_IF_EITHER_EN(INSTR_WBINVD, VMX_EXIT_WBINVD, VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT);
9785 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WBINVD, VMX_EXIT_WBINVD);
9786 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSETBV, VMX_EXIT_XSETBV); /* unconditional */
9787 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XSETBV, VMX_EXIT_XSETBV);
9788 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDRAND, VMX_EXIT_RDRAND, VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT);
9789 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDRAND, VMX_EXIT_RDRAND);
9790 SET_CPE1_XBM_IF_EITHER_EN(INSTR_VMX_INVPCID, VMX_EXIT_INVPCID, VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT);
9791 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVPCID, VMX_EXIT_INVPCID);
9792 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMFUNC, VMX_EXIT_VMFUNC); /* unconditional for the current setup */
9793 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMFUNC, VMX_EXIT_VMFUNC);
9794 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDSEED, VMX_EXIT_RDSEED, VMX_VMCS_CTRL_PROC_EXEC2_RDSEED_EXIT);
9795 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDSEED, VMX_EXIT_RDSEED);
9796 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSAVES, VMX_EXIT_XSAVES); /* unconditional (enabled by host, guest cfg) */
9797 SET_ONLY_XBM_IF_EITHER_EN(EXIT_XSAVES, VMX_EXIT_XSAVES);
9798 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XRSTORS, VMX_EXIT_XRSTORS); /* unconditional (enabled by host, guest cfg) */
9799 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XRSTORS, VMX_EXIT_XRSTORS);
9800
9801#undef IS_EITHER_ENABLED
9802#undef SET_ONLY_XBM_IF_EITHER_EN
9803#undef SET_CPE1_XBM_IF_EITHER_EN
9804#undef SET_CPEU_XBM_IF_EITHER_EN
9805#undef SET_CPE2_XBM_IF_EITHER_EN
9806
9807 /*
9808 * Sanitize the control stuff.
9809 */
9810 pDbgState->fCpe2Extra &= pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1;
9811 if (pDbgState->fCpe2Extra)
9812 pDbgState->fCpe1Extra |= VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL;
9813 pDbgState->fCpe1Extra &= pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1;
9814 pDbgState->fCpe1Unwanted &= ~pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0;
9815 if (pVCpu->hm.s.fDebugWantRdTscExit != RT_BOOL(pDbgState->fCpe1Extra & VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT))
9816 {
9817 pVCpu->hm.s.fDebugWantRdTscExit ^= true;
9818 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
9819 }
9820
9821 Log6(("HM: debug state: cpe1=%#RX32 cpeu=%#RX32 cpe2=%#RX32%s%s\n",
9822 pDbgState->fCpe1Extra, pDbgState->fCpe1Unwanted, pDbgState->fCpe2Extra,
9823 pDbgState->fClearCr0Mask ? " clr-cr0" : "",
9824 pDbgState->fClearCr4Mask ? " clr-cr4" : ""));
9825}
9826
9827
9828/**
9829 * Fires off DBGF events and dtrace probes for a VM-exit, when it's
9830 * appropriate.
9831 *
9832 * The caller has checked the VM-exit against the
9833 * VMXRUNDBGSTATE::bmExitsToCheck bitmap. The caller has checked for NMIs
9834 * already, so we don't have to do that either.
9835 *
9836 * @returns Strict VBox status code (i.e. informational status codes too).
9837 * @param pVM The cross context VM structure.
9838 * @param pVCpu The cross context virtual CPU structure.
9839 * @param pMixedCtx Pointer to the guest-CPU context.
9840 * @param pVmxTransient Pointer to the VMX-transient structure.
9841 * @param uExitReason The VM-exit reason.
9842 *
9843 * @remarks The name of this function is displayed by dtrace, so keep it short
9844 * and to the point. No longer than 33 chars long, please.
9845 */
9846static VBOXSTRICTRC hmR0VmxHandleExitDtraceEvents(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx,
9847 PVMXTRANSIENT pVmxTransient, uint32_t uExitReason)
9848{
9849 /*
9850 * Translate the event into a DBGF event (enmEvent + uEventArg) and at the
9851 * same time check whether any corresponding Dtrace event is enabled (fDtrace).
9852 *
9853 * Note! This is the reverse operation of what hmR0VmxPreRunGuestDebugStateUpdate
9854 * does. Must add/change/remove both places. Same ordering, please.
9855 *
9856 * Added/removed events must also be reflected in the next section
9857 * where we dispatch dtrace events.
9858 */
9859 bool fDtrace1 = false;
9860 bool fDtrace2 = false;
9861 DBGFEVENTTYPE enmEvent1 = DBGFEVENT_END;
9862 DBGFEVENTTYPE enmEvent2 = DBGFEVENT_END;
9863 uint32_t uEventArg = 0;
9864#define SET_EXIT(a_EventSubName) \
9865 do { \
9866 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
9867 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
9868 } while (0)
9869#define SET_BOTH(a_EventSubName) \
9870 do { \
9871 enmEvent1 = RT_CONCAT(DBGFEVENT_INSTR_, a_EventSubName); \
9872 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
9873 fDtrace1 = RT_CONCAT3(VBOXVMM_INSTR_, a_EventSubName, _ENABLED)(); \
9874 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
9875 } while (0)
9876 switch (uExitReason)
9877 {
9878 case VMX_EXIT_MTF:
9879 return hmR0VmxExitMtf(pVCpu, pMixedCtx, pVmxTransient);
9880
9881 case VMX_EXIT_XCPT_OR_NMI:
9882 {
9883 uint8_t const idxVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVmxTransient->uExitIntInfo);
9884 switch (VMX_EXIT_INTERRUPTION_INFO_TYPE(pVmxTransient->uExitIntInfo))
9885 {
9886 case VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT:
9887 case VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT:
9888 case VMX_EXIT_INTERRUPTION_INFO_TYPE_PRIV_SW_XCPT:
9889 if (idxVector <= (unsigned)(DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST))
9890 {
9891 if (VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(pVmxTransient->uExitIntInfo))
9892 {
9893 hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
9894 uEventArg = pVmxTransient->uExitIntErrorCode;
9895 }
9896 enmEvent1 = (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + idxVector);
9897 switch (enmEvent1)
9898 {
9899 case DBGFEVENT_XCPT_DE: fDtrace1 = VBOXVMM_XCPT_DE_ENABLED(); break;
9900 case DBGFEVENT_XCPT_DB: fDtrace1 = VBOXVMM_XCPT_DB_ENABLED(); break;
9901 case DBGFEVENT_XCPT_BP: fDtrace1 = VBOXVMM_XCPT_BP_ENABLED(); break;
9902 case DBGFEVENT_XCPT_OF: fDtrace1 = VBOXVMM_XCPT_OF_ENABLED(); break;
9903 case DBGFEVENT_XCPT_BR: fDtrace1 = VBOXVMM_XCPT_BR_ENABLED(); break;
9904 case DBGFEVENT_XCPT_UD: fDtrace1 = VBOXVMM_XCPT_UD_ENABLED(); break;
9905 case DBGFEVENT_XCPT_NM: fDtrace1 = VBOXVMM_XCPT_NM_ENABLED(); break;
9906 case DBGFEVENT_XCPT_DF: fDtrace1 = VBOXVMM_XCPT_DF_ENABLED(); break;
9907 case DBGFEVENT_XCPT_TS: fDtrace1 = VBOXVMM_XCPT_TS_ENABLED(); break;
9908 case DBGFEVENT_XCPT_NP: fDtrace1 = VBOXVMM_XCPT_NP_ENABLED(); break;
9909 case DBGFEVENT_XCPT_SS: fDtrace1 = VBOXVMM_XCPT_SS_ENABLED(); break;
9910 case DBGFEVENT_XCPT_GP: fDtrace1 = VBOXVMM_XCPT_GP_ENABLED(); break;
9911 case DBGFEVENT_XCPT_PF: fDtrace1 = VBOXVMM_XCPT_PF_ENABLED(); break;
9912 case DBGFEVENT_XCPT_MF: fDtrace1 = VBOXVMM_XCPT_MF_ENABLED(); break;
9913 case DBGFEVENT_XCPT_AC: fDtrace1 = VBOXVMM_XCPT_AC_ENABLED(); break;
9914 case DBGFEVENT_XCPT_XF: fDtrace1 = VBOXVMM_XCPT_XF_ENABLED(); break;
9915 case DBGFEVENT_XCPT_VE: fDtrace1 = VBOXVMM_XCPT_VE_ENABLED(); break;
9916 case DBGFEVENT_XCPT_SX: fDtrace1 = VBOXVMM_XCPT_SX_ENABLED(); break;
9917 default: break;
9918 }
9919 }
9920 else
9921 AssertFailed();
9922 break;
9923
9924 case VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT:
9925 uEventArg = idxVector;
9926 enmEvent1 = DBGFEVENT_INTERRUPT_SOFTWARE;
9927 fDtrace1 = VBOXVMM_INT_SOFTWARE_ENABLED();
9928 break;
9929 }
9930 break;
9931 }
9932
9933 case VMX_EXIT_TRIPLE_FAULT:
9934 enmEvent1 = DBGFEVENT_TRIPLE_FAULT;
9935 //fDtrace1 = VBOXVMM_EXIT_TRIPLE_FAULT_ENABLED();
9936 break;
9937 case VMX_EXIT_TASK_SWITCH: SET_EXIT(TASK_SWITCH); break;
9938 case VMX_EXIT_EPT_VIOLATION: SET_EXIT(VMX_EPT_VIOLATION); break;
9939 case VMX_EXIT_EPT_MISCONFIG: SET_EXIT(VMX_EPT_MISCONFIG); break;
9940 case VMX_EXIT_APIC_ACCESS: SET_EXIT(VMX_VAPIC_ACCESS); break;
9941 case VMX_EXIT_APIC_WRITE: SET_EXIT(VMX_VAPIC_WRITE); break;
9942
9943 /* Instruction specific VM-exits: */
9944 case VMX_EXIT_CPUID: SET_BOTH(CPUID); break;
9945 case VMX_EXIT_GETSEC: SET_BOTH(GETSEC); break;
9946 case VMX_EXIT_HLT: SET_BOTH(HALT); break;
9947 case VMX_EXIT_INVD: SET_BOTH(INVD); break;
9948 case VMX_EXIT_INVLPG: SET_BOTH(INVLPG); break;
9949 case VMX_EXIT_RDPMC: SET_BOTH(RDPMC); break;
9950 case VMX_EXIT_RDTSC: SET_BOTH(RDTSC); break;
9951 case VMX_EXIT_RSM: SET_BOTH(RSM); break;
9952 case VMX_EXIT_VMCALL: SET_BOTH(VMM_CALL); break;
9953 case VMX_EXIT_VMCLEAR: SET_BOTH(VMX_VMCLEAR); break;
9954 case VMX_EXIT_VMLAUNCH: SET_BOTH(VMX_VMLAUNCH); break;
9955 case VMX_EXIT_VMPTRLD: SET_BOTH(VMX_VMPTRLD); break;
9956 case VMX_EXIT_VMPTRST: SET_BOTH(VMX_VMPTRST); break;
9957 case VMX_EXIT_VMREAD: SET_BOTH(VMX_VMREAD); break;
9958 case VMX_EXIT_VMRESUME: SET_BOTH(VMX_VMRESUME); break;
9959 case VMX_EXIT_VMWRITE: SET_BOTH(VMX_VMWRITE); break;
9960 case VMX_EXIT_VMXOFF: SET_BOTH(VMX_VMXOFF); break;
9961 case VMX_EXIT_VMXON: SET_BOTH(VMX_VMXON); break;
9962 case VMX_EXIT_MOV_CRX:
9963 hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
9964/** @todo r=bird: I feel these macros aren't very descriptive and needs to be at least 30 chars longer! ;-)
9965* Sensible abbreviations strongly recommended here because even with 130 columns this stuff get too wide! */
9966 if ( VMX_EXIT_QUALIFICATION_CRX_ACCESS(pVmxTransient->uExitQualification)
9967 == VMX_EXIT_QUALIFICATION_CRX_ACCESS_READ)
9968 SET_BOTH(CRX_READ);
9969 else
9970 SET_BOTH(CRX_WRITE);
9971 uEventArg = VMX_EXIT_QUALIFICATION_CRX_REGISTER(pVmxTransient->uExitQualification);
9972 break;
9973 case VMX_EXIT_MOV_DRX:
9974 hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
9975 if ( VMX_EXIT_QUALIFICATION_DRX_DIRECTION(pVmxTransient->uExitQualification)
9976 == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_READ)
9977 SET_BOTH(DRX_READ);
9978 else
9979 SET_BOTH(DRX_WRITE);
9980 uEventArg = VMX_EXIT_QUALIFICATION_DRX_REGISTER(pVmxTransient->uExitQualification);
9981 break;
9982 case VMX_EXIT_RDMSR: SET_BOTH(RDMSR); break;
9983 case VMX_EXIT_WRMSR: SET_BOTH(WRMSR); break;
9984 case VMX_EXIT_MWAIT: SET_BOTH(MWAIT); break;
9985 case VMX_EXIT_MONITOR: SET_BOTH(MONITOR); break;
9986 case VMX_EXIT_PAUSE: SET_BOTH(PAUSE); break;
9987 case VMX_EXIT_XDTR_ACCESS:
9988 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
9989 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_XDTR_INSINFO_INSTR_ID))
9990 {
9991 case VMX_XDTR_INSINFO_II_SGDT: SET_BOTH(SGDT); break;
9992 case VMX_XDTR_INSINFO_II_SIDT: SET_BOTH(SIDT); break;
9993 case VMX_XDTR_INSINFO_II_LGDT: SET_BOTH(LGDT); break;
9994 case VMX_XDTR_INSINFO_II_LIDT: SET_BOTH(LIDT); break;
9995 }
9996 break;
9997
9998 case VMX_EXIT_TR_ACCESS:
9999 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
10000 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_YYTR_INSINFO_INSTR_ID))
10001 {
10002 case VMX_YYTR_INSINFO_II_SLDT: SET_BOTH(SLDT); break;
10003 case VMX_YYTR_INSINFO_II_STR: SET_BOTH(STR); break;
10004 case VMX_YYTR_INSINFO_II_LLDT: SET_BOTH(LLDT); break;
10005 case VMX_YYTR_INSINFO_II_LTR: SET_BOTH(LTR); break;
10006 }
10007 break;
10008
10009 case VMX_EXIT_INVEPT: SET_BOTH(VMX_INVEPT); break;
10010 case VMX_EXIT_RDTSCP: SET_BOTH(RDTSCP); break;
10011 case VMX_EXIT_INVVPID: SET_BOTH(VMX_INVVPID); break;
10012 case VMX_EXIT_WBINVD: SET_BOTH(WBINVD); break;
10013 case VMX_EXIT_XSETBV: SET_BOTH(XSETBV); break;
10014 case VMX_EXIT_RDRAND: SET_BOTH(RDRAND); break;
10015 case VMX_EXIT_INVPCID: SET_BOTH(VMX_INVPCID); break;
10016 case VMX_EXIT_VMFUNC: SET_BOTH(VMX_VMFUNC); break;
10017 case VMX_EXIT_RDSEED: SET_BOTH(RDSEED); break;
10018 case VMX_EXIT_XSAVES: SET_BOTH(XSAVES); break;
10019 case VMX_EXIT_XRSTORS: SET_BOTH(XRSTORS); break;
10020
10021 /* Events that aren't relevant at this point. */
10022 case VMX_EXIT_EXT_INT:
10023 case VMX_EXIT_INT_WINDOW:
10024 case VMX_EXIT_NMI_WINDOW:
10025 case VMX_EXIT_TPR_BELOW_THRESHOLD:
10026 case VMX_EXIT_PREEMPT_TIMER:
10027 case VMX_EXIT_IO_INSTR:
10028 break;
10029
10030 /* Errors and unexpected events. */
10031 case VMX_EXIT_INIT_SIGNAL:
10032 case VMX_EXIT_SIPI:
10033 case VMX_EXIT_IO_SMI:
10034 case VMX_EXIT_SMI:
10035 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
10036 case VMX_EXIT_ERR_MSR_LOAD:
10037 case VMX_EXIT_ERR_MACHINE_CHECK:
10038 break;
10039
10040 default:
10041 AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
10042 break;
10043 }
10044#undef SET_BOTH
10045#undef SET_EXIT
10046
10047 /*
10048 * Dtrace tracepoints go first. We do them here at once so we don't
10049 * have to copy the guest state saving and stuff a few dozen times.
10050 * Down side is that we've got to repeat the switch, though this time
10051 * we use enmEvent since the probes are a subset of what DBGF does.
10052 */
10053 if (fDtrace1 || fDtrace2)
10054 {
10055 hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
10056 hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
10057 switch (enmEvent1)
10058 {
10059 /** @todo consider which extra parameters would be helpful for each probe. */
10060 case DBGFEVENT_END: break;
10061 case DBGFEVENT_XCPT_DE: VBOXVMM_XCPT_DE(pVCpu, pMixedCtx); break;
10062 case DBGFEVENT_XCPT_DB: VBOXVMM_XCPT_DB(pVCpu, pMixedCtx, pMixedCtx->dr[6]); break;
10063 case DBGFEVENT_XCPT_BP: VBOXVMM_XCPT_BP(pVCpu, pMixedCtx); break;
10064 case DBGFEVENT_XCPT_OF: VBOXVMM_XCPT_OF(pVCpu, pMixedCtx); break;
10065 case DBGFEVENT_XCPT_BR: VBOXVMM_XCPT_BR(pVCpu, pMixedCtx); break;
10066 case DBGFEVENT_XCPT_UD: VBOXVMM_XCPT_UD(pVCpu, pMixedCtx); break;
10067 case DBGFEVENT_XCPT_NM: VBOXVMM_XCPT_NM(pVCpu, pMixedCtx); break;
10068 case DBGFEVENT_XCPT_DF: VBOXVMM_XCPT_DF(pVCpu, pMixedCtx); break;
10069 case DBGFEVENT_XCPT_TS: VBOXVMM_XCPT_TS(pVCpu, pMixedCtx, uEventArg); break;
10070 case DBGFEVENT_XCPT_NP: VBOXVMM_XCPT_NP(pVCpu, pMixedCtx, uEventArg); break;
10071 case DBGFEVENT_XCPT_SS: VBOXVMM_XCPT_SS(pVCpu, pMixedCtx, uEventArg); break;
10072 case DBGFEVENT_XCPT_GP: VBOXVMM_XCPT_GP(pVCpu, pMixedCtx, uEventArg); break;
10073 case DBGFEVENT_XCPT_PF: VBOXVMM_XCPT_PF(pVCpu, pMixedCtx, uEventArg, pMixedCtx->cr2); break;
10074 case DBGFEVENT_XCPT_MF: VBOXVMM_XCPT_MF(pVCpu, pMixedCtx); break;
10075 case DBGFEVENT_XCPT_AC: VBOXVMM_XCPT_AC(pVCpu, pMixedCtx); break;
10076 case DBGFEVENT_XCPT_XF: VBOXVMM_XCPT_XF(pVCpu, pMixedCtx); break;
10077 case DBGFEVENT_XCPT_VE: VBOXVMM_XCPT_VE(pVCpu, pMixedCtx); break;
10078 case DBGFEVENT_XCPT_SX: VBOXVMM_XCPT_SX(pVCpu, pMixedCtx, uEventArg); break;
10079 case DBGFEVENT_INTERRUPT_SOFTWARE: VBOXVMM_INT_SOFTWARE(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
10080 case DBGFEVENT_INSTR_CPUID: VBOXVMM_INSTR_CPUID(pVCpu, pMixedCtx, pMixedCtx->eax, pMixedCtx->ecx); break;
10081 case DBGFEVENT_INSTR_GETSEC: VBOXVMM_INSTR_GETSEC(pVCpu, pMixedCtx); break;
10082 case DBGFEVENT_INSTR_HALT: VBOXVMM_INSTR_HALT(pVCpu, pMixedCtx); break;
10083 case DBGFEVENT_INSTR_INVD: VBOXVMM_INSTR_INVD(pVCpu, pMixedCtx); break;
10084 case DBGFEVENT_INSTR_INVLPG: VBOXVMM_INSTR_INVLPG(pVCpu, pMixedCtx); break;
10085 case DBGFEVENT_INSTR_RDPMC: VBOXVMM_INSTR_RDPMC(pVCpu, pMixedCtx); break;
10086 case DBGFEVENT_INSTR_RDTSC: VBOXVMM_INSTR_RDTSC(pVCpu, pMixedCtx); break;
10087 case DBGFEVENT_INSTR_RSM: VBOXVMM_INSTR_RSM(pVCpu, pMixedCtx); break;
10088 case DBGFEVENT_INSTR_CRX_READ: VBOXVMM_INSTR_CRX_READ(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
10089 case DBGFEVENT_INSTR_CRX_WRITE: VBOXVMM_INSTR_CRX_WRITE(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
10090 case DBGFEVENT_INSTR_DRX_READ: VBOXVMM_INSTR_DRX_READ(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
10091 case DBGFEVENT_INSTR_DRX_WRITE: VBOXVMM_INSTR_DRX_WRITE(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
10092 case DBGFEVENT_INSTR_RDMSR: VBOXVMM_INSTR_RDMSR(pVCpu, pMixedCtx, pMixedCtx->ecx); break;
10093 case DBGFEVENT_INSTR_WRMSR: VBOXVMM_INSTR_WRMSR(pVCpu, pMixedCtx, pMixedCtx->ecx,
10094 RT_MAKE_U64(pMixedCtx->eax, pMixedCtx->edx)); break;
10095 case DBGFEVENT_INSTR_MWAIT: VBOXVMM_INSTR_MWAIT(pVCpu, pMixedCtx); break;
10096 case DBGFEVENT_INSTR_MONITOR: VBOXVMM_INSTR_MONITOR(pVCpu, pMixedCtx); break;
10097 case DBGFEVENT_INSTR_PAUSE: VBOXVMM_INSTR_PAUSE(pVCpu, pMixedCtx); break;
10098 case DBGFEVENT_INSTR_SGDT: VBOXVMM_INSTR_SGDT(pVCpu, pMixedCtx); break;
10099 case DBGFEVENT_INSTR_SIDT: VBOXVMM_INSTR_SIDT(pVCpu, pMixedCtx); break;
10100 case DBGFEVENT_INSTR_LGDT: VBOXVMM_INSTR_LGDT(pVCpu, pMixedCtx); break;
10101 case DBGFEVENT_INSTR_LIDT: VBOXVMM_INSTR_LIDT(pVCpu, pMixedCtx); break;
10102 case DBGFEVENT_INSTR_SLDT: VBOXVMM_INSTR_SLDT(pVCpu, pMixedCtx); break;
10103 case DBGFEVENT_INSTR_STR: VBOXVMM_INSTR_STR(pVCpu, pMixedCtx); break;
10104 case DBGFEVENT_INSTR_LLDT: VBOXVMM_INSTR_LLDT(pVCpu, pMixedCtx); break;
10105 case DBGFEVENT_INSTR_LTR: VBOXVMM_INSTR_LTR(pVCpu, pMixedCtx); break;
10106 case DBGFEVENT_INSTR_RDTSCP: VBOXVMM_INSTR_RDTSCP(pVCpu, pMixedCtx); break;
10107 case DBGFEVENT_INSTR_WBINVD: VBOXVMM_INSTR_WBINVD(pVCpu, pMixedCtx); break;
10108 case DBGFEVENT_INSTR_XSETBV: VBOXVMM_INSTR_XSETBV(pVCpu, pMixedCtx); break;
10109 case DBGFEVENT_INSTR_RDRAND: VBOXVMM_INSTR_RDRAND(pVCpu, pMixedCtx); break;
10110 case DBGFEVENT_INSTR_RDSEED: VBOXVMM_INSTR_RDSEED(pVCpu, pMixedCtx); break;
10111 case DBGFEVENT_INSTR_XSAVES: VBOXVMM_INSTR_XSAVES(pVCpu, pMixedCtx); break;
10112 case DBGFEVENT_INSTR_XRSTORS: VBOXVMM_INSTR_XRSTORS(pVCpu, pMixedCtx); break;
10113 case DBGFEVENT_INSTR_VMM_CALL: VBOXVMM_INSTR_VMM_CALL(pVCpu, pMixedCtx); break;
10114 case DBGFEVENT_INSTR_VMX_VMCLEAR: VBOXVMM_INSTR_VMX_VMCLEAR(pVCpu, pMixedCtx); break;
10115 case DBGFEVENT_INSTR_VMX_VMLAUNCH: VBOXVMM_INSTR_VMX_VMLAUNCH(pVCpu, pMixedCtx); break;
10116 case DBGFEVENT_INSTR_VMX_VMPTRLD: VBOXVMM_INSTR_VMX_VMPTRLD(pVCpu, pMixedCtx); break;
10117 case DBGFEVENT_INSTR_VMX_VMPTRST: VBOXVMM_INSTR_VMX_VMPTRST(pVCpu, pMixedCtx); break;
10118 case DBGFEVENT_INSTR_VMX_VMREAD: VBOXVMM_INSTR_VMX_VMREAD(pVCpu, pMixedCtx); break;
10119 case DBGFEVENT_INSTR_VMX_VMRESUME: VBOXVMM_INSTR_VMX_VMRESUME(pVCpu, pMixedCtx); break;
10120 case DBGFEVENT_INSTR_VMX_VMWRITE: VBOXVMM_INSTR_VMX_VMWRITE(pVCpu, pMixedCtx); break;
10121 case DBGFEVENT_INSTR_VMX_VMXOFF: VBOXVMM_INSTR_VMX_VMXOFF(pVCpu, pMixedCtx); break;
10122 case DBGFEVENT_INSTR_VMX_VMXON: VBOXVMM_INSTR_VMX_VMXON(pVCpu, pMixedCtx); break;
10123 case DBGFEVENT_INSTR_VMX_INVEPT: VBOXVMM_INSTR_VMX_INVEPT(pVCpu, pMixedCtx); break;
10124 case DBGFEVENT_INSTR_VMX_INVVPID: VBOXVMM_INSTR_VMX_INVVPID(pVCpu, pMixedCtx); break;
10125 case DBGFEVENT_INSTR_VMX_INVPCID: VBOXVMM_INSTR_VMX_INVPCID(pVCpu, pMixedCtx); break;
10126 case DBGFEVENT_INSTR_VMX_VMFUNC: VBOXVMM_INSTR_VMX_VMFUNC(pVCpu, pMixedCtx); break;
10127 default: AssertMsgFailed(("enmEvent1=%d uExitReason=%d\n", enmEvent1, uExitReason)); break;
10128 }
10129 switch (enmEvent2)
10130 {
10131 /** @todo consider which extra parameters would be helpful for each probe. */
10132 case DBGFEVENT_END: break;
10133 case DBGFEVENT_EXIT_TASK_SWITCH: VBOXVMM_EXIT_TASK_SWITCH(pVCpu, pMixedCtx); break;
10134 case DBGFEVENT_EXIT_CPUID: VBOXVMM_EXIT_CPUID(pVCpu, pMixedCtx, pMixedCtx->eax, pMixedCtx->ecx); break;
10135 case DBGFEVENT_EXIT_GETSEC: VBOXVMM_EXIT_GETSEC(pVCpu, pMixedCtx); break;
10136 case DBGFEVENT_EXIT_HALT: VBOXVMM_EXIT_HALT(pVCpu, pMixedCtx); break;
10137 case DBGFEVENT_EXIT_INVD: VBOXVMM_EXIT_INVD(pVCpu, pMixedCtx); break;
10138 case DBGFEVENT_EXIT_INVLPG: VBOXVMM_EXIT_INVLPG(pVCpu, pMixedCtx); break;
10139 case DBGFEVENT_EXIT_RDPMC: VBOXVMM_EXIT_RDPMC(pVCpu, pMixedCtx); break;
10140 case DBGFEVENT_EXIT_RDTSC: VBOXVMM_EXIT_RDTSC(pVCpu, pMixedCtx); break;
10141 case DBGFEVENT_EXIT_RSM: VBOXVMM_EXIT_RSM(pVCpu, pMixedCtx); break;
10142 case DBGFEVENT_EXIT_CRX_READ: VBOXVMM_EXIT_CRX_READ(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
10143 case DBGFEVENT_EXIT_CRX_WRITE: VBOXVMM_EXIT_CRX_WRITE(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
10144 case DBGFEVENT_EXIT_DRX_READ: VBOXVMM_EXIT_DRX_READ(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
10145 case DBGFEVENT_EXIT_DRX_WRITE: VBOXVMM_EXIT_DRX_WRITE(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
10146 case DBGFEVENT_EXIT_RDMSR: VBOXVMM_EXIT_RDMSR(pVCpu, pMixedCtx, pMixedCtx->ecx); break;
10147 case DBGFEVENT_EXIT_WRMSR: VBOXVMM_EXIT_WRMSR(pVCpu, pMixedCtx, pMixedCtx->ecx,
10148 RT_MAKE_U64(pMixedCtx->eax, pMixedCtx->edx)); break;
10149 case DBGFEVENT_EXIT_MWAIT: VBOXVMM_EXIT_MWAIT(pVCpu, pMixedCtx); break;
10150 case DBGFEVENT_EXIT_MONITOR: VBOXVMM_EXIT_MONITOR(pVCpu, pMixedCtx); break;
10151 case DBGFEVENT_EXIT_PAUSE: VBOXVMM_EXIT_PAUSE(pVCpu, pMixedCtx); break;
10152 case DBGFEVENT_EXIT_SGDT: VBOXVMM_EXIT_SGDT(pVCpu, pMixedCtx); break;
10153 case DBGFEVENT_EXIT_SIDT: VBOXVMM_EXIT_SIDT(pVCpu, pMixedCtx); break;
10154 case DBGFEVENT_EXIT_LGDT: VBOXVMM_EXIT_LGDT(pVCpu, pMixedCtx); break;
10155 case DBGFEVENT_EXIT_LIDT: VBOXVMM_EXIT_LIDT(pVCpu, pMixedCtx); break;
10156 case DBGFEVENT_EXIT_SLDT: VBOXVMM_EXIT_SLDT(pVCpu, pMixedCtx); break;
10157 case DBGFEVENT_EXIT_STR: VBOXVMM_EXIT_STR(pVCpu, pMixedCtx); break;
10158 case DBGFEVENT_EXIT_LLDT: VBOXVMM_EXIT_LLDT(pVCpu, pMixedCtx); break;
10159 case DBGFEVENT_EXIT_LTR: VBOXVMM_EXIT_LTR(pVCpu, pMixedCtx); break;
10160 case DBGFEVENT_EXIT_RDTSCP: VBOXVMM_EXIT_RDTSCP(pVCpu, pMixedCtx); break;
10161 case DBGFEVENT_EXIT_WBINVD: VBOXVMM_EXIT_WBINVD(pVCpu, pMixedCtx); break;
10162 case DBGFEVENT_EXIT_XSETBV: VBOXVMM_EXIT_XSETBV(pVCpu, pMixedCtx); break;
10163 case DBGFEVENT_EXIT_RDRAND: VBOXVMM_EXIT_RDRAND(pVCpu, pMixedCtx); break;
10164 case DBGFEVENT_EXIT_RDSEED: VBOXVMM_EXIT_RDSEED(pVCpu, pMixedCtx); break;
10165 case DBGFEVENT_EXIT_XSAVES: VBOXVMM_EXIT_XSAVES(pVCpu, pMixedCtx); break;
10166 case DBGFEVENT_EXIT_XRSTORS: VBOXVMM_EXIT_XRSTORS(pVCpu, pMixedCtx); break;
10167 case DBGFEVENT_EXIT_VMM_CALL: VBOXVMM_EXIT_VMM_CALL(pVCpu, pMixedCtx); break;
10168 case DBGFEVENT_EXIT_VMX_VMCLEAR: VBOXVMM_EXIT_VMX_VMCLEAR(pVCpu, pMixedCtx); break;
10169 case DBGFEVENT_EXIT_VMX_VMLAUNCH: VBOXVMM_EXIT_VMX_VMLAUNCH(pVCpu, pMixedCtx); break;
10170 case DBGFEVENT_EXIT_VMX_VMPTRLD: VBOXVMM_EXIT_VMX_VMPTRLD(pVCpu, pMixedCtx); break;
10171 case DBGFEVENT_EXIT_VMX_VMPTRST: VBOXVMM_EXIT_VMX_VMPTRST(pVCpu, pMixedCtx); break;
10172 case DBGFEVENT_EXIT_VMX_VMREAD: VBOXVMM_EXIT_VMX_VMREAD(pVCpu, pMixedCtx); break;
10173 case DBGFEVENT_EXIT_VMX_VMRESUME: VBOXVMM_EXIT_VMX_VMRESUME(pVCpu, pMixedCtx); break;
10174 case DBGFEVENT_EXIT_VMX_VMWRITE: VBOXVMM_EXIT_VMX_VMWRITE(pVCpu, pMixedCtx); break;
10175 case DBGFEVENT_EXIT_VMX_VMXOFF: VBOXVMM_EXIT_VMX_VMXOFF(pVCpu, pMixedCtx); break;
10176 case DBGFEVENT_EXIT_VMX_VMXON: VBOXVMM_EXIT_VMX_VMXON(pVCpu, pMixedCtx); break;
10177 case DBGFEVENT_EXIT_VMX_INVEPT: VBOXVMM_EXIT_VMX_INVEPT(pVCpu, pMixedCtx); break;
10178 case DBGFEVENT_EXIT_VMX_INVVPID: VBOXVMM_EXIT_VMX_INVVPID(pVCpu, pMixedCtx); break;
10179 case DBGFEVENT_EXIT_VMX_INVPCID: VBOXVMM_EXIT_VMX_INVPCID(pVCpu, pMixedCtx); break;
10180 case DBGFEVENT_EXIT_VMX_VMFUNC: VBOXVMM_EXIT_VMX_VMFUNC(pVCpu, pMixedCtx); break;
10181 case DBGFEVENT_EXIT_VMX_EPT_MISCONFIG: VBOXVMM_EXIT_VMX_EPT_MISCONFIG(pVCpu, pMixedCtx); break;
10182 case DBGFEVENT_EXIT_VMX_EPT_VIOLATION: VBOXVMM_EXIT_VMX_EPT_VIOLATION(pVCpu, pMixedCtx); break;
10183 case DBGFEVENT_EXIT_VMX_VAPIC_ACCESS: VBOXVMM_EXIT_VMX_VAPIC_ACCESS(pVCpu, pMixedCtx); break;
10184 case DBGFEVENT_EXIT_VMX_VAPIC_WRITE: VBOXVMM_EXIT_VMX_VAPIC_WRITE(pVCpu, pMixedCtx); break;
10185 default: AssertMsgFailed(("enmEvent2=%d uExitReason=%d\n", enmEvent2, uExitReason)); break;
10186 }
10187 }
10188
10189 /*
10190 * Fire of the DBGF event, if enabled (our check here is just a quick one,
10191 * the DBGF call will do a full check).
10192 *
10193 * Note! DBGF sets DBGFEVENT_INTERRUPT_SOFTWARE in the bitmap.
10194 * Note! If we have to events, we prioritize the first, i.e. the instruction
10195 * one, in order to avoid event nesting.
10196 */
10197 if ( enmEvent1 != DBGFEVENT_END
10198 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent1))
10199 {
10200 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArg(pVM, pVCpu, enmEvent1, uEventArg, DBGFEVENTCTX_HM);
10201 if (rcStrict != VINF_SUCCESS)
10202 return rcStrict;
10203 }
10204 else if ( enmEvent2 != DBGFEVENT_END
10205 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent2))
10206 {
10207 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArg(pVM, pVCpu, enmEvent2, uEventArg, DBGFEVENTCTX_HM);
10208 if (rcStrict != VINF_SUCCESS)
10209 return rcStrict;
10210 }
10211
10212 return VINF_SUCCESS;
10213}
10214
10215
10216/**
10217 * Single-stepping VM-exit filtering.
10218 *
10219 * This is preprocessing the VM-exits and deciding whether we've gotten far
10220 * enough to return VINF_EM_DBG_STEPPED already. If not, normal VM-exit
10221 * handling is performed.
10222 *
10223 * @returns Strict VBox status code (i.e. informational status codes too).
10224 * @param pVM The cross context VM structure.
10225 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
10226 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
10227 * out-of-sync. Make sure to update the required
10228 * fields before using them.
10229 * @param pVmxTransient Pointer to the VMX-transient structure.
10230 * @param uExitReason The VM-exit reason.
10231 * @param pDbgState The debug state.
10232 */
10233DECLINLINE(VBOXSTRICTRC) hmR0VmxRunDebugHandleExit(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient,
10234 uint32_t uExitReason, PVMXRUNDBGSTATE pDbgState)
10235{
10236 /*
10237 * Expensive (saves context) generic dtrace VM-exit probe.
10238 */
10239 if (!VBOXVMM_R0_HMVMX_VMEXIT_ENABLED())
10240 { /* more likely */ }
10241 else
10242 {
10243 hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
10244 hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
10245 VBOXVMM_R0_HMVMX_VMEXIT(pVCpu, pMixedCtx, pVmxTransient->uExitReason, pVmxTransient->uExitQualification);
10246 }
10247
10248 /*
10249 * Check for host NMI, just to get that out of the way.
10250 */
10251 if (uExitReason != VMX_EXIT_XCPT_OR_NMI)
10252 { /* normally likely */ }
10253 else
10254 {
10255 int rc2 = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
10256 AssertRCReturn(rc2, rc2);
10257 uint32_t uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(pVmxTransient->uExitIntInfo);
10258 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
10259 return hmR0VmxExitXcptOrNmi(pVCpu, pMixedCtx, pVmxTransient);
10260 }
10261
10262 /*
10263 * Check for single stepping event if we're stepping.
10264 */
10265 if (pVCpu->hm.s.fSingleInstruction)
10266 {
10267 switch (uExitReason)
10268 {
10269 case VMX_EXIT_MTF:
10270 return hmR0VmxExitMtf(pVCpu, pMixedCtx, pVmxTransient);
10271
10272 /* Various events: */
10273 case VMX_EXIT_XCPT_OR_NMI:
10274 case VMX_EXIT_EXT_INT:
10275 case VMX_EXIT_TRIPLE_FAULT:
10276 case VMX_EXIT_INT_WINDOW:
10277 case VMX_EXIT_NMI_WINDOW:
10278 case VMX_EXIT_TASK_SWITCH:
10279 case VMX_EXIT_TPR_BELOW_THRESHOLD:
10280 case VMX_EXIT_APIC_ACCESS:
10281 case VMX_EXIT_EPT_VIOLATION:
10282 case VMX_EXIT_EPT_MISCONFIG:
10283 case VMX_EXIT_PREEMPT_TIMER:
10284
10285 /* Instruction specific VM-exits: */
10286 case VMX_EXIT_CPUID:
10287 case VMX_EXIT_GETSEC:
10288 case VMX_EXIT_HLT:
10289 case VMX_EXIT_INVD:
10290 case VMX_EXIT_INVLPG:
10291 case VMX_EXIT_RDPMC:
10292 case VMX_EXIT_RDTSC:
10293 case VMX_EXIT_RSM:
10294 case VMX_EXIT_VMCALL:
10295 case VMX_EXIT_VMCLEAR:
10296 case VMX_EXIT_VMLAUNCH:
10297 case VMX_EXIT_VMPTRLD:
10298 case VMX_EXIT_VMPTRST:
10299 case VMX_EXIT_VMREAD:
10300 case VMX_EXIT_VMRESUME:
10301 case VMX_EXIT_VMWRITE:
10302 case VMX_EXIT_VMXOFF:
10303 case VMX_EXIT_VMXON:
10304 case VMX_EXIT_MOV_CRX:
10305 case VMX_EXIT_MOV_DRX:
10306 case VMX_EXIT_IO_INSTR:
10307 case VMX_EXIT_RDMSR:
10308 case VMX_EXIT_WRMSR:
10309 case VMX_EXIT_MWAIT:
10310 case VMX_EXIT_MONITOR:
10311 case VMX_EXIT_PAUSE:
10312 case VMX_EXIT_XDTR_ACCESS:
10313 case VMX_EXIT_TR_ACCESS:
10314 case VMX_EXIT_INVEPT:
10315 case VMX_EXIT_RDTSCP:
10316 case VMX_EXIT_INVVPID:
10317 case VMX_EXIT_WBINVD:
10318 case VMX_EXIT_XSETBV:
10319 case VMX_EXIT_RDRAND:
10320 case VMX_EXIT_INVPCID:
10321 case VMX_EXIT_VMFUNC:
10322 case VMX_EXIT_RDSEED:
10323 case VMX_EXIT_XSAVES:
10324 case VMX_EXIT_XRSTORS:
10325 {
10326 int rc2 = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
10327 rc2 |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
10328 AssertRCReturn(rc2, rc2);
10329 if ( pMixedCtx->rip != pDbgState->uRipStart
10330 || pMixedCtx->cs.Sel != pDbgState->uCsStart)
10331 return VINF_EM_DBG_STEPPED;
10332 break;
10333 }
10334
10335 /* Errors and unexpected events: */
10336 case VMX_EXIT_INIT_SIGNAL:
10337 case VMX_EXIT_SIPI:
10338 case VMX_EXIT_IO_SMI:
10339 case VMX_EXIT_SMI:
10340 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
10341 case VMX_EXIT_ERR_MSR_LOAD:
10342 case VMX_EXIT_ERR_MACHINE_CHECK:
10343 case VMX_EXIT_APIC_WRITE: /* Some talk about this being fault like, so I guess we must process it? */
10344 break;
10345
10346 default:
10347 AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
10348 break;
10349 }
10350 }
10351
10352 /*
10353 * Check for debugger event breakpoints and dtrace probes.
10354 */
10355 if ( uExitReason < RT_ELEMENTS(pDbgState->bmExitsToCheck) * 32U
10356 && ASMBitTest(pDbgState->bmExitsToCheck, uExitReason) )
10357 {
10358 VBOXSTRICTRC rcStrict = hmR0VmxHandleExitDtraceEvents(pVM, pVCpu, pMixedCtx, pVmxTransient, uExitReason);
10359 if (rcStrict != VINF_SUCCESS)
10360 return rcStrict;
10361 }
10362
10363 /*
10364 * Normal processing.
10365 */
10366#ifdef HMVMX_USE_FUNCTION_TABLE
10367 return g_apfnVMExitHandlers[uExitReason](pVCpu, pMixedCtx, pVmxTransient);
10368#else
10369 return hmR0VmxHandleExit(pVCpu, pMixedCtx, pVmxTransient, uExitReason);
10370#endif
10371}
10372
10373
10374/**
10375 * Single steps guest code using VT-x.
10376 *
10377 * @returns Strict VBox status code (i.e. informational status codes too).
10378 * @param pVM The cross context VM structure.
10379 * @param pVCpu The cross context virtual CPU structure.
10380 * @param pCtx Pointer to the guest-CPU context.
10381 *
10382 * @note Mostly the same as hmR0VmxRunGuestCodeNormal().
10383 */
10384static VBOXSTRICTRC hmR0VmxRunGuestCodeDebug(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
10385{
10386 VMXTRANSIENT VmxTransient;
10387 VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
10388
10389 /* Set HMCPU indicators. */
10390 bool const fSavedSingleInstruction = pVCpu->hm.s.fSingleInstruction;
10391 pVCpu->hm.s.fSingleInstruction = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
10392 pVCpu->hm.s.fDebugWantRdTscExit = false;
10393 pVCpu->hm.s.fUsingDebugLoop = true;
10394
10395 /* State we keep to help modify and later restore the VMCS fields we alter, and for detecting steps. */
10396 VMXRUNDBGSTATE DbgState;
10397 hmR0VmxRunDebugStateInit(pVCpu, pCtx, &DbgState);
10398 hmR0VmxPreRunGuestDebugStateUpdate(pVM, pVCpu, pCtx, &DbgState, &VmxTransient);
10399
10400 /*
10401 * The loop.
10402 */
10403 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
10404 for (uint32_t cLoops = 0; ; cLoops++)
10405 {
10406 Assert(!HMR0SuspendPending());
10407 HMVMX_ASSERT_CPU_SAFE();
10408 bool fStepping = pVCpu->hm.s.fSingleInstruction;
10409
10410 /*
10411 * Preparatory work for running guest code, this may force us to return
10412 * to ring-3. This bugger disables interrupts on VINF_SUCCESS!
10413 */
10414 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
10415 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &DbgState); /* Set up execute controls the next to can respond to. */
10416 rcStrict = hmR0VmxPreRunGuest(pVM, pVCpu, pCtx, &VmxTransient, fStepping);
10417 if (rcStrict != VINF_SUCCESS)
10418 break;
10419
10420 hmR0VmxPreRunGuestCommitted(pVM, pVCpu, pCtx, &VmxTransient);
10421 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &DbgState); /* Override any obnoxious code in the above two calls. */
10422
10423 /*
10424 * Now we can run the guest code.
10425 */
10426 int rcRun = hmR0VmxRunGuest(pVM, pVCpu, pCtx);
10427
10428 /* The guest-CPU context is now outdated, 'pCtx' is to be treated as 'pMixedCtx' from this point on!!! */
10429
10430 /*
10431 * Restore any residual host-state and save any bits shared between host
10432 * and guest into the guest-CPU state. Re-enables interrupts!
10433 */
10434 hmR0VmxPostRunGuest(pVM, pVCpu, pCtx, &VmxTransient, rcRun);
10435
10436 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
10437 if (RT_SUCCESS(rcRun))
10438 { /* very likely */ }
10439 else
10440 {
10441 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
10442 hmR0VmxReportWorldSwitchError(pVM, pVCpu, rcRun, pCtx, &VmxTransient);
10443 return rcRun;
10444 }
10445
10446 /* Profile the VM-exit. */
10447 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
10448 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
10449 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
10450 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
10451 HMVMX_START_EXIT_DISPATCH_PROF();
10452
10453 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, pCtx, VmxTransient.uExitReason);
10454
10455 /*
10456 * Handle the VM-exit - we quit earlier on certain VM-exits, see hmR0VmxHandleExitDebug().
10457 */
10458 rcStrict = hmR0VmxRunDebugHandleExit(pVM, pVCpu, pCtx, &VmxTransient, VmxTransient.uExitReason, &DbgState);
10459 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
10460 if (rcStrict != VINF_SUCCESS)
10461 break;
10462 if (cLoops > pVM->hm.s.cMaxResumeLoops)
10463 {
10464 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
10465 rcStrict = VINF_EM_RAW_INTERRUPT;
10466 break;
10467 }
10468
10469 /*
10470 * Stepping: Did the RIP change, if so, consider it a single step.
10471 * Otherwise, make sure one of the TFs gets set.
10472 */
10473 if (fStepping)
10474 {
10475 int rc2 = hmR0VmxSaveGuestRip(pVCpu, pCtx);
10476 rc2 |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pCtx);
10477 AssertRCReturn(rc2, rc2);
10478 if ( pCtx->rip != DbgState.uRipStart
10479 || pCtx->cs.Sel != DbgState.uCsStart)
10480 {
10481 rcStrict = VINF_EM_DBG_STEPPED;
10482 break;
10483 }
10484 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
10485 }
10486
10487 /*
10488 * Update when dtrace settings changes (DBGF kicks us, so no need to check).
10489 */
10490 if (VBOXVMM_GET_SETTINGS_SEQ_NO() != DbgState.uDtraceSettingsSeqNo)
10491 hmR0VmxPreRunGuestDebugStateUpdate(pVM, pVCpu, pCtx, &DbgState, &VmxTransient);
10492 }
10493
10494 /*
10495 * Clear the X86_EFL_TF if necessary.
10496 */
10497 if (pVCpu->hm.s.fClearTrapFlag)
10498 {
10499 int rc2 = hmR0VmxSaveGuestRflags(pVCpu, pCtx);
10500 AssertRCReturn(rc2, rc2);
10501 pVCpu->hm.s.fClearTrapFlag = false;
10502 pCtx->eflags.Bits.u1TF = 0;
10503 }
10504 /** @todo there seems to be issues with the resume flag when the monitor trap
10505 * flag is pending without being used. Seen early in bios init when
10506 * accessing APIC page in protected mode. */
10507
10508 /*
10509 * Restore VM-exit control settings as we may not reenter this function the
10510 * next time around.
10511 */
10512 rcStrict = hmR0VmxRunDebugStateRevert(pVCpu, &DbgState, rcStrict);
10513
10514 /* Restore HMCPU indicators. */
10515 pVCpu->hm.s.fUsingDebugLoop = false;
10516 pVCpu->hm.s.fDebugWantRdTscExit = false;
10517 pVCpu->hm.s.fSingleInstruction = fSavedSingleInstruction;
10518
10519 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
10520 return rcStrict;
10521}
10522
10523
10524/** @} */
10525
10526
10527/**
10528 * Checks if any expensive dtrace probes are enabled and we should go to the
10529 * debug loop.
10530 *
10531 * @returns true if we should use debug loop, false if not.
10532 */
10533static bool hmR0VmxAnyExpensiveProbesEnabled(void)
10534{
10535 /* It's probably faster to OR the raw 32-bit counter variables together.
10536 Since the variables are in an array and the probes are next to one
10537 another (more or less), we have good locality. So, better read
10538 eight-nine cache lines ever time and only have one conditional, than
10539 128+ conditionals, right? */
10540 return ( VBOXVMM_R0_HMVMX_VMEXIT_ENABLED_RAW() /* expensive too due to context */
10541 | VBOXVMM_XCPT_DE_ENABLED_RAW()
10542 | VBOXVMM_XCPT_DB_ENABLED_RAW()
10543 | VBOXVMM_XCPT_BP_ENABLED_RAW()
10544 | VBOXVMM_XCPT_OF_ENABLED_RAW()
10545 | VBOXVMM_XCPT_BR_ENABLED_RAW()
10546 | VBOXVMM_XCPT_UD_ENABLED_RAW()
10547 | VBOXVMM_XCPT_NM_ENABLED_RAW()
10548 | VBOXVMM_XCPT_DF_ENABLED_RAW()
10549 | VBOXVMM_XCPT_TS_ENABLED_RAW()
10550 | VBOXVMM_XCPT_NP_ENABLED_RAW()
10551 | VBOXVMM_XCPT_SS_ENABLED_RAW()
10552 | VBOXVMM_XCPT_GP_ENABLED_RAW()
10553 | VBOXVMM_XCPT_PF_ENABLED_RAW()
10554 | VBOXVMM_XCPT_MF_ENABLED_RAW()
10555 | VBOXVMM_XCPT_AC_ENABLED_RAW()
10556 | VBOXVMM_XCPT_XF_ENABLED_RAW()
10557 | VBOXVMM_XCPT_VE_ENABLED_RAW()
10558 | VBOXVMM_XCPT_SX_ENABLED_RAW()
10559 | VBOXVMM_INT_SOFTWARE_ENABLED_RAW()
10560 | VBOXVMM_INT_HARDWARE_ENABLED_RAW()
10561 ) != 0
10562 || ( VBOXVMM_INSTR_HALT_ENABLED_RAW()
10563 | VBOXVMM_INSTR_MWAIT_ENABLED_RAW()
10564 | VBOXVMM_INSTR_MONITOR_ENABLED_RAW()
10565 | VBOXVMM_INSTR_CPUID_ENABLED_RAW()
10566 | VBOXVMM_INSTR_INVD_ENABLED_RAW()
10567 | VBOXVMM_INSTR_WBINVD_ENABLED_RAW()
10568 | VBOXVMM_INSTR_INVLPG_ENABLED_RAW()
10569 | VBOXVMM_INSTR_RDTSC_ENABLED_RAW()
10570 | VBOXVMM_INSTR_RDTSCP_ENABLED_RAW()
10571 | VBOXVMM_INSTR_RDPMC_ENABLED_RAW()
10572 | VBOXVMM_INSTR_RDMSR_ENABLED_RAW()
10573 | VBOXVMM_INSTR_WRMSR_ENABLED_RAW()
10574 | VBOXVMM_INSTR_CRX_READ_ENABLED_RAW()
10575 | VBOXVMM_INSTR_CRX_WRITE_ENABLED_RAW()
10576 | VBOXVMM_INSTR_DRX_READ_ENABLED_RAW()
10577 | VBOXVMM_INSTR_DRX_WRITE_ENABLED_RAW()
10578 | VBOXVMM_INSTR_PAUSE_ENABLED_RAW()
10579 | VBOXVMM_INSTR_XSETBV_ENABLED_RAW()
10580 | VBOXVMM_INSTR_SIDT_ENABLED_RAW()
10581 | VBOXVMM_INSTR_LIDT_ENABLED_RAW()
10582 | VBOXVMM_INSTR_SGDT_ENABLED_RAW()
10583 | VBOXVMM_INSTR_LGDT_ENABLED_RAW()
10584 | VBOXVMM_INSTR_SLDT_ENABLED_RAW()
10585 | VBOXVMM_INSTR_LLDT_ENABLED_RAW()
10586 | VBOXVMM_INSTR_STR_ENABLED_RAW()
10587 | VBOXVMM_INSTR_LTR_ENABLED_RAW()
10588 | VBOXVMM_INSTR_GETSEC_ENABLED_RAW()
10589 | VBOXVMM_INSTR_RSM_ENABLED_RAW()
10590 | VBOXVMM_INSTR_RDRAND_ENABLED_RAW()
10591 | VBOXVMM_INSTR_RDSEED_ENABLED_RAW()
10592 | VBOXVMM_INSTR_XSAVES_ENABLED_RAW()
10593 | VBOXVMM_INSTR_XRSTORS_ENABLED_RAW()
10594 | VBOXVMM_INSTR_VMM_CALL_ENABLED_RAW()
10595 | VBOXVMM_INSTR_VMX_VMCLEAR_ENABLED_RAW()
10596 | VBOXVMM_INSTR_VMX_VMLAUNCH_ENABLED_RAW()
10597 | VBOXVMM_INSTR_VMX_VMPTRLD_ENABLED_RAW()
10598 | VBOXVMM_INSTR_VMX_VMPTRST_ENABLED_RAW()
10599 | VBOXVMM_INSTR_VMX_VMREAD_ENABLED_RAW()
10600 | VBOXVMM_INSTR_VMX_VMRESUME_ENABLED_RAW()
10601 | VBOXVMM_INSTR_VMX_VMWRITE_ENABLED_RAW()
10602 | VBOXVMM_INSTR_VMX_VMXOFF_ENABLED_RAW()
10603 | VBOXVMM_INSTR_VMX_VMXON_ENABLED_RAW()
10604 | VBOXVMM_INSTR_VMX_VMFUNC_ENABLED_RAW()
10605 | VBOXVMM_INSTR_VMX_INVEPT_ENABLED_RAW()
10606 | VBOXVMM_INSTR_VMX_INVVPID_ENABLED_RAW()
10607 | VBOXVMM_INSTR_VMX_INVPCID_ENABLED_RAW()
10608 ) != 0
10609 || ( VBOXVMM_EXIT_TASK_SWITCH_ENABLED_RAW()
10610 | VBOXVMM_EXIT_HALT_ENABLED_RAW()
10611 | VBOXVMM_EXIT_MWAIT_ENABLED_RAW()
10612 | VBOXVMM_EXIT_MONITOR_ENABLED_RAW()
10613 | VBOXVMM_EXIT_CPUID_ENABLED_RAW()
10614 | VBOXVMM_EXIT_INVD_ENABLED_RAW()
10615 | VBOXVMM_EXIT_WBINVD_ENABLED_RAW()
10616 | VBOXVMM_EXIT_INVLPG_ENABLED_RAW()
10617 | VBOXVMM_EXIT_RDTSC_ENABLED_RAW()
10618 | VBOXVMM_EXIT_RDTSCP_ENABLED_RAW()
10619 | VBOXVMM_EXIT_RDPMC_ENABLED_RAW()
10620 | VBOXVMM_EXIT_RDMSR_ENABLED_RAW()
10621 | VBOXVMM_EXIT_WRMSR_ENABLED_RAW()
10622 | VBOXVMM_EXIT_CRX_READ_ENABLED_RAW()
10623 | VBOXVMM_EXIT_CRX_WRITE_ENABLED_RAW()
10624 | VBOXVMM_EXIT_DRX_READ_ENABLED_RAW()
10625 | VBOXVMM_EXIT_DRX_WRITE_ENABLED_RAW()
10626 | VBOXVMM_EXIT_PAUSE_ENABLED_RAW()
10627 | VBOXVMM_EXIT_XSETBV_ENABLED_RAW()
10628 | VBOXVMM_EXIT_SIDT_ENABLED_RAW()
10629 | VBOXVMM_EXIT_LIDT_ENABLED_RAW()
10630 | VBOXVMM_EXIT_SGDT_ENABLED_RAW()
10631 | VBOXVMM_EXIT_LGDT_ENABLED_RAW()
10632 | VBOXVMM_EXIT_SLDT_ENABLED_RAW()
10633 | VBOXVMM_EXIT_LLDT_ENABLED_RAW()
10634 | VBOXVMM_EXIT_STR_ENABLED_RAW()
10635 | VBOXVMM_EXIT_LTR_ENABLED_RAW()
10636 | VBOXVMM_EXIT_GETSEC_ENABLED_RAW()
10637 | VBOXVMM_EXIT_RSM_ENABLED_RAW()
10638 | VBOXVMM_EXIT_RDRAND_ENABLED_RAW()
10639 | VBOXVMM_EXIT_RDSEED_ENABLED_RAW()
10640 | VBOXVMM_EXIT_XSAVES_ENABLED_RAW()
10641 | VBOXVMM_EXIT_XRSTORS_ENABLED_RAW()
10642 | VBOXVMM_EXIT_VMM_CALL_ENABLED_RAW()
10643 | VBOXVMM_EXIT_VMX_VMCLEAR_ENABLED_RAW()
10644 | VBOXVMM_EXIT_VMX_VMLAUNCH_ENABLED_RAW()
10645 | VBOXVMM_EXIT_VMX_VMPTRLD_ENABLED_RAW()
10646 | VBOXVMM_EXIT_VMX_VMPTRST_ENABLED_RAW()
10647 | VBOXVMM_EXIT_VMX_VMREAD_ENABLED_RAW()
10648 | VBOXVMM_EXIT_VMX_VMRESUME_ENABLED_RAW()
10649 | VBOXVMM_EXIT_VMX_VMWRITE_ENABLED_RAW()
10650 | VBOXVMM_EXIT_VMX_VMXOFF_ENABLED_RAW()
10651 | VBOXVMM_EXIT_VMX_VMXON_ENABLED_RAW()
10652 | VBOXVMM_EXIT_VMX_VMFUNC_ENABLED_RAW()
10653 | VBOXVMM_EXIT_VMX_INVEPT_ENABLED_RAW()
10654 | VBOXVMM_EXIT_VMX_INVVPID_ENABLED_RAW()
10655 | VBOXVMM_EXIT_VMX_INVPCID_ENABLED_RAW()
10656 | VBOXVMM_EXIT_VMX_EPT_VIOLATION_ENABLED_RAW()
10657 | VBOXVMM_EXIT_VMX_EPT_MISCONFIG_ENABLED_RAW()
10658 | VBOXVMM_EXIT_VMX_VAPIC_ACCESS_ENABLED_RAW()
10659 | VBOXVMM_EXIT_VMX_VAPIC_WRITE_ENABLED_RAW()
10660 ) != 0;
10661}
10662
10663
10664/**
10665 * Runs the guest code using VT-x.
10666 *
10667 * @returns Strict VBox status code (i.e. informational status codes too).
10668 * @param pVM The cross context VM structure.
10669 * @param pVCpu The cross context virtual CPU structure.
10670 * @param pCtx Pointer to the guest-CPU context.
10671 */
10672VMMR0DECL(VBOXSTRICTRC) VMXR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
10673{
10674 Assert(VMMRZCallRing3IsEnabled(pVCpu));
10675 Assert(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL);
10676 HMVMX_ASSERT_PREEMPT_SAFE();
10677
10678 VMMRZCallRing3SetNotification(pVCpu, hmR0VmxCallRing3Callback, pCtx);
10679
10680 VBOXSTRICTRC rcStrict;
10681 if ( !pVCpu->hm.s.fUseDebugLoop
10682 && (!VBOXVMM_ANY_PROBES_ENABLED() || !hmR0VmxAnyExpensiveProbesEnabled())
10683 && !DBGFIsStepping(pVCpu)
10684 && !pVM->dbgf.ro.cEnabledInt3Breakpoints)
10685 rcStrict = hmR0VmxRunGuestCodeNormal(pVM, pVCpu, pCtx);
10686 else
10687 rcStrict = hmR0VmxRunGuestCodeDebug(pVM, pVCpu, pCtx);
10688
10689 if (rcStrict == VERR_EM_INTERPRETER)
10690 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
10691 else if (rcStrict == VINF_EM_RESET)
10692 rcStrict = VINF_EM_TRIPLE_FAULT;
10693
10694 int rc2 = hmR0VmxExitToRing3(pVM, pVCpu, pCtx, rcStrict);
10695 if (RT_FAILURE(rc2))
10696 {
10697 pVCpu->hm.s.u32HMError = (uint32_t)VBOXSTRICTRC_VAL(rcStrict);
10698 rcStrict = rc2;
10699 }
10700 Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
10701 return rcStrict;
10702}
10703
10704
10705#ifndef HMVMX_USE_FUNCTION_TABLE
10706DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, uint32_t rcReason)
10707{
10708# ifdef DEBUG_ramshankar
10709# define RETURN_EXIT_CALL(a_CallExpr) \
10710 do { \
10711 int rc2 = hmR0VmxSaveGuestState(pVCpu, pMixedCtx); AssertRC(rc2); \
10712 VBOXSTRICTRC rcStrict = a_CallExpr; \
10713 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST); \
10714 return rcStrict; \
10715 } while (0)
10716# else
10717# define RETURN_EXIT_CALL(a_CallExpr) return a_CallExpr
10718# endif
10719 switch (rcReason)
10720 {
10721 case VMX_EXIT_EPT_MISCONFIG: RETURN_EXIT_CALL(hmR0VmxExitEptMisconfig(pVCpu, pMixedCtx, pVmxTransient));
10722 case VMX_EXIT_EPT_VIOLATION: RETURN_EXIT_CALL(hmR0VmxExitEptViolation(pVCpu, pMixedCtx, pVmxTransient));
10723 case VMX_EXIT_IO_INSTR: RETURN_EXIT_CALL(hmR0VmxExitIoInstr(pVCpu, pMixedCtx, pVmxTransient));
10724 case VMX_EXIT_CPUID: RETURN_EXIT_CALL(hmR0VmxExitCpuid(pVCpu, pMixedCtx, pVmxTransient));
10725 case VMX_EXIT_RDTSC: RETURN_EXIT_CALL(hmR0VmxExitRdtsc(pVCpu, pMixedCtx, pVmxTransient));
10726 case VMX_EXIT_RDTSCP: RETURN_EXIT_CALL(hmR0VmxExitRdtscp(pVCpu, pMixedCtx, pVmxTransient));
10727 case VMX_EXIT_APIC_ACCESS: RETURN_EXIT_CALL(hmR0VmxExitApicAccess(pVCpu, pMixedCtx, pVmxTransient));
10728 case VMX_EXIT_XCPT_OR_NMI: RETURN_EXIT_CALL(hmR0VmxExitXcptOrNmi(pVCpu, pMixedCtx, pVmxTransient));
10729 case VMX_EXIT_MOV_CRX: RETURN_EXIT_CALL(hmR0VmxExitMovCRx(pVCpu, pMixedCtx, pVmxTransient));
10730 case VMX_EXIT_EXT_INT: RETURN_EXIT_CALL(hmR0VmxExitExtInt(pVCpu, pMixedCtx, pVmxTransient));
10731 case VMX_EXIT_INT_WINDOW: RETURN_EXIT_CALL(hmR0VmxExitIntWindow(pVCpu, pMixedCtx, pVmxTransient));
10732 case VMX_EXIT_MWAIT: RETURN_EXIT_CALL(hmR0VmxExitMwait(pVCpu, pMixedCtx, pVmxTransient));
10733 case VMX_EXIT_MONITOR: RETURN_EXIT_CALL(hmR0VmxExitMonitor(pVCpu, pMixedCtx, pVmxTransient));
10734 case VMX_EXIT_TASK_SWITCH: RETURN_EXIT_CALL(hmR0VmxExitTaskSwitch(pVCpu, pMixedCtx, pVmxTransient));
10735 case VMX_EXIT_PREEMPT_TIMER: RETURN_EXIT_CALL(hmR0VmxExitPreemptTimer(pVCpu, pMixedCtx, pVmxTransient));
10736 case VMX_EXIT_RDMSR: RETURN_EXIT_CALL(hmR0VmxExitRdmsr(pVCpu, pMixedCtx, pVmxTransient));
10737 case VMX_EXIT_WRMSR: RETURN_EXIT_CALL(hmR0VmxExitWrmsr(pVCpu, pMixedCtx, pVmxTransient));
10738 case VMX_EXIT_MOV_DRX: RETURN_EXIT_CALL(hmR0VmxExitMovDRx(pVCpu, pMixedCtx, pVmxTransient));
10739 case VMX_EXIT_TPR_BELOW_THRESHOLD: RETURN_EXIT_CALL(hmR0VmxExitTprBelowThreshold(pVCpu, pMixedCtx, pVmxTransient));
10740 case VMX_EXIT_HLT: RETURN_EXIT_CALL(hmR0VmxExitHlt(pVCpu, pMixedCtx, pVmxTransient));
10741 case VMX_EXIT_INVD: RETURN_EXIT_CALL(hmR0VmxExitInvd(pVCpu, pMixedCtx, pVmxTransient));
10742 case VMX_EXIT_INVLPG: RETURN_EXIT_CALL(hmR0VmxExitInvlpg(pVCpu, pMixedCtx, pVmxTransient));
10743 case VMX_EXIT_RSM: RETURN_EXIT_CALL(hmR0VmxExitRsm(pVCpu, pMixedCtx, pVmxTransient));
10744 case VMX_EXIT_MTF: RETURN_EXIT_CALL(hmR0VmxExitMtf(pVCpu, pMixedCtx, pVmxTransient));
10745 case VMX_EXIT_PAUSE: RETURN_EXIT_CALL(hmR0VmxExitPause(pVCpu, pMixedCtx, pVmxTransient));
10746 case VMX_EXIT_XDTR_ACCESS: RETURN_EXIT_CALL(hmR0VmxExitXdtrAccess(pVCpu, pMixedCtx, pVmxTransient));
10747 case VMX_EXIT_TR_ACCESS: RETURN_EXIT_CALL(hmR0VmxExitXdtrAccess(pVCpu, pMixedCtx, pVmxTransient));
10748 case VMX_EXIT_WBINVD: RETURN_EXIT_CALL(hmR0VmxExitWbinvd(pVCpu, pMixedCtx, pVmxTransient));
10749 case VMX_EXIT_XSETBV: RETURN_EXIT_CALL(hmR0VmxExitXsetbv(pVCpu, pMixedCtx, pVmxTransient));
10750 case VMX_EXIT_RDRAND: RETURN_EXIT_CALL(hmR0VmxExitRdrand(pVCpu, pMixedCtx, pVmxTransient));
10751 case VMX_EXIT_INVPCID: RETURN_EXIT_CALL(hmR0VmxExitInvpcid(pVCpu, pMixedCtx, pVmxTransient));
10752 case VMX_EXIT_GETSEC: RETURN_EXIT_CALL(hmR0VmxExitGetsec(pVCpu, pMixedCtx, pVmxTransient));
10753 case VMX_EXIT_RDPMC: RETURN_EXIT_CALL(hmR0VmxExitRdpmc(pVCpu, pMixedCtx, pVmxTransient));
10754 case VMX_EXIT_VMCALL: RETURN_EXIT_CALL(hmR0VmxExitVmcall(pVCpu, pMixedCtx, pVmxTransient));
10755
10756 case VMX_EXIT_TRIPLE_FAULT: return hmR0VmxExitTripleFault(pVCpu, pMixedCtx, pVmxTransient);
10757 case VMX_EXIT_NMI_WINDOW: return hmR0VmxExitNmiWindow(pVCpu, pMixedCtx, pVmxTransient);
10758 case VMX_EXIT_INIT_SIGNAL: return hmR0VmxExitInitSignal(pVCpu, pMixedCtx, pVmxTransient);
10759 case VMX_EXIT_SIPI: return hmR0VmxExitSipi(pVCpu, pMixedCtx, pVmxTransient);
10760 case VMX_EXIT_IO_SMI: return hmR0VmxExitIoSmi(pVCpu, pMixedCtx, pVmxTransient);
10761 case VMX_EXIT_SMI: return hmR0VmxExitSmi(pVCpu, pMixedCtx, pVmxTransient);
10762 case VMX_EXIT_ERR_MSR_LOAD: return hmR0VmxExitErrMsrLoad(pVCpu, pMixedCtx, pVmxTransient);
10763 case VMX_EXIT_ERR_INVALID_GUEST_STATE: return hmR0VmxExitErrInvalidGuestState(pVCpu, pMixedCtx, pVmxTransient);
10764 case VMX_EXIT_ERR_MACHINE_CHECK: return hmR0VmxExitErrMachineCheck(pVCpu, pMixedCtx, pVmxTransient);
10765
10766 case VMX_EXIT_VMCLEAR:
10767 case VMX_EXIT_VMLAUNCH:
10768 case VMX_EXIT_VMPTRLD:
10769 case VMX_EXIT_VMPTRST:
10770 case VMX_EXIT_VMREAD:
10771 case VMX_EXIT_VMRESUME:
10772 case VMX_EXIT_VMWRITE:
10773 case VMX_EXIT_VMXOFF:
10774 case VMX_EXIT_VMXON:
10775 case VMX_EXIT_INVEPT:
10776 case VMX_EXIT_INVVPID:
10777 case VMX_EXIT_VMFUNC:
10778 case VMX_EXIT_XSAVES:
10779 case VMX_EXIT_XRSTORS:
10780 return hmR0VmxExitSetPendingXcptUD(pVCpu, pMixedCtx, pVmxTransient);
10781 case VMX_EXIT_ENCLS:
10782 case VMX_EXIT_RDSEED: /* only spurious VM-exits, so undefined */
10783 case VMX_EXIT_PML_FULL:
10784 default:
10785 return hmR0VmxExitErrUndefined(pVCpu, pMixedCtx, pVmxTransient);
10786 }
10787#undef RETURN_EXIT_CALL
10788}
10789#endif /* !HMVMX_USE_FUNCTION_TABLE */
10790
10791
10792#ifdef VBOX_STRICT
10793/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
10794# define HMVMX_ASSERT_PREEMPT_CPUID_VAR() \
10795 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
10796
10797# define HMVMX_ASSERT_PREEMPT_CPUID() \
10798 do { \
10799 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
10800 AssertMsg(idAssertCpu == idAssertCpuNow, ("VMX %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
10801 } while (0)
10802
10803# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS() \
10804 do { \
10805 AssertPtr(pVCpu); \
10806 AssertPtr(pMixedCtx); \
10807 AssertPtr(pVmxTransient); \
10808 Assert(pVmxTransient->fVMEntryFailed == false); \
10809 Assert(ASMIntAreEnabled()); \
10810 HMVMX_ASSERT_PREEMPT_SAFE(); \
10811 HMVMX_ASSERT_PREEMPT_CPUID_VAR(); \
10812 Log4Func(("vcpu[%RU32] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v\n", pVCpu->idCpu)); \
10813 HMVMX_ASSERT_PREEMPT_SAFE(); \
10814 if (VMMR0IsLogFlushDisabled(pVCpu)) \
10815 HMVMX_ASSERT_PREEMPT_CPUID(); \
10816 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
10817 } while (0)
10818
10819# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS() \
10820 do { \
10821 Log4Func(("\n")); \
10822 } while (0)
10823#else /* nonstrict builds: */
10824# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS() \
10825 do { \
10826 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
10827 NOREF(pVCpu); NOREF(pMixedCtx); NOREF(pVmxTransient); \
10828 } while (0)
10829# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS() do { } while (0)
10830#endif
10831
10832
10833/**
10834 * Advances the guest RIP by the specified number of bytes.
10835 *
10836 * @param pVCpu The cross context virtual CPU structure.
10837 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
10838 * out-of-sync. Make sure to update the required fields
10839 * before using them.
10840 * @param cbInstr Number of bytes to advance the RIP by.
10841 *
10842 * @remarks No-long-jump zone!!!
10843 */
10844DECLINLINE(void) hmR0VmxAdvanceGuestRipBy(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t cbInstr)
10845{
10846 /* Advance the RIP. */
10847 pMixedCtx->rip += cbInstr;
10848 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP);
10849
10850 /* Update interrupt inhibition. */
10851 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
10852 && pMixedCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
10853 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
10854}
10855
10856
10857/**
10858 * Advances the guest RIP after reading it from the VMCS.
10859 *
10860 * @returns VBox status code, no informational status codes.
10861 * @param pVCpu The cross context virtual CPU structure.
10862 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
10863 * out-of-sync. Make sure to update the required fields
10864 * before using them.
10865 * @param pVmxTransient Pointer to the VMX transient structure.
10866 *
10867 * @remarks No-long-jump zone!!!
10868 */
10869static int hmR0VmxAdvanceGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10870{
10871 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
10872 rc |= hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
10873 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
10874 AssertRCReturn(rc, rc);
10875
10876 hmR0VmxAdvanceGuestRipBy(pVCpu, pMixedCtx, pVmxTransient->cbInstr);
10877
10878 /*
10879 * Deliver a debug exception to the guest if it is single-stepping. Don't directly inject a #DB but use the
10880 * pending debug exception field as it takes care of priority of events.
10881 *
10882 * See Intel spec. 32.2.1 "Debug Exceptions".
10883 */
10884 if ( !pVCpu->hm.s.fSingleInstruction
10885 && pMixedCtx->eflags.Bits.u1TF)
10886 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
10887
10888 return VINF_SUCCESS;
10889}
10890
10891
10892/**
10893 * Tries to determine what part of the guest-state VT-x has deemed as invalid
10894 * and update error record fields accordingly.
10895 *
10896 * @return VMX_IGS_* return codes.
10897 * @retval VMX_IGS_REASON_NOT_FOUND if this function could not find anything
10898 * wrong with the guest state.
10899 *
10900 * @param pVM The cross context VM structure.
10901 * @param pVCpu The cross context virtual CPU structure.
10902 * @param pCtx Pointer to the guest-CPU state.
10903 *
10904 * @remarks This function assumes our cache of the VMCS controls
10905 * are valid, i.e. hmR0VmxCheckVmcsCtls() succeeded.
10906 */
10907static uint32_t hmR0VmxCheckGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
10908{
10909#define HMVMX_ERROR_BREAK(err) { uError = (err); break; }
10910#define HMVMX_CHECK_BREAK(expr, err) if (!(expr)) { \
10911 uError = (err); \
10912 break; \
10913 } else do { } while (0)
10914
10915 int rc;
10916 uint32_t uError = VMX_IGS_ERROR;
10917 uint32_t u32Val;
10918 bool fUnrestrictedGuest = pVM->hm.s.vmx.fUnrestrictedGuest;
10919
10920 do
10921 {
10922 /*
10923 * CR0.
10924 */
10925 uint32_t uSetCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
10926 uint32_t uZapCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
10927 /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG).
10928 See Intel spec. 26.3.1 "Checks on Guest Control Registers, Debug Registers and MSRs." */
10929 if (fUnrestrictedGuest)
10930 uSetCR0 &= ~(X86_CR0_PE | X86_CR0_PG);
10931
10932 uint32_t u32GuestCR0;
10933 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32GuestCR0);
10934 AssertRCBreak(rc);
10935 HMVMX_CHECK_BREAK((u32GuestCR0 & uSetCR0) == uSetCR0, VMX_IGS_CR0_FIXED1);
10936 HMVMX_CHECK_BREAK(!(u32GuestCR0 & ~uZapCR0), VMX_IGS_CR0_FIXED0);
10937 if ( !fUnrestrictedGuest
10938 && (u32GuestCR0 & X86_CR0_PG)
10939 && !(u32GuestCR0 & X86_CR0_PE))
10940 {
10941 HMVMX_ERROR_BREAK(VMX_IGS_CR0_PG_PE_COMBO);
10942 }
10943
10944 /*
10945 * CR4.
10946 */
10947 uint64_t uSetCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
10948 uint64_t uZapCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
10949
10950 uint32_t u32GuestCR4;
10951 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &u32GuestCR4);
10952 AssertRCBreak(rc);
10953 HMVMX_CHECK_BREAK((u32GuestCR4 & uSetCR4) == uSetCR4, VMX_IGS_CR4_FIXED1);
10954 HMVMX_CHECK_BREAK(!(u32GuestCR4 & ~uZapCR4), VMX_IGS_CR4_FIXED0);
10955
10956 /*
10957 * IA32_DEBUGCTL MSR.
10958 */
10959 uint64_t u64Val;
10960 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, &u64Val);
10961 AssertRCBreak(rc);
10962 if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG)
10963 && (u64Val & 0xfffffe3c)) /* Bits 31:9, bits 5:2 MBZ. */
10964 {
10965 HMVMX_ERROR_BREAK(VMX_IGS_DEBUGCTL_MSR_RESERVED);
10966 }
10967 uint64_t u64DebugCtlMsr = u64Val;
10968
10969#ifdef VBOX_STRICT
10970 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
10971 AssertRCBreak(rc);
10972 Assert(u32Val == pVCpu->hm.s.vmx.u32EntryCtls);
10973#endif
10974 bool const fLongModeGuest = RT_BOOL(pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST);
10975
10976 /*
10977 * RIP and RFLAGS.
10978 */
10979 uint32_t u32Eflags;
10980#if HC_ARCH_BITS == 64
10981 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RIP, &u64Val);
10982 AssertRCBreak(rc);
10983 /* pCtx->rip can be different than the one in the VMCS (e.g. run guest code and VM-exits that don't update it). */
10984 if ( !fLongModeGuest
10985 || !pCtx->cs.Attr.n.u1Long)
10986 {
10987 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffff00000000)), VMX_IGS_LONGMODE_RIP_INVALID);
10988 }
10989 /** @todo If the processor supports N < 64 linear-address bits, bits 63:N
10990 * must be identical if the "IA-32e mode guest" VM-entry
10991 * control is 1 and CS.L is 1. No check applies if the
10992 * CPU supports 64 linear-address bits. */
10993
10994 /* Flags in pCtx can be different (real-on-v86 for instance). We are only concerned about the VMCS contents here. */
10995 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RFLAGS, &u64Val);
10996 AssertRCBreak(rc);
10997 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffc08028)), /* Bit 63:22, Bit 15, 5, 3 MBZ. */
10998 VMX_IGS_RFLAGS_RESERVED);
10999 HMVMX_CHECK_BREAK((u64Val & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
11000 u32Eflags = u64Val;
11001#else
11002 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Eflags);
11003 AssertRCBreak(rc);
11004 HMVMX_CHECK_BREAK(!(u32Eflags & 0xffc08028), VMX_IGS_RFLAGS_RESERVED); /* Bit 31:22, Bit 15, 5, 3 MBZ. */
11005 HMVMX_CHECK_BREAK((u32Eflags & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
11006#endif
11007
11008 if ( fLongModeGuest
11009 || ( fUnrestrictedGuest
11010 && !(u32GuestCR0 & X86_CR0_PE)))
11011 {
11012 HMVMX_CHECK_BREAK(!(u32Eflags & X86_EFL_VM), VMX_IGS_RFLAGS_VM_INVALID);
11013 }
11014
11015 uint32_t u32EntryInfo;
11016 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32EntryInfo);
11017 AssertRCBreak(rc);
11018 if ( VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(u32EntryInfo)
11019 && VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
11020 {
11021 HMVMX_CHECK_BREAK(u32Eflags & X86_EFL_IF, VMX_IGS_RFLAGS_IF_INVALID);
11022 }
11023
11024 /*
11025 * 64-bit checks.
11026 */
11027#if HC_ARCH_BITS == 64
11028 if (fLongModeGuest)
11029 {
11030 HMVMX_CHECK_BREAK(u32GuestCR0 & X86_CR0_PG, VMX_IGS_CR0_PG_LONGMODE);
11031 HMVMX_CHECK_BREAK(u32GuestCR4 & X86_CR4_PAE, VMX_IGS_CR4_PAE_LONGMODE);
11032 }
11033
11034 if ( !fLongModeGuest
11035 && (u32GuestCR4 & X86_CR4_PCIDE))
11036 {
11037 HMVMX_ERROR_BREAK(VMX_IGS_CR4_PCIDE);
11038 }
11039
11040 /** @todo CR3 field must be such that bits 63:52 and bits in the range
11041 * 51:32 beyond the processor's physical-address width are 0. */
11042
11043 if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG)
11044 && (pCtx->dr[7] & X86_DR7_MBZ_MASK))
11045 {
11046 HMVMX_ERROR_BREAK(VMX_IGS_DR7_RESERVED);
11047 }
11048
11049 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, &u64Val);
11050 AssertRCBreak(rc);
11051 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_ESP_NOT_CANONICAL);
11052
11053 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, &u64Val);
11054 AssertRCBreak(rc);
11055 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_EIP_NOT_CANONICAL);
11056#endif
11057
11058 /*
11059 * PERF_GLOBAL MSR.
11060 */
11061 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PERF_MSR)
11062 {
11063 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL, &u64Val);
11064 AssertRCBreak(rc);
11065 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffff8fffffffc)),
11066 VMX_IGS_PERF_GLOBAL_MSR_RESERVED); /* Bits 63:35, bits 31:2 MBZ. */
11067 }
11068
11069 /*
11070 * PAT MSR.
11071 */
11072 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PAT_MSR)
11073 {
11074 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PAT_FULL, &u64Val);
11075 AssertRCBreak(rc);
11076 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0x707070707070707)), VMX_IGS_PAT_MSR_RESERVED);
11077 for (unsigned i = 0; i < 8; i++)
11078 {
11079 uint8_t u8Val = (u64Val & 0xff);
11080 if ( u8Val != 0 /* UC */
11081 && u8Val != 1 /* WC */
11082 && u8Val != 4 /* WT */
11083 && u8Val != 5 /* WP */
11084 && u8Val != 6 /* WB */
11085 && u8Val != 7 /* UC- */)
11086 {
11087 HMVMX_ERROR_BREAK(VMX_IGS_PAT_MSR_INVALID);
11088 }
11089 u64Val >>= 8;
11090 }
11091 }
11092
11093 /*
11094 * EFER MSR.
11095 */
11096 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR)
11097 {
11098 Assert(pVM->hm.s.vmx.fSupportsVmcsEfer);
11099 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_EFER_FULL, &u64Val);
11100 AssertRCBreak(rc);
11101 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffffffffff2fe)),
11102 VMX_IGS_EFER_MSR_RESERVED); /* Bits 63:12, bit 9, bits 7:1 MBZ. */
11103 HMVMX_CHECK_BREAK(RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL( pVCpu->hm.s.vmx.u32EntryCtls
11104 & VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST),
11105 VMX_IGS_EFER_LMA_GUEST_MODE_MISMATCH);
11106 HMVMX_CHECK_BREAK( fUnrestrictedGuest
11107 || !(u32GuestCR0 & X86_CR0_PG)
11108 || RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL(u64Val & MSR_K6_EFER_LME),
11109 VMX_IGS_EFER_LMA_LME_MISMATCH);
11110 }
11111
11112 /*
11113 * Segment registers.
11114 */
11115 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
11116 || !(pCtx->ldtr.Sel & X86_SEL_LDT), VMX_IGS_LDTR_TI_INVALID);
11117 if (!(u32Eflags & X86_EFL_VM))
11118 {
11119 /* CS */
11120 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1Present, VMX_IGS_CS_ATTR_P_INVALID);
11121 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xf00), VMX_IGS_CS_ATTR_RESERVED);
11122 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xfffe0000), VMX_IGS_CS_ATTR_RESERVED);
11123 HMVMX_CHECK_BREAK( (pCtx->cs.u32Limit & 0xfff) == 0xfff
11124 || !(pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
11125 HMVMX_CHECK_BREAK( !(pCtx->cs.u32Limit & 0xfff00000)
11126 || (pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
11127 /* CS cannot be loaded with NULL in protected mode. */
11128 HMVMX_CHECK_BREAK(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_CS_ATTR_UNUSABLE);
11129 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1DescType, VMX_IGS_CS_ATTR_S_INVALID);
11130 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
11131 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_UNEQUAL);
11132 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
11133 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_MISMATCH);
11134 else if (pVM->hm.s.vmx.fUnrestrictedGuest && pCtx->cs.Attr.n.u4Type == 3)
11135 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == 0, VMX_IGS_CS_ATTR_DPL_INVALID);
11136 else
11137 HMVMX_ERROR_BREAK(VMX_IGS_CS_ATTR_TYPE_INVALID);
11138
11139 /* SS */
11140 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
11141 || (pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL), VMX_IGS_SS_CS_RPL_UNEQUAL);
11142 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL), VMX_IGS_SS_ATTR_DPL_RPL_UNEQUAL);
11143 if ( !(pCtx->cr0 & X86_CR0_PE)
11144 || pCtx->cs.Attr.n.u4Type == 3)
11145 {
11146 HMVMX_CHECK_BREAK(!pCtx->ss.Attr.n.u2Dpl, VMX_IGS_SS_ATTR_DPL_INVALID);
11147 }
11148 if (!(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
11149 {
11150 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7, VMX_IGS_SS_ATTR_TYPE_INVALID);
11151 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u1Present, VMX_IGS_SS_ATTR_P_INVALID);
11152 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xf00), VMX_IGS_SS_ATTR_RESERVED);
11153 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xfffe0000), VMX_IGS_SS_ATTR_RESERVED);
11154 HMVMX_CHECK_BREAK( (pCtx->ss.u32Limit & 0xfff) == 0xfff
11155 || !(pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
11156 HMVMX_CHECK_BREAK( !(pCtx->ss.u32Limit & 0xfff00000)
11157 || (pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
11158 }
11159
11160 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxWriteSegmentReg(). */
11161 if (!(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
11162 {
11163 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_DS_ATTR_A_INVALID);
11164 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u1Present, VMX_IGS_DS_ATTR_P_INVALID);
11165 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
11166 || pCtx->ds.Attr.n.u4Type > 11
11167 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
11168 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xf00), VMX_IGS_DS_ATTR_RESERVED);
11169 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xfffe0000), VMX_IGS_DS_ATTR_RESERVED);
11170 HMVMX_CHECK_BREAK( (pCtx->ds.u32Limit & 0xfff) == 0xfff
11171 || !(pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
11172 HMVMX_CHECK_BREAK( !(pCtx->ds.u32Limit & 0xfff00000)
11173 || (pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
11174 HMVMX_CHECK_BREAK( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
11175 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_DS_ATTR_TYPE_INVALID);
11176 }
11177 if (!(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
11178 {
11179 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_ES_ATTR_A_INVALID);
11180 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u1Present, VMX_IGS_ES_ATTR_P_INVALID);
11181 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
11182 || pCtx->es.Attr.n.u4Type > 11
11183 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
11184 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xf00), VMX_IGS_ES_ATTR_RESERVED);
11185 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xfffe0000), VMX_IGS_ES_ATTR_RESERVED);
11186 HMVMX_CHECK_BREAK( (pCtx->es.u32Limit & 0xfff) == 0xfff
11187 || !(pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
11188 HMVMX_CHECK_BREAK( !(pCtx->es.u32Limit & 0xfff00000)
11189 || (pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
11190 HMVMX_CHECK_BREAK( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
11191 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_ES_ATTR_TYPE_INVALID);
11192 }
11193 if (!(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
11194 {
11195 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_FS_ATTR_A_INVALID);
11196 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u1Present, VMX_IGS_FS_ATTR_P_INVALID);
11197 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
11198 || pCtx->fs.Attr.n.u4Type > 11
11199 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL), VMX_IGS_FS_ATTR_DPL_RPL_UNEQUAL);
11200 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xf00), VMX_IGS_FS_ATTR_RESERVED);
11201 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xfffe0000), VMX_IGS_FS_ATTR_RESERVED);
11202 HMVMX_CHECK_BREAK( (pCtx->fs.u32Limit & 0xfff) == 0xfff
11203 || !(pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
11204 HMVMX_CHECK_BREAK( !(pCtx->fs.u32Limit & 0xfff00000)
11205 || (pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
11206 HMVMX_CHECK_BREAK( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
11207 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_FS_ATTR_TYPE_INVALID);
11208 }
11209 if (!(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
11210 {
11211 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_GS_ATTR_A_INVALID);
11212 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u1Present, VMX_IGS_GS_ATTR_P_INVALID);
11213 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
11214 || pCtx->gs.Attr.n.u4Type > 11
11215 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL), VMX_IGS_GS_ATTR_DPL_RPL_UNEQUAL);
11216 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xf00), VMX_IGS_GS_ATTR_RESERVED);
11217 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xfffe0000), VMX_IGS_GS_ATTR_RESERVED);
11218 HMVMX_CHECK_BREAK( (pCtx->gs.u32Limit & 0xfff) == 0xfff
11219 || !(pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
11220 HMVMX_CHECK_BREAK( !(pCtx->gs.u32Limit & 0xfff00000)
11221 || (pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
11222 HMVMX_CHECK_BREAK( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
11223 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_GS_ATTR_TYPE_INVALID);
11224 }
11225 /* 64-bit capable CPUs. */
11226#if HC_ARCH_BITS == 64
11227 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
11228 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
11229 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
11230 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
11231 HMVMX_CHECK_BREAK(!(pCtx->cs.u64Base >> 32), VMX_IGS_LONGMODE_CS_BASE_INVALID);
11232 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ss.u64Base >> 32),
11233 VMX_IGS_LONGMODE_SS_BASE_INVALID);
11234 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ds.u64Base >> 32),
11235 VMX_IGS_LONGMODE_DS_BASE_INVALID);
11236 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->es.u64Base >> 32),
11237 VMX_IGS_LONGMODE_ES_BASE_INVALID);
11238#endif
11239 }
11240 else
11241 {
11242 /* V86 mode checks. */
11243 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
11244 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
11245 {
11246 u32CSAttr = 0xf3; u32SSAttr = 0xf3;
11247 u32DSAttr = 0xf3; u32ESAttr = 0xf3;
11248 u32FSAttr = 0xf3; u32GSAttr = 0xf3;
11249 }
11250 else
11251 {
11252 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u;
11253 u32DSAttr = pCtx->ds.Attr.u; u32ESAttr = pCtx->es.Attr.u;
11254 u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
11255 }
11256
11257 /* CS */
11258 HMVMX_CHECK_BREAK((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), VMX_IGS_V86_CS_BASE_INVALID);
11259 HMVMX_CHECK_BREAK(pCtx->cs.u32Limit == 0xffff, VMX_IGS_V86_CS_LIMIT_INVALID);
11260 HMVMX_CHECK_BREAK(u32CSAttr == 0xf3, VMX_IGS_V86_CS_ATTR_INVALID);
11261 /* SS */
11262 HMVMX_CHECK_BREAK((pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4), VMX_IGS_V86_SS_BASE_INVALID);
11263 HMVMX_CHECK_BREAK(pCtx->ss.u32Limit == 0xffff, VMX_IGS_V86_SS_LIMIT_INVALID);
11264 HMVMX_CHECK_BREAK(u32SSAttr == 0xf3, VMX_IGS_V86_SS_ATTR_INVALID);
11265 /* DS */
11266 HMVMX_CHECK_BREAK((pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4), VMX_IGS_V86_DS_BASE_INVALID);
11267 HMVMX_CHECK_BREAK(pCtx->ds.u32Limit == 0xffff, VMX_IGS_V86_DS_LIMIT_INVALID);
11268 HMVMX_CHECK_BREAK(u32DSAttr == 0xf3, VMX_IGS_V86_DS_ATTR_INVALID);
11269 /* ES */
11270 HMVMX_CHECK_BREAK((pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4), VMX_IGS_V86_ES_BASE_INVALID);
11271 HMVMX_CHECK_BREAK(pCtx->es.u32Limit == 0xffff, VMX_IGS_V86_ES_LIMIT_INVALID);
11272 HMVMX_CHECK_BREAK(u32ESAttr == 0xf3, VMX_IGS_V86_ES_ATTR_INVALID);
11273 /* FS */
11274 HMVMX_CHECK_BREAK((pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4), VMX_IGS_V86_FS_BASE_INVALID);
11275 HMVMX_CHECK_BREAK(pCtx->fs.u32Limit == 0xffff, VMX_IGS_V86_FS_LIMIT_INVALID);
11276 HMVMX_CHECK_BREAK(u32FSAttr == 0xf3, VMX_IGS_V86_FS_ATTR_INVALID);
11277 /* GS */
11278 HMVMX_CHECK_BREAK((pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4), VMX_IGS_V86_GS_BASE_INVALID);
11279 HMVMX_CHECK_BREAK(pCtx->gs.u32Limit == 0xffff, VMX_IGS_V86_GS_LIMIT_INVALID);
11280 HMVMX_CHECK_BREAK(u32GSAttr == 0xf3, VMX_IGS_V86_GS_ATTR_INVALID);
11281 /* 64-bit capable CPUs. */
11282#if HC_ARCH_BITS == 64
11283 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
11284 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
11285 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
11286 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
11287 HMVMX_CHECK_BREAK(!(pCtx->cs.u64Base >> 32), VMX_IGS_LONGMODE_CS_BASE_INVALID);
11288 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ss.u64Base >> 32),
11289 VMX_IGS_LONGMODE_SS_BASE_INVALID);
11290 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ds.u64Base >> 32),
11291 VMX_IGS_LONGMODE_DS_BASE_INVALID);
11292 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->es.u64Base >> 32),
11293 VMX_IGS_LONGMODE_ES_BASE_INVALID);
11294#endif
11295 }
11296
11297 /*
11298 * TR.
11299 */
11300 HMVMX_CHECK_BREAK(!(pCtx->tr.Sel & X86_SEL_LDT), VMX_IGS_TR_TI_INVALID);
11301 /* 64-bit capable CPUs. */
11302#if HC_ARCH_BITS == 64
11303 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->tr.u64Base), VMX_IGS_TR_BASE_NOT_CANONICAL);
11304#endif
11305 if (fLongModeGuest)
11306 {
11307 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u4Type == 11, /* 64-bit busy TSS. */
11308 VMX_IGS_LONGMODE_TR_ATTR_TYPE_INVALID);
11309 }
11310 else
11311 {
11312 HMVMX_CHECK_BREAK( pCtx->tr.Attr.n.u4Type == 3 /* 16-bit busy TSS. */
11313 || pCtx->tr.Attr.n.u4Type == 11, /* 32-bit busy TSS.*/
11314 VMX_IGS_TR_ATTR_TYPE_INVALID);
11315 }
11316 HMVMX_CHECK_BREAK(!pCtx->tr.Attr.n.u1DescType, VMX_IGS_TR_ATTR_S_INVALID);
11317 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u1Present, VMX_IGS_TR_ATTR_P_INVALID);
11318 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & 0xf00), VMX_IGS_TR_ATTR_RESERVED); /* Bits 11:8 MBZ. */
11319 HMVMX_CHECK_BREAK( (pCtx->tr.u32Limit & 0xfff) == 0xfff
11320 || !(pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
11321 HMVMX_CHECK_BREAK( !(pCtx->tr.u32Limit & 0xfff00000)
11322 || (pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
11323 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_TR_ATTR_UNUSABLE);
11324
11325 /*
11326 * GDTR and IDTR.
11327 */
11328#if HC_ARCH_BITS == 64
11329 rc = VMXReadVmcs64(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
11330 AssertRCBreak(rc);
11331 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_GDTR_BASE_NOT_CANONICAL);
11332
11333 rc = VMXReadVmcs64(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
11334 AssertRCBreak(rc);
11335 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_IDTR_BASE_NOT_CANONICAL);
11336#endif
11337
11338 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
11339 AssertRCBreak(rc);
11340 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_GDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
11341
11342 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
11343 AssertRCBreak(rc);
11344 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_IDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
11345
11346 /*
11347 * Guest Non-Register State.
11348 */
11349 /* Activity State. */
11350 uint32_t u32ActivityState;
11351 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, &u32ActivityState);
11352 AssertRCBreak(rc);
11353 HMVMX_CHECK_BREAK( !u32ActivityState
11354 || (u32ActivityState & MSR_IA32_VMX_MISC_ACTIVITY_STATES(pVM->hm.s.vmx.Msrs.u64Misc)),
11355 VMX_IGS_ACTIVITY_STATE_INVALID);
11356 HMVMX_CHECK_BREAK( !(pCtx->ss.Attr.n.u2Dpl)
11357 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT, VMX_IGS_ACTIVITY_STATE_HLT_INVALID);
11358 uint32_t u32IntrState;
11359 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &u32IntrState);
11360 AssertRCBreak(rc);
11361 if ( u32IntrState == VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS
11362 || u32IntrState == VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
11363 {
11364 HMVMX_CHECK_BREAK(u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE, VMX_IGS_ACTIVITY_STATE_ACTIVE_INVALID);
11365 }
11366
11367 /** @todo Activity state and injecting interrupts. Left as a todo since we
11368 * currently don't use activity states but ACTIVE. */
11369
11370 HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_ENTRY_SMM)
11371 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_SIPI_WAIT, VMX_IGS_ACTIVITY_STATE_SIPI_WAIT_INVALID);
11372
11373 /* Guest interruptibility-state. */
11374 HMVMX_CHECK_BREAK(!(u32IntrState & 0xfffffff0), VMX_IGS_INTERRUPTIBILITY_STATE_RESERVED);
11375 HMVMX_CHECK_BREAK((u32IntrState & ( VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI
11376 | VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS))
11377 != ( VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI
11378 | VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS),
11379 VMX_IGS_INTERRUPTIBILITY_STATE_STI_MOVSS_INVALID);
11380 HMVMX_CHECK_BREAK( (u32Eflags & X86_EFL_IF)
11381 || !(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI),
11382 VMX_IGS_INTERRUPTIBILITY_STATE_STI_EFL_INVALID);
11383 if (VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(u32EntryInfo))
11384 {
11385 if (VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
11386 {
11387 HMVMX_CHECK_BREAK( !(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
11388 && !(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS),
11389 VMX_IGS_INTERRUPTIBILITY_STATE_EXT_INT_INVALID);
11390 }
11391 else if (VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
11392 {
11393 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS),
11394 VMX_IGS_INTERRUPTIBILITY_STATE_MOVSS_INVALID);
11395 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI),
11396 VMX_IGS_INTERRUPTIBILITY_STATE_STI_INVALID);
11397 }
11398 }
11399 /** @todo Assumes the processor is not in SMM. */
11400 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI),
11401 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_INVALID);
11402 HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_ENTRY_SMM)
11403 || (u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI),
11404 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_SMM_INVALID);
11405 if ( (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI)
11406 && VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(u32EntryInfo)
11407 && VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
11408 {
11409 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI),
11410 VMX_IGS_INTERRUPTIBILITY_STATE_NMI_INVALID);
11411 }
11412
11413 /* Pending debug exceptions. */
11414#if HC_ARCH_BITS == 64
11415 rc = VMXReadVmcs64(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, &u64Val);
11416 AssertRCBreak(rc);
11417 /* Bits 63:15, Bit 13, Bits 11:4 MBZ. */
11418 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffffaff0)), VMX_IGS_LONGMODE_PENDING_DEBUG_RESERVED);
11419 u32Val = u64Val; /* For pending debug exceptions checks below. */
11420#else
11421 rc = VMXReadVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, &u32Val);
11422 AssertRCBreak(rc);
11423 /* Bits 31:15, Bit 13, Bits 11:4 MBZ. */
11424 HMVMX_CHECK_BREAK(!(u32Val & 0xffffaff0), VMX_IGS_PENDING_DEBUG_RESERVED);
11425#endif
11426
11427 if ( (u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
11428 || (u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS)
11429 || u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT)
11430 {
11431 if ( (u32Eflags & X86_EFL_TF)
11432 && !(u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
11433 {
11434 /* Bit 14 is PendingDebug.BS. */
11435 HMVMX_CHECK_BREAK(u32Val & RT_BIT(14), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_SET);
11436 }
11437 if ( !(u32Eflags & X86_EFL_TF)
11438 || (u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
11439 {
11440 /* Bit 14 is PendingDebug.BS. */
11441 HMVMX_CHECK_BREAK(!(u32Val & RT_BIT(14)), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_CLEAR);
11442 }
11443 }
11444
11445 /* VMCS link pointer. */
11446 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, &u64Val);
11447 AssertRCBreak(rc);
11448 if (u64Val != UINT64_C(0xffffffffffffffff))
11449 {
11450 HMVMX_CHECK_BREAK(!(u64Val & 0xfff), VMX_IGS_VMCS_LINK_PTR_RESERVED);
11451 /** @todo Bits beyond the processor's physical-address width MBZ. */
11452 /** @todo 32-bit located in memory referenced by value of this field (as a
11453 * physical address) must contain the processor's VMCS revision ID. */
11454 /** @todo SMM checks. */
11455 }
11456
11457 /** @todo Checks on Guest Page-Directory-Pointer-Table Entries when guest is
11458 * not using Nested Paging? */
11459 if ( pVM->hm.s.fNestedPaging
11460 && !fLongModeGuest
11461 && CPUMIsGuestInPAEModeEx(pCtx))
11462 {
11463 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &u64Val);
11464 AssertRCBreak(rc);
11465 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11466
11467 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &u64Val);
11468 AssertRCBreak(rc);
11469 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11470
11471 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &u64Val);
11472 AssertRCBreak(rc);
11473 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11474
11475 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &u64Val);
11476 AssertRCBreak(rc);
11477 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11478 }
11479
11480 /* Shouldn't happen but distinguish it from AssertRCBreak() errors. */
11481 if (uError == VMX_IGS_ERROR)
11482 uError = VMX_IGS_REASON_NOT_FOUND;
11483 } while (0);
11484
11485 pVCpu->hm.s.u32HMError = uError;
11486 return uError;
11487
11488#undef HMVMX_ERROR_BREAK
11489#undef HMVMX_CHECK_BREAK
11490}
11491
11492/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
11493/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
11494/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
11495
11496/** @name VM-exit handlers.
11497 * @{
11498 */
11499
11500/**
11501 * VM-exit handler for external interrupts (VMX_EXIT_EXT_INT).
11502 */
11503HMVMX_EXIT_DECL hmR0VmxExitExtInt(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11504{
11505 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11506 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
11507 /* Windows hosts (32-bit and 64-bit) have DPC latency issues. See @bugref{6853}. */
11508 if (VMMR0ThreadCtxHookIsEnabled(pVCpu))
11509 return VINF_SUCCESS;
11510 return VINF_EM_RAW_INTERRUPT;
11511}
11512
11513
11514/**
11515 * VM-exit handler for exceptions or NMIs (VMX_EXIT_XCPT_OR_NMI).
11516 */
11517HMVMX_EXIT_DECL hmR0VmxExitXcptOrNmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11518{
11519 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11520 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitXcptNmi, y3);
11521
11522 int rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
11523 AssertRCReturn(rc, rc);
11524
11525 uint32_t uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(pVmxTransient->uExitIntInfo);
11526 Assert( !(pVCpu->hm.s.vmx.u32ExitCtls & VMX_VMCS_CTRL_EXIT_ACK_EXT_INT)
11527 && uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT);
11528 Assert(VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo));
11529
11530 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
11531 {
11532 /*
11533 * This cannot be a guest NMI as the only way for the guest to receive an NMI is if we injected it ourselves and
11534 * anything we inject is not going to cause a VM-exit directly for the event being injected.
11535 * See Intel spec. 27.2.3 "Information for VM Exits During Event Delivery".
11536 *
11537 * Dispatch the NMI to the host. See Intel spec. 27.5.5 "Updating Non-Register State".
11538 */
11539 VMXDispatchHostNmi();
11540 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
11541 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11542 return VINF_SUCCESS;
11543 }
11544
11545 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
11546 VBOXSTRICTRC rcStrictRc1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
11547 if (RT_UNLIKELY(rcStrictRc1 == VINF_SUCCESS))
11548 { /* likely */ }
11549 else
11550 {
11551 if (rcStrictRc1 == VINF_HM_DOUBLE_FAULT)
11552 rcStrictRc1 = VINF_SUCCESS;
11553 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11554 return rcStrictRc1;
11555 }
11556
11557 uint32_t uExitIntInfo = pVmxTransient->uExitIntInfo;
11558 uint32_t uVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(uExitIntInfo);
11559 switch (uIntType)
11560 {
11561 case VMX_EXIT_INTERRUPTION_INFO_TYPE_PRIV_SW_XCPT: /* Privileged software exception. (#DB from ICEBP) */
11562 Assert(uVector == X86_XCPT_DB);
11563 /* fall thru */
11564 case VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT: /* Software exception. (#BP or #OF) */
11565 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF || uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_PRIV_SW_XCPT);
11566 /* fall thru */
11567 case VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT:
11568 {
11569 /*
11570 * If there's any exception caused as a result of event injection, go back to
11571 * the interpreter. The page-fault case is complicated and we manually handle
11572 * any currently pending event in hmR0VmxExitXcptPF. Nested #ACs are already
11573 * handled in hmR0VmxCheckExitDueToEventDelivery.
11574 */
11575 if (!pVCpu->hm.s.Event.fPending)
11576 { /* likely */ }
11577 else if ( uVector != X86_XCPT_PF
11578 && uVector != X86_XCPT_AC)
11579 {
11580 /** @todo Why do we need to fallback to the interpreter here? */
11581 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
11582 rc = VERR_EM_INTERPRETER;
11583 break;
11584 }
11585
11586 switch (uVector)
11587 {
11588 case X86_XCPT_PF: rc = hmR0VmxExitXcptPF(pVCpu, pMixedCtx, pVmxTransient); break;
11589 case X86_XCPT_GP: rc = hmR0VmxExitXcptGP(pVCpu, pMixedCtx, pVmxTransient); break;
11590 case X86_XCPT_NM: rc = hmR0VmxExitXcptNM(pVCpu, pMixedCtx, pVmxTransient); break;
11591 case X86_XCPT_MF: rc = hmR0VmxExitXcptMF(pVCpu, pMixedCtx, pVmxTransient); break;
11592 case X86_XCPT_DB: rc = hmR0VmxExitXcptDB(pVCpu, pMixedCtx, pVmxTransient); break;
11593 case X86_XCPT_BP: rc = hmR0VmxExitXcptBP(pVCpu, pMixedCtx, pVmxTransient); break;
11594 case X86_XCPT_AC: rc = hmR0VmxExitXcptAC(pVCpu, pMixedCtx, pVmxTransient); break;
11595
11596 case X86_XCPT_XF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXF);
11597 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11598 case X86_XCPT_DE: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
11599 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11600 case X86_XCPT_UD: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
11601 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11602 case X86_XCPT_SS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
11603 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11604 case X86_XCPT_NP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
11605 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11606 case X86_XCPT_TS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestTS);
11607 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11608 default:
11609 {
11610 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
11611 AssertRCReturn(rc, rc);
11612
11613 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXcpUnk);
11614 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
11615 {
11616 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
11617 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
11618 Assert(CPUMIsGuestInRealModeEx(pMixedCtx));
11619
11620 rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11621 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
11622 AssertRCReturn(rc, rc);
11623 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(uExitIntInfo),
11624 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode,
11625 0 /* GCPtrFaultAddress */);
11626 AssertRCReturn(rc, rc);
11627 }
11628 else
11629 {
11630 AssertMsgFailed(("Unexpected VM-exit caused by exception %#x\n", uVector));
11631 pVCpu->hm.s.u32HMError = uVector;
11632 rc = VERR_VMX_UNEXPECTED_EXCEPTION;
11633 }
11634 break;
11635 }
11636 }
11637 break;
11638 }
11639
11640 default:
11641 {
11642 pVCpu->hm.s.u32HMError = uExitIntInfo;
11643 rc = VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE;
11644 AssertMsgFailed(("Unexpected interruption info %#x\n", VMX_EXIT_INTERRUPTION_INFO_TYPE(uExitIntInfo)));
11645 break;
11646 }
11647 }
11648 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11649 return rc;
11650}
11651
11652
11653/**
11654 * VM-exit handler for interrupt-window exiting (VMX_EXIT_INT_WINDOW).
11655 */
11656HMVMX_EXIT_NSRC_DECL hmR0VmxExitIntWindow(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11657{
11658 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11659
11660 /* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */
11661 hmR0VmxClearIntWindowExitVmcs(pVCpu);
11662
11663 /* Deliver the pending interrupts via hmR0VmxEvaluatePendingEvent() and resume guest execution. */
11664 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
11665 return VINF_SUCCESS;
11666}
11667
11668
11669/**
11670 * VM-exit handler for NMI-window exiting (VMX_EXIT_NMI_WINDOW).
11671 */
11672HMVMX_EXIT_NSRC_DECL hmR0VmxExitNmiWindow(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11673{
11674 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11675 if (RT_UNLIKELY(!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT)))
11676 {
11677 AssertMsgFailed(("Unexpected NMI-window exit.\n"));
11678 HMVMX_RETURN_UNEXPECTED_EXIT();
11679 }
11680
11681 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS));
11682
11683 /*
11684 * If block-by-STI is set when we get this VM-exit, it means the CPU doesn't block NMIs following STI.
11685 * It is therefore safe to unblock STI and deliver the NMI ourselves. See @bugref{7445}.
11686 */
11687 uint32_t uIntrState = 0;
11688 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &uIntrState);
11689 AssertRCReturn(rc, rc);
11690
11691 bool const fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
11692 if ( fBlockSti
11693 && VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
11694 {
11695 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
11696 }
11697
11698 /* Indicate that we no longer need to VM-exit when the guest is ready to receive NMIs, it is now ready */
11699 hmR0VmxClearNmiWindowExitVmcs(pVCpu);
11700
11701 /* Deliver the pending NMI via hmR0VmxEvaluatePendingEvent() and resume guest execution. */
11702 return VINF_SUCCESS;
11703}
11704
11705
11706/**
11707 * VM-exit handler for WBINVD (VMX_EXIT_WBINVD). Conditional VM-exit.
11708 */
11709HMVMX_EXIT_NSRC_DECL hmR0VmxExitWbinvd(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11710{
11711 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11712 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWbinvd);
11713 return hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11714}
11715
11716
11717/**
11718 * VM-exit handler for INVD (VMX_EXIT_INVD). Unconditional VM-exit.
11719 */
11720HMVMX_EXIT_NSRC_DECL hmR0VmxExitInvd(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11721{
11722 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11723 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvd);
11724 return hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11725}
11726
11727
11728/**
11729 * VM-exit handler for CPUID (VMX_EXIT_CPUID). Unconditional VM-exit.
11730 */
11731HMVMX_EXIT_DECL hmR0VmxExitCpuid(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11732{
11733 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11734 PVM pVM = pVCpu->CTX_SUFF(pVM);
11735 int rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
11736 if (RT_LIKELY(rc == VINF_SUCCESS))
11737 {
11738 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11739 Assert(pVmxTransient->cbInstr == 2);
11740 }
11741 else
11742 {
11743 AssertMsgFailed(("hmR0VmxExitCpuid: EMInterpretCpuId failed with %Rrc\n", rc));
11744 rc = VERR_EM_INTERPRETER;
11745 }
11746 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCpuid);
11747 return rc;
11748}
11749
11750
11751/**
11752 * VM-exit handler for GETSEC (VMX_EXIT_GETSEC). Unconditional VM-exit.
11753 */
11754HMVMX_EXIT_DECL hmR0VmxExitGetsec(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11755{
11756 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11757 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
11758 AssertRCReturn(rc, rc);
11759
11760 if (pMixedCtx->cr4 & X86_CR4_SMXE)
11761 return VINF_EM_RAW_EMULATE_INSTR;
11762
11763 AssertMsgFailed(("hmR0VmxExitGetsec: unexpected VM-exit when CR4.SMXE is 0.\n"));
11764 HMVMX_RETURN_UNEXPECTED_EXIT();
11765}
11766
11767
11768/**
11769 * VM-exit handler for RDTSC (VMX_EXIT_RDTSC). Conditional VM-exit.
11770 */
11771HMVMX_EXIT_DECL hmR0VmxExitRdtsc(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11772{
11773 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11774 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
11775 AssertRCReturn(rc, rc);
11776
11777 PVM pVM = pVCpu->CTX_SUFF(pVM);
11778 rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
11779 if (RT_LIKELY(rc == VINF_SUCCESS))
11780 {
11781 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11782 Assert(pVmxTransient->cbInstr == 2);
11783 /* If we get a spurious VM-exit when offsetting is enabled, we must reset offsetting on VM-reentry. See @bugref{6634}. */
11784 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING)
11785 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
11786 }
11787 else
11788 rc = VERR_EM_INTERPRETER;
11789 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
11790 return rc;
11791}
11792
11793
11794/**
11795 * VM-exit handler for RDTSCP (VMX_EXIT_RDTSCP). Conditional VM-exit.
11796 */
11797HMVMX_EXIT_DECL hmR0VmxExitRdtscp(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11798{
11799 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11800 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
11801 rc |= hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx); /* For MSR_K8_TSC_AUX */
11802 AssertRCReturn(rc, rc);
11803
11804 PVM pVM = pVCpu->CTX_SUFF(pVM);
11805 rc = EMInterpretRdtscp(pVM, pVCpu, pMixedCtx);
11806 if (RT_SUCCESS(rc))
11807 {
11808 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11809 Assert(pVmxTransient->cbInstr == 3);
11810 /* If we get a spurious VM-exit when offsetting is enabled, we must reset offsetting on VM-reentry. See @bugref{6634}. */
11811 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING)
11812 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
11813 }
11814 else
11815 {
11816 AssertMsgFailed(("hmR0VmxExitRdtscp: EMInterpretRdtscp failed with %Rrc\n", rc));
11817 rc = VERR_EM_INTERPRETER;
11818 }
11819 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
11820 return rc;
11821}
11822
11823
11824/**
11825 * VM-exit handler for RDPMC (VMX_EXIT_RDPMC). Conditional VM-exit.
11826 */
11827HMVMX_EXIT_DECL hmR0VmxExitRdpmc(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11828{
11829 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11830 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
11831 rc |= hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
11832 AssertRCReturn(rc, rc);
11833
11834 PVM pVM = pVCpu->CTX_SUFF(pVM);
11835 rc = EMInterpretRdpmc(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
11836 if (RT_LIKELY(rc == VINF_SUCCESS))
11837 {
11838 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11839 Assert(pVmxTransient->cbInstr == 2);
11840 }
11841 else
11842 {
11843 AssertMsgFailed(("hmR0VmxExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
11844 rc = VERR_EM_INTERPRETER;
11845 }
11846 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdpmc);
11847 return rc;
11848}
11849
11850
11851/**
11852 * VM-exit handler for VMCALL (VMX_EXIT_VMCALL). Unconditional VM-exit.
11853 */
11854HMVMX_EXIT_DECL hmR0VmxExitVmcall(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11855{
11856 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11857 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitVmcall);
11858
11859 VBOXSTRICTRC rcStrict = VERR_VMX_IPE_3;
11860 if (pVCpu->hm.s.fHypercallsEnabled)
11861 {
11862#if 0
11863 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
11864#else
11865 /* Aggressive state sync. for now. */
11866 int rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
11867 rc |= hmR0VmxSaveGuestRflags(pVCpu,pMixedCtx); /* For CPL checks in gimHvHypercall() & gimKvmHypercall() */
11868 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx); /* For long-mode checks in gimKvmHypercall(). */
11869 AssertRCReturn(rc, rc);
11870#endif
11871
11872 /* Perform the hypercall. */
11873 rcStrict = GIMHypercall(pVCpu, pMixedCtx);
11874 if (rcStrict == VINF_SUCCESS)
11875 {
11876 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11877 AssertRCReturn(rc, rc);
11878 }
11879 else
11880 Assert( rcStrict == VINF_GIM_R3_HYPERCALL
11881 || rcStrict == VINF_GIM_HYPERCALL_CONTINUING
11882 || RT_FAILURE(VBOXSTRICTRC_VAL(rcStrict)));
11883
11884 /* If the hypercall changes anything other than guest's general-purpose registers,
11885 we would need to reload the guest changed bits here before VM-entry. */
11886 }
11887 else
11888 Log4(("hmR0VmxExitVmcall: Hypercalls not enabled\n"));
11889
11890 /* If hypercalls are disabled or the hypercall failed for some reason, raise #UD and continue. */
11891 if (RT_FAILURE(VBOXSTRICTRC_VAL(rcStrict)))
11892 {
11893 hmR0VmxSetPendingXcptUD(pVCpu, pMixedCtx);
11894 rcStrict = VINF_SUCCESS;
11895 }
11896
11897 return rcStrict;
11898}
11899
11900
11901/**
11902 * VM-exit handler for INVLPG (VMX_EXIT_INVLPG). Conditional VM-exit.
11903 */
11904HMVMX_EXIT_DECL hmR0VmxExitInvlpg(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11905{
11906 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11907 PVM pVM = pVCpu->CTX_SUFF(pVM);
11908 Assert(!pVM->hm.s.fNestedPaging || pVCpu->hm.s.fUsingDebugLoop);
11909
11910 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
11911 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
11912 AssertRCReturn(rc, rc);
11913
11914 VBOXSTRICTRC rcStrict = EMInterpretInvlpg(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), pVmxTransient->uExitQualification);
11915 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
11916 rcStrict = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11917 else
11918 AssertMsg(rcStrict == VERR_EM_INTERPRETER, ("hmR0VmxExitInvlpg: EMInterpretInvlpg %#RX64 failed with %Rrc\n",
11919 pVmxTransient->uExitQualification, VBOXSTRICTRC_VAL(rcStrict)));
11920 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpg);
11921 return rcStrict;
11922}
11923
11924
11925/**
11926 * VM-exit handler for MONITOR (VMX_EXIT_MONITOR). Conditional VM-exit.
11927 */
11928HMVMX_EXIT_DECL hmR0VmxExitMonitor(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11929{
11930 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11931 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
11932 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
11933 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
11934 AssertRCReturn(rc, rc);
11935
11936 PVM pVM = pVCpu->CTX_SUFF(pVM);
11937 rc = EMInterpretMonitor(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
11938 if (RT_LIKELY(rc == VINF_SUCCESS))
11939 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11940 else
11941 {
11942 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
11943 rc = VERR_EM_INTERPRETER;
11944 }
11945 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
11946 return rc;
11947}
11948
11949
11950/**
11951 * VM-exit handler for MWAIT (VMX_EXIT_MWAIT). Conditional VM-exit.
11952 */
11953HMVMX_EXIT_DECL hmR0VmxExitMwait(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11954{
11955 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11956 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
11957 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
11958 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
11959 AssertRCReturn(rc, rc);
11960
11961 PVM pVM = pVCpu->CTX_SUFF(pVM);
11962 VBOXSTRICTRC rc2 = EMInterpretMWait(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
11963 rc = VBOXSTRICTRC_VAL(rc2);
11964 if (RT_LIKELY( rc == VINF_SUCCESS
11965 || rc == VINF_EM_HALT))
11966 {
11967 int rc3 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11968 AssertRCReturn(rc3, rc3);
11969
11970 if ( rc == VINF_EM_HALT
11971 && EMMonitorWaitShouldContinue(pVCpu, pMixedCtx))
11972 {
11973 rc = VINF_SUCCESS;
11974 }
11975 }
11976 else
11977 {
11978 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
11979 rc = VERR_EM_INTERPRETER;
11980 }
11981 AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
11982 ("hmR0VmxExitMwait: failed, invalid error code %Rrc\n", rc));
11983 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
11984 return rc;
11985}
11986
11987
11988/**
11989 * VM-exit handler for RSM (VMX_EXIT_RSM). Unconditional VM-exit.
11990 */
11991HMVMX_EXIT_NSRC_DECL hmR0VmxExitRsm(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11992{
11993 /*
11994 * Execution of RSM outside of SMM mode causes #UD regardless of VMX root or VMX non-root mode. In theory, we should never
11995 * get this VM-exit. This can happen only if dual-monitor treatment of SMI and VMX is enabled, which can (only?) be done by
11996 * executing VMCALL in VMX root operation. If we get here, something funny is going on.
11997 * See Intel spec. "33.15.5 Enabling the Dual-Monitor Treatment".
11998 */
11999 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12000 AssertMsgFailed(("Unexpected RSM VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
12001 HMVMX_RETURN_UNEXPECTED_EXIT();
12002}
12003
12004
12005/**
12006 * VM-exit handler for SMI (VMX_EXIT_SMI). Unconditional VM-exit.
12007 */
12008HMVMX_EXIT_NSRC_DECL hmR0VmxExitSmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12009{
12010 /*
12011 * This can only happen if we support dual-monitor treatment of SMI, which can be activated by executing VMCALL in VMX
12012 * root operation. Only an STM (SMM transfer monitor) would get this VM-exit when we (the executive monitor) execute a VMCALL
12013 * in VMX root mode or receive an SMI. If we get here, something funny is going on.
12014 * See Intel spec. "33.15.6 Activating the Dual-Monitor Treatment" and Intel spec. 25.3 "Other Causes of VM-Exits"
12015 */
12016 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12017 AssertMsgFailed(("Unexpected SMI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
12018 HMVMX_RETURN_UNEXPECTED_EXIT();
12019}
12020
12021
12022/**
12023 * VM-exit handler for IO SMI (VMX_EXIT_IO_SMI). Unconditional VM-exit.
12024 */
12025HMVMX_EXIT_NSRC_DECL hmR0VmxExitIoSmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12026{
12027 /* Same treatment as VMX_EXIT_SMI. See comment in hmR0VmxExitSmi(). */
12028 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12029 AssertMsgFailed(("Unexpected IO SMI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
12030 HMVMX_RETURN_UNEXPECTED_EXIT();
12031}
12032
12033
12034/**
12035 * VM-exit handler for SIPI (VMX_EXIT_SIPI). Conditional VM-exit.
12036 */
12037HMVMX_EXIT_NSRC_DECL hmR0VmxExitSipi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12038{
12039 /*
12040 * SIPI exits can only occur in VMX non-root operation when the "wait-for-SIPI" guest activity state is used. We currently
12041 * don't make use of it (see hmR0VmxLoadGuestActivityState()) as our guests don't have direct access to the host LAPIC.
12042 * See Intel spec. 25.3 "Other Causes of VM-exits".
12043 */
12044 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12045 AssertMsgFailed(("Unexpected SIPI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
12046 HMVMX_RETURN_UNEXPECTED_EXIT();
12047}
12048
12049
12050/**
12051 * VM-exit handler for INIT signal (VMX_EXIT_INIT_SIGNAL). Unconditional
12052 * VM-exit.
12053 */
12054HMVMX_EXIT_NSRC_DECL hmR0VmxExitInitSignal(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12055{
12056 /*
12057 * INIT signals are blocked in VMX root operation by VMXON and by SMI in SMM.
12058 * See Intel spec. 33.14.1 Default Treatment of SMI Delivery" and Intel spec. 29.3 "VMX Instructions" for "VMXON".
12059 *
12060 * It is -NOT- blocked in VMX non-root operation so we can, in theory, still get these VM-exits.
12061 * See Intel spec. "23.8 Restrictions on VMX operation".
12062 */
12063 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12064 return VINF_SUCCESS;
12065}
12066
12067
12068/**
12069 * VM-exit handler for triple faults (VMX_EXIT_TRIPLE_FAULT). Unconditional
12070 * VM-exit.
12071 */
12072HMVMX_EXIT_DECL hmR0VmxExitTripleFault(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12073{
12074 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12075 return VINF_EM_RESET;
12076}
12077
12078
12079/**
12080 * VM-exit handler for HLT (VMX_EXIT_HLT). Conditional VM-exit.
12081 */
12082HMVMX_EXIT_DECL hmR0VmxExitHlt(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12083{
12084 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12085 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT);
12086
12087 int rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
12088 AssertRCReturn(rc, rc);
12089
12090 if (EMShouldContinueAfterHalt(pVCpu, pMixedCtx)) /* Requires eflags. */
12091 rc = VINF_SUCCESS;
12092 else
12093 rc = VINF_EM_HALT;
12094
12095 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
12096 if (rc != VINF_SUCCESS)
12097 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
12098 return rc;
12099}
12100
12101
12102/**
12103 * VM-exit handler for instructions that result in a \#UD exception delivered to
12104 * the guest.
12105 */
12106HMVMX_EXIT_NSRC_DECL hmR0VmxExitSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12107{
12108 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12109 hmR0VmxSetPendingXcptUD(pVCpu, pMixedCtx);
12110 return VINF_SUCCESS;
12111}
12112
12113
12114/**
12115 * VM-exit handler for expiry of the VMX preemption timer.
12116 */
12117HMVMX_EXIT_DECL hmR0VmxExitPreemptTimer(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12118{
12119 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12120
12121 /* If the preemption-timer has expired, reinitialize the preemption timer on next VM-entry. */
12122 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
12123
12124 /* If there are any timer events pending, fall back to ring-3, otherwise resume guest execution. */
12125 PVM pVM = pVCpu->CTX_SUFF(pVM);
12126 bool fTimersPending = TMTimerPollBool(pVM, pVCpu);
12127 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPreemptTimer);
12128 return fTimersPending ? VINF_EM_RAW_TIMER_PENDING : VINF_SUCCESS;
12129}
12130
12131
12132/**
12133 * VM-exit handler for XSETBV (VMX_EXIT_XSETBV). Unconditional VM-exit.
12134 */
12135HMVMX_EXIT_DECL hmR0VmxExitXsetbv(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12136{
12137 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12138
12139 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12140 rc |= hmR0VmxSaveGuestRegsForIemExec(pVCpu, pMixedCtx, false /*fMemory*/, false /*fNeedRsp*/);
12141 rc |= hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
12142 AssertRCReturn(rc, rc);
12143
12144 VBOXSTRICTRC rcStrict = IEMExecDecodedXsetbv(pVCpu, pVmxTransient->cbInstr);
12145 HMCPU_CF_SET(pVCpu, rcStrict != VINF_IEM_RAISED_XCPT ? HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS : HM_CHANGED_ALL_GUEST);
12146
12147 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pMixedCtx->cr4 & X86_CR4_OSXSAVE) && pMixedCtx->aXcr[0] != ASMGetXcr0();
12148
12149 return rcStrict;
12150}
12151
12152
12153/**
12154 * VM-exit handler for INVPCID (VMX_EXIT_INVPCID). Conditional VM-exit.
12155 */
12156HMVMX_EXIT_DECL hmR0VmxExitInvpcid(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12157{
12158 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12159
12160 /* The guest should not invalidate the host CPU's TLBs, fallback to interpreter. */
12161 /** @todo implement EMInterpretInvpcid() */
12162 return VERR_EM_INTERPRETER;
12163}
12164
12165
12166/**
12167 * VM-exit handler for invalid-guest-state (VMX_EXIT_ERR_INVALID_GUEST_STATE).
12168 * Error VM-exit.
12169 */
12170HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrInvalidGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12171{
12172 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
12173 AssertRCReturn(rc, rc);
12174
12175 rc = hmR0VmxCheckVmcsCtls(pVCpu);
12176 AssertRCReturn(rc, rc);
12177
12178 uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVCpu->CTX_SUFF(pVM), pVCpu, pMixedCtx);
12179 NOREF(uInvalidReason);
12180
12181#ifdef VBOX_STRICT
12182 uint32_t uIntrState;
12183 RTHCUINTREG uHCReg;
12184 uint64_t u64Val;
12185 uint32_t u32Val;
12186
12187 rc = hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
12188 rc |= hmR0VmxReadEntryXcptErrorCodeVmcs(pVmxTransient);
12189 rc |= hmR0VmxReadEntryInstrLenVmcs(pVmxTransient);
12190 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &uIntrState);
12191 AssertRCReturn(rc, rc);
12192
12193 Log4(("uInvalidReason %u\n", uInvalidReason));
12194 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", pVmxTransient->uEntryIntInfo));
12195 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", pVmxTransient->uEntryXcptErrorCode));
12196 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %#RX32\n", pVmxTransient->cbEntryInstr));
12197 Log4(("VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE %#RX32\n", uIntrState));
12198
12199 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32Val); AssertRC(rc);
12200 Log4(("VMX_VMCS_GUEST_CR0 %#RX32\n", u32Val));
12201 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
12202 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
12203 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
12204 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
12205 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
12206 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
12207 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
12208 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
12209 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
12210 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
12211#else
12212 NOREF(pVmxTransient);
12213#endif
12214
12215 hmR0DumpRegs(pVCpu->CTX_SUFF(pVM), pVCpu, pMixedCtx);
12216 return VERR_VMX_INVALID_GUEST_STATE;
12217}
12218
12219
12220/**
12221 * VM-exit handler for VM-entry failure due to an MSR-load
12222 * (VMX_EXIT_ERR_MSR_LOAD). Error VM-exit.
12223 */
12224HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrMsrLoad(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12225{
12226 NOREF(pVmxTransient);
12227 AssertMsgFailed(("Unexpected MSR-load exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx)); NOREF(pMixedCtx);
12228 HMVMX_RETURN_UNEXPECTED_EXIT();
12229}
12230
12231
12232/**
12233 * VM-exit handler for VM-entry failure due to a machine-check event
12234 * (VMX_EXIT_ERR_MACHINE_CHECK). Error VM-exit.
12235 */
12236HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrMachineCheck(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12237{
12238 NOREF(pVmxTransient);
12239 AssertMsgFailed(("Unexpected machine-check event exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx)); NOREF(pMixedCtx);
12240 HMVMX_RETURN_UNEXPECTED_EXIT();
12241}
12242
12243
12244/**
12245 * VM-exit handler for all undefined reasons. Should never ever happen.. in
12246 * theory.
12247 */
12248HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrUndefined(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12249{
12250 AssertMsgFailed(("Huh!? Undefined VM-exit reason %d. pVCpu=%p pMixedCtx=%p\n", pVmxTransient->uExitReason, pVCpu, pMixedCtx));
12251 NOREF(pVCpu); NOREF(pMixedCtx); NOREF(pVmxTransient);
12252 return VERR_VMX_UNDEFINED_EXIT_CODE;
12253}
12254
12255
12256/**
12257 * VM-exit handler for XDTR (LGDT, SGDT, LIDT, SIDT) accesses
12258 * (VMX_EXIT_XDTR_ACCESS) and LDT and TR access (LLDT, LTR, SLDT, STR).
12259 * Conditional VM-exit.
12260 */
12261HMVMX_EXIT_DECL hmR0VmxExitXdtrAccess(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12262{
12263 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12264
12265 /* By default, we don't enable VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT. */
12266 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitXdtrAccess);
12267 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT)
12268 return VERR_EM_INTERPRETER;
12269 AssertMsgFailed(("Unexpected XDTR access. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
12270 HMVMX_RETURN_UNEXPECTED_EXIT();
12271}
12272
12273
12274/**
12275 * VM-exit handler for RDRAND (VMX_EXIT_RDRAND). Conditional VM-exit.
12276 */
12277HMVMX_EXIT_DECL hmR0VmxExitRdrand(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12278{
12279 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12280
12281 /* By default, we don't enable VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT. */
12282 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdrand);
12283 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT)
12284 return VERR_EM_INTERPRETER;
12285 AssertMsgFailed(("Unexpected RDRAND exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
12286 HMVMX_RETURN_UNEXPECTED_EXIT();
12287}
12288
12289
12290/**
12291 * VM-exit handler for RDMSR (VMX_EXIT_RDMSR).
12292 */
12293HMVMX_EXIT_DECL hmR0VmxExitRdmsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12294{
12295 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12296
12297 /* EMInterpretRdmsr() requires CR0, Eflags and SS segment register. */
12298 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
12299 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
12300 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
12301 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS))
12302 {
12303 rc |= hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
12304 rc |= hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
12305 }
12306 AssertRCReturn(rc, rc);
12307 Log4(("ecx=%#RX32\n", pMixedCtx->ecx));
12308
12309#ifdef VBOX_STRICT
12310 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
12311 {
12312 if ( hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, pMixedCtx->ecx)
12313 && pMixedCtx->ecx != MSR_K6_EFER)
12314 {
12315 AssertMsgFailed(("Unexpected RDMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n",
12316 pMixedCtx->ecx));
12317 HMVMX_RETURN_UNEXPECTED_EXIT();
12318 }
12319 if (hmR0VmxIsLazyGuestMsr(pVCpu, pMixedCtx->ecx))
12320 {
12321 VMXMSREXITREAD enmRead;
12322 VMXMSREXITWRITE enmWrite;
12323 int rc2 = hmR0VmxGetMsrPermission(pVCpu, pMixedCtx->ecx, &enmRead, &enmWrite);
12324 AssertRCReturn(rc2, rc2);
12325 if (enmRead == VMXMSREXIT_PASSTHRU_READ)
12326 {
12327 AssertMsgFailed(("Unexpected RDMSR for a passthru lazy-restore MSR. ecx=%#RX32\n", pMixedCtx->ecx));
12328 HMVMX_RETURN_UNEXPECTED_EXIT();
12329 }
12330 }
12331 }
12332#endif
12333
12334 PVM pVM = pVCpu->CTX_SUFF(pVM);
12335 rc = EMInterpretRdmsr(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
12336 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER,
12337 ("hmR0VmxExitRdmsr: failed, invalid error code %Rrc\n", rc));
12338 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
12339 if (RT_SUCCESS(rc))
12340 {
12341 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
12342 Assert(pVmxTransient->cbInstr == 2);
12343 }
12344 return rc;
12345}
12346
12347
12348/**
12349 * VM-exit handler for WRMSR (VMX_EXIT_WRMSR).
12350 */
12351HMVMX_EXIT_DECL hmR0VmxExitWrmsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12352{
12353 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12354 PVM pVM = pVCpu->CTX_SUFF(pVM);
12355 int rc = VINF_SUCCESS;
12356
12357 /* EMInterpretWrmsr() requires CR0, EFLAGS and SS segment register. */
12358 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
12359 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
12360 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
12361 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS))
12362 {
12363 rc |= hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
12364 rc |= hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
12365 }
12366 AssertRCReturn(rc, rc);
12367 Log4(("ecx=%#RX32 edx:eax=%#RX32:%#RX32\n", pMixedCtx->ecx, pMixedCtx->edx, pMixedCtx->eax));
12368
12369 rc = EMInterpretWrmsr(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
12370 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER, ("hmR0VmxExitWrmsr: failed, invalid error code %Rrc\n", rc));
12371 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
12372
12373 if (RT_SUCCESS(rc))
12374 {
12375 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
12376
12377 /* If this is an X2APIC WRMSR access, update the APIC state as well. */
12378 if ( pMixedCtx->ecx == MSR_IA32_APICBASE
12379 || ( pMixedCtx->ecx >= MSR_IA32_X2APIC_START
12380 && pMixedCtx->ecx <= MSR_IA32_X2APIC_END))
12381 {
12382 /*
12383 * We've already saved the APIC related guest-state (TPR) in hmR0VmxPostRunGuest(). When full APIC register
12384 * virtualization is implemented we'll have to make sure APIC state is saved from the VMCS before
12385 * EMInterpretWrmsr() changes it.
12386 */
12387 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
12388 }
12389 else if (pMixedCtx->ecx == MSR_IA32_TSC) /* Windows 7 does this during bootup. See @bugref{6398}. */
12390 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
12391 else if (pMixedCtx->ecx == MSR_K6_EFER)
12392 {
12393 /*
12394 * If the guest touches EFER we need to update the VM-Entry and VM-Exit controls as well,
12395 * even if it is -not- touching bits that cause paging mode changes (LMA/LME). We care about
12396 * the other bits as well, SCE and NXE. See @bugref{7368}.
12397 */
12398 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_EFER_MSR | HM_CHANGED_VMX_ENTRY_CTLS | HM_CHANGED_VMX_EXIT_CTLS);
12399 }
12400
12401 /* Update MSRs that are part of the VMCS and auto-load/store area when MSR-bitmaps are not supported. */
12402 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS))
12403 {
12404 switch (pMixedCtx->ecx)
12405 {
12406 /*
12407 * For SYSENTER CS, EIP, ESP MSRs, we set both the flags here so we don't accidentally
12408 * overwrite the changed guest-CPU context value while going to ring-3, see @bufref{8745}.
12409 */
12410 case MSR_IA32_SYSENTER_CS:
12411 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR);
12412 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR);
12413 break;
12414 case MSR_IA32_SYSENTER_EIP:
12415 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR);
12416 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR);
12417 break;
12418 case MSR_IA32_SYSENTER_ESP:
12419 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR);
12420 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR);
12421 break;
12422 case MSR_K8_FS_BASE: /* fall thru */
12423 case MSR_K8_GS_BASE: HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS); break;
12424 case MSR_K6_EFER: /* already handled above */ break;
12425 default:
12426 {
12427 if (hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, pMixedCtx->ecx))
12428 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_AUTO_MSRS);
12429 else if (hmR0VmxIsLazyGuestMsr(pVCpu, pMixedCtx->ecx))
12430 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS);
12431 break;
12432 }
12433 }
12434 }
12435#ifdef VBOX_STRICT
12436 else
12437 {
12438 /* Paranoia. Validate that MSRs in the MSR-bitmaps with write-passthru are not intercepted. */
12439 switch (pMixedCtx->ecx)
12440 {
12441 case MSR_IA32_SYSENTER_CS:
12442 case MSR_IA32_SYSENTER_EIP:
12443 case MSR_IA32_SYSENTER_ESP:
12444 case MSR_K8_FS_BASE:
12445 case MSR_K8_GS_BASE:
12446 {
12447 AssertMsgFailed(("Unexpected WRMSR for an MSR in the VMCS. ecx=%#RX32\n", pMixedCtx->ecx));
12448 HMVMX_RETURN_UNEXPECTED_EXIT();
12449 }
12450
12451 /* Writes to MSRs in auto-load/store area/swapped MSRs, shouldn't cause VM-exits with MSR-bitmaps. */
12452 default:
12453 {
12454 if (hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, pMixedCtx->ecx))
12455 {
12456 /* EFER writes are always intercepted, see hmR0VmxLoadGuestMsrs(). */
12457 if (pMixedCtx->ecx != MSR_K6_EFER)
12458 {
12459 AssertMsgFailed(("Unexpected WRMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n",
12460 pMixedCtx->ecx));
12461 HMVMX_RETURN_UNEXPECTED_EXIT();
12462 }
12463 }
12464
12465 if (hmR0VmxIsLazyGuestMsr(pVCpu, pMixedCtx->ecx))
12466 {
12467 VMXMSREXITREAD enmRead;
12468 VMXMSREXITWRITE enmWrite;
12469 int rc2 = hmR0VmxGetMsrPermission(pVCpu, pMixedCtx->ecx, &enmRead, &enmWrite);
12470 AssertRCReturn(rc2, rc2);
12471 if (enmWrite == VMXMSREXIT_PASSTHRU_WRITE)
12472 {
12473 AssertMsgFailed(("Unexpected WRMSR for passthru, lazy-restore MSR. ecx=%#RX32\n", pMixedCtx->ecx));
12474 HMVMX_RETURN_UNEXPECTED_EXIT();
12475 }
12476 }
12477 break;
12478 }
12479 }
12480 }
12481#endif /* VBOX_STRICT */
12482 }
12483 return rc;
12484}
12485
12486
12487/**
12488 * VM-exit handler for PAUSE (VMX_EXIT_PAUSE). Conditional VM-exit.
12489 */
12490HMVMX_EXIT_DECL hmR0VmxExitPause(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12491{
12492 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12493
12494 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPause);
12495 return VINF_EM_RAW_INTERRUPT;
12496}
12497
12498
12499/**
12500 * VM-exit handler for when the TPR value is lowered below the specified
12501 * threshold (VMX_EXIT_TPR_BELOW_THRESHOLD). Conditional VM-exit.
12502 */
12503HMVMX_EXIT_NSRC_DECL hmR0VmxExitTprBelowThreshold(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12504{
12505 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12506 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW);
12507
12508 /*
12509 * The TPR shadow would've been synced with the APIC TPR in hmR0VmxPostRunGuest(). We'll re-evaluate
12510 * pending interrupts and inject them before the next VM-entry so we can just continue execution here.
12511 */
12512 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTprBelowThreshold);
12513 return VINF_SUCCESS;
12514}
12515
12516
12517/**
12518 * VM-exit handler for control-register accesses (VMX_EXIT_MOV_CRX). Conditional
12519 * VM-exit.
12520 *
12521 * @retval VINF_SUCCESS when guest execution can continue.
12522 * @retval VINF_PGM_CHANGE_MODE when shadow paging mode changed, back to ring-3.
12523 * @retval VINF_PGM_SYNC_CR3 CR3 sync is required, back to ring-3.
12524 * @retval VERR_EM_INTERPRETER when something unexpected happened, fallback to
12525 * interpreter.
12526 */
12527HMVMX_EXIT_DECL hmR0VmxExitMovCRx(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12528{
12529 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12530 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitMovCRx, y2);
12531 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
12532 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12533 AssertRCReturn(rc, rc);
12534
12535 RTGCUINTPTR const uExitQualification = pVmxTransient->uExitQualification;
12536 uint32_t const uAccessType = VMX_EXIT_QUALIFICATION_CRX_ACCESS(uExitQualification);
12537 PVM pVM = pVCpu->CTX_SUFF(pVM);
12538 VBOXSTRICTRC rcStrict;
12539 rc = hmR0VmxSaveGuestRegsForIemExec(pVCpu, pMixedCtx, false /*fMemory*/, true /*fNeedRsp*/);
12540 switch (uAccessType)
12541 {
12542 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_WRITE: /* MOV to CRx */
12543 {
12544 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
12545 AssertRCReturn(rc, rc);
12546
12547 rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, pVmxTransient->cbInstr,
12548 VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification),
12549 VMX_EXIT_QUALIFICATION_CRX_GENREG(uExitQualification));
12550 AssertMsg( rcStrict == VINF_SUCCESS || rcStrict == VINF_IEM_RAISED_XCPT || rcStrict == VINF_PGM_CHANGE_MODE
12551 || rcStrict == VINF_PGM_SYNC_CR3, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12552 switch (VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification))
12553 {
12554 case 0: /* CR0 */
12555 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
12556 Log4(("CRX CR0 write rcStrict=%Rrc CR0=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pMixedCtx->cr0));
12557 break;
12558 case 2: /* CR2 */
12559 /* Nothing to do here, CR2 it's not part of the VMCS. */
12560 break;
12561 case 3: /* CR3 */
12562 Assert(!pVM->hm.s.fNestedPaging || !CPUMIsGuestPagingEnabledEx(pMixedCtx) || pVCpu->hm.s.fUsingDebugLoop);
12563 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR3);
12564 Log4(("CRX CR3 write rcStrict=%Rrc CR3=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pMixedCtx->cr3));
12565 break;
12566 case 4: /* CR4 */
12567 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR4);
12568 Log4(("CRX CR4 write rc=%Rrc CR4=%#RX64 fLoadSaveGuestXcr0=%u\n",
12569 VBOXSTRICTRC_VAL(rcStrict), pMixedCtx->cr4, pVCpu->hm.s.fLoadSaveGuestXcr0));
12570 break;
12571 case 8: /* CR8 */
12572 Assert(!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW));
12573 /* CR8 contains the APIC TPR. Was updated by IEMExecDecodedMovCRxWrite(). */
12574 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
12575 break;
12576 default:
12577 AssertMsgFailed(("Invalid CRx register %#x\n", VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)));
12578 break;
12579 }
12580
12581 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxWrite[VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)]);
12582 break;
12583 }
12584
12585 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_READ: /* MOV from CRx */
12586 {
12587 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
12588 AssertRCReturn(rc, rc);
12589
12590 Assert( !pVM->hm.s.fNestedPaging
12591 || !CPUMIsGuestPagingEnabledEx(pMixedCtx)
12592 || pVCpu->hm.s.fUsingDebugLoop
12593 || VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification) != 3);
12594
12595 /* CR8 reads only cause a VM-exit when the TPR shadow feature isn't enabled. */
12596 Assert( VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification) != 8
12597 || !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW));
12598
12599 rcStrict = IEMExecDecodedMovCRxRead(pVCpu, pVmxTransient->cbInstr,
12600 VMX_EXIT_QUALIFICATION_CRX_GENREG(uExitQualification),
12601 VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification));
12602 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12603 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxRead[VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)]);
12604 Log4(("CRX CR%d Read access rcStrict=%Rrc\n", VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification),
12605 VBOXSTRICTRC_VAL(rcStrict)));
12606 break;
12607 }
12608
12609 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_CLTS: /* CLTS (Clear Task-Switch Flag in CR0) */
12610 {
12611 AssertRCReturn(rc, rc);
12612 rcStrict = IEMExecDecodedClts(pVCpu, pVmxTransient->cbInstr);
12613 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12614 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
12615 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitClts);
12616 Log4(("CRX CLTS rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
12617 break;
12618 }
12619
12620 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_LMSW: /* LMSW (Load Machine-Status Word into CR0) */
12621 {
12622 AssertRCReturn(rc, rc);
12623 rcStrict = IEMExecDecodedLmsw(pVCpu, pVmxTransient->cbInstr,
12624 VMX_EXIT_QUALIFICATION_CRX_LMSW_DATA(uExitQualification));
12625 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_IEM_RAISED_XCPT || rcStrict == VINF_PGM_CHANGE_MODE,
12626 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12627 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
12628 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitLmsw);
12629 Log4(("CRX LMSW rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
12630 break;
12631 }
12632
12633 default:
12634 AssertMsgFailedReturn(("Invalid access-type in Mov CRx VM-exit qualification %#x\n", uAccessType),
12635 VERR_VMX_UNEXPECTED_EXCEPTION);
12636 }
12637
12638 HMCPU_CF_SET(pVCpu, rcStrict != VINF_IEM_RAISED_XCPT ? HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS : HM_CHANGED_ALL_GUEST);
12639 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitMovCRx, y2);
12640 NOREF(pVM);
12641 return rcStrict;
12642}
12643
12644
12645/**
12646 * VM-exit handler for I/O instructions (VMX_EXIT_IO_INSTR). Conditional
12647 * VM-exit.
12648 */
12649HMVMX_EXIT_DECL hmR0VmxExitIoInstr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12650{
12651 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12652 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitIO, y1);
12653
12654 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
12655 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12656 rc |= hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
12657 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx); /* Eflag checks in EMInterpretDisasCurrent(). */
12658 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx); /* CR0 checks & PGM* in EMInterpretDisasCurrent(). */
12659 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx); /* SELM checks in EMInterpretDisasCurrent(). */
12660 /* EFER also required for longmode checks in EMInterpretDisasCurrent(), but it's always up-to-date. */
12661 AssertRCReturn(rc, rc);
12662
12663 /* Refer Intel spec. 27-5. "Exit Qualifications for I/O Instructions" for the format. */
12664 uint32_t uIOPort = VMX_EXIT_QUALIFICATION_IO_PORT(pVmxTransient->uExitQualification);
12665 uint8_t uIOWidth = VMX_EXIT_QUALIFICATION_IO_WIDTH(pVmxTransient->uExitQualification);
12666 bool fIOWrite = ( VMX_EXIT_QUALIFICATION_IO_DIRECTION(pVmxTransient->uExitQualification)
12667 == VMX_EXIT_QUALIFICATION_IO_DIRECTION_OUT);
12668 bool fIOString = VMX_EXIT_QUALIFICATION_IO_IS_STRING(pVmxTransient->uExitQualification);
12669 bool fGstStepping = RT_BOOL(pMixedCtx->eflags.Bits.u1TF);
12670 bool fDbgStepping = pVCpu->hm.s.fSingleInstruction;
12671 AssertReturn(uIOWidth <= 3 && uIOWidth != 2, VERR_VMX_IPE_1);
12672
12673 /* I/O operation lookup arrays. */
12674 static uint32_t const s_aIOSizes[4] = { 1, 2, 0, 4 }; /* Size of the I/O accesses. */
12675 static uint32_t const s_aIOOpAnd[4] = { 0xff, 0xffff, 0, 0xffffffff }; /* AND masks for saving the result (in AL/AX/EAX). */
12676
12677 VBOXSTRICTRC rcStrict;
12678 uint32_t const cbValue = s_aIOSizes[uIOWidth];
12679 uint32_t const cbInstr = pVmxTransient->cbInstr;
12680 bool fUpdateRipAlready = false; /* ugly hack, should be temporary. */
12681 PVM pVM = pVCpu->CTX_SUFF(pVM);
12682 if (fIOString)
12683 {
12684#ifdef VBOX_WITH_2ND_IEM_STEP /* This used to gurus with debian 32-bit guest without NP (on ATA reads).
12685 See @bugref{5752#c158}. Should work now. */
12686 /*
12687 * INS/OUTS - I/O String instruction.
12688 *
12689 * Use instruction-information if available, otherwise fall back on
12690 * interpreting the instruction.
12691 */
12692 Log4(("CS:RIP=%04x:%08RX64 %#06x/%u %c str\n", pMixedCtx->cs.Sel, pMixedCtx->rip, uIOPort, cbValue,
12693 fIOWrite ? 'w' : 'r'));
12694 AssertReturn(pMixedCtx->dx == uIOPort, VERR_VMX_IPE_2);
12695 if (MSR_IA32_VMX_BASIC_INFO_VMCS_INS_OUTS(pVM->hm.s.vmx.Msrs.u64BasicInfo))
12696 {
12697 int rc2 = hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
12698 /** @todo optimize this, IEM should request the additional state if it needs it (GP, PF, ++). */
12699 rc2 |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
12700 AssertRCReturn(rc2, rc2);
12701 AssertReturn(pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize <= 2, VERR_VMX_IPE_3);
12702 AssertCompile(IEMMODE_16BIT == 0 && IEMMODE_32BIT == 1 && IEMMODE_64BIT == 2);
12703 IEMMODE enmAddrMode = (IEMMODE)pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize;
12704 bool fRep = VMX_EXIT_QUALIFICATION_IO_IS_REP(pVmxTransient->uExitQualification);
12705 if (fIOWrite)
12706 {
12707 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, fRep, cbInstr,
12708 pVmxTransient->ExitInstrInfo.StrIo.iSegReg, true /*fIoChecked*/);
12709 }
12710 else
12711 {
12712 /*
12713 * The segment prefix for INS cannot be overridden and is always ES. We can safely assume X86_SREG_ES.
12714 * Hence "iSegReg" field is undefined in the instruction-information field in VT-x for INS.
12715 * See Intel Instruction spec. for "INS".
12716 * See Intel spec. Table 27-8 "Format of the VM-Exit Instruction-Information Field as Used for INS and OUTS".
12717 */
12718 rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, fRep, cbInstr, true /*fIoChecked*/);
12719 }
12720 }
12721 else
12722 {
12723 /** @todo optimize this, IEM should request the additional state if it needs it (GP, PF, ++). */
12724 int rc2 = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
12725 AssertRCReturn(rc2, rc2);
12726 rcStrict = IEMExecOne(pVCpu);
12727 }
12728 /** @todo IEM needs to be setting these flags somehow. */
12729 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP);
12730 fUpdateRipAlready = true;
12731#else
12732 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
12733 rcStrict = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL /* pcbInstr */);
12734 if (RT_SUCCESS(rcStrict))
12735 {
12736 if (fIOWrite)
12737 {
12738 rcStrict = IOMInterpretOUTSEx(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), uIOPort, pDis->fPrefix,
12739 (DISCPUMODE)pDis->uAddrMode, cbValue);
12740 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
12741 }
12742 else
12743 {
12744 rcStrict = IOMInterpretINSEx(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), uIOPort, pDis->fPrefix,
12745 (DISCPUMODE)pDis->uAddrMode, cbValue);
12746 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
12747 }
12748 }
12749 else
12750 {
12751 AssertMsg(rcStrict == VERR_EM_INTERPRETER, ("rcStrict=%Rrc RIP=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict),
12752 pMixedCtx->rip));
12753 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
12754 }
12755#endif
12756 }
12757 else
12758 {
12759 /*
12760 * IN/OUT - I/O instruction.
12761 */
12762 Log4(("CS:RIP=%04x:%08RX64 %#06x/%u %c\n", pMixedCtx->cs.Sel, pMixedCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
12763 uint32_t const uAndVal = s_aIOOpAnd[uIOWidth];
12764 Assert(!VMX_EXIT_QUALIFICATION_IO_IS_REP(pVmxTransient->uExitQualification));
12765 if (fIOWrite)
12766 {
12767 rcStrict = IOMIOPortWrite(pVM, pVCpu, uIOPort, pMixedCtx->eax & uAndVal, cbValue);
12768 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
12769 }
12770 else
12771 {
12772 uint32_t u32Result = 0;
12773 rcStrict = IOMIOPortRead(pVM, pVCpu, uIOPort, &u32Result, cbValue);
12774 if (IOM_SUCCESS(rcStrict))
12775 {
12776 /* Save result of I/O IN instr. in AL/AX/EAX. */
12777 pMixedCtx->eax = (pMixedCtx->eax & ~uAndVal) | (u32Result & uAndVal);
12778 }
12779 else if (rcStrict == VINF_IOM_R3_IOPORT_READ)
12780 HMR0SavePendingIOPortRead(pVCpu, pMixedCtx->rip, pMixedCtx->rip + cbInstr, uIOPort, uAndVal, cbValue);
12781 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
12782 }
12783 }
12784
12785 if (IOM_SUCCESS(rcStrict))
12786 {
12787 if (!fUpdateRipAlready)
12788 {
12789 hmR0VmxAdvanceGuestRipBy(pVCpu, pMixedCtx, cbInstr);
12790 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP);
12791 }
12792
12793 /*
12794 * INS/OUTS with REP prefix updates RFLAGS, can be observed with triple-fault guru while booting Fedora 17 64-bit guest.
12795 * See Intel Instruction reference for REP/REPE/REPZ/REPNE/REPNZ.
12796 */
12797 if (fIOString)
12798 {
12799 /** @todo Single-step for INS/OUTS with REP prefix? */
12800 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RFLAGS);
12801 }
12802 else if ( !fDbgStepping
12803 && fGstStepping)
12804 {
12805 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
12806 }
12807
12808 /*
12809 * If any I/O breakpoints are armed, we need to check if one triggered
12810 * and take appropriate action.
12811 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
12812 */
12813 int rc2 = hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
12814 AssertRCReturn(rc2, rc2);
12815
12816 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
12817 * execution engines about whether hyper BPs and such are pending. */
12818 uint32_t const uDr7 = pMixedCtx->dr[7];
12819 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
12820 && X86_DR7_ANY_RW_IO(uDr7)
12821 && (pMixedCtx->cr4 & X86_CR4_DE))
12822 || DBGFBpIsHwIoArmed(pVM)))
12823 {
12824 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
12825
12826 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
12827 VMMRZCallRing3Disable(pVCpu);
12828 HM_DISABLE_PREEMPT();
12829
12830 bool fIsGuestDbgActive = CPUMR0DebugStateMaybeSaveGuest(pVCpu, true /* fDr6 */);
12831
12832 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pMixedCtx, uIOPort, cbValue);
12833 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
12834 {
12835 /* Raise #DB. */
12836 if (fIsGuestDbgActive)
12837 ASMSetDR6(pMixedCtx->dr[6]);
12838 if (pMixedCtx->dr[7] != uDr7)
12839 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
12840
12841 hmR0VmxSetPendingXcptDB(pVCpu, pMixedCtx);
12842 }
12843 /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
12844 however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
12845 else if ( rcStrict2 != VINF_SUCCESS
12846 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
12847 rcStrict = rcStrict2;
12848 AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
12849
12850 HM_RESTORE_PREEMPT();
12851 VMMRZCallRing3Enable(pVCpu);
12852 }
12853 }
12854
12855#ifdef VBOX_STRICT
12856 if (rcStrict == VINF_IOM_R3_IOPORT_READ)
12857 Assert(!fIOWrite);
12858 else if (rcStrict == VINF_IOM_R3_IOPORT_WRITE || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE)
12859 Assert(fIOWrite);
12860 else
12861 {
12862#if 0 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
12863 * statuses, that the VMM device and some others may return. See
12864 * IOM_SUCCESS() for guidance. */
12865 AssertMsg( RT_FAILURE(rcStrict)
12866 || rcStrict == VINF_SUCCESS
12867 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
12868 || rcStrict == VINF_EM_DBG_BREAKPOINT
12869 || rcStrict == VINF_EM_RAW_GUEST_TRAP
12870 || rcStrict == VINF_EM_RAW_TO_R3
12871 || rcStrict == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12872#endif
12873 }
12874#endif
12875
12876 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitIO, y1);
12877 return rcStrict;
12878}
12879
12880
12881/**
12882 * VM-exit handler for task switches (VMX_EXIT_TASK_SWITCH). Unconditional
12883 * VM-exit.
12884 */
12885HMVMX_EXIT_DECL hmR0VmxExitTaskSwitch(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12886{
12887 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12888
12889 /* Check if this task-switch occurred while delivery an event through the guest IDT. */
12890 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
12891 AssertRCReturn(rc, rc);
12892 if (VMX_EXIT_QUALIFICATION_TASK_SWITCH_TYPE(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_TASK_SWITCH_TYPE_IDT)
12893 {
12894 rc = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
12895 AssertRCReturn(rc, rc);
12896 if (VMX_IDT_VECTORING_INFO_VALID(pVmxTransient->uIdtVectoringInfo))
12897 {
12898 uint32_t uIntType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
12899
12900 uint32_t uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
12901 bool fErrorCodeValid = VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVmxTransient->uIdtVectoringInfo);
12902
12903 /* Save it as a pending event and it'll be converted to a TRPM event on the way out to ring-3. */
12904 Assert(!pVCpu->hm.s.Event.fPending);
12905 pVCpu->hm.s.Event.fPending = true;
12906 pVCpu->hm.s.Event.u64IntInfo = pVmxTransient->uIdtVectoringInfo;
12907 rc = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
12908 AssertRCReturn(rc, rc);
12909 if (fErrorCodeValid)
12910 pVCpu->hm.s.Event.u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
12911 else
12912 pVCpu->hm.s.Event.u32ErrCode = 0;
12913 if ( uIntType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
12914 && uVector == X86_XCPT_PF)
12915 {
12916 pVCpu->hm.s.Event.GCPtrFaultAddress = pMixedCtx->cr2;
12917 }
12918
12919 Log4(("Pending event on TaskSwitch uIntType=%#x uVector=%#x\n", uIntType, uVector));
12920 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
12921 return VINF_EM_RAW_INJECT_TRPM_EVENT;
12922 }
12923 }
12924
12925 /* Fall back to the interpreter to emulate the task-switch. */
12926 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
12927 return VERR_EM_INTERPRETER;
12928}
12929
12930
12931/**
12932 * VM-exit handler for monitor-trap-flag (VMX_EXIT_MTF). Conditional VM-exit.
12933 */
12934HMVMX_EXIT_DECL hmR0VmxExitMtf(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12935{
12936 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12937 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG);
12938 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG;
12939 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
12940 AssertRCReturn(rc, rc);
12941 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMtf);
12942 return VINF_EM_DBG_STEPPED;
12943}
12944
12945
12946/**
12947 * VM-exit handler for APIC access (VMX_EXIT_APIC_ACCESS). Conditional VM-exit.
12948 */
12949HMVMX_EXIT_DECL hmR0VmxExitApicAccess(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12950{
12951 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12952
12953 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitApicAccess);
12954
12955 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
12956 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
12957 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
12958 {
12959 /* For some crazy guest, if an event delivery causes an APIC-access VM-exit, go to instruction emulation. */
12960 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
12961 {
12962 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
12963 return VERR_EM_INTERPRETER;
12964 }
12965 }
12966 else
12967 {
12968 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
12969 rcStrict1 = VINF_SUCCESS;
12970 return rcStrict1;
12971 }
12972
12973#if 0
12974 /** @todo Investigate if IOMMMIOPhysHandler() requires a lot of state, for now
12975 * just sync the whole thing. */
12976 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
12977#else
12978 /* Aggressive state sync. for now. */
12979 int rc = hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
12980 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
12981 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
12982#endif
12983 rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
12984 AssertRCReturn(rc, rc);
12985
12986 /* See Intel spec. 27-6 "Exit Qualifications for APIC-access VM-exits from Linear Accesses & Guest-Phyiscal Addresses" */
12987 uint32_t uAccessType = VMX_EXIT_QUALIFICATION_APIC_ACCESS_TYPE(pVmxTransient->uExitQualification);
12988 VBOXSTRICTRC rcStrict2;
12989 switch (uAccessType)
12990 {
12991 case VMX_APIC_ACCESS_TYPE_LINEAR_WRITE:
12992 case VMX_APIC_ACCESS_TYPE_LINEAR_READ:
12993 {
12994 AssertMsg( !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
12995 || VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification) != XAPIC_OFF_TPR,
12996 ("hmR0VmxExitApicAccess: can't access TPR offset while using TPR shadowing.\n"));
12997
12998 RTGCPHYS GCPhys = pVCpu->hm.s.vmx.u64MsrApicBase; /* Always up-to-date, u64MsrApicBase is not part of the VMCS. */
12999 GCPhys &= PAGE_BASE_GC_MASK;
13000 GCPhys += VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification);
13001 PVM pVM = pVCpu->CTX_SUFF(pVM);
13002 Log4(("ApicAccess uAccessType=%#x GCPhys=%#RGp Off=%#x\n", uAccessType, GCPhys,
13003 VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification)));
13004
13005 rcStrict2 = IOMMMIOPhysHandler(pVM, pVCpu,
13006 uAccessType == VMX_APIC_ACCESS_TYPE_LINEAR_READ ? 0 : X86_TRAP_PF_RW,
13007 CPUMCTX2CORE(pMixedCtx), GCPhys);
13008 Log4(("ApicAccess rcStrict2=%d\n", VBOXSTRICTRC_VAL(rcStrict2)));
13009 if ( rcStrict2 == VINF_SUCCESS
13010 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
13011 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
13012 {
13013 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
13014 | HM_CHANGED_GUEST_RSP
13015 | HM_CHANGED_GUEST_RFLAGS
13016 | HM_CHANGED_VMX_GUEST_APIC_STATE);
13017 rcStrict2 = VINF_SUCCESS;
13018 }
13019 break;
13020 }
13021
13022 default:
13023 Log4(("ApicAccess uAccessType=%#x\n", uAccessType));
13024 rcStrict2 = VINF_EM_RAW_EMULATE_INSTR;
13025 break;
13026 }
13027
13028 if (rcStrict2 != VINF_SUCCESS)
13029 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchApicAccessToR3);
13030 return rcStrict2;
13031}
13032
13033
13034/**
13035 * VM-exit handler for debug-register accesses (VMX_EXIT_MOV_DRX). Conditional
13036 * VM-exit.
13037 */
13038HMVMX_EXIT_DECL hmR0VmxExitMovDRx(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13039{
13040 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
13041
13042 /* We should -not- get this VM-exit if the guest's debug registers were active. */
13043 if (pVmxTransient->fWasGuestDebugStateActive)
13044 {
13045 AssertMsgFailed(("Unexpected MOV DRx exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
13046 HMVMX_RETURN_UNEXPECTED_EXIT();
13047 }
13048
13049 if ( !pVCpu->hm.s.fSingleInstruction
13050 && !pVmxTransient->fWasHyperDebugStateActive)
13051 {
13052 Assert(!DBGFIsStepping(pVCpu));
13053 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_DB));
13054
13055 /* Don't intercept MOV DRx any more. */
13056 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT;
13057 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
13058 AssertRCReturn(rc, rc);
13059
13060 /* We're playing with the host CPU state here, make sure we can't preempt or longjmp. */
13061 VMMRZCallRing3Disable(pVCpu);
13062 HM_DISABLE_PREEMPT();
13063
13064 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
13065 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
13066 Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
13067
13068 HM_RESTORE_PREEMPT();
13069 VMMRZCallRing3Enable(pVCpu);
13070
13071#ifdef VBOX_WITH_STATISTICS
13072 rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
13073 AssertRCReturn(rc, rc);
13074 if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE)
13075 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
13076 else
13077 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
13078#endif
13079 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
13080 return VINF_SUCCESS;
13081 }
13082
13083 /*
13084 * EMInterpretDRx[Write|Read]() calls CPUMIsGuestIn64BitCode() which requires EFER, CS. EFER is always up-to-date.
13085 * Update the segment registers and DR7 from the CPU.
13086 */
13087 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
13088 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
13089 rc |= hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
13090 AssertRCReturn(rc, rc);
13091 Log4(("CS:RIP=%04x:%08RX64\n", pMixedCtx->cs.Sel, pMixedCtx->rip));
13092
13093 PVM pVM = pVCpu->CTX_SUFF(pVM);
13094 if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE)
13095 {
13096 rc = EMInterpretDRxWrite(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx),
13097 VMX_EXIT_QUALIFICATION_DRX_REGISTER(pVmxTransient->uExitQualification),
13098 VMX_EXIT_QUALIFICATION_DRX_GENREG(pVmxTransient->uExitQualification));
13099 if (RT_SUCCESS(rc))
13100 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
13101 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
13102 }
13103 else
13104 {
13105 rc = EMInterpretDRxRead(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx),
13106 VMX_EXIT_QUALIFICATION_DRX_GENREG(pVmxTransient->uExitQualification),
13107 VMX_EXIT_QUALIFICATION_DRX_REGISTER(pVmxTransient->uExitQualification));
13108 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
13109 }
13110
13111 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
13112 if (RT_SUCCESS(rc))
13113 {
13114 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
13115 AssertRCReturn(rc2, rc2);
13116 return VINF_SUCCESS;
13117 }
13118 return rc;
13119}
13120
13121
13122/**
13123 * VM-exit handler for EPT misconfiguration (VMX_EXIT_EPT_MISCONFIG).
13124 * Conditional VM-exit.
13125 */
13126HMVMX_EXIT_DECL hmR0VmxExitEptMisconfig(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13127{
13128 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
13129 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
13130
13131 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
13132 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
13133 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
13134 {
13135 /* If event delivery causes an EPT misconfig (MMIO), go back to instruction emulation as otherwise
13136 injecting the original pending event would most likely cause the same EPT misconfig VM-exit. */
13137 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
13138 {
13139 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
13140 return VERR_EM_INTERPRETER;
13141 }
13142 }
13143 else
13144 {
13145 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
13146 rcStrict1 = VINF_SUCCESS;
13147 return rcStrict1;
13148 }
13149
13150 RTGCPHYS GCPhys = 0;
13151 int rc = VMXReadVmcs64(VMX_VMCS64_EXIT_GUEST_PHYS_ADDR_FULL, &GCPhys);
13152
13153#if 0
13154 rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx); /** @todo Can we do better? */
13155#else
13156 /* Aggressive state sync. for now. */
13157 rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
13158 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
13159 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
13160#endif
13161 AssertRCReturn(rc, rc);
13162
13163 /*
13164 * If we succeed, resume guest execution.
13165 * If we fail in interpreting the instruction because we couldn't get the guest physical address
13166 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
13167 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
13168 * weird case. See @bugref{6043}.
13169 */
13170 PVM pVM = pVCpu->CTX_SUFF(pVM);
13171 VBOXSTRICTRC rcStrict2 = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, PGMMODE_EPT, CPUMCTX2CORE(pMixedCtx), GCPhys, UINT32_MAX);
13172 Log4(("EPT misconfig at %#RGp RIP=%#RX64 rc=%Rrc\n", GCPhys, pMixedCtx->rip, VBOXSTRICTRC_VAL(rcStrict2)));
13173 if ( rcStrict2 == VINF_SUCCESS
13174 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
13175 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
13176 {
13177 /* Successfully handled MMIO operation. */
13178 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
13179 | HM_CHANGED_GUEST_RSP
13180 | HM_CHANGED_GUEST_RFLAGS
13181 | HM_CHANGED_VMX_GUEST_APIC_STATE);
13182 return VINF_SUCCESS;
13183 }
13184 return rcStrict2;
13185}
13186
13187
13188/**
13189 * VM-exit handler for EPT violation (VMX_EXIT_EPT_VIOLATION). Conditional
13190 * VM-exit.
13191 */
13192HMVMX_EXIT_DECL hmR0VmxExitEptViolation(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13193{
13194 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
13195 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
13196
13197 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
13198 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
13199 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
13200 {
13201 /* In the unlikely case that the EPT violation happened as a result of delivering an event, log it. */
13202 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
13203 Log4(("EPT violation with an event pending u64IntInfo=%#RX64\n", pVCpu->hm.s.Event.u64IntInfo));
13204 }
13205 else
13206 {
13207 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
13208 rcStrict1 = VINF_SUCCESS;
13209 return rcStrict1;
13210 }
13211
13212 RTGCPHYS GCPhys = 0;
13213 int rc = VMXReadVmcs64(VMX_VMCS64_EXIT_GUEST_PHYS_ADDR_FULL, &GCPhys);
13214 rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
13215#if 0
13216 rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx); /** @todo Can we do better? */
13217#else
13218 /* Aggressive state sync. for now. */
13219 rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
13220 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
13221 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
13222#endif
13223 AssertRCReturn(rc, rc);
13224
13225 /* Intel spec. Table 27-7 "Exit Qualifications for EPT violations". */
13226 AssertMsg(((pVmxTransient->uExitQualification >> 7) & 3) != 2, ("%#RX64", pVmxTransient->uExitQualification));
13227
13228 RTGCUINT uErrorCode = 0;
13229 if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_INSTR_FETCH)
13230 uErrorCode |= X86_TRAP_PF_ID;
13231 if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_DATA_WRITE)
13232 uErrorCode |= X86_TRAP_PF_RW;
13233 if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_ENTRY_PRESENT)
13234 uErrorCode |= X86_TRAP_PF_P;
13235
13236 TRPMAssertXcptPF(pVCpu, GCPhys, uErrorCode);
13237
13238 Log4(("EPT violation %#x at %#RX64 ErrorCode %#x CS:RIP=%04x:%08RX64\n", pVmxTransient->uExitQualification, GCPhys,
13239 uErrorCode, pMixedCtx->cs.Sel, pMixedCtx->rip));
13240
13241 /* Handle the pagefault trap for the nested shadow table. */
13242 PVM pVM = pVCpu->CTX_SUFF(pVM);
13243 VBOXSTRICTRC rcStrict2 = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, PGMMODE_EPT, uErrorCode, CPUMCTX2CORE(pMixedCtx), GCPhys);
13244 TRPMResetTrap(pVCpu);
13245
13246 /* Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}. */
13247 if ( rcStrict2 == VINF_SUCCESS
13248 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
13249 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
13250 {
13251 /* Successfully synced our nested page tables. */
13252 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf);
13253 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
13254 | HM_CHANGED_GUEST_RSP
13255 | HM_CHANGED_GUEST_RFLAGS);
13256 return VINF_SUCCESS;
13257 }
13258
13259 Log4(("EPT return to ring-3 rcStrict2=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
13260 return rcStrict2;
13261}
13262
13263/** @} */
13264
13265/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-= */
13266/* -=-=-=-=-=-=-=-=-=- VM-exit Exception Handlers -=-=-=-=-=-=-=-=-=-=- */
13267/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-= */
13268
13269/** @name VM-exit exception handlers.
13270 * @{
13271 */
13272
13273/**
13274 * VM-exit exception handler for \#MF (Math Fault: floating point exception).
13275 */
13276static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13277{
13278 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13279 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
13280
13281 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
13282 AssertRCReturn(rc, rc);
13283
13284 if (!(pMixedCtx->cr0 & X86_CR0_NE))
13285 {
13286 /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
13287 rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13, 1, 0 /* uTagSrc */);
13288
13289 /** @todo r=ramshankar: The Intel spec. does -not- specify that this VM-exit
13290 * provides VM-exit instruction length. If this causes problem later,
13291 * disassemble the instruction like it's done on AMD-V. */
13292 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
13293 AssertRCReturn(rc2, rc2);
13294 return rc;
13295 }
13296
13297 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13298 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13299 return rc;
13300}
13301
13302
13303/**
13304 * VM-exit exception handler for \#BP (Breakpoint exception).
13305 */
13306static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13307{
13308 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13309 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
13310
13311 /** @todo Try optimize this by not saving the entire guest state unless
13312 * really needed. */
13313 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
13314 AssertRCReturn(rc, rc);
13315
13316 PVM pVM = pVCpu->CTX_SUFF(pVM);
13317 rc = DBGFRZTrap03Handler(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
13318 if (rc == VINF_EM_RAW_GUEST_TRAP)
13319 {
13320 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13321 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13322 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13323 AssertRCReturn(rc, rc);
13324
13325 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13326 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13327 }
13328
13329 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_EM_DBG_BREAKPOINT);
13330 return rc;
13331}
13332
13333
13334/**
13335 * VM-exit exception handler for \#AC (alignment check exception).
13336 */
13337static int hmR0VmxExitXcptAC(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13338{
13339 RT_NOREF_PV(pMixedCtx);
13340 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13341
13342 /*
13343 * Re-inject it. We'll detect any nesting before getting here.
13344 */
13345 int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13346 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13347 AssertRCReturn(rc, rc);
13348 Assert(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO);
13349
13350 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13351 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13352 return VINF_SUCCESS;
13353}
13354
13355
13356/**
13357 * VM-exit exception handler for \#DB (Debug exception).
13358 */
13359static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13360{
13361 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13362 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
13363 Log6(("XcptDB\n"));
13364
13365 /*
13366 * Get the DR6-like values from the VM-exit qualification and pass it to DBGF
13367 * for processing.
13368 */
13369 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
13370 AssertRCReturn(rc, rc);
13371
13372 /* Refer Intel spec. Table 27-1. "Exit Qualifications for debug exceptions" for the format. */
13373 uint64_t uDR6 = X86_DR6_INIT_VAL;
13374 uDR6 |= ( pVmxTransient->uExitQualification
13375 & (X86_DR6_B0 | X86_DR6_B1 | X86_DR6_B2 | X86_DR6_B3 | X86_DR6_BD | X86_DR6_BS));
13376
13377 rc = DBGFRZTrap01Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pMixedCtx), uDR6, pVCpu->hm.s.fSingleInstruction);
13378 if (rc == VINF_EM_RAW_GUEST_TRAP)
13379 {
13380 /*
13381 * The exception was for the guest. Update DR6, DR7.GD and
13382 * IA32_DEBUGCTL.LBR before forwarding it.
13383 * (See Intel spec. 27.1 "Architectural State before a VM-Exit".)
13384 */
13385 VMMRZCallRing3Disable(pVCpu);
13386 HM_DISABLE_PREEMPT();
13387
13388 pMixedCtx->dr[6] &= ~X86_DR6_B_MASK;
13389 pMixedCtx->dr[6] |= uDR6;
13390 if (CPUMIsGuestDebugStateActive(pVCpu))
13391 ASMSetDR6(pMixedCtx->dr[6]);
13392
13393 HM_RESTORE_PREEMPT();
13394 VMMRZCallRing3Enable(pVCpu);
13395
13396 rc = hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
13397 AssertRCReturn(rc, rc);
13398
13399 /* X86_DR7_GD will be cleared if DRx accesses should be trapped inside the guest. */
13400 pMixedCtx->dr[7] &= ~X86_DR7_GD;
13401
13402 /* Paranoia. */
13403 pMixedCtx->dr[7] &= ~X86_DR7_RAZ_MASK;
13404 pMixedCtx->dr[7] |= X86_DR7_RA1_MASK;
13405
13406 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, (uint32_t)pMixedCtx->dr[7]);
13407 AssertRCReturn(rc, rc);
13408
13409 /*
13410 * Raise #DB in the guest.
13411 *
13412 * It is important to reflect what the VM-exit gave us (preserving the interruption-type) rather than use
13413 * hmR0VmxSetPendingXcptDB() as the #DB could've been raised while executing ICEBP and not the 'normal' #DB.
13414 * Thus it -may- trigger different handling in the CPU (like skipped DPL checks). See @bugref{6398}.
13415 *
13416 * Since ICEBP isn't documented on Intel, see AMD spec. 15.20 "Event Injection".
13417 */
13418 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13419 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13420 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13421 AssertRCReturn(rc, rc);
13422 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13423 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13424 return VINF_SUCCESS;
13425 }
13426
13427 /*
13428 * Not a guest trap, must be a hypervisor related debug event then.
13429 * Update DR6 in case someone is interested in it.
13430 */
13431 AssertMsg(rc == VINF_EM_DBG_STEPPED || rc == VINF_EM_DBG_BREAKPOINT, ("%Rrc\n", rc));
13432 AssertReturn(pVmxTransient->fWasHyperDebugStateActive, VERR_HM_IPE_5);
13433 CPUMSetHyperDR6(pVCpu, uDR6);
13434
13435 return rc;
13436}
13437
13438
13439/**
13440 * VM-exit exception handler for \#NM (Device-not-available exception: floating
13441 * point exception).
13442 */
13443static int hmR0VmxExitXcptNM(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13444{
13445 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13446
13447 /* We require CR0 and EFER. EFER is always up-to-date. */
13448 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
13449 AssertRCReturn(rc, rc);
13450
13451 /* We're playing with the host CPU state here, have to disable preemption or longjmp. */
13452 VMMRZCallRing3Disable(pVCpu);
13453 HM_DISABLE_PREEMPT();
13454
13455 /* If the guest FPU was active at the time of the #NM VM-exit, then it's a guest fault. */
13456 if (pVmxTransient->fWasGuestFPUStateActive)
13457 {
13458 rc = VINF_EM_RAW_GUEST_TRAP;
13459 Assert(CPUMIsGuestFPUStateActive(pVCpu) || HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0));
13460 }
13461 else
13462 {
13463#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
13464 Assert(!pVmxTransient->fWasGuestFPUStateActive || pVCpu->hm.s.fUsingDebugLoop);
13465#endif
13466 rc = CPUMR0Trap07Handler(pVCpu->CTX_SUFF(pVM), pVCpu);
13467 Assert( rc == VINF_EM_RAW_GUEST_TRAP
13468 || ((rc == VINF_SUCCESS || rc == VINF_CPUM_HOST_CR0_MODIFIED) && CPUMIsGuestFPUStateActive(pVCpu)));
13469 if (rc == VINF_CPUM_HOST_CR0_MODIFIED)
13470 HMCPU_CF_SET(pVCpu, HM_CHANGED_HOST_CONTEXT);
13471 }
13472
13473 HM_RESTORE_PREEMPT();
13474 VMMRZCallRing3Enable(pVCpu);
13475
13476 if (rc == VINF_SUCCESS || rc == VINF_CPUM_HOST_CR0_MODIFIED)
13477 {
13478 /* Guest FPU state was activated, we'll want to change CR0 FPU intercepts before the next VM-reentry. */
13479 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
13480 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowNM);
13481 pVCpu->hm.s.fPreloadGuestFpu = true;
13482 }
13483 else
13484 {
13485 /* Forward #NM to the guest. */
13486 Assert(rc == VINF_EM_RAW_GUEST_TRAP);
13487 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13488 AssertRCReturn(rc, rc);
13489 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13490 pVmxTransient->cbInstr, 0 /* error code */, 0 /* GCPtrFaultAddress */);
13491 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
13492 }
13493
13494 return VINF_SUCCESS;
13495}
13496
13497
13498/**
13499 * VM-exit exception handler for \#GP (General-protection exception).
13500 *
13501 * @remarks Requires pVmxTransient->uExitIntInfo to be up-to-date.
13502 */
13503static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13504{
13505 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13506 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
13507
13508 int rc;
13509 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
13510 { /* likely */ }
13511 else
13512 {
13513#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
13514 Assert(pVCpu->hm.s.fUsingDebugLoop);
13515#endif
13516 /* If the guest is not in real-mode or we have unrestricted execution support, reflect #GP to the guest. */
13517 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13518 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13519 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13520 rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
13521 AssertRCReturn(rc, rc);
13522 Log4(("#GP Gst: CS:RIP %04x:%08RX64 ErrorCode=%#x CR0=%#RX64 CPL=%u TR=%#04x\n", pMixedCtx->cs.Sel, pMixedCtx->rip,
13523 pVmxTransient->uExitIntErrorCode, pMixedCtx->cr0, CPUMGetGuestCPL(pVCpu), pMixedCtx->tr.Sel));
13524 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13525 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13526 return rc;
13527 }
13528
13529 Assert(CPUMIsGuestInRealModeEx(pMixedCtx));
13530 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest);
13531
13532 /* EMInterpretDisasCurrent() requires a lot of the state, save the entire state. */
13533 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
13534 AssertRCReturn(rc, rc);
13535
13536 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
13537 uint32_t cbOp = 0;
13538 PVM pVM = pVCpu->CTX_SUFF(pVM);
13539 bool fDbgStepping = pVCpu->hm.s.fSingleInstruction;
13540 rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
13541 if (RT_SUCCESS(rc))
13542 {
13543 rc = VINF_SUCCESS;
13544 Assert(cbOp == pDis->cbInstr);
13545 Log4(("#GP Disas OpCode=%u CS:EIP %04x:%04RX64\n", pDis->pCurInstr->uOpcode, pMixedCtx->cs.Sel, pMixedCtx->rip));
13546 switch (pDis->pCurInstr->uOpcode)
13547 {
13548 case OP_CLI:
13549 {
13550 pMixedCtx->eflags.Bits.u1IF = 0;
13551 pMixedCtx->eflags.Bits.u1RF = 0;
13552 pMixedCtx->rip += pDis->cbInstr;
13553 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13554 if ( !fDbgStepping
13555 && pMixedCtx->eflags.Bits.u1TF)
13556 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
13557 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCli);
13558 break;
13559 }
13560
13561 case OP_STI:
13562 {
13563 bool fOldIF = pMixedCtx->eflags.Bits.u1IF;
13564 pMixedCtx->eflags.Bits.u1IF = 1;
13565 pMixedCtx->eflags.Bits.u1RF = 0;
13566 pMixedCtx->rip += pDis->cbInstr;
13567 if (!fOldIF)
13568 {
13569 EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
13570 Assert(VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS));
13571 }
13572 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13573 if ( !fDbgStepping
13574 && pMixedCtx->eflags.Bits.u1TF)
13575 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
13576 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitSti);
13577 break;
13578 }
13579
13580 case OP_HLT:
13581 {
13582 rc = VINF_EM_HALT;
13583 pMixedCtx->rip += pDis->cbInstr;
13584 pMixedCtx->eflags.Bits.u1RF = 0;
13585 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13586 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
13587 break;
13588 }
13589
13590 case OP_POPF:
13591 {
13592 Log4(("POPF CS:EIP %04x:%04RX64\n", pMixedCtx->cs.Sel, pMixedCtx->rip));
13593 uint32_t cbParm;
13594 uint32_t uMask;
13595 bool fGstStepping = RT_BOOL(pMixedCtx->eflags.Bits.u1TF);
13596 if (pDis->fPrefix & DISPREFIX_OPSIZE)
13597 {
13598 cbParm = 4;
13599 uMask = 0xffffffff;
13600 }
13601 else
13602 {
13603 cbParm = 2;
13604 uMask = 0xffff;
13605 }
13606
13607 /* Get the stack pointer & pop the contents of the stack onto Eflags. */
13608 RTGCPTR GCPtrStack = 0;
13609 X86EFLAGS Eflags;
13610 Eflags.u32 = 0;
13611 rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), pMixedCtx->esp & uMask, SELMTOFLAT_FLAGS_CPL0,
13612 &GCPtrStack);
13613 if (RT_SUCCESS(rc))
13614 {
13615 Assert(sizeof(Eflags.u32) >= cbParm);
13616 rc = VBOXSTRICTRC_TODO(PGMPhysRead(pVM, (RTGCPHYS)GCPtrStack, &Eflags.u32, cbParm, PGMACCESSORIGIN_HM));
13617 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc)); /** @todo allow strict return codes here */
13618 }
13619 if (RT_FAILURE(rc))
13620 {
13621 rc = VERR_EM_INTERPRETER;
13622 break;
13623 }
13624 Log4(("POPF %#x -> %#RX64 mask=%#x RIP=%#RX64\n", Eflags.u, pMixedCtx->rsp, uMask, pMixedCtx->rip));
13625 pMixedCtx->eflags.u32 = (pMixedCtx->eflags.u32 & ~((X86_EFL_POPF_BITS & uMask) | X86_EFL_RF))
13626 | (Eflags.u32 & X86_EFL_POPF_BITS & uMask);
13627 pMixedCtx->esp += cbParm;
13628 pMixedCtx->esp &= uMask;
13629 pMixedCtx->rip += pDis->cbInstr;
13630 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
13631 | HM_CHANGED_GUEST_RSP
13632 | HM_CHANGED_GUEST_RFLAGS);
13633 /* Generate a pending-debug exception when the guest stepping over POPF regardless of how
13634 POPF restores EFLAGS.TF. */
13635 if ( !fDbgStepping
13636 && fGstStepping)
13637 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
13638 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPopf);
13639 break;
13640 }
13641
13642 case OP_PUSHF:
13643 {
13644 uint32_t cbParm;
13645 uint32_t uMask;
13646 if (pDis->fPrefix & DISPREFIX_OPSIZE)
13647 {
13648 cbParm = 4;
13649 uMask = 0xffffffff;
13650 }
13651 else
13652 {
13653 cbParm = 2;
13654 uMask = 0xffff;
13655 }
13656
13657 /* Get the stack pointer & push the contents of eflags onto the stack. */
13658 RTGCPTR GCPtrStack = 0;
13659 rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), (pMixedCtx->esp - cbParm) & uMask,
13660 SELMTOFLAT_FLAGS_CPL0, &GCPtrStack);
13661 if (RT_FAILURE(rc))
13662 {
13663 rc = VERR_EM_INTERPRETER;
13664 break;
13665 }
13666 X86EFLAGS Eflags = pMixedCtx->eflags;
13667 /* The RF & VM bits are cleared on image stored on stack; see Intel Instruction reference for PUSHF. */
13668 Eflags.Bits.u1RF = 0;
13669 Eflags.Bits.u1VM = 0;
13670
13671 rc = VBOXSTRICTRC_TODO(PGMPhysWrite(pVM, (RTGCPHYS)GCPtrStack, &Eflags.u, cbParm, PGMACCESSORIGIN_HM));
13672 if (RT_UNLIKELY(rc != VINF_SUCCESS))
13673 {
13674 AssertMsgFailed(("%Rrc\n", rc)); /** @todo allow strict return codes here */
13675 rc = VERR_EM_INTERPRETER;
13676 break;
13677 }
13678 Log4(("PUSHF %#x -> %#RGv\n", Eflags.u, GCPtrStack));
13679 pMixedCtx->esp -= cbParm;
13680 pMixedCtx->esp &= uMask;
13681 pMixedCtx->rip += pDis->cbInstr;
13682 pMixedCtx->eflags.Bits.u1RF = 0;
13683 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
13684 | HM_CHANGED_GUEST_RSP
13685 | HM_CHANGED_GUEST_RFLAGS);
13686 if ( !fDbgStepping
13687 && pMixedCtx->eflags.Bits.u1TF)
13688 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
13689 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPushf);
13690 break;
13691 }
13692
13693 case OP_IRET:
13694 {
13695 /** @todo Handle 32-bit operand sizes and check stack limits. See Intel
13696 * instruction reference. */
13697 RTGCPTR GCPtrStack = 0;
13698 uint32_t uMask = 0xffff;
13699 bool fGstStepping = RT_BOOL(pMixedCtx->eflags.Bits.u1TF);
13700 uint16_t aIretFrame[3];
13701 if (pDis->fPrefix & (DISPREFIX_OPSIZE | DISPREFIX_ADDRSIZE))
13702 {
13703 rc = VERR_EM_INTERPRETER;
13704 break;
13705 }
13706 rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), pMixedCtx->esp & uMask, SELMTOFLAT_FLAGS_CPL0,
13707 &GCPtrStack);
13708 if (RT_SUCCESS(rc))
13709 {
13710 rc = VBOXSTRICTRC_TODO(PGMPhysRead(pVM, (RTGCPHYS)GCPtrStack, &aIretFrame[0], sizeof(aIretFrame),
13711 PGMACCESSORIGIN_HM));
13712 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc)); /** @todo allow strict return codes here */
13713 }
13714 if (RT_FAILURE(rc))
13715 {
13716 rc = VERR_EM_INTERPRETER;
13717 break;
13718 }
13719 pMixedCtx->eip = 0;
13720 pMixedCtx->ip = aIretFrame[0];
13721 pMixedCtx->cs.Sel = aIretFrame[1];
13722 pMixedCtx->cs.ValidSel = aIretFrame[1];
13723 pMixedCtx->cs.u64Base = (uint64_t)pMixedCtx->cs.Sel << 4;
13724 pMixedCtx->eflags.u32 = (pMixedCtx->eflags.u32 & ((UINT32_C(0xffff0000) | X86_EFL_1) & ~X86_EFL_RF))
13725 | (aIretFrame[2] & X86_EFL_POPF_BITS & uMask);
13726 pMixedCtx->sp += sizeof(aIretFrame);
13727 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
13728 | HM_CHANGED_GUEST_SEGMENT_REGS
13729 | HM_CHANGED_GUEST_RSP
13730 | HM_CHANGED_GUEST_RFLAGS);
13731 /* Generate a pending-debug exception when stepping over IRET regardless of how IRET modifies EFLAGS.TF. */
13732 if ( !fDbgStepping
13733 && fGstStepping)
13734 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
13735 Log4(("IRET %#RX32 to %04x:%04x\n", GCPtrStack, pMixedCtx->cs.Sel, pMixedCtx->ip));
13736 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIret);
13737 break;
13738 }
13739
13740 case OP_INT:
13741 {
13742 uint16_t uVector = pDis->Param1.uValue & 0xff;
13743 hmR0VmxSetPendingIntN(pVCpu, pMixedCtx, uVector, pDis->cbInstr);
13744 /* INT clears EFLAGS.TF, we must not set any pending debug exceptions here. */
13745 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInt);
13746 break;
13747 }
13748
13749 case OP_INTO:
13750 {
13751 if (pMixedCtx->eflags.Bits.u1OF)
13752 {
13753 hmR0VmxSetPendingXcptOF(pVCpu, pMixedCtx, pDis->cbInstr);
13754 /* INTO clears EFLAGS.TF, we must not set any pending debug exceptions here. */
13755 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInt);
13756 }
13757 else
13758 {
13759 pMixedCtx->eflags.Bits.u1RF = 0;
13760 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RFLAGS);
13761 }
13762 break;
13763 }
13764
13765 default:
13766 {
13767 pMixedCtx->eflags.Bits.u1RF = 0; /* This is correct most of the time... */
13768 VBOXSTRICTRC rc2 = EMInterpretInstructionDisasState(pVCpu, pDis, CPUMCTX2CORE(pMixedCtx), 0 /* pvFault */,
13769 EMCODETYPE_SUPERVISOR);
13770 rc = VBOXSTRICTRC_VAL(rc2);
13771 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
13772 /** @todo We have to set pending-debug exceptions here when the guest is
13773 * single-stepping depending on the instruction that was interpreted. */
13774 Log4(("#GP rc=%Rrc\n", rc));
13775 break;
13776 }
13777 }
13778 }
13779 else
13780 rc = VERR_EM_INTERPRETER;
13781
13782 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_EM_HALT,
13783 ("#GP Unexpected rc=%Rrc\n", rc));
13784 return rc;
13785}
13786
13787
13788/**
13789 * VM-exit exception handler wrapper for generic exceptions. Simply re-injects
13790 * the exception reported in the VMX transient structure back into the VM.
13791 *
13792 * @remarks Requires uExitIntInfo in the VMX transient structure to be
13793 * up-to-date.
13794 */
13795static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13796{
13797 RT_NOREF_PV(pMixedCtx);
13798 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13799#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
13800 AssertMsg(pVCpu->hm.s.fUsingDebugLoop || pVCpu->hm.s.vmx.RealMode.fRealOnV86Active,
13801 ("uVector=%#04x u32XcptBitmap=%#010RX32\n",
13802 VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVmxTransient->uExitIntInfo), pVCpu->hm.s.vmx.u32XcptBitmap));
13803#endif
13804
13805 /* Re-inject the exception into the guest. This cannot be a double-fault condition which would have been handled in
13806 hmR0VmxCheckExitDueToEventDelivery(). */
13807 int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13808 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13809 AssertRCReturn(rc, rc);
13810 Assert(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO);
13811
13812#ifdef DEBUG_ramshankar
13813 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
13814 uint8_t uVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVmxTransient->uExitIntInfo);
13815 Log(("hmR0VmxExitXcptGeneric: Reinjecting Xcpt. uVector=%#x cs:rip=%#04x:%#RX64\n", uVector, pCtx->cs.Sel, pCtx->rip));
13816#endif
13817
13818 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13819 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13820 return VINF_SUCCESS;
13821}
13822
13823
13824/**
13825 * VM-exit exception handler for \#PF (Page-fault exception).
13826 */
13827static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13828{
13829 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13830 PVM pVM = pVCpu->CTX_SUFF(pVM);
13831 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
13832 rc |= hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13833 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13834 AssertRCReturn(rc, rc);
13835
13836 if (!pVM->hm.s.fNestedPaging)
13837 { /* likely */ }
13838 else
13839 {
13840#if !defined(HMVMX_ALWAYS_TRAP_ALL_XCPTS) && !defined(HMVMX_ALWAYS_TRAP_PF)
13841 Assert(pVCpu->hm.s.fUsingDebugLoop);
13842#endif
13843 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
13844 if (RT_LIKELY(!pVmxTransient->fVectoringDoublePF))
13845 {
13846 pMixedCtx->cr2 = pVmxTransient->uExitQualification; /* Update here in case we go back to ring-3 before injection. */
13847 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13848 0 /* cbInstr */, pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQualification);
13849 }
13850 else
13851 {
13852 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
13853 hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
13854 Log4(("Pending #DF due to vectoring #PF. NP\n"));
13855 }
13856 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
13857 return rc;
13858 }
13859
13860 /* If it's a vectoring #PF, emulate injecting the original event injection as PGMTrap0eHandler() is incapable
13861 of differentiating between instruction emulation and event injection that caused a #PF. See @bugref{6607}. */
13862 if (pVmxTransient->fVectoringPF)
13863 {
13864 Assert(pVCpu->hm.s.Event.fPending);
13865 return VINF_EM_RAW_INJECT_TRPM_EVENT;
13866 }
13867
13868 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
13869 AssertRCReturn(rc, rc);
13870
13871 Log4(("#PF: cr2=%#RX64 cs:rip=%#04x:%#RX64 uErrCode %#RX32 cr3=%#RX64\n", pVmxTransient->uExitQualification,
13872 pMixedCtx->cs.Sel, pMixedCtx->rip, pVmxTransient->uExitIntErrorCode, pMixedCtx->cr3));
13873
13874 TRPMAssertXcptPF(pVCpu, pVmxTransient->uExitQualification, (RTGCUINT)pVmxTransient->uExitIntErrorCode);
13875 rc = PGMTrap0eHandler(pVCpu, pVmxTransient->uExitIntErrorCode, CPUMCTX2CORE(pMixedCtx),
13876 (RTGCPTR)pVmxTransient->uExitQualification);
13877
13878 Log4(("#PF: rc=%Rrc\n", rc));
13879 if (rc == VINF_SUCCESS)
13880 {
13881#if 0
13882 /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
13883 /** @todo this isn't quite right, what if guest does lgdt with some MMIO
13884 * memory? We don't update the whole state here... */
13885 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
13886 | HM_CHANGED_GUEST_RSP
13887 | HM_CHANGED_GUEST_RFLAGS
13888 | HM_CHANGED_VMX_GUEST_APIC_STATE);
13889#else
13890 /*
13891 * This is typically a shadow page table sync or a MMIO instruction. But we may have
13892 * emulated something like LTR or a far jump. Any part of the CPU context may have changed.
13893 */
13894 /** @todo take advantage of CPUM changed flags instead of brute forcing. */
13895 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
13896#endif
13897 TRPMResetTrap(pVCpu);
13898 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
13899 return rc;
13900 }
13901
13902 if (rc == VINF_EM_RAW_GUEST_TRAP)
13903 {
13904 if (!pVmxTransient->fVectoringDoublePF)
13905 {
13906 /* It's a guest page fault and needs to be reflected to the guest. */
13907 uint32_t uGstErrorCode = TRPMGetErrorCode(pVCpu);
13908 TRPMResetTrap(pVCpu);
13909 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory #PF. */
13910 pMixedCtx->cr2 = pVmxTransient->uExitQualification; /* Update here in case we go back to ring-3 before injection. */
13911 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13912 0 /* cbInstr */, uGstErrorCode, pVmxTransient->uExitQualification);
13913 }
13914 else
13915 {
13916 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
13917 TRPMResetTrap(pVCpu);
13918 pVCpu->hm.s.Event.fPending = false; /* Clear pending #PF to replace it with #DF. */
13919 hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
13920 Log4(("#PF: Pending #DF due to vectoring #PF\n"));
13921 }
13922
13923 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
13924 return VINF_SUCCESS;
13925 }
13926
13927 TRPMResetTrap(pVCpu);
13928 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
13929 return rc;
13930}
13931
13932/** @} */
13933
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette