VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMVMXR0.cpp@ 66749

Last change on this file since 66749 was 66749, checked in by vboxsync, 8 years ago

VMM/HMVMXR0: Comment.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 597.7 KB
Line 
1/* $Id: HMVMXR0.cpp 66749 2017-05-02 15:52:11Z vboxsync $ */
2/** @file
3 * HM VMX (Intel VT-x) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2012-2016 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.215389.xyz. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#include <iprt/x86.h>
24#include <iprt/asm-amd64-x86.h>
25#include <iprt/thread.h>
26
27#include <VBox/vmm/pdmapi.h>
28#include <VBox/vmm/dbgf.h>
29#include <VBox/vmm/iem.h>
30#include <VBox/vmm/iom.h>
31#include <VBox/vmm/selm.h>
32#include <VBox/vmm/tm.h>
33#include <VBox/vmm/gim.h>
34#include <VBox/vmm/apic.h>
35#ifdef VBOX_WITH_REM
36# include <VBox/vmm/rem.h>
37#endif
38#include "HMInternal.h"
39#include <VBox/vmm/vm.h>
40#include "HMVMXR0.h"
41#include "dtrace/VBoxVMM.h"
42
43#define HMVMX_USE_IEM_EVENT_REFLECTION
44#ifdef DEBUG_ramshankar
45# define HMVMX_ALWAYS_SAVE_GUEST_RFLAGS
46# define HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE
47# define HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
48# define HMVMX_ALWAYS_CHECK_GUEST_STATE
49# define HMVMX_ALWAYS_TRAP_ALL_XCPTS
50# define HMVMX_ALWAYS_TRAP_PF
51# define HMVMX_ALWAYS_SWAP_FPU_STATE
52# define HMVMX_ALWAYS_FLUSH_TLB
53# define HMVMX_ALWAYS_SWAP_EFER
54#endif
55
56
57/*********************************************************************************************************************************
58* Defined Constants And Macros *
59*********************************************************************************************************************************/
60/** Use the function table. */
61#define HMVMX_USE_FUNCTION_TABLE
62
63/** Determine which tagged-TLB flush handler to use. */
64#define HMVMX_FLUSH_TAGGED_TLB_EPT_VPID 0
65#define HMVMX_FLUSH_TAGGED_TLB_EPT 1
66#define HMVMX_FLUSH_TAGGED_TLB_VPID 2
67#define HMVMX_FLUSH_TAGGED_TLB_NONE 3
68
69/** @name Updated-guest-state flags.
70 * @{ */
71#define HMVMX_UPDATED_GUEST_RIP RT_BIT(0)
72#define HMVMX_UPDATED_GUEST_RSP RT_BIT(1)
73#define HMVMX_UPDATED_GUEST_RFLAGS RT_BIT(2)
74#define HMVMX_UPDATED_GUEST_CR0 RT_BIT(3)
75#define HMVMX_UPDATED_GUEST_CR3 RT_BIT(4)
76#define HMVMX_UPDATED_GUEST_CR4 RT_BIT(5)
77#define HMVMX_UPDATED_GUEST_GDTR RT_BIT(6)
78#define HMVMX_UPDATED_GUEST_IDTR RT_BIT(7)
79#define HMVMX_UPDATED_GUEST_LDTR RT_BIT(8)
80#define HMVMX_UPDATED_GUEST_TR RT_BIT(9)
81#define HMVMX_UPDATED_GUEST_SEGMENT_REGS RT_BIT(10)
82#define HMVMX_UPDATED_GUEST_DR7 RT_BIT(11)
83#define HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR RT_BIT(12)
84#define HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR RT_BIT(13)
85#define HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR RT_BIT(14)
86#define HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS RT_BIT(15)
87#define HMVMX_UPDATED_GUEST_LAZY_MSRS RT_BIT(16)
88#define HMVMX_UPDATED_GUEST_ACTIVITY_STATE RT_BIT(17)
89#define HMVMX_UPDATED_GUEST_INTR_STATE RT_BIT(18)
90#define HMVMX_UPDATED_GUEST_APIC_STATE RT_BIT(19)
91#define HMVMX_UPDATED_GUEST_ALL ( HMVMX_UPDATED_GUEST_RIP \
92 | HMVMX_UPDATED_GUEST_RSP \
93 | HMVMX_UPDATED_GUEST_RFLAGS \
94 | HMVMX_UPDATED_GUEST_CR0 \
95 | HMVMX_UPDATED_GUEST_CR3 \
96 | HMVMX_UPDATED_GUEST_CR4 \
97 | HMVMX_UPDATED_GUEST_GDTR \
98 | HMVMX_UPDATED_GUEST_IDTR \
99 | HMVMX_UPDATED_GUEST_LDTR \
100 | HMVMX_UPDATED_GUEST_TR \
101 | HMVMX_UPDATED_GUEST_SEGMENT_REGS \
102 | HMVMX_UPDATED_GUEST_DR7 \
103 | HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR \
104 | HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR \
105 | HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR \
106 | HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS \
107 | HMVMX_UPDATED_GUEST_LAZY_MSRS \
108 | HMVMX_UPDATED_GUEST_ACTIVITY_STATE \
109 | HMVMX_UPDATED_GUEST_INTR_STATE \
110 | HMVMX_UPDATED_GUEST_APIC_STATE)
111/** @} */
112
113/** @name
114 * Flags to skip redundant reads of some common VMCS fields that are not part of
115 * the guest-CPU state but are in the transient structure.
116 */
117#define HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO RT_BIT(0)
118#define HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE RT_BIT(1)
119#define HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION RT_BIT(2)
120#define HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN RT_BIT(3)
121#define HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO RT_BIT(4)
122#define HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE RT_BIT(5)
123#define HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_INFO RT_BIT(6)
124/** @} */
125
126/** @name
127 * States of the VMCS.
128 *
129 * This does not reflect all possible VMCS states but currently only those
130 * needed for maintaining the VMCS consistently even when thread-context hooks
131 * are used. Maybe later this can be extended (i.e. Nested Virtualization).
132 */
133#define HMVMX_VMCS_STATE_CLEAR RT_BIT(0)
134#define HMVMX_VMCS_STATE_ACTIVE RT_BIT(1)
135#define HMVMX_VMCS_STATE_LAUNCHED RT_BIT(2)
136/** @} */
137
138/**
139 * Exception bitmap mask for real-mode guests (real-on-v86).
140 *
141 * We need to intercept all exceptions manually except:
142 * - \#NM, \#MF handled in hmR0VmxLoadSharedCR0().
143 * - \#AC and \#DB are always intercepted to prevent the CPU from deadlocking
144 * due to bugs in Intel CPUs.
145 * - \#PF need not be intercepted even in real-mode if we have Nested Paging
146 * support.
147 */
148#define HMVMX_REAL_MODE_XCPT_MASK ( RT_BIT(X86_XCPT_DE) /* always: | RT_BIT(X86_XCPT_DB) */ | RT_BIT(X86_XCPT_NMI) \
149 | RT_BIT(X86_XCPT_BP) | RT_BIT(X86_XCPT_OF) | RT_BIT(X86_XCPT_BR) \
150 | RT_BIT(X86_XCPT_UD) /* RT_BIT(X86_XCPT_NM) */ | RT_BIT(X86_XCPT_DF) \
151 | RT_BIT(X86_XCPT_CO_SEG_OVERRUN) | RT_BIT(X86_XCPT_TS) | RT_BIT(X86_XCPT_NP) \
152 | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_GP) /* RT_BIT(X86_XCPT_PF) */ \
153 /* RT_BIT(X86_XCPT_MF) always: | RT_BIT(X86_XCPT_AC) */ | RT_BIT(X86_XCPT_MC) \
154 | RT_BIT(X86_XCPT_XF))
155
156/**
157 * Exception bitmap mask for all contributory exceptions.
158 *
159 * Page fault is deliberately excluded here as it's conditional as to whether
160 * it's contributory or benign. Page faults are handled separately.
161 */
162#define HMVMX_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
163 | RT_BIT(X86_XCPT_DE))
164
165/** Maximum VM-instruction error number. */
166#define HMVMX_INSTR_ERROR_MAX 28
167
168/** Profiling macro. */
169#ifdef HM_PROFILE_EXIT_DISPATCH
170# define HMVMX_START_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitDispatch, ed)
171# define HMVMX_STOP_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitDispatch, ed)
172#else
173# define HMVMX_START_EXIT_DISPATCH_PROF() do { } while (0)
174# define HMVMX_STOP_EXIT_DISPATCH_PROF() do { } while (0)
175#endif
176
177/** Assert that preemption is disabled or covered by thread-context hooks. */
178#define HMVMX_ASSERT_PREEMPT_SAFE() Assert( VMMR0ThreadCtxHookIsEnabled(pVCpu) \
179 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
180
181/** Assert that we haven't migrated CPUs when thread-context hooks are not
182 * used. */
183#define HMVMX_ASSERT_CPU_SAFE() AssertMsg( VMMR0ThreadCtxHookIsEnabled(pVCpu) \
184 || pVCpu->hm.s.idEnteredCpu == RTMpCpuId(), \
185 ("Illegal migration! Entered on CPU %u Current %u\n", \
186 pVCpu->hm.s.idEnteredCpu, RTMpCpuId())); \
187
188/** Helper macro for VM-exit handlers called unexpectedly. */
189#define HMVMX_RETURN_UNEXPECTED_EXIT() \
190 do { \
191 pVCpu->hm.s.u32HMError = pVmxTransient->uExitReason; \
192 return VERR_VMX_UNEXPECTED_EXIT; \
193 } while (0)
194
195
196/*********************************************************************************************************************************
197* Structures and Typedefs *
198*********************************************************************************************************************************/
199/**
200 * VMX transient state.
201 *
202 * A state structure for holding miscellaneous information across
203 * VMX non-root operation and restored after the transition.
204 */
205typedef struct VMXTRANSIENT
206{
207 /** The host's rflags/eflags. */
208 RTCCUINTREG fEFlags;
209#if HC_ARCH_BITS == 32
210 uint32_t u32Alignment0;
211#endif
212 /** The guest's TPR value used for TPR shadowing. */
213 uint8_t u8GuestTpr;
214 /** Alignment. */
215 uint8_t abAlignment0[7];
216
217 /** The basic VM-exit reason. */
218 uint16_t uExitReason;
219 /** Alignment. */
220 uint16_t u16Alignment0;
221 /** The VM-exit interruption error code. */
222 uint32_t uExitIntErrorCode;
223 /** The VM-exit exit code qualification. */
224 uint64_t uExitQualification;
225
226 /** The VM-exit interruption-information field. */
227 uint32_t uExitIntInfo;
228 /** The VM-exit instruction-length field. */
229 uint32_t cbInstr;
230 /** The VM-exit instruction-information field. */
231 union
232 {
233 /** Plain unsigned int representation. */
234 uint32_t u;
235 /** INS and OUTS information. */
236 struct
237 {
238 uint32_t u7Reserved0 : 7;
239 /** The address size; 0=16-bit, 1=32-bit, 2=64-bit, rest undefined. */
240 uint32_t u3AddrSize : 3;
241 uint32_t u5Reserved1 : 5;
242 /** The segment register (X86_SREG_XXX). */
243 uint32_t iSegReg : 3;
244 uint32_t uReserved2 : 14;
245 } StrIo;
246 } ExitInstrInfo;
247 /** Whether the VM-entry failed or not. */
248 bool fVMEntryFailed;
249 /** Alignment. */
250 uint8_t abAlignment1[3];
251
252 /** The VM-entry interruption-information field. */
253 uint32_t uEntryIntInfo;
254 /** The VM-entry exception error code field. */
255 uint32_t uEntryXcptErrorCode;
256 /** The VM-entry instruction length field. */
257 uint32_t cbEntryInstr;
258
259 /** IDT-vectoring information field. */
260 uint32_t uIdtVectoringInfo;
261 /** IDT-vectoring error code. */
262 uint32_t uIdtVectoringErrorCode;
263
264 /** Mask of currently read VMCS fields; HMVMX_UPDATED_TRANSIENT_*. */
265 uint32_t fVmcsFieldsRead;
266
267 /** Whether the guest FPU was active at the time of VM-exit. */
268 bool fWasGuestFPUStateActive;
269 /** Whether the guest debug state was active at the time of VM-exit. */
270 bool fWasGuestDebugStateActive;
271 /** Whether the hyper debug state was active at the time of VM-exit. */
272 bool fWasHyperDebugStateActive;
273 /** Whether TSC-offsetting should be setup before VM-entry. */
274 bool fUpdateTscOffsettingAndPreemptTimer;
275 /** Whether the VM-exit was caused by a page-fault during delivery of a
276 * contributory exception or a page-fault. */
277 bool fVectoringDoublePF;
278 /** Whether the VM-exit was caused by a page-fault during delivery of an
279 * external interrupt or NMI. */
280 bool fVectoringPF;
281} VMXTRANSIENT;
282AssertCompileMemberAlignment(VMXTRANSIENT, uExitReason, sizeof(uint64_t));
283AssertCompileMemberAlignment(VMXTRANSIENT, uExitIntInfo, sizeof(uint64_t));
284AssertCompileMemberAlignment(VMXTRANSIENT, uEntryIntInfo, sizeof(uint64_t));
285AssertCompileMemberAlignment(VMXTRANSIENT, fWasGuestFPUStateActive, sizeof(uint64_t));
286AssertCompileMemberSize(VMXTRANSIENT, ExitInstrInfo, sizeof(uint32_t));
287/** Pointer to VMX transient state. */
288typedef VMXTRANSIENT *PVMXTRANSIENT;
289
290
291/**
292 * MSR-bitmap read permissions.
293 */
294typedef enum VMXMSREXITREAD
295{
296 /** Reading this MSR causes a VM-exit. */
297 VMXMSREXIT_INTERCEPT_READ = 0xb,
298 /** Reading this MSR does not cause a VM-exit. */
299 VMXMSREXIT_PASSTHRU_READ
300} VMXMSREXITREAD;
301/** Pointer to MSR-bitmap read permissions. */
302typedef VMXMSREXITREAD* PVMXMSREXITREAD;
303
304/**
305 * MSR-bitmap write permissions.
306 */
307typedef enum VMXMSREXITWRITE
308{
309 /** Writing to this MSR causes a VM-exit. */
310 VMXMSREXIT_INTERCEPT_WRITE = 0xd,
311 /** Writing to this MSR does not cause a VM-exit. */
312 VMXMSREXIT_PASSTHRU_WRITE
313} VMXMSREXITWRITE;
314/** Pointer to MSR-bitmap write permissions. */
315typedef VMXMSREXITWRITE* PVMXMSREXITWRITE;
316
317
318/**
319 * VMX VM-exit handler.
320 *
321 * @returns Strict VBox status code (i.e. informational status codes too).
322 * @param pVCpu The cross context virtual CPU structure.
323 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
324 * out-of-sync. Make sure to update the required
325 * fields before using them.
326 * @param pVmxTransient Pointer to the VMX-transient structure.
327 */
328#ifndef HMVMX_USE_FUNCTION_TABLE
329typedef VBOXSTRICTRC FNVMXEXITHANDLER(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
330#else
331typedef DECLCALLBACK(VBOXSTRICTRC) FNVMXEXITHANDLER(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
332/** Pointer to VM-exit handler. */
333typedef FNVMXEXITHANDLER *PFNVMXEXITHANDLER;
334#endif
335
336/**
337 * VMX VM-exit handler, non-strict status code.
338 *
339 * This is generally the same as FNVMXEXITHANDLER, the NSRC bit is just FYI.
340 *
341 * @returns VBox status code, no informational status code returned.
342 * @param pVCpu The cross context virtual CPU structure.
343 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
344 * out-of-sync. Make sure to update the required
345 * fields before using them.
346 * @param pVmxTransient Pointer to the VMX-transient structure.
347 *
348 * @remarks This is not used on anything returning VERR_EM_INTERPRETER as the
349 * use of that status code will be replaced with VINF_EM_SOMETHING
350 * later when switching over to IEM.
351 */
352#ifndef HMVMX_USE_FUNCTION_TABLE
353typedef int FNVMXEXITHANDLERNSRC(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
354#else
355typedef FNVMXEXITHANDLER FNVMXEXITHANDLERNSRC;
356#endif
357
358
359/*********************************************************************************************************************************
360* Internal Functions *
361*********************************************************************************************************************************/
362static void hmR0VmxFlushEpt(PVMCPU pVCpu, VMXFLUSHEPT enmFlush);
363static void hmR0VmxFlushVpid(PVM pVM, PVMCPU pVCpu, VMXFLUSHVPID enmFlush, RTGCPTR GCPtr);
364static void hmR0VmxClearIntNmiWindowsVmcs(PVMCPU pVCpu);
365static VBOXSTRICTRC hmR0VmxInjectEventVmcs(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint64_t u64IntInfo, uint32_t cbInstr,
366 uint32_t u32ErrCode, RTGCUINTREG GCPtrFaultAddress,
367 bool fStepping, uint32_t *puIntState);
368#if HC_ARCH_BITS == 32
369static int hmR0VmxInitVmcsReadCache(PVM pVM, PVMCPU pVCpu);
370#endif
371#ifndef HMVMX_USE_FUNCTION_TABLE
372DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, uint32_t rcReason);
373# define HMVMX_EXIT_DECL DECLINLINE(VBOXSTRICTRC)
374# define HMVMX_EXIT_NSRC_DECL DECLINLINE(int)
375#else
376# define HMVMX_EXIT_DECL static DECLCALLBACK(VBOXSTRICTRC)
377# define HMVMX_EXIT_NSRC_DECL HMVMX_EXIT_DECL
378#endif
379
380
381/** @name VM-exit handlers.
382 * @{
383 */
384static FNVMXEXITHANDLER hmR0VmxExitXcptOrNmi;
385static FNVMXEXITHANDLER hmR0VmxExitExtInt;
386static FNVMXEXITHANDLER hmR0VmxExitTripleFault;
387static FNVMXEXITHANDLERNSRC hmR0VmxExitInitSignal;
388static FNVMXEXITHANDLERNSRC hmR0VmxExitSipi;
389static FNVMXEXITHANDLERNSRC hmR0VmxExitIoSmi;
390static FNVMXEXITHANDLERNSRC hmR0VmxExitSmi;
391static FNVMXEXITHANDLERNSRC hmR0VmxExitIntWindow;
392static FNVMXEXITHANDLERNSRC hmR0VmxExitNmiWindow;
393static FNVMXEXITHANDLER hmR0VmxExitTaskSwitch;
394static FNVMXEXITHANDLER hmR0VmxExitCpuid;
395static FNVMXEXITHANDLER hmR0VmxExitGetsec;
396static FNVMXEXITHANDLER hmR0VmxExitHlt;
397static FNVMXEXITHANDLERNSRC hmR0VmxExitInvd;
398static FNVMXEXITHANDLER hmR0VmxExitInvlpg;
399static FNVMXEXITHANDLER hmR0VmxExitRdpmc;
400static FNVMXEXITHANDLER hmR0VmxExitVmcall;
401static FNVMXEXITHANDLER hmR0VmxExitRdtsc;
402static FNVMXEXITHANDLERNSRC hmR0VmxExitRsm;
403static FNVMXEXITHANDLERNSRC hmR0VmxExitSetPendingXcptUD;
404static FNVMXEXITHANDLER hmR0VmxExitMovCRx;
405static FNVMXEXITHANDLER hmR0VmxExitMovDRx;
406static FNVMXEXITHANDLER hmR0VmxExitIoInstr;
407static FNVMXEXITHANDLER hmR0VmxExitRdmsr;
408static FNVMXEXITHANDLER hmR0VmxExitWrmsr;
409static FNVMXEXITHANDLERNSRC hmR0VmxExitErrInvalidGuestState;
410static FNVMXEXITHANDLERNSRC hmR0VmxExitErrMsrLoad;
411static FNVMXEXITHANDLERNSRC hmR0VmxExitErrUndefined;
412static FNVMXEXITHANDLER hmR0VmxExitMwait;
413static FNVMXEXITHANDLER hmR0VmxExitMtf;
414static FNVMXEXITHANDLER hmR0VmxExitMonitor;
415static FNVMXEXITHANDLER hmR0VmxExitPause;
416static FNVMXEXITHANDLERNSRC hmR0VmxExitErrMachineCheck;
417static FNVMXEXITHANDLERNSRC hmR0VmxExitTprBelowThreshold;
418static FNVMXEXITHANDLER hmR0VmxExitApicAccess;
419static FNVMXEXITHANDLER hmR0VmxExitXdtrAccess;
420static FNVMXEXITHANDLER hmR0VmxExitXdtrAccess;
421static FNVMXEXITHANDLER hmR0VmxExitEptViolation;
422static FNVMXEXITHANDLER hmR0VmxExitEptMisconfig;
423static FNVMXEXITHANDLER hmR0VmxExitRdtscp;
424static FNVMXEXITHANDLER hmR0VmxExitPreemptTimer;
425static FNVMXEXITHANDLERNSRC hmR0VmxExitWbinvd;
426static FNVMXEXITHANDLER hmR0VmxExitXsetbv;
427static FNVMXEXITHANDLER hmR0VmxExitRdrand;
428static FNVMXEXITHANDLER hmR0VmxExitInvpcid;
429/** @} */
430
431static int hmR0VmxExitXcptNM(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
432static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
433static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
434static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
435static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
436static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
437static int hmR0VmxExitXcptAC(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
438static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
439static uint32_t hmR0VmxCheckGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx);
440
441
442/*********************************************************************************************************************************
443* Global Variables *
444*********************************************************************************************************************************/
445#ifdef HMVMX_USE_FUNCTION_TABLE
446
447/**
448 * VMX_EXIT dispatch table.
449 */
450static const PFNVMXEXITHANDLER g_apfnVMExitHandlers[VMX_EXIT_MAX + 1] =
451{
452 /* 00 VMX_EXIT_XCPT_OR_NMI */ hmR0VmxExitXcptOrNmi,
453 /* 01 VMX_EXIT_EXT_INT */ hmR0VmxExitExtInt,
454 /* 02 VMX_EXIT_TRIPLE_FAULT */ hmR0VmxExitTripleFault,
455 /* 03 VMX_EXIT_INIT_SIGNAL */ hmR0VmxExitInitSignal,
456 /* 04 VMX_EXIT_SIPI */ hmR0VmxExitSipi,
457 /* 05 VMX_EXIT_IO_SMI */ hmR0VmxExitIoSmi,
458 /* 06 VMX_EXIT_SMI */ hmR0VmxExitSmi,
459 /* 07 VMX_EXIT_INT_WINDOW */ hmR0VmxExitIntWindow,
460 /* 08 VMX_EXIT_NMI_WINDOW */ hmR0VmxExitNmiWindow,
461 /* 09 VMX_EXIT_TASK_SWITCH */ hmR0VmxExitTaskSwitch,
462 /* 10 VMX_EXIT_CPUID */ hmR0VmxExitCpuid,
463 /* 11 VMX_EXIT_GETSEC */ hmR0VmxExitGetsec,
464 /* 12 VMX_EXIT_HLT */ hmR0VmxExitHlt,
465 /* 13 VMX_EXIT_INVD */ hmR0VmxExitInvd,
466 /* 14 VMX_EXIT_INVLPG */ hmR0VmxExitInvlpg,
467 /* 15 VMX_EXIT_RDPMC */ hmR0VmxExitRdpmc,
468 /* 16 VMX_EXIT_RDTSC */ hmR0VmxExitRdtsc,
469 /* 17 VMX_EXIT_RSM */ hmR0VmxExitRsm,
470 /* 18 VMX_EXIT_VMCALL */ hmR0VmxExitVmcall,
471 /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitSetPendingXcptUD,
472 /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitSetPendingXcptUD,
473 /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitSetPendingXcptUD,
474 /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitSetPendingXcptUD,
475 /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitSetPendingXcptUD,
476 /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitSetPendingXcptUD,
477 /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitSetPendingXcptUD,
478 /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitSetPendingXcptUD,
479 /* 27 VMX_EXIT_VMXON */ hmR0VmxExitSetPendingXcptUD,
480 /* 28 VMX_EXIT_MOV_CRX */ hmR0VmxExitMovCRx,
481 /* 29 VMX_EXIT_MOV_DRX */ hmR0VmxExitMovDRx,
482 /* 30 VMX_EXIT_IO_INSTR */ hmR0VmxExitIoInstr,
483 /* 31 VMX_EXIT_RDMSR */ hmR0VmxExitRdmsr,
484 /* 32 VMX_EXIT_WRMSR */ hmR0VmxExitWrmsr,
485 /* 33 VMX_EXIT_ERR_INVALID_GUEST_STATE */ hmR0VmxExitErrInvalidGuestState,
486 /* 34 VMX_EXIT_ERR_MSR_LOAD */ hmR0VmxExitErrMsrLoad,
487 /* 35 UNDEFINED */ hmR0VmxExitErrUndefined,
488 /* 36 VMX_EXIT_MWAIT */ hmR0VmxExitMwait,
489 /* 37 VMX_EXIT_MTF */ hmR0VmxExitMtf,
490 /* 38 UNDEFINED */ hmR0VmxExitErrUndefined,
491 /* 39 VMX_EXIT_MONITOR */ hmR0VmxExitMonitor,
492 /* 40 UNDEFINED */ hmR0VmxExitPause,
493 /* 41 VMX_EXIT_PAUSE */ hmR0VmxExitErrMachineCheck,
494 /* 42 VMX_EXIT_ERR_MACHINE_CHECK */ hmR0VmxExitErrUndefined,
495 /* 43 VMX_EXIT_TPR_BELOW_THRESHOLD */ hmR0VmxExitTprBelowThreshold,
496 /* 44 VMX_EXIT_APIC_ACCESS */ hmR0VmxExitApicAccess,
497 /* 45 UNDEFINED */ hmR0VmxExitErrUndefined,
498 /* 46 VMX_EXIT_XDTR_ACCESS */ hmR0VmxExitXdtrAccess,
499 /* 47 VMX_EXIT_TR_ACCESS */ hmR0VmxExitXdtrAccess,
500 /* 48 VMX_EXIT_EPT_VIOLATION */ hmR0VmxExitEptViolation,
501 /* 49 VMX_EXIT_EPT_MISCONFIG */ hmR0VmxExitEptMisconfig,
502 /* 50 VMX_EXIT_INVEPT */ hmR0VmxExitSetPendingXcptUD,
503 /* 51 VMX_EXIT_RDTSCP */ hmR0VmxExitRdtscp,
504 /* 52 VMX_EXIT_PREEMPT_TIMER */ hmR0VmxExitPreemptTimer,
505 /* 53 VMX_EXIT_INVVPID */ hmR0VmxExitSetPendingXcptUD,
506 /* 54 VMX_EXIT_WBINVD */ hmR0VmxExitWbinvd,
507 /* 55 VMX_EXIT_XSETBV */ hmR0VmxExitXsetbv,
508 /* 56 VMX_EXIT_APIC_WRITE */ hmR0VmxExitErrUndefined,
509 /* 57 VMX_EXIT_RDRAND */ hmR0VmxExitRdrand,
510 /* 58 VMX_EXIT_INVPCID */ hmR0VmxExitInvpcid,
511 /* 59 VMX_EXIT_VMFUNC */ hmR0VmxExitSetPendingXcptUD,
512 /* 60 VMX_EXIT_ENCLS */ hmR0VmxExitErrUndefined,
513 /* 61 VMX_EXIT_RDSEED */ hmR0VmxExitErrUndefined, /* only spurious exits, so undefined */
514 /* 62 VMX_EXIT_PML_FULL */ hmR0VmxExitErrUndefined,
515 /* 63 VMX_EXIT_XSAVES */ hmR0VmxExitSetPendingXcptUD,
516 /* 64 VMX_EXIT_XRSTORS */ hmR0VmxExitSetPendingXcptUD,
517};
518#endif /* HMVMX_USE_FUNCTION_TABLE */
519
520#ifdef VBOX_STRICT
521static const char * const g_apszVmxInstrErrors[HMVMX_INSTR_ERROR_MAX + 1] =
522{
523 /* 0 */ "(Not Used)",
524 /* 1 */ "VMCALL executed in VMX root operation.",
525 /* 2 */ "VMCLEAR with invalid physical address.",
526 /* 3 */ "VMCLEAR with VMXON pointer.",
527 /* 4 */ "VMLAUNCH with non-clear VMCS.",
528 /* 5 */ "VMRESUME with non-launched VMCS.",
529 /* 6 */ "VMRESUME after VMXOFF",
530 /* 7 */ "VM-entry with invalid control fields.",
531 /* 8 */ "VM-entry with invalid host state fields.",
532 /* 9 */ "VMPTRLD with invalid physical address.",
533 /* 10 */ "VMPTRLD with VMXON pointer.",
534 /* 11 */ "VMPTRLD with incorrect revision identifier.",
535 /* 12 */ "VMREAD/VMWRITE from/to unsupported VMCS component.",
536 /* 13 */ "VMWRITE to read-only VMCS component.",
537 /* 14 */ "(Not Used)",
538 /* 15 */ "VMXON executed in VMX root operation.",
539 /* 16 */ "VM-entry with invalid executive-VMCS pointer.",
540 /* 17 */ "VM-entry with non-launched executing VMCS.",
541 /* 18 */ "VM-entry with executive-VMCS pointer not VMXON pointer.",
542 /* 19 */ "VMCALL with non-clear VMCS.",
543 /* 20 */ "VMCALL with invalid VM-exit control fields.",
544 /* 21 */ "(Not Used)",
545 /* 22 */ "VMCALL with incorrect MSEG revision identifier.",
546 /* 23 */ "VMXOFF under dual monitor treatment of SMIs and SMM.",
547 /* 24 */ "VMCALL with invalid SMM-monitor features.",
548 /* 25 */ "VM-entry with invalid VM-execution control fields in executive VMCS.",
549 /* 26 */ "VM-entry with events blocked by MOV SS.",
550 /* 27 */ "(Not Used)",
551 /* 28 */ "Invalid operand to INVEPT/INVVPID."
552};
553#endif /* VBOX_STRICT */
554
555
556
557/**
558 * Updates the VM's last error record.
559 *
560 * If there was a VMX instruction error, reads the error data from the VMCS and
561 * updates VCPU's last error record as well.
562 *
563 * @param pVM The cross context VM structure.
564 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
565 * Can be NULL if @a rc is not VERR_VMX_UNABLE_TO_START_VM or
566 * VERR_VMX_INVALID_VMCS_FIELD.
567 * @param rc The error code.
568 */
569static void hmR0VmxUpdateErrorRecord(PVM pVM, PVMCPU pVCpu, int rc)
570{
571 AssertPtr(pVM);
572 if ( rc == VERR_VMX_INVALID_VMCS_FIELD
573 || rc == VERR_VMX_UNABLE_TO_START_VM)
574 {
575 AssertPtrReturnVoid(pVCpu);
576 VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
577 }
578 pVM->hm.s.lLastError = rc;
579}
580
581
582/**
583 * Reads the VM-entry interruption-information field from the VMCS into the VMX
584 * transient structure.
585 *
586 * @returns VBox status code.
587 * @param pVmxTransient Pointer to the VMX transient structure.
588 *
589 * @remarks No-long-jump zone!!!
590 */
591DECLINLINE(int) hmR0VmxReadEntryIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
592{
593 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &pVmxTransient->uEntryIntInfo);
594 AssertRCReturn(rc, rc);
595 return VINF_SUCCESS;
596}
597
598
599#ifdef VBOX_STRICT
600/**
601 * Reads the VM-entry exception error code field from the VMCS into
602 * the VMX transient structure.
603 *
604 * @returns VBox status code.
605 * @param pVmxTransient Pointer to the VMX transient structure.
606 *
607 * @remarks No-long-jump zone!!!
608 */
609DECLINLINE(int) hmR0VmxReadEntryXcptErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
610{
611 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &pVmxTransient->uEntryXcptErrorCode);
612 AssertRCReturn(rc, rc);
613 return VINF_SUCCESS;
614}
615#endif /* VBOX_STRICT */
616
617
618#ifdef VBOX_STRICT
619/**
620 * Reads the VM-entry exception error code field from the VMCS into
621 * the VMX transient structure.
622 *
623 * @returns VBox status code.
624 * @param pVmxTransient Pointer to the VMX transient structure.
625 *
626 * @remarks No-long-jump zone!!!
627 */
628DECLINLINE(int) hmR0VmxReadEntryInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
629{
630 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &pVmxTransient->cbEntryInstr);
631 AssertRCReturn(rc, rc);
632 return VINF_SUCCESS;
633}
634#endif /* VBOX_STRICT */
635
636
637/**
638 * Reads the VM-exit interruption-information field from the VMCS into the VMX
639 * transient structure.
640 *
641 * @returns VBox status code.
642 * @param pVmxTransient Pointer to the VMX transient structure.
643 */
644DECLINLINE(int) hmR0VmxReadExitIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
645{
646 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO))
647 {
648 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &pVmxTransient->uExitIntInfo);
649 AssertRCReturn(rc, rc);
650 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO;
651 }
652 return VINF_SUCCESS;
653}
654
655
656/**
657 * Reads the VM-exit interruption error code from the VMCS into the VMX
658 * transient structure.
659 *
660 * @returns VBox status code.
661 * @param pVmxTransient Pointer to the VMX transient structure.
662 */
663DECLINLINE(int) hmR0VmxReadExitIntErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
664{
665 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE))
666 {
667 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &pVmxTransient->uExitIntErrorCode);
668 AssertRCReturn(rc, rc);
669 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE;
670 }
671 return VINF_SUCCESS;
672}
673
674
675/**
676 * Reads the VM-exit instruction length field from the VMCS into the VMX
677 * transient structure.
678 *
679 * @returns VBox status code.
680 * @param pVmxTransient Pointer to the VMX transient structure.
681 */
682DECLINLINE(int) hmR0VmxReadExitInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
683{
684 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN))
685 {
686 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &pVmxTransient->cbInstr);
687 AssertRCReturn(rc, rc);
688 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN;
689 }
690 return VINF_SUCCESS;
691}
692
693
694/**
695 * Reads the VM-exit instruction-information field from the VMCS into
696 * the VMX transient structure.
697 *
698 * @returns VBox status code.
699 * @param pVmxTransient Pointer to the VMX transient structure.
700 */
701DECLINLINE(int) hmR0VmxReadExitInstrInfoVmcs(PVMXTRANSIENT pVmxTransient)
702{
703 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_INFO))
704 {
705 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_INFO, &pVmxTransient->ExitInstrInfo.u);
706 AssertRCReturn(rc, rc);
707 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_INFO;
708 }
709 return VINF_SUCCESS;
710}
711
712
713/**
714 * Reads the exit code qualification from the VMCS into the VMX transient
715 * structure.
716 *
717 * @returns VBox status code.
718 * @param pVCpu The cross context virtual CPU structure of the
719 * calling EMT. (Required for the VMCS cache case.)
720 * @param pVmxTransient Pointer to the VMX transient structure.
721 */
722DECLINLINE(int) hmR0VmxReadExitQualificationVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
723{
724 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION))
725 {
726 int rc = VMXReadVmcsGstN(VMX_VMCS_RO_EXIT_QUALIFICATION, &pVmxTransient->uExitQualification); NOREF(pVCpu);
727 AssertRCReturn(rc, rc);
728 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION;
729 }
730 return VINF_SUCCESS;
731}
732
733
734/**
735 * Reads the IDT-vectoring information field from the VMCS into the VMX
736 * transient structure.
737 *
738 * @returns VBox status code.
739 * @param pVmxTransient Pointer to the VMX transient structure.
740 *
741 * @remarks No-long-jump zone!!!
742 */
743DECLINLINE(int) hmR0VmxReadIdtVectoringInfoVmcs(PVMXTRANSIENT pVmxTransient)
744{
745 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO))
746 {
747 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_INFO, &pVmxTransient->uIdtVectoringInfo);
748 AssertRCReturn(rc, rc);
749 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO;
750 }
751 return VINF_SUCCESS;
752}
753
754
755/**
756 * Reads the IDT-vectoring error code from the VMCS into the VMX
757 * transient structure.
758 *
759 * @returns VBox status code.
760 * @param pVmxTransient Pointer to the VMX transient structure.
761 */
762DECLINLINE(int) hmR0VmxReadIdtVectoringErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
763{
764 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE))
765 {
766 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_ERROR_CODE, &pVmxTransient->uIdtVectoringErrorCode);
767 AssertRCReturn(rc, rc);
768 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE;
769 }
770 return VINF_SUCCESS;
771}
772
773
774/**
775 * Enters VMX root mode operation on the current CPU.
776 *
777 * @returns VBox status code.
778 * @param pVM The cross context VM structure. Can be
779 * NULL, after a resume.
780 * @param HCPhysCpuPage Physical address of the VMXON region.
781 * @param pvCpuPage Pointer to the VMXON region.
782 */
783static int hmR0VmxEnterRootMode(PVM pVM, RTHCPHYS HCPhysCpuPage, void *pvCpuPage)
784{
785 Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
786 Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
787 Assert(pvCpuPage);
788 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
789
790 if (pVM)
791 {
792 /* Write the VMCS revision dword to the VMXON region. */
793 *(uint32_t *)pvCpuPage = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hm.s.vmx.Msrs.u64BasicInfo);
794 }
795
796 /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with CR4. */
797 RTCCUINTREG fEFlags = ASMIntDisableFlags();
798
799 /* Enable the VMX bit in CR4 if necessary. */
800 RTCCUINTREG uOldCr4 = SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
801
802 /* Enter VMX root mode. */
803 int rc = VMXEnable(HCPhysCpuPage);
804 if (RT_FAILURE(rc))
805 {
806 if (!(uOldCr4 & X86_CR4_VMXE))
807 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
808
809 if (pVM)
810 pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
811 }
812
813 /* Restore interrupts. */
814 ASMSetFlags(fEFlags);
815 return rc;
816}
817
818
819/**
820 * Exits VMX root mode operation on the current CPU.
821 *
822 * @returns VBox status code.
823 */
824static int hmR0VmxLeaveRootMode(void)
825{
826 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
827
828 /* Paranoid: Disable interrupts as, in theory, interrupts handlers might mess with CR4. */
829 RTCCUINTREG fEFlags = ASMIntDisableFlags();
830
831 /* If we're for some reason not in VMX root mode, then don't leave it. */
832 RTCCUINTREG uHostCR4 = ASMGetCR4();
833
834 int rc;
835 if (uHostCR4 & X86_CR4_VMXE)
836 {
837 /* Exit VMX root mode and clear the VMX bit in CR4. */
838 VMXDisable();
839 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
840 rc = VINF_SUCCESS;
841 }
842 else
843 rc = VERR_VMX_NOT_IN_VMX_ROOT_MODE;
844
845 /* Restore interrupts. */
846 ASMSetFlags(fEFlags);
847 return rc;
848}
849
850
851/**
852 * Allocates and maps one physically contiguous page. The allocated page is
853 * zero'd out. (Used by various VT-x structures).
854 *
855 * @returns IPRT status code.
856 * @param pMemObj Pointer to the ring-0 memory object.
857 * @param ppVirt Where to store the virtual address of the
858 * allocation.
859 * @param pHCPhys Where to store the physical address of the
860 * allocation.
861 */
862DECLINLINE(int) hmR0VmxPageAllocZ(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
863{
864 AssertPtrReturn(pMemObj, VERR_INVALID_PARAMETER);
865 AssertPtrReturn(ppVirt, VERR_INVALID_PARAMETER);
866 AssertPtrReturn(pHCPhys, VERR_INVALID_PARAMETER);
867
868 int rc = RTR0MemObjAllocCont(pMemObj, PAGE_SIZE, false /* fExecutable */);
869 if (RT_FAILURE(rc))
870 return rc;
871 *ppVirt = RTR0MemObjAddress(*pMemObj);
872 *pHCPhys = RTR0MemObjGetPagePhysAddr(*pMemObj, 0 /* iPage */);
873 ASMMemZero32(*ppVirt, PAGE_SIZE);
874 return VINF_SUCCESS;
875}
876
877
878/**
879 * Frees and unmaps an allocated physical page.
880 *
881 * @param pMemObj Pointer to the ring-0 memory object.
882 * @param ppVirt Where to re-initialize the virtual address of
883 * allocation as 0.
884 * @param pHCPhys Where to re-initialize the physical address of the
885 * allocation as 0.
886 */
887DECLINLINE(void) hmR0VmxPageFree(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
888{
889 AssertPtr(pMemObj);
890 AssertPtr(ppVirt);
891 AssertPtr(pHCPhys);
892 if (*pMemObj != NIL_RTR0MEMOBJ)
893 {
894 int rc = RTR0MemObjFree(*pMemObj, true /* fFreeMappings */);
895 AssertRC(rc);
896 *pMemObj = NIL_RTR0MEMOBJ;
897 *ppVirt = 0;
898 *pHCPhys = 0;
899 }
900}
901
902
903/**
904 * Worker function to free VT-x related structures.
905 *
906 * @returns IPRT status code.
907 * @param pVM The cross context VM structure.
908 */
909static void hmR0VmxStructsFree(PVM pVM)
910{
911 for (VMCPUID i = 0; i < pVM->cCpus; i++)
912 {
913 PVMCPU pVCpu = &pVM->aCpus[i];
914 AssertPtr(pVCpu);
915
916 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
917 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
918
919 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
920 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap, &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
921
922 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
923 }
924
925 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess, &pVM->hm.s.vmx.HCPhysApicAccess);
926#ifdef VBOX_WITH_CRASHDUMP_MAGIC
927 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
928#endif
929}
930
931
932/**
933 * Worker function to allocate VT-x related VM structures.
934 *
935 * @returns IPRT status code.
936 * @param pVM The cross context VM structure.
937 */
938static int hmR0VmxStructsAlloc(PVM pVM)
939{
940 /*
941 * Initialize members up-front so we can cleanup properly on allocation failure.
942 */
943#define VMXLOCAL_INIT_VM_MEMOBJ(a_Name, a_VirtPrefix) \
944 pVM->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
945 pVM->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
946 pVM->hm.s.vmx.HCPhys##a_Name = 0;
947
948#define VMXLOCAL_INIT_VMCPU_MEMOBJ(a_Name, a_VirtPrefix) \
949 pVCpu->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
950 pVCpu->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
951 pVCpu->hm.s.vmx.HCPhys##a_Name = 0;
952
953#ifdef VBOX_WITH_CRASHDUMP_MAGIC
954 VMXLOCAL_INIT_VM_MEMOBJ(Scratch, pv);
955#endif
956 VMXLOCAL_INIT_VM_MEMOBJ(ApicAccess, pb);
957
958 AssertCompile(sizeof(VMCPUID) == sizeof(pVM->cCpus));
959 for (VMCPUID i = 0; i < pVM->cCpus; i++)
960 {
961 PVMCPU pVCpu = &pVM->aCpus[i];
962 VMXLOCAL_INIT_VMCPU_MEMOBJ(Vmcs, pv);
963 VMXLOCAL_INIT_VMCPU_MEMOBJ(MsrBitmap, pv);
964 VMXLOCAL_INIT_VMCPU_MEMOBJ(GuestMsr, pv);
965 VMXLOCAL_INIT_VMCPU_MEMOBJ(HostMsr, pv);
966 }
967#undef VMXLOCAL_INIT_VMCPU_MEMOBJ
968#undef VMXLOCAL_INIT_VM_MEMOBJ
969
970 /* The VMCS size cannot be more than 4096 bytes. See Intel spec. Appendix A.1 "Basic VMX Information". */
971 AssertReturnStmt(MSR_IA32_VMX_BASIC_INFO_VMCS_SIZE(pVM->hm.s.vmx.Msrs.u64BasicInfo) <= PAGE_SIZE,
972 (&pVM->aCpus[0])->hm.s.u32HMError = VMX_UFC_INVALID_VMCS_SIZE,
973 VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO);
974
975 /*
976 * Allocate all the VT-x structures.
977 */
978 int rc = VINF_SUCCESS;
979#ifdef VBOX_WITH_CRASHDUMP_MAGIC
980 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
981 if (RT_FAILURE(rc))
982 goto cleanup;
983 strcpy((char *)pVM->hm.s.vmx.pbScratch, "SCRATCH Magic");
984 *(uint64_t *)(pVM->hm.s.vmx.pbScratch + 16) = UINT64_C(0xdeadbeefdeadbeef);
985#endif
986
987 /* Allocate the APIC-access page for trapping APIC accesses from the guest. */
988 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)
989 {
990 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess,
991 &pVM->hm.s.vmx.HCPhysApicAccess);
992 if (RT_FAILURE(rc))
993 goto cleanup;
994 }
995
996 /*
997 * Initialize per-VCPU VT-x structures.
998 */
999 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1000 {
1001 PVMCPU pVCpu = &pVM->aCpus[i];
1002 AssertPtr(pVCpu);
1003
1004 /* Allocate the VM control structure (VMCS). */
1005 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
1006 if (RT_FAILURE(rc))
1007 goto cleanup;
1008
1009 /* Get the allocated virtual-APIC page from the APIC device for transparent TPR accesses. */
1010 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
1011 {
1012 rc = APICGetApicPageForCpu(pVCpu, &pVCpu->hm.s.vmx.HCPhysVirtApic, (PRTR0PTR)&pVCpu->hm.s.vmx.pbVirtApic,
1013 NULL /* pR3Ptr */, NULL /* pRCPtr */);
1014 if (RT_FAILURE(rc))
1015 goto cleanup;
1016 }
1017
1018 /*
1019 * Allocate the MSR-bitmap if supported by the CPU. The MSR-bitmap is for
1020 * transparent accesses of specific MSRs.
1021 *
1022 * If the condition for enabling MSR bitmaps changes here, don't forget to
1023 * update HMAreMsrBitmapsAvailable().
1024 */
1025 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1026 {
1027 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap,
1028 &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
1029 if (RT_FAILURE(rc))
1030 goto cleanup;
1031 ASMMemFill32(pVCpu->hm.s.vmx.pvMsrBitmap, PAGE_SIZE, UINT32_C(0xffffffff));
1032 }
1033
1034 /* Allocate the VM-entry MSR-load and VM-exit MSR-store page for the guest MSRs. */
1035 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
1036 if (RT_FAILURE(rc))
1037 goto cleanup;
1038
1039 /* Allocate the VM-exit MSR-load page for the host MSRs. */
1040 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
1041 if (RT_FAILURE(rc))
1042 goto cleanup;
1043 }
1044
1045 return VINF_SUCCESS;
1046
1047cleanup:
1048 hmR0VmxStructsFree(pVM);
1049 return rc;
1050}
1051
1052
1053/**
1054 * Does global VT-x initialization (called during module initialization).
1055 *
1056 * @returns VBox status code.
1057 */
1058VMMR0DECL(int) VMXR0GlobalInit(void)
1059{
1060#ifdef HMVMX_USE_FUNCTION_TABLE
1061 AssertCompile(VMX_EXIT_MAX + 1 == RT_ELEMENTS(g_apfnVMExitHandlers));
1062# ifdef VBOX_STRICT
1063 for (unsigned i = 0; i < RT_ELEMENTS(g_apfnVMExitHandlers); i++)
1064 Assert(g_apfnVMExitHandlers[i]);
1065# endif
1066#endif
1067 return VINF_SUCCESS;
1068}
1069
1070
1071/**
1072 * Does global VT-x termination (called during module termination).
1073 */
1074VMMR0DECL(void) VMXR0GlobalTerm()
1075{
1076 /* Nothing to do currently. */
1077}
1078
1079
1080/**
1081 * Sets up and activates VT-x on the current CPU.
1082 *
1083 * @returns VBox status code.
1084 * @param pCpu Pointer to the global CPU info struct.
1085 * @param pVM The cross context VM structure. Can be
1086 * NULL after a host resume operation.
1087 * @param pvCpuPage Pointer to the VMXON region (can be NULL if @a
1088 * fEnabledByHost is @c true).
1089 * @param HCPhysCpuPage Physical address of the VMXON region (can be 0 if
1090 * @a fEnabledByHost is @c true).
1091 * @param fEnabledByHost Set if SUPR0EnableVTx() or similar was used to
1092 * enable VT-x on the host.
1093 * @param pvMsrs Opaque pointer to VMXMSRS struct.
1094 */
1095VMMR0DECL(int) VMXR0EnableCpu(PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
1096 void *pvMsrs)
1097{
1098 Assert(pCpu);
1099 Assert(pvMsrs);
1100 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1101
1102 /* Enable VT-x if it's not already enabled by the host. */
1103 if (!fEnabledByHost)
1104 {
1105 int rc = hmR0VmxEnterRootMode(pVM, HCPhysCpuPage, pvCpuPage);
1106 if (RT_FAILURE(rc))
1107 return rc;
1108 }
1109
1110 /*
1111 * Flush all EPT tagged-TLB entries (in case VirtualBox or any other hypervisor have been using EPTPs) so
1112 * we don't retain any stale guest-physical mappings which won't get invalidated when flushing by VPID.
1113 */
1114 PVMXMSRS pMsrs = (PVMXMSRS)pvMsrs;
1115 if (pMsrs->u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
1116 {
1117 hmR0VmxFlushEpt(NULL /* pVCpu */, VMXFLUSHEPT_ALL_CONTEXTS);
1118 pCpu->fFlushAsidBeforeUse = false;
1119 }
1120 else
1121 pCpu->fFlushAsidBeforeUse = true;
1122
1123 /* Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}. */
1124 ++pCpu->cTlbFlushes;
1125
1126 return VINF_SUCCESS;
1127}
1128
1129
1130/**
1131 * Deactivates VT-x on the current CPU.
1132 *
1133 * @returns VBox status code.
1134 * @param pCpu Pointer to the global CPU info struct.
1135 * @param pvCpuPage Pointer to the VMXON region.
1136 * @param HCPhysCpuPage Physical address of the VMXON region.
1137 *
1138 * @remarks This function should never be called when SUPR0EnableVTx() or
1139 * similar was used to enable VT-x on the host.
1140 */
1141VMMR0DECL(int) VMXR0DisableCpu(PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
1142{
1143 NOREF(pCpu);
1144 NOREF(pvCpuPage);
1145 NOREF(HCPhysCpuPage);
1146
1147 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1148 return hmR0VmxLeaveRootMode();
1149}
1150
1151
1152/**
1153 * Sets the permission bits for the specified MSR in the MSR bitmap.
1154 *
1155 * @param pVCpu The cross context virtual CPU structure.
1156 * @param uMsr The MSR value.
1157 * @param enmRead Whether reading this MSR causes a VM-exit.
1158 * @param enmWrite Whether writing this MSR causes a VM-exit.
1159 */
1160static void hmR0VmxSetMsrPermission(PVMCPU pVCpu, uint32_t uMsr, VMXMSREXITREAD enmRead, VMXMSREXITWRITE enmWrite)
1161{
1162 int32_t iBit;
1163 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.vmx.pvMsrBitmap;
1164
1165 /*
1166 * Layout:
1167 * 0x000 - 0x3ff - Low MSR read bits
1168 * 0x400 - 0x7ff - High MSR read bits
1169 * 0x800 - 0xbff - Low MSR write bits
1170 * 0xc00 - 0xfff - High MSR write bits
1171 */
1172 if (uMsr <= 0x00001FFF)
1173 iBit = uMsr;
1174 else if (uMsr - UINT32_C(0xC0000000) <= UINT32_C(0x00001FFF))
1175 {
1176 iBit = uMsr - UINT32_C(0xC0000000);
1177 pbMsrBitmap += 0x400;
1178 }
1179 else
1180 AssertMsgFailedReturnVoid(("hmR0VmxSetMsrPermission: Invalid MSR %#RX32\n", uMsr));
1181
1182 Assert(iBit <= 0x1fff);
1183 if (enmRead == VMXMSREXIT_INTERCEPT_READ)
1184 ASMBitSet(pbMsrBitmap, iBit);
1185 else
1186 ASMBitClear(pbMsrBitmap, iBit);
1187
1188 if (enmWrite == VMXMSREXIT_INTERCEPT_WRITE)
1189 ASMBitSet(pbMsrBitmap + 0x800, iBit);
1190 else
1191 ASMBitClear(pbMsrBitmap + 0x800, iBit);
1192}
1193
1194
1195#ifdef VBOX_STRICT
1196/**
1197 * Gets the permission bits for the specified MSR in the MSR bitmap.
1198 *
1199 * @returns VBox status code.
1200 * @retval VINF_SUCCESS if the specified MSR is found.
1201 * @retval VERR_NOT_FOUND if the specified MSR is not found.
1202 * @retval VERR_NOT_SUPPORTED if VT-x doesn't allow the MSR.
1203 *
1204 * @param pVCpu The cross context virtual CPU structure.
1205 * @param uMsr The MSR.
1206 * @param penmRead Where to store the read permissions.
1207 * @param penmWrite Where to store the write permissions.
1208 */
1209static int hmR0VmxGetMsrPermission(PVMCPU pVCpu, uint32_t uMsr, PVMXMSREXITREAD penmRead, PVMXMSREXITWRITE penmWrite)
1210{
1211 AssertPtrReturn(penmRead, VERR_INVALID_PARAMETER);
1212 AssertPtrReturn(penmWrite, VERR_INVALID_PARAMETER);
1213 int32_t iBit;
1214 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.vmx.pvMsrBitmap;
1215
1216 /* See hmR0VmxSetMsrPermission() for the layout. */
1217 if (uMsr <= 0x00001FFF)
1218 iBit = uMsr;
1219 else if ( uMsr >= 0xC0000000
1220 && uMsr <= 0xC0001FFF)
1221 {
1222 iBit = (uMsr - 0xC0000000);
1223 pbMsrBitmap += 0x400;
1224 }
1225 else
1226 AssertMsgFailedReturn(("hmR0VmxGetMsrPermission: Invalid MSR %#RX32\n", uMsr), VERR_NOT_SUPPORTED);
1227
1228 Assert(iBit <= 0x1fff);
1229 if (ASMBitTest(pbMsrBitmap, iBit))
1230 *penmRead = VMXMSREXIT_INTERCEPT_READ;
1231 else
1232 *penmRead = VMXMSREXIT_PASSTHRU_READ;
1233
1234 if (ASMBitTest(pbMsrBitmap + 0x800, iBit))
1235 *penmWrite = VMXMSREXIT_INTERCEPT_WRITE;
1236 else
1237 *penmWrite = VMXMSREXIT_PASSTHRU_WRITE;
1238 return VINF_SUCCESS;
1239}
1240#endif /* VBOX_STRICT */
1241
1242
1243/**
1244 * Updates the VMCS with the number of effective MSRs in the auto-load/store MSR
1245 * area.
1246 *
1247 * @returns VBox status code.
1248 * @param pVCpu The cross context virtual CPU structure.
1249 * @param cMsrs The number of MSRs.
1250 */
1251DECLINLINE(int) hmR0VmxSetAutoLoadStoreMsrCount(PVMCPU pVCpu, uint32_t cMsrs)
1252{
1253 /* Shouldn't ever happen but there -is- a number. We're well within the recommended 512. */
1254 uint32_t const cMaxSupportedMsrs = MSR_IA32_VMX_MISC_MAX_MSR(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.u64Misc);
1255 if (RT_UNLIKELY(cMsrs > cMaxSupportedMsrs))
1256 {
1257 LogRel(("CPU auto-load/store MSR count in VMCS exceeded cMsrs=%u Supported=%u.\n", cMsrs, cMaxSupportedMsrs));
1258 pVCpu->hm.s.u32HMError = VMX_UFC_INSUFFICIENT_GUEST_MSR_STORAGE;
1259 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1260 }
1261
1262 /* Update number of guest MSRs to load/store across the world-switch. */
1263 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, cMsrs);
1264 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, cMsrs);
1265
1266 /* Update number of host MSRs to load after the world-switch. Identical to guest-MSR count as it's always paired. */
1267 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, cMsrs);
1268 AssertRCReturn(rc, rc);
1269
1270 /* Update the VCPU's copy of the MSR count. */
1271 pVCpu->hm.s.vmx.cMsrs = cMsrs;
1272
1273 return VINF_SUCCESS;
1274}
1275
1276
1277/**
1278 * Adds a new (or updates the value of an existing) guest/host MSR
1279 * pair to be swapped during the world-switch as part of the
1280 * auto-load/store MSR area in the VMCS.
1281 *
1282 * @returns VBox status code.
1283 * @param pVCpu The cross context virtual CPU structure.
1284 * @param uMsr The MSR.
1285 * @param uGuestMsrValue Value of the guest MSR.
1286 * @param fUpdateHostMsr Whether to update the value of the host MSR if
1287 * necessary.
1288 * @param pfAddedAndUpdated Where to store whether the MSR was added -and-
1289 * its value was updated. Optional, can be NULL.
1290 */
1291static int hmR0VmxAddAutoLoadStoreMsr(PVMCPU pVCpu, uint32_t uMsr, uint64_t uGuestMsrValue, bool fUpdateHostMsr,
1292 bool *pfAddedAndUpdated)
1293{
1294 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1295 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1296 uint32_t i;
1297 for (i = 0; i < cMsrs; i++)
1298 {
1299 if (pGuestMsr->u32Msr == uMsr)
1300 break;
1301 pGuestMsr++;
1302 }
1303
1304 bool fAdded = false;
1305 if (i == cMsrs)
1306 {
1307 ++cMsrs;
1308 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, cMsrs);
1309 AssertMsgRCReturn(rc, ("hmR0VmxAddAutoLoadStoreMsr: Insufficient space to add MSR %u\n", uMsr), rc);
1310
1311 /* Now that we're swapping MSRs during the world-switch, allow the guest to read/write them without causing VM-exits. */
1312 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1313 hmR0VmxSetMsrPermission(pVCpu, uMsr, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
1314
1315 fAdded = true;
1316 }
1317
1318 /* Update the MSR values in the auto-load/store MSR area. */
1319 pGuestMsr->u32Msr = uMsr;
1320 pGuestMsr->u64Value = uGuestMsrValue;
1321
1322 /* Create/update the MSR slot in the host MSR area. */
1323 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1324 pHostMsr += i;
1325 pHostMsr->u32Msr = uMsr;
1326
1327 /*
1328 * Update the host MSR only when requested by the caller AND when we're
1329 * adding it to the auto-load/store area. Otherwise, it would have been
1330 * updated by hmR0VmxSaveHostMsrs(). We do this for performance reasons.
1331 */
1332 bool fUpdatedMsrValue = false;
1333 if ( fAdded
1334 && fUpdateHostMsr)
1335 {
1336 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1337 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1338 pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
1339 fUpdatedMsrValue = true;
1340 }
1341
1342 if (pfAddedAndUpdated)
1343 *pfAddedAndUpdated = fUpdatedMsrValue;
1344 return VINF_SUCCESS;
1345}
1346
1347
1348/**
1349 * Removes a guest/host MSR pair to be swapped during the world-switch from the
1350 * auto-load/store MSR area in the VMCS.
1351 *
1352 * @returns VBox status code.
1353 * @param pVCpu The cross context virtual CPU structure.
1354 * @param uMsr The MSR.
1355 */
1356static int hmR0VmxRemoveAutoLoadStoreMsr(PVMCPU pVCpu, uint32_t uMsr)
1357{
1358 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1359 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1360 for (uint32_t i = 0; i < cMsrs; i++)
1361 {
1362 /* Find the MSR. */
1363 if (pGuestMsr->u32Msr == uMsr)
1364 {
1365 /* If it's the last MSR, simply reduce the count. */
1366 if (i == cMsrs - 1)
1367 {
1368 --cMsrs;
1369 break;
1370 }
1371
1372 /* Remove it by swapping the last MSR in place of it, and reducing the count. */
1373 PVMXAUTOMSR pLastGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1374 pLastGuestMsr += cMsrs - 1;
1375 pGuestMsr->u32Msr = pLastGuestMsr->u32Msr;
1376 pGuestMsr->u64Value = pLastGuestMsr->u64Value;
1377
1378 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1379 PVMXAUTOMSR pLastHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1380 pLastHostMsr += cMsrs - 1;
1381 pHostMsr->u32Msr = pLastHostMsr->u32Msr;
1382 pHostMsr->u64Value = pLastHostMsr->u64Value;
1383 --cMsrs;
1384 break;
1385 }
1386 pGuestMsr++;
1387 }
1388
1389 /* Update the VMCS if the count changed (meaning the MSR was found). */
1390 if (cMsrs != pVCpu->hm.s.vmx.cMsrs)
1391 {
1392 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, cMsrs);
1393 AssertRCReturn(rc, rc);
1394
1395 /* We're no longer swapping MSRs during the world-switch, intercept guest read/writes to them. */
1396 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1397 hmR0VmxSetMsrPermission(pVCpu, uMsr, VMXMSREXIT_INTERCEPT_READ, VMXMSREXIT_INTERCEPT_WRITE);
1398
1399 Log4(("Removed MSR %#RX32 new cMsrs=%u\n", uMsr, pVCpu->hm.s.vmx.cMsrs));
1400 return VINF_SUCCESS;
1401 }
1402
1403 return VERR_NOT_FOUND;
1404}
1405
1406
1407/**
1408 * Checks if the specified guest MSR is part of the auto-load/store area in
1409 * the VMCS.
1410 *
1411 * @returns true if found, false otherwise.
1412 * @param pVCpu The cross context virtual CPU structure.
1413 * @param uMsr The MSR to find.
1414 */
1415static bool hmR0VmxIsAutoLoadStoreGuestMsr(PVMCPU pVCpu, uint32_t uMsr)
1416{
1417 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1418 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1419
1420 for (uint32_t i = 0; i < cMsrs; i++, pGuestMsr++)
1421 {
1422 if (pGuestMsr->u32Msr == uMsr)
1423 return true;
1424 }
1425 return false;
1426}
1427
1428
1429/**
1430 * Updates the value of all host MSRs in the auto-load/store area in the VMCS.
1431 *
1432 * @param pVCpu The cross context virtual CPU structure.
1433 *
1434 * @remarks No-long-jump zone!!!
1435 */
1436static void hmR0VmxUpdateAutoLoadStoreHostMsrs(PVMCPU pVCpu)
1437{
1438 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1439 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1440 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1441 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1442
1443 for (uint32_t i = 0; i < cMsrs; i++, pHostMsr++, pGuestMsr++)
1444 {
1445 AssertReturnVoid(pHostMsr->u32Msr == pGuestMsr->u32Msr);
1446
1447 /*
1448 * Performance hack for the host EFER MSR. We use the cached value rather than re-read it.
1449 * Strict builds will catch mismatches in hmR0VmxCheckAutoLoadStoreMsrs(). See @bugref{7368}.
1450 */
1451 if (pHostMsr->u32Msr == MSR_K6_EFER)
1452 pHostMsr->u64Value = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.u64HostEfer;
1453 else
1454 pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
1455 }
1456
1457 pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
1458}
1459
1460
1461/**
1462 * Saves a set of host MSRs to allow read/write passthru access to the guest and
1463 * perform lazy restoration of the host MSRs while leaving VT-x.
1464 *
1465 * @param pVCpu The cross context virtual CPU structure.
1466 *
1467 * @remarks No-long-jump zone!!!
1468 */
1469static void hmR0VmxLazySaveHostMsrs(PVMCPU pVCpu)
1470{
1471 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1472
1473 /*
1474 * Note: If you're adding MSRs here, make sure to update the MSR-bitmap permissions in hmR0VmxSetupProcCtls().
1475 */
1476 if (!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST))
1477 {
1478 Assert(!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)); /* Guest MSRs better not be loaded now. */
1479#if HC_ARCH_BITS == 64
1480 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1481 {
1482 pVCpu->hm.s.vmx.u64HostLStarMsr = ASMRdMsr(MSR_K8_LSTAR);
1483 pVCpu->hm.s.vmx.u64HostStarMsr = ASMRdMsr(MSR_K6_STAR);
1484 pVCpu->hm.s.vmx.u64HostSFMaskMsr = ASMRdMsr(MSR_K8_SF_MASK);
1485 pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
1486 }
1487#endif
1488 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_SAVED_HOST;
1489 }
1490}
1491
1492
1493/**
1494 * Checks whether the MSR belongs to the set of guest MSRs that we restore
1495 * lazily while leaving VT-x.
1496 *
1497 * @returns true if it does, false otherwise.
1498 * @param pVCpu The cross context virtual CPU structure.
1499 * @param uMsr The MSR to check.
1500 */
1501static bool hmR0VmxIsLazyGuestMsr(PVMCPU pVCpu, uint32_t uMsr)
1502{
1503 NOREF(pVCpu);
1504#if HC_ARCH_BITS == 64
1505 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1506 {
1507 switch (uMsr)
1508 {
1509 case MSR_K8_LSTAR:
1510 case MSR_K6_STAR:
1511 case MSR_K8_SF_MASK:
1512 case MSR_K8_KERNEL_GS_BASE:
1513 return true;
1514 }
1515 }
1516#else
1517 RT_NOREF(pVCpu, uMsr);
1518#endif
1519 return false;
1520}
1521
1522
1523/**
1524 * Saves a set of guest MSRs back into the guest-CPU context.
1525 *
1526 * @param pVCpu The cross context virtual CPU structure.
1527 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
1528 * out-of-sync. Make sure to update the required fields
1529 * before using them.
1530 *
1531 * @remarks No-long-jump zone!!!
1532 */
1533static void hmR0VmxLazySaveGuestMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
1534{
1535 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1536 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1537
1538 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
1539 {
1540 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1541#if HC_ARCH_BITS == 64
1542 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1543 {
1544 pMixedCtx->msrLSTAR = ASMRdMsr(MSR_K8_LSTAR);
1545 pMixedCtx->msrSTAR = ASMRdMsr(MSR_K6_STAR);
1546 pMixedCtx->msrSFMASK = ASMRdMsr(MSR_K8_SF_MASK);
1547 pMixedCtx->msrKERNELGSBASE = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
1548 }
1549#else
1550 NOREF(pMixedCtx);
1551#endif
1552 }
1553}
1554
1555
1556/**
1557 * Loads a set of guests MSRs to allow read/passthru to the guest.
1558 *
1559 * The name of this function is slightly confusing. This function does NOT
1560 * postpone loading, but loads the MSR right now. "hmR0VmxLazy" is simply a
1561 * common prefix for functions dealing with "lazy restoration" of the shared
1562 * MSRs.
1563 *
1564 * @param pVCpu The cross context virtual CPU structure.
1565 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
1566 * out-of-sync. Make sure to update the required fields
1567 * before using them.
1568 *
1569 * @remarks No-long-jump zone!!!
1570 */
1571static void hmR0VmxLazyLoadGuestMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
1572{
1573 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1574 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1575
1576 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1577#if HC_ARCH_BITS == 64
1578 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1579 {
1580 /*
1581 * If the guest MSRs are not loaded -and- if all the guest MSRs are identical
1582 * to the MSRs on the CPU (which are the saved host MSRs, see assertion above) then
1583 * we can skip a few MSR writes.
1584 *
1585 * Otherwise, it implies either 1. they're not loaded, or 2. they're loaded but the
1586 * guest MSR values in the guest-CPU context might be different to what's currently
1587 * loaded in the CPU. In either case, we need to write the new guest MSR values to the
1588 * CPU, see @bugref{8728}.
1589 */
1590 if ( !(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
1591 && pMixedCtx->msrKERNELGSBASE == pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr
1592 && pMixedCtx->msrLSTAR == pVCpu->hm.s.vmx.u64HostLStarMsr
1593 && pMixedCtx->msrSTAR == pVCpu->hm.s.vmx.u64HostStarMsr
1594 && pMixedCtx->msrSFMASK == pVCpu->hm.s.vmx.u64HostSFMaskMsr)
1595 {
1596#ifdef VBOX_STRICT
1597 Assert(ASMRdMsr(MSR_K8_KERNEL_GS_BASE) == pMixedCtx->msrKERNELGSBASE);
1598 Assert(ASMRdMsr(MSR_K8_LSTAR) == pMixedCtx->msrLSTAR);
1599 Assert(ASMRdMsr(MSR_K6_STAR) == pMixedCtx->msrSTAR);
1600 Assert(ASMRdMsr(MSR_K8_SF_MASK) == pMixedCtx->msrSFMASK);
1601#endif
1602 }
1603 else
1604 {
1605 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pMixedCtx->msrKERNELGSBASE);
1606 ASMWrMsr(MSR_K8_LSTAR, pMixedCtx->msrLSTAR);
1607 ASMWrMsr(MSR_K6_STAR, pMixedCtx->msrSTAR);
1608 ASMWrMsr(MSR_K8_SF_MASK, pMixedCtx->msrSFMASK);
1609 }
1610 }
1611#else
1612 RT_NOREF(pMixedCtx);
1613#endif
1614 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_LOADED_GUEST;
1615}
1616
1617
1618/**
1619 * Performs lazy restoration of the set of host MSRs if they were previously
1620 * loaded with guest MSR values.
1621 *
1622 * @param pVCpu The cross context virtual CPU structure.
1623 *
1624 * @remarks No-long-jump zone!!!
1625 * @remarks The guest MSRs should have been saved back into the guest-CPU
1626 * context by hmR0VmxSaveGuestLazyMsrs()!!!
1627 */
1628static void hmR0VmxLazyRestoreHostMsrs(PVMCPU pVCpu)
1629{
1630 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1631 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1632
1633 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
1634 {
1635 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1636#if HC_ARCH_BITS == 64
1637 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1638 {
1639 ASMWrMsr(MSR_K8_LSTAR, pVCpu->hm.s.vmx.u64HostLStarMsr);
1640 ASMWrMsr(MSR_K6_STAR, pVCpu->hm.s.vmx.u64HostStarMsr);
1641 ASMWrMsr(MSR_K8_SF_MASK, pVCpu->hm.s.vmx.u64HostSFMaskMsr);
1642 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr);
1643 }
1644#endif
1645 }
1646 pVCpu->hm.s.vmx.fLazyMsrs &= ~(VMX_LAZY_MSRS_LOADED_GUEST | VMX_LAZY_MSRS_SAVED_HOST);
1647}
1648
1649
1650/**
1651 * Verifies that our cached values of the VMCS controls are all
1652 * consistent with what's actually present in the VMCS.
1653 *
1654 * @returns VBox status code.
1655 * @param pVCpu The cross context virtual CPU structure.
1656 */
1657static int hmR0VmxCheckVmcsCtls(PVMCPU pVCpu)
1658{
1659 uint32_t u32Val;
1660 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
1661 AssertRCReturn(rc, rc);
1662 AssertMsgReturn(pVCpu->hm.s.vmx.u32EntryCtls == u32Val, ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32EntryCtls, u32Val),
1663 VERR_VMX_ENTRY_CTLS_CACHE_INVALID);
1664
1665 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val);
1666 AssertRCReturn(rc, rc);
1667 AssertMsgReturn(pVCpu->hm.s.vmx.u32ExitCtls == u32Val, ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32ExitCtls, u32Val),
1668 VERR_VMX_EXIT_CTLS_CACHE_INVALID);
1669
1670 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val);
1671 AssertRCReturn(rc, rc);
1672 AssertMsgReturn(pVCpu->hm.s.vmx.u32PinCtls == u32Val, ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32PinCtls, u32Val),
1673 VERR_VMX_PIN_EXEC_CTLS_CACHE_INVALID);
1674
1675 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val);
1676 AssertRCReturn(rc, rc);
1677 AssertMsgReturn(pVCpu->hm.s.vmx.u32ProcCtls == u32Val, ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32ProcCtls, u32Val),
1678 VERR_VMX_PROC_EXEC_CTLS_CACHE_INVALID);
1679
1680 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
1681 {
1682 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val);
1683 AssertRCReturn(rc, rc);
1684 AssertMsgReturn(pVCpu->hm.s.vmx.u32ProcCtls2 == u32Val,
1685 ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32ProcCtls2, u32Val),
1686 VERR_VMX_PROC_EXEC2_CTLS_CACHE_INVALID);
1687 }
1688
1689 return VINF_SUCCESS;
1690}
1691
1692
1693#ifdef VBOX_STRICT
1694/**
1695 * Verifies that our cached host EFER value has not changed
1696 * since we cached it.
1697 *
1698 * @param pVCpu The cross context virtual CPU structure.
1699 */
1700static void hmR0VmxCheckHostEferMsr(PVMCPU pVCpu)
1701{
1702 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1703
1704 if (pVCpu->hm.s.vmx.u32ExitCtls & VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR)
1705 {
1706 uint64_t u64Val;
1707 int rc = VMXReadVmcs64(VMX_VMCS64_HOST_EFER_FULL, &u64Val);
1708 AssertRC(rc);
1709
1710 uint64_t u64HostEferMsr = ASMRdMsr(MSR_K6_EFER);
1711 AssertMsgReturnVoid(u64HostEferMsr == u64Val, ("u64HostEferMsr=%#RX64 u64Val=%#RX64\n", u64HostEferMsr, u64Val));
1712 }
1713}
1714
1715
1716/**
1717 * Verifies whether the guest/host MSR pairs in the auto-load/store area in the
1718 * VMCS are correct.
1719 *
1720 * @param pVCpu The cross context virtual CPU structure.
1721 */
1722static void hmR0VmxCheckAutoLoadStoreMsrs(PVMCPU pVCpu)
1723{
1724 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1725
1726 /* Verify MSR counts in the VMCS are what we think it should be. */
1727 uint32_t cMsrs;
1728 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &cMsrs); AssertRC(rc);
1729 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1730
1731 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &cMsrs); AssertRC(rc);
1732 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1733
1734 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &cMsrs); AssertRC(rc);
1735 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1736
1737 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1738 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1739 for (uint32_t i = 0; i < cMsrs; i++, pHostMsr++, pGuestMsr++)
1740 {
1741 /* Verify that the MSRs are paired properly and that the host MSR has the correct value. */
1742 AssertMsgReturnVoid(pHostMsr->u32Msr == pGuestMsr->u32Msr, ("HostMsr=%#RX32 GuestMsr=%#RX32 cMsrs=%u\n", pHostMsr->u32Msr,
1743 pGuestMsr->u32Msr, cMsrs));
1744
1745 uint64_t u64Msr = ASMRdMsr(pHostMsr->u32Msr);
1746 AssertMsgReturnVoid(pHostMsr->u64Value == u64Msr, ("u32Msr=%#RX32 VMCS Value=%#RX64 ASMRdMsr=%#RX64 cMsrs=%u\n",
1747 pHostMsr->u32Msr, pHostMsr->u64Value, u64Msr, cMsrs));
1748
1749 /* Verify that the permissions are as expected in the MSR bitmap. */
1750 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1751 {
1752 VMXMSREXITREAD enmRead;
1753 VMXMSREXITWRITE enmWrite;
1754 rc = hmR0VmxGetMsrPermission(pVCpu, pGuestMsr->u32Msr, &enmRead, &enmWrite);
1755 AssertMsgReturnVoid(rc == VINF_SUCCESS, ("hmR0VmxGetMsrPermission! failed. rc=%Rrc\n", rc));
1756 if (pGuestMsr->u32Msr == MSR_K6_EFER)
1757 {
1758 AssertMsgReturnVoid(enmRead == VMXMSREXIT_INTERCEPT_READ, ("Passthru read for EFER!?\n"));
1759 AssertMsgReturnVoid(enmWrite == VMXMSREXIT_INTERCEPT_WRITE, ("Passthru write for EFER!?\n"));
1760 }
1761 else
1762 {
1763 AssertMsgReturnVoid(enmRead == VMXMSREXIT_PASSTHRU_READ, ("u32Msr=%#RX32 cMsrs=%u No passthru read!\n",
1764 pGuestMsr->u32Msr, cMsrs));
1765 AssertMsgReturnVoid(enmWrite == VMXMSREXIT_PASSTHRU_WRITE, ("u32Msr=%#RX32 cMsrs=%u No passthru write!\n",
1766 pGuestMsr->u32Msr, cMsrs));
1767 }
1768 }
1769 }
1770}
1771#endif /* VBOX_STRICT */
1772
1773
1774/**
1775 * Flushes the TLB using EPT.
1776 *
1777 * @returns VBox status code.
1778 * @param pVCpu The cross context virtual CPU structure of the calling
1779 * EMT. Can be NULL depending on @a enmFlush.
1780 * @param enmFlush Type of flush.
1781 *
1782 * @remarks Caller is responsible for making sure this function is called only
1783 * when NestedPaging is supported and providing @a enmFlush that is
1784 * supported by the CPU.
1785 * @remarks Can be called with interrupts disabled.
1786 */
1787static void hmR0VmxFlushEpt(PVMCPU pVCpu, VMXFLUSHEPT enmFlush)
1788{
1789 uint64_t au64Descriptor[2];
1790 if (enmFlush == VMXFLUSHEPT_ALL_CONTEXTS)
1791 au64Descriptor[0] = 0;
1792 else
1793 {
1794 Assert(pVCpu);
1795 au64Descriptor[0] = pVCpu->hm.s.vmx.HCPhysEPTP;
1796 }
1797 au64Descriptor[1] = 0; /* MBZ. Intel spec. 33.3 "VMX Instructions" */
1798
1799 int rc = VMXR0InvEPT(enmFlush, &au64Descriptor[0]);
1800 AssertMsg(rc == VINF_SUCCESS, ("VMXR0InvEPT %#x %RGv failed with %Rrc\n", enmFlush, pVCpu ? pVCpu->hm.s.vmx.HCPhysEPTP : 0,
1801 rc));
1802 if ( RT_SUCCESS(rc)
1803 && pVCpu)
1804 {
1805 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushNestedPaging);
1806 }
1807}
1808
1809
1810/**
1811 * Flushes the TLB using VPID.
1812 *
1813 * @returns VBox status code.
1814 * @param pVM The cross context VM structure.
1815 * @param pVCpu The cross context virtual CPU structure of the calling
1816 * EMT. Can be NULL depending on @a enmFlush.
1817 * @param enmFlush Type of flush.
1818 * @param GCPtr Virtual address of the page to flush (can be 0 depending
1819 * on @a enmFlush).
1820 *
1821 * @remarks Can be called with interrupts disabled.
1822 */
1823static void hmR0VmxFlushVpid(PVM pVM, PVMCPU pVCpu, VMXFLUSHVPID enmFlush, RTGCPTR GCPtr)
1824{
1825 NOREF(pVM);
1826 AssertPtr(pVM);
1827 Assert(pVM->hm.s.vmx.fVpid);
1828
1829 uint64_t au64Descriptor[2];
1830 if (enmFlush == VMXFLUSHVPID_ALL_CONTEXTS)
1831 {
1832 au64Descriptor[0] = 0;
1833 au64Descriptor[1] = 0;
1834 }
1835 else
1836 {
1837 AssertPtr(pVCpu);
1838 AssertMsg(pVCpu->hm.s.uCurrentAsid != 0, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
1839 AssertMsg(pVCpu->hm.s.uCurrentAsid <= UINT16_MAX, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
1840 au64Descriptor[0] = pVCpu->hm.s.uCurrentAsid;
1841 au64Descriptor[1] = GCPtr;
1842 }
1843
1844 int rc = VMXR0InvVPID(enmFlush, &au64Descriptor[0]); NOREF(rc);
1845 AssertMsg(rc == VINF_SUCCESS,
1846 ("VMXR0InvVPID %#x %u %RGv failed with %d\n", enmFlush, pVCpu ? pVCpu->hm.s.uCurrentAsid : 0, GCPtr, rc));
1847 if ( RT_SUCCESS(rc)
1848 && pVCpu)
1849 {
1850 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
1851 }
1852}
1853
1854
1855/**
1856 * Invalidates a guest page by guest virtual address. Only relevant for
1857 * EPT/VPID, otherwise there is nothing really to invalidate.
1858 *
1859 * @returns VBox status code.
1860 * @param pVM The cross context VM structure.
1861 * @param pVCpu The cross context virtual CPU structure.
1862 * @param GCVirt Guest virtual address of the page to invalidate.
1863 */
1864VMMR0DECL(int) VMXR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
1865{
1866 AssertPtr(pVM);
1867 AssertPtr(pVCpu);
1868 LogFlowFunc(("pVM=%p pVCpu=%p GCVirt=%RGv\n", pVM, pVCpu, GCVirt));
1869
1870 bool fFlushPending = VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_FLUSH);
1871 if (!fFlushPending)
1872 {
1873 /*
1874 * We must invalidate the guest TLB entry in either case, we cannot ignore it even for the EPT case
1875 * See @bugref{6043} and @bugref{6177}.
1876 *
1877 * Set the VMCPU_FF_TLB_FLUSH force flag and flush before VM-entry in hmR0VmxFlushTLB*() as this
1878 * function maybe called in a loop with individual addresses.
1879 */
1880 if (pVM->hm.s.vmx.fVpid)
1881 {
1882 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
1883 {
1884 hmR0VmxFlushVpid(pVM, pVCpu, VMXFLUSHVPID_INDIV_ADDR, GCVirt);
1885 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
1886 }
1887 else
1888 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1889 }
1890 else if (pVM->hm.s.fNestedPaging)
1891 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1892 }
1893
1894 return VINF_SUCCESS;
1895}
1896
1897
1898/**
1899 * Invalidates a guest page by physical address. Only relevant for EPT/VPID,
1900 * otherwise there is nothing really to invalidate.
1901 *
1902 * @returns VBox status code.
1903 * @param pVM The cross context VM structure.
1904 * @param pVCpu The cross context virtual CPU structure.
1905 * @param GCPhys Guest physical address of the page to invalidate.
1906 */
1907VMMR0DECL(int) VMXR0InvalidatePhysPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
1908{
1909 NOREF(pVM); NOREF(GCPhys);
1910 LogFlowFunc(("%RGp\n", GCPhys));
1911
1912 /*
1913 * We cannot flush a page by guest-physical address. invvpid takes only a linear address while invept only flushes
1914 * by EPT not individual addresses. We update the force flag here and flush before the next VM-entry in hmR0VmxFlushTLB*().
1915 * This function might be called in a loop. This should cause a flush-by-EPT if EPT is in use. See @bugref{6568}.
1916 */
1917 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1918 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgPhys);
1919 return VINF_SUCCESS;
1920}
1921
1922
1923/**
1924 * Dummy placeholder for tagged-TLB flush handling before VM-entry. Used in the
1925 * case where neither EPT nor VPID is supported by the CPU.
1926 *
1927 * @param pVM The cross context VM structure.
1928 * @param pVCpu The cross context virtual CPU structure.
1929 * @param pCpu Pointer to the global HM struct.
1930 *
1931 * @remarks Called with interrupts disabled.
1932 */
1933static void hmR0VmxFlushTaggedTlbNone(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1934{
1935 AssertPtr(pVCpu);
1936 AssertPtr(pCpu);
1937 NOREF(pVM);
1938
1939 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
1940
1941 Assert(pCpu->idCpu != NIL_RTCPUID);
1942 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1943 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1944 pVCpu->hm.s.fForceTLBFlush = false;
1945 return;
1946}
1947
1948
1949/**
1950 * Flushes the tagged-TLB entries for EPT+VPID CPUs as necessary.
1951 *
1952 * @param pVM The cross context VM structure.
1953 * @param pVCpu The cross context virtual CPU structure.
1954 * @param pCpu Pointer to the global HM CPU struct.
1955 * @remarks All references to "ASID" in this function pertains to "VPID" in
1956 * Intel's nomenclature. The reason is, to avoid confusion in compare
1957 * statements since the host-CPU copies are named "ASID".
1958 *
1959 * @remarks Called with interrupts disabled.
1960 */
1961static void hmR0VmxFlushTaggedTlbBoth(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1962{
1963#ifdef VBOX_WITH_STATISTICS
1964 bool fTlbFlushed = false;
1965# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { fTlbFlushed = true; } while (0)
1966# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { \
1967 if (!fTlbFlushed) \
1968 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch); \
1969 } while (0)
1970#else
1971# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { } while (0)
1972# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { } while (0)
1973#endif
1974
1975 AssertPtr(pVM);
1976 AssertPtr(pCpu);
1977 AssertPtr(pVCpu);
1978 Assert(pCpu->idCpu != NIL_RTCPUID);
1979
1980 AssertMsg(pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid,
1981 ("hmR0VmxFlushTaggedTlbBoth cannot be invoked unless NestedPaging & VPID are enabled."
1982 "fNestedPaging=%RTbool fVpid=%RTbool", pVM->hm.s.fNestedPaging, pVM->hm.s.vmx.fVpid));
1983
1984 /*
1985 * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
1986 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB
1987 * or the host CPU is online after a suspend/resume, so we cannot reuse the current ASID anymore.
1988 */
1989 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
1990 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
1991 {
1992 ++pCpu->uCurrentAsid;
1993 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
1994 {
1995 pCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0. */
1996 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
1997 pCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
1998 }
1999
2000 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
2001 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
2002 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
2003
2004 /*
2005 * Flush by EPT when we get rescheduled to a new host CPU to ensure EPT-only tagged mappings are also
2006 * invalidated. We don't need to flush-by-VPID here as flushing by EPT covers it. See @bugref{6568}.
2007 */
2008 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
2009 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2010 HMVMX_SET_TAGGED_TLB_FLUSHED();
2011 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH); /* Already flushed-by-EPT, skip doing it again below. */
2012 }
2013
2014 /* Check for explicit TLB flushes. */
2015 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2016 {
2017 /*
2018 * Changes to the EPT paging structure by VMM requires flushing by EPT as the CPU creates
2019 * guest-physical (only EPT-tagged) mappings while traversing the EPT tables when EPT is in use.
2020 * Flushing by VPID will only flush linear (only VPID-tagged) and combined (EPT+VPID tagged) mappings
2021 * but not guest-physical mappings.
2022 * See Intel spec. 28.3.2 "Creating and Using Cached Translation Information". See @bugref{6568}.
2023 */
2024 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
2025 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2026 HMVMX_SET_TAGGED_TLB_FLUSHED();
2027 }
2028
2029 pVCpu->hm.s.fForceTLBFlush = false;
2030 HMVMX_UPDATE_FLUSH_SKIPPED_STAT();
2031
2032 Assert(pVCpu->hm.s.idLastCpu == pCpu->idCpu);
2033 Assert(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes);
2034 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
2035 ("Flush count mismatch for cpu %d (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
2036 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
2037 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pCpu->idCpu,
2038 pCpu->uCurrentAsid, pCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
2039 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
2040 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
2041
2042 /* Update VMCS with the VPID. */
2043 int rc = VMXWriteVmcs32(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
2044 AssertRC(rc);
2045
2046#undef HMVMX_SET_TAGGED_TLB_FLUSHED
2047}
2048
2049
2050/**
2051 * Flushes the tagged-TLB entries for EPT CPUs as necessary.
2052 *
2053 * @returns VBox status code.
2054 * @param pVM The cross context VM structure.
2055 * @param pVCpu The cross context virtual CPU structure.
2056 * @param pCpu Pointer to the global HM CPU struct.
2057 *
2058 * @remarks Called with interrupts disabled.
2059 */
2060static void hmR0VmxFlushTaggedTlbEpt(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2061{
2062 AssertPtr(pVM);
2063 AssertPtr(pVCpu);
2064 AssertPtr(pCpu);
2065 Assert(pCpu->idCpu != NIL_RTCPUID);
2066 AssertMsg(pVM->hm.s.fNestedPaging, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with NestedPaging disabled."));
2067 AssertMsg(!pVM->hm.s.vmx.fVpid, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with VPID enabled."));
2068
2069 /*
2070 * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
2071 * A change in the TLB flush count implies the host CPU is online after a suspend/resume.
2072 */
2073 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
2074 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
2075 {
2076 pVCpu->hm.s.fForceTLBFlush = true;
2077 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2078 }
2079
2080 /* Check for explicit TLB flushes. */
2081 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2082 {
2083 pVCpu->hm.s.fForceTLBFlush = true;
2084 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2085 }
2086
2087 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
2088 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
2089
2090 if (pVCpu->hm.s.fForceTLBFlush)
2091 {
2092 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
2093 pVCpu->hm.s.fForceTLBFlush = false;
2094 }
2095}
2096
2097
2098/**
2099 * Flushes the tagged-TLB entries for VPID CPUs as necessary.
2100 *
2101 * @returns VBox status code.
2102 * @param pVM The cross context VM structure.
2103 * @param pVCpu The cross context virtual CPU structure.
2104 * @param pCpu Pointer to the global HM CPU struct.
2105 *
2106 * @remarks Called with interrupts disabled.
2107 */
2108static void hmR0VmxFlushTaggedTlbVpid(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2109{
2110 AssertPtr(pVM);
2111 AssertPtr(pVCpu);
2112 AssertPtr(pCpu);
2113 Assert(pCpu->idCpu != NIL_RTCPUID);
2114 AssertMsg(pVM->hm.s.vmx.fVpid, ("hmR0VmxFlushTlbVpid cannot be invoked with VPID disabled."));
2115 AssertMsg(!pVM->hm.s.fNestedPaging, ("hmR0VmxFlushTlbVpid cannot be invoked with NestedPaging enabled"));
2116
2117 /*
2118 * Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last.
2119 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB
2120 * or the host CPU is online after a suspend/resume, so we cannot reuse the current ASID anymore.
2121 */
2122 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
2123 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
2124 {
2125 pVCpu->hm.s.fForceTLBFlush = true;
2126 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2127 }
2128
2129 /* Check for explicit TLB flushes. */
2130 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2131 {
2132 /*
2133 * If we ever support VPID flush combinations other than ALL or SINGLE-context (see hmR0VmxSetupTaggedTlb())
2134 * we would need to explicitly flush in this case (add an fExplicitFlush = true here and change the
2135 * pCpu->fFlushAsidBeforeUse check below to include fExplicitFlush's too) - an obscure corner case.
2136 */
2137 pVCpu->hm.s.fForceTLBFlush = true;
2138 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2139 }
2140
2141 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
2142 if (pVCpu->hm.s.fForceTLBFlush)
2143 {
2144 ++pCpu->uCurrentAsid;
2145 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
2146 {
2147 pCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0 */
2148 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
2149 pCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
2150 }
2151
2152 pVCpu->hm.s.fForceTLBFlush = false;
2153 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
2154 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
2155 if (pCpu->fFlushAsidBeforeUse)
2156 {
2157 if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_SINGLE_CONTEXT)
2158 hmR0VmxFlushVpid(pVM, pVCpu, VMXFLUSHVPID_SINGLE_CONTEXT, 0 /* GCPtr */);
2159 else if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_ALL_CONTEXTS)
2160 {
2161 hmR0VmxFlushVpid(pVM, pVCpu, VMXFLUSHVPID_ALL_CONTEXTS, 0 /* GCPtr */);
2162 pCpu->fFlushAsidBeforeUse = false;
2163 }
2164 else
2165 {
2166 /* hmR0VmxSetupTaggedTlb() ensures we never get here. Paranoia. */
2167 AssertMsgFailed(("Unsupported VPID-flush context type.\n"));
2168 }
2169 }
2170 }
2171
2172 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
2173 ("Flush count mismatch for cpu %d (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
2174 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
2175 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pCpu->idCpu,
2176 pCpu->uCurrentAsid, pCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
2177 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
2178 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
2179
2180 int rc = VMXWriteVmcs32(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
2181 AssertRC(rc);
2182}
2183
2184
2185/**
2186 * Flushes the guest TLB entry based on CPU capabilities.
2187 *
2188 * @param pVCpu The cross context virtual CPU structure.
2189 * @param pCpu Pointer to the global HM CPU struct.
2190 */
2191DECLINLINE(void) hmR0VmxFlushTaggedTlb(PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2192{
2193#ifdef HMVMX_ALWAYS_FLUSH_TLB
2194 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
2195#endif
2196 PVM pVM = pVCpu->CTX_SUFF(pVM);
2197 switch (pVM->hm.s.vmx.uFlushTaggedTlb)
2198 {
2199 case HMVMX_FLUSH_TAGGED_TLB_EPT_VPID: hmR0VmxFlushTaggedTlbBoth(pVM, pVCpu, pCpu); break;
2200 case HMVMX_FLUSH_TAGGED_TLB_EPT: hmR0VmxFlushTaggedTlbEpt(pVM, pVCpu, pCpu); break;
2201 case HMVMX_FLUSH_TAGGED_TLB_VPID: hmR0VmxFlushTaggedTlbVpid(pVM, pVCpu, pCpu); break;
2202 case HMVMX_FLUSH_TAGGED_TLB_NONE: hmR0VmxFlushTaggedTlbNone(pVM, pVCpu, pCpu); break;
2203 default:
2204 AssertMsgFailed(("Invalid flush-tag function identifier\n"));
2205 break;
2206 }
2207
2208 /* Don't assert that VMCPU_FF_TLB_FLUSH should no longer be pending. It can be set by other EMTs. */
2209}
2210
2211
2212/**
2213 * Sets up the appropriate tagged TLB-flush level and handler for flushing guest
2214 * TLB entries from the host TLB before VM-entry.
2215 *
2216 * @returns VBox status code.
2217 * @param pVM The cross context VM structure.
2218 */
2219static int hmR0VmxSetupTaggedTlb(PVM pVM)
2220{
2221 /*
2222 * Determine optimal flush type for Nested Paging.
2223 * We cannot ignore EPT if no suitable flush-types is supported by the CPU as we've already setup unrestricted
2224 * guest execution (see hmR3InitFinalizeR0()).
2225 */
2226 if (pVM->hm.s.fNestedPaging)
2227 {
2228 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT)
2229 {
2230 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT)
2231 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_SINGLE_CONTEXT;
2232 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
2233 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_ALL_CONTEXTS;
2234 else
2235 {
2236 /* Shouldn't happen. EPT is supported but no suitable flush-types supported. */
2237 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NOT_SUPPORTED;
2238 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_FLUSH_TYPE_UNSUPPORTED;
2239 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2240 }
2241
2242 /* Make sure the write-back cacheable memory type for EPT is supported. */
2243 if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB)))
2244 {
2245 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NOT_SUPPORTED;
2246 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_MEM_TYPE_NOT_WB;
2247 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2248 }
2249
2250 /* EPT requires a page-walk length of 4. */
2251 if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_4)))
2252 {
2253 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NOT_SUPPORTED;
2254 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_PAGE_WALK_LENGTH_UNSUPPORTED;
2255 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2256 }
2257 }
2258 else
2259 {
2260 /* Shouldn't happen. EPT is supported but INVEPT instruction is not supported. */
2261 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NOT_SUPPORTED;
2262 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_INVEPT_UNAVAILABLE;
2263 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2264 }
2265 }
2266
2267 /*
2268 * Determine optimal flush type for VPID.
2269 */
2270 if (pVM->hm.s.vmx.fVpid)
2271 {
2272 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID)
2273 {
2274 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT)
2275 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_SINGLE_CONTEXT;
2276 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS)
2277 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_ALL_CONTEXTS;
2278 else
2279 {
2280 /* Neither SINGLE nor ALL-context flush types for VPID is supported by the CPU. Ignore VPID capability. */
2281 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
2282 LogRel(("hmR0VmxSetupTaggedTlb: Only INDIV_ADDR supported. Ignoring VPID.\n"));
2283 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
2284 LogRel(("hmR0VmxSetupTaggedTlb: Only SINGLE_CONTEXT_RETAIN_GLOBALS supported. Ignoring VPID.\n"));
2285 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_NOT_SUPPORTED;
2286 pVM->hm.s.vmx.fVpid = false;
2287 }
2288 }
2289 else
2290 {
2291 /* Shouldn't happen. VPID is supported but INVVPID is not supported by the CPU. Ignore VPID capability. */
2292 Log4(("hmR0VmxSetupTaggedTlb: VPID supported without INVEPT support. Ignoring VPID.\n"));
2293 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_NOT_SUPPORTED;
2294 pVM->hm.s.vmx.fVpid = false;
2295 }
2296 }
2297
2298 /*
2299 * Setup the handler for flushing tagged-TLBs.
2300 */
2301 if (pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid)
2302 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_EPT_VPID;
2303 else if (pVM->hm.s.fNestedPaging)
2304 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_EPT;
2305 else if (pVM->hm.s.vmx.fVpid)
2306 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_VPID;
2307 else
2308 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_NONE;
2309 return VINF_SUCCESS;
2310}
2311
2312
2313/**
2314 * Sets up pin-based VM-execution controls in the VMCS.
2315 *
2316 * @returns VBox status code.
2317 * @param pVM The cross context VM structure.
2318 * @param pVCpu The cross context virtual CPU structure.
2319 */
2320static int hmR0VmxSetupPinCtls(PVM pVM, PVMCPU pVCpu)
2321{
2322 AssertPtr(pVM);
2323 AssertPtr(pVCpu);
2324
2325 uint32_t val = pVM->hm.s.vmx.Msrs.VmxPinCtls.n.disallowed0; /* Bits set here must always be set. */
2326 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1; /* Bits cleared here must always be cleared. */
2327
2328 val |= VMX_VMCS_CTRL_PIN_EXEC_EXT_INT_EXIT /* External interrupts cause a VM-exit. */
2329 | VMX_VMCS_CTRL_PIN_EXEC_NMI_EXIT; /* Non-maskable interrupts (NMIs) cause a VM-exit. */
2330
2331 if (pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI)
2332 val |= VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI; /* Use virtual NMIs and virtual-NMI blocking features. */
2333
2334 /* Enable the VMX preemption timer. */
2335 if (pVM->hm.s.vmx.fUsePreemptTimer)
2336 {
2337 Assert(pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER);
2338 val |= VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER;
2339 }
2340
2341#if 0
2342 /* Enable posted-interrupt processing. */
2343 if (pVM->hm.s.fPostedIntrs)
2344 {
2345 Assert(pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_POSTED_INTR);
2346 Assert(pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_ACK_EXT_INT);
2347 val |= VMX_VMCS_CTRL_PIN_EXEC_POSTED_INTR;
2348 }
2349#endif
2350
2351 if ((val & zap) != val)
2352 {
2353 LogRel(("hmR0VmxSetupPinCtls: Invalid pin-based VM-execution controls combo! cpu=%#RX64 val=%#RX64 zap=%#RX64\n",
2354 pVM->hm.s.vmx.Msrs.VmxPinCtls.n.disallowed0, val, zap));
2355 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PIN_EXEC;
2356 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2357 }
2358
2359 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, val);
2360 AssertRCReturn(rc, rc);
2361
2362 pVCpu->hm.s.vmx.u32PinCtls = val;
2363 return rc;
2364}
2365
2366
2367/**
2368 * Sets up processor-based VM-execution controls in the VMCS.
2369 *
2370 * @returns VBox status code.
2371 * @param pVM The cross context VM structure.
2372 * @param pVCpu The cross context virtual CPU structure.
2373 */
2374static int hmR0VmxSetupProcCtls(PVM pVM, PVMCPU pVCpu)
2375{
2376 AssertPtr(pVM);
2377 AssertPtr(pVCpu);
2378
2379 int rc = VERR_INTERNAL_ERROR_5;
2380 uint32_t val = pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0; /* Bits set here must be set in the VMCS. */
2381 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2382
2383 val |= VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT /* HLT causes a VM-exit. */
2384 | VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING /* Use TSC-offsetting. */
2385 | VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT /* MOV DRx causes a VM-exit. */
2386 | VMX_VMCS_CTRL_PROC_EXEC_UNCOND_IO_EXIT /* All IO instructions cause a VM-exit. */
2387 | VMX_VMCS_CTRL_PROC_EXEC_RDPMC_EXIT /* RDPMC causes a VM-exit. */
2388 | VMX_VMCS_CTRL_PROC_EXEC_MONITOR_EXIT /* MONITOR causes a VM-exit. */
2389 | VMX_VMCS_CTRL_PROC_EXEC_MWAIT_EXIT; /* MWAIT causes a VM-exit. */
2390
2391 /* We toggle VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT later, check if it's not -always- needed to be set or clear. */
2392 if ( !(pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT)
2393 || (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0 & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT))
2394 {
2395 LogRel(("hmR0VmxSetupProcCtls: Unsupported VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT combo!"));
2396 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_MOV_DRX_EXIT;
2397 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2398 }
2399
2400 /* Without Nested Paging, INVLPG (also affects INVPCID) and MOV CR3 instructions should cause VM-exits. */
2401 if (!pVM->hm.s.fNestedPaging)
2402 {
2403 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest); /* Paranoia. */
2404 val |= VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT
2405 | VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT
2406 | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT;
2407 }
2408
2409 /* Use TPR shadowing if supported by the CPU. */
2410 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
2411 {
2412 Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
2413 Assert(!(pVCpu->hm.s.vmx.HCPhysVirtApic & 0xfff)); /* Bits 11:0 MBZ. */
2414 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, 0);
2415 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_VAPIC_PAGEADDR_FULL, pVCpu->hm.s.vmx.HCPhysVirtApic);
2416 AssertRCReturn(rc, rc);
2417
2418 val |= VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW; /* CR8 reads from the Virtual-APIC page. */
2419 /* CR8 writes cause a VM-exit based on TPR threshold. */
2420 Assert(!(val & VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT));
2421 Assert(!(val & VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT));
2422 }
2423 else
2424 {
2425 /*
2426 * Some 32-bit CPUs do not support CR8 load/store exiting as MOV CR8 is invalid on 32-bit Intel CPUs.
2427 * Set this control only for 64-bit guests.
2428 */
2429 if (pVM->hm.s.fAllow64BitGuests)
2430 {
2431 val |= VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT /* CR8 reads cause a VM-exit. */
2432 | VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT; /* CR8 writes cause a VM-exit. */
2433 }
2434 }
2435
2436 /* Use MSR-bitmaps if supported by the CPU. */
2437 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
2438 {
2439 val |= VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS;
2440
2441 Assert(pVCpu->hm.s.vmx.HCPhysMsrBitmap);
2442 Assert(!(pVCpu->hm.s.vmx.HCPhysMsrBitmap & 0xfff)); /* Bits 11:0 MBZ. */
2443 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_MSR_BITMAP_FULL, pVCpu->hm.s.vmx.HCPhysMsrBitmap);
2444 AssertRCReturn(rc, rc);
2445
2446 /*
2447 * The guest can access the following MSRs (read, write) without causing VM-exits; they are loaded/stored
2448 * automatically using dedicated fields in the VMCS.
2449 */
2450 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_CS, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2451 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_ESP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2452 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_EIP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2453 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2454 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_FS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2455
2456#if HC_ARCH_BITS == 64
2457 /*
2458 * Set passthru permissions for the following MSRs (mandatory for VT-x) required for 64-bit guests.
2459 */
2460 if (pVM->hm.s.fAllow64BitGuests)
2461 {
2462 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_LSTAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2463 hmR0VmxSetMsrPermission(pVCpu, MSR_K6_STAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2464 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_SF_MASK, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2465 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2466 }
2467#endif
2468 /* Though MSR_IA32_PERF_GLOBAL_CTRL is saved/restored lazily, we want intercept reads/write to it for now. */
2469 }
2470
2471 /* Use the secondary processor-based VM-execution controls if supported by the CPU. */
2472 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
2473 val |= VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL;
2474
2475 if ((val & zap) != val)
2476 {
2477 LogRel(("hmR0VmxSetupProcCtls: Invalid processor-based VM-execution controls combo! cpu=%#RX64 val=%#RX64 zap=%#RX64\n",
2478 pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0, val, zap));
2479 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC;
2480 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2481 }
2482
2483 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, val);
2484 AssertRCReturn(rc, rc);
2485
2486 pVCpu->hm.s.vmx.u32ProcCtls = val;
2487
2488 /*
2489 * Secondary processor-based VM-execution controls.
2490 */
2491 if (RT_LIKELY(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL))
2492 {
2493 val = pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.disallowed0; /* Bits set here must be set in the VMCS. */
2494 zap = pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2495
2496 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT)
2497 val |= VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT; /* WBINVD causes a VM-exit. */
2498
2499 if (pVM->hm.s.fNestedPaging)
2500 val |= VMX_VMCS_CTRL_PROC_EXEC2_EPT; /* Enable EPT. */
2501 else
2502 {
2503 /*
2504 * Without Nested Paging, INVPCID should cause a VM-exit. Enabling this bit causes the CPU to refer to
2505 * VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT when INVPCID is executed by the guest.
2506 * See Intel spec. 25.4 "Changes to instruction behaviour in VMX non-root operation".
2507 */
2508 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_INVPCID)
2509 val |= VMX_VMCS_CTRL_PROC_EXEC2_INVPCID;
2510 }
2511
2512 if (pVM->hm.s.vmx.fVpid)
2513 val |= VMX_VMCS_CTRL_PROC_EXEC2_VPID; /* Enable VPID. */
2514
2515 if (pVM->hm.s.vmx.fUnrestrictedGuest)
2516 val |= VMX_VMCS_CTRL_PROC_EXEC2_UNRESTRICTED_GUEST; /* Enable Unrestricted Execution. */
2517
2518#if 0
2519 if (pVM->hm.s.fVirtApicRegs)
2520 {
2521 Assert(pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_APIC_REG_VIRT);
2522 val |= VMX_VMCS_CTRL_PROC_EXEC2_APIC_REG_VIRT; /* Enable APIC-register virtualization. */
2523
2524 Assert(pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_INTR_DELIVERY);
2525 val |= VMX_VMCS_CTRL_PROC_EXEC2_VIRT_INTR_DELIVERY; /* Enable virtual-interrupt delivery. */
2526 }
2527#endif
2528
2529 /* Enable Virtual-APIC page accesses if supported by the CPU. This is essentially where the TPR shadow resides. */
2530 /** @todo VIRT_X2APIC support, it's mutually exclusive with this. So must be
2531 * done dynamically. */
2532 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)
2533 {
2534 Assert(pVM->hm.s.vmx.HCPhysApicAccess);
2535 Assert(!(pVM->hm.s.vmx.HCPhysApicAccess & 0xfff)); /* Bits 11:0 MBZ. */
2536 val |= VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC; /* Virtualize APIC accesses. */
2537 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL, pVM->hm.s.vmx.HCPhysApicAccess);
2538 AssertRCReturn(rc, rc);
2539 }
2540
2541 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP)
2542 val |= VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP; /* Enable RDTSCP support. */
2543
2544 if ( pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_PAUSE_LOOP_EXIT
2545 && pVM->hm.s.vmx.cPleGapTicks
2546 && pVM->hm.s.vmx.cPleWindowTicks)
2547 {
2548 val |= VMX_VMCS_CTRL_PROC_EXEC2_PAUSE_LOOP_EXIT; /* Enable pause-loop exiting. */
2549
2550 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_GAP, pVM->hm.s.vmx.cPleGapTicks);
2551 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_WINDOW, pVM->hm.s.vmx.cPleWindowTicks);
2552 AssertRCReturn(rc, rc);
2553 }
2554
2555 if ((val & zap) != val)
2556 {
2557 LogRel(("hmR0VmxSetupProcCtls: Invalid secondary processor-based VM-execution controls combo! "
2558 "cpu=%#RX64 val=%#RX64 zap=%#RX64\n", pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.disallowed0, val, zap));
2559 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC2;
2560 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2561 }
2562
2563 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, val);
2564 AssertRCReturn(rc, rc);
2565
2566 pVCpu->hm.s.vmx.u32ProcCtls2 = val;
2567 }
2568 else if (RT_UNLIKELY(pVM->hm.s.vmx.fUnrestrictedGuest))
2569 {
2570 LogRel(("hmR0VmxSetupProcCtls: Unrestricted Guest set as true when secondary processor-based VM-execution controls not "
2571 "available\n"));
2572 pVCpu->hm.s.u32HMError = VMX_UFC_INVALID_UX_COMBO;
2573 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2574 }
2575
2576 return VINF_SUCCESS;
2577}
2578
2579
2580/**
2581 * Sets up miscellaneous (everything other than Pin & Processor-based
2582 * VM-execution) control fields in the VMCS.
2583 *
2584 * @returns VBox status code.
2585 * @param pVM The cross context VM structure.
2586 * @param pVCpu The cross context virtual CPU structure.
2587 */
2588static int hmR0VmxSetupMiscCtls(PVM pVM, PVMCPU pVCpu)
2589{
2590 NOREF(pVM);
2591 AssertPtr(pVM);
2592 AssertPtr(pVCpu);
2593
2594 int rc = VERR_GENERAL_FAILURE;
2595
2596 /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
2597#if 0
2598 /* All CR3 accesses cause VM-exits. Later we optimize CR3 accesses (see hmR0VmxLoadGuestCR3AndCR4())*/
2599 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, 0);
2600 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, 0);
2601
2602 /*
2603 * Set MASK & MATCH to 0. VMX checks if GuestPFErrCode & MASK == MATCH. If equal (in our case it always is)
2604 * and if the X86_XCPT_PF bit in the exception bitmap is set it causes a VM-exit, if clear doesn't cause an exit.
2605 * We thus use the exception bitmap to control it rather than use both.
2606 */
2607 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, 0);
2608 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, 0);
2609
2610 /** @todo Explore possibility of using IO-bitmaps. */
2611 /* All IO & IOIO instructions cause VM-exits. */
2612 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_A_FULL, 0);
2613 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_B_FULL, 0);
2614
2615 /* Initialize the MSR-bitmap area. */
2616 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, 0);
2617 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, 0);
2618 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, 0);
2619 AssertRCReturn(rc, rc);
2620#endif
2621
2622 /* Setup MSR auto-load/store area. */
2623 Assert(pVCpu->hm.s.vmx.HCPhysGuestMsr);
2624 Assert(!(pVCpu->hm.s.vmx.HCPhysGuestMsr & 0xf)); /* Lower 4 bits MBZ. */
2625 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
2626 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
2627 AssertRCReturn(rc, rc);
2628
2629 Assert(pVCpu->hm.s.vmx.HCPhysHostMsr);
2630 Assert(!(pVCpu->hm.s.vmx.HCPhysHostMsr & 0xf)); /* Lower 4 bits MBZ. */
2631 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysHostMsr);
2632 AssertRCReturn(rc, rc);
2633
2634 /* Set VMCS link pointer. Reserved for future use, must be -1. Intel spec. 24.4 "Guest-State Area". */
2635 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, UINT64_C(0xffffffffffffffff));
2636 AssertRCReturn(rc, rc);
2637
2638 /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
2639#if 0
2640 /* Setup debug controls */
2641 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, 0); /** @todo We don't support IA32_DEBUGCTL MSR. Should we? */
2642 rc |= VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, 0);
2643 AssertRCReturn(rc, rc);
2644#endif
2645
2646 return rc;
2647}
2648
2649
2650/**
2651 * Sets up the initial exception bitmap in the VMCS based on static conditions.
2652 *
2653 * We shall setup those exception intercepts that don't change during the
2654 * lifetime of the VM here. The rest are done dynamically while loading the
2655 * guest state.
2656 *
2657 * @returns VBox status code.
2658 * @param pVM The cross context VM structure.
2659 * @param pVCpu The cross context virtual CPU structure.
2660 */
2661static int hmR0VmxInitXcptBitmap(PVM pVM, PVMCPU pVCpu)
2662{
2663 AssertPtr(pVM);
2664 AssertPtr(pVCpu);
2665
2666 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
2667
2668 uint32_t u32XcptBitmap = 0;
2669
2670 /* Must always intercept #AC to prevent the guest from hanging the CPU. */
2671 u32XcptBitmap |= RT_BIT_32(X86_XCPT_AC);
2672
2673 /* Because we need to maintain the DR6 state even when intercepting DRx reads
2674 and writes, and because recursive #DBs can cause the CPU hang, we must always
2675 intercept #DB. */
2676 u32XcptBitmap |= RT_BIT_32(X86_XCPT_DB);
2677
2678 /* Without Nested Paging, #PF must cause a VM-exit so we can sync our shadow page tables. */
2679 if (!pVM->hm.s.fNestedPaging)
2680 u32XcptBitmap |= RT_BIT(X86_XCPT_PF);
2681
2682 pVCpu->hm.s.vmx.u32XcptBitmap = u32XcptBitmap;
2683 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, u32XcptBitmap);
2684 AssertRCReturn(rc, rc);
2685 return rc;
2686}
2687
2688
2689/**
2690 * Sets up the initial guest-state mask. The guest-state mask is consulted
2691 * before reading guest-state fields from the VMCS as VMREADs can be expensive
2692 * for the nested virtualization case (as it would cause a VM-exit).
2693 *
2694 * @param pVCpu The cross context virtual CPU structure.
2695 */
2696static int hmR0VmxInitUpdatedGuestStateMask(PVMCPU pVCpu)
2697{
2698 /* Initially the guest-state is up-to-date as there is nothing in the VMCS. */
2699 HMVMXCPU_GST_RESET_TO(pVCpu, HMVMX_UPDATED_GUEST_ALL);
2700 return VINF_SUCCESS;
2701}
2702
2703
2704/**
2705 * Does per-VM VT-x initialization.
2706 *
2707 * @returns VBox status code.
2708 * @param pVM The cross context VM structure.
2709 */
2710VMMR0DECL(int) VMXR0InitVM(PVM pVM)
2711{
2712 LogFlowFunc(("pVM=%p\n", pVM));
2713
2714 int rc = hmR0VmxStructsAlloc(pVM);
2715 if (RT_FAILURE(rc))
2716 {
2717 LogRel(("VMXR0InitVM: hmR0VmxStructsAlloc failed! rc=%Rrc\n", rc));
2718 return rc;
2719 }
2720
2721 return VINF_SUCCESS;
2722}
2723
2724
2725/**
2726 * Does per-VM VT-x termination.
2727 *
2728 * @returns VBox status code.
2729 * @param pVM The cross context VM structure.
2730 */
2731VMMR0DECL(int) VMXR0TermVM(PVM pVM)
2732{
2733 LogFlowFunc(("pVM=%p\n", pVM));
2734
2735#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2736 if (pVM->hm.s.vmx.hMemObjScratch != NIL_RTR0MEMOBJ)
2737 ASMMemZero32(pVM->hm.s.vmx.pvScratch, PAGE_SIZE);
2738#endif
2739 hmR0VmxStructsFree(pVM);
2740 return VINF_SUCCESS;
2741}
2742
2743
2744/**
2745 * Sets up the VM for execution under VT-x.
2746 * This function is only called once per-VM during initialization.
2747 *
2748 * @returns VBox status code.
2749 * @param pVM The cross context VM structure.
2750 */
2751VMMR0DECL(int) VMXR0SetupVM(PVM pVM)
2752{
2753 AssertPtrReturn(pVM, VERR_INVALID_PARAMETER);
2754 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2755
2756 LogFlowFunc(("pVM=%p\n", pVM));
2757
2758 /*
2759 * Without UnrestrictedGuest, pRealModeTSS and pNonPagingModeEPTPageTable *must* always be allocated.
2760 * We no longer support the highly unlikely case of UnrestrictedGuest without pRealModeTSS. See hmR3InitFinalizeR0Intel().
2761 */
2762 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
2763 && ( !pVM->hm.s.vmx.pNonPagingModeEPTPageTable
2764 || !pVM->hm.s.vmx.pRealModeTSS))
2765 {
2766 LogRel(("VMXR0SetupVM: Invalid real-on-v86 state.\n"));
2767 return VERR_INTERNAL_ERROR;
2768 }
2769
2770 /* Initialize these always, see hmR3InitFinalizeR0().*/
2771 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NONE;
2772 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_NONE;
2773
2774 /* Setup the tagged-TLB flush handlers. */
2775 int rc = hmR0VmxSetupTaggedTlb(pVM);
2776 if (RT_FAILURE(rc))
2777 {
2778 LogRel(("VMXR0SetupVM: hmR0VmxSetupTaggedTlb failed! rc=%Rrc\n", rc));
2779 return rc;
2780 }
2781
2782 /* Check if we can use the VMCS controls for swapping the EFER MSR. */
2783 Assert(!pVM->hm.s.vmx.fSupportsVmcsEfer);
2784#if HC_ARCH_BITS == 64
2785 if ( (pVM->hm.s.vmx.Msrs.VmxEntry.n.allowed1 & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR)
2786 && (pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR)
2787 && (pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_SAVE_GUEST_EFER_MSR))
2788 {
2789 pVM->hm.s.vmx.fSupportsVmcsEfer = true;
2790 }
2791#endif
2792
2793 /* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
2794 RTCCUINTREG uHostCR4 = ASMGetCR4();
2795 if (RT_UNLIKELY(!(uHostCR4 & X86_CR4_VMXE)))
2796 return VERR_VMX_NOT_IN_VMX_ROOT_MODE;
2797
2798 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2799 {
2800 PVMCPU pVCpu = &pVM->aCpus[i];
2801 AssertPtr(pVCpu);
2802 AssertPtr(pVCpu->hm.s.vmx.pvVmcs);
2803
2804 /* Log the VCPU pointers, useful for debugging SMP VMs. */
2805 Log4(("VMXR0SetupVM: pVCpu=%p idCpu=%RU32\n", pVCpu, pVCpu->idCpu));
2806
2807 /* Initialize the VM-exit history array with end-of-array markers (UINT16_MAX). */
2808 Assert(!pVCpu->hm.s.idxExitHistoryFree);
2809 HMCPU_EXIT_HISTORY_RESET(pVCpu);
2810
2811 /* Set revision dword at the beginning of the VMCS structure. */
2812 *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hm.s.vmx.Msrs.u64BasicInfo);
2813
2814 /* Initialize our VMCS region in memory, set the VMCS launch state to "clear". */
2815 rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2816 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVmcs failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2817 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2818
2819 /* Load this VMCS as the current VMCS. */
2820 rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2821 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXActivateVmcs failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2822 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2823
2824 rc = hmR0VmxSetupPinCtls(pVM, pVCpu);
2825 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupPinCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2826 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2827
2828 rc = hmR0VmxSetupProcCtls(pVM, pVCpu);
2829 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupProcCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2830 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2831
2832 rc = hmR0VmxSetupMiscCtls(pVM, pVCpu);
2833 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupMiscCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2834 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2835
2836 rc = hmR0VmxInitXcptBitmap(pVM, pVCpu);
2837 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitXcptBitmap failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2838 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2839
2840 rc = hmR0VmxInitUpdatedGuestStateMask(pVCpu);
2841 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitUpdatedGuestStateMask failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2842 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2843
2844#if HC_ARCH_BITS == 32
2845 rc = hmR0VmxInitVmcsReadCache(pVM, pVCpu);
2846 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitVmcsReadCache failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2847 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2848#endif
2849
2850 /* Re-sync the CPU's internal data into our VMCS memory region & reset the launch state to "clear". */
2851 rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2852 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVmcs(2) failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2853 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2854
2855 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
2856
2857 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc);
2858 }
2859
2860 return VINF_SUCCESS;
2861}
2862
2863
2864/**
2865 * Saves the host control registers (CR0, CR3, CR4) into the host-state area in
2866 * the VMCS.
2867 *
2868 * @returns VBox status code.
2869 * @param pVM The cross context VM structure.
2870 * @param pVCpu The cross context virtual CPU structure.
2871 */
2872DECLINLINE(int) hmR0VmxSaveHostControlRegs(PVM pVM, PVMCPU pVCpu)
2873{
2874 NOREF(pVM); NOREF(pVCpu);
2875
2876 RTCCUINTREG uReg = ASMGetCR0();
2877 int rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR0, uReg);
2878 AssertRCReturn(rc, rc);
2879
2880 uReg = ASMGetCR3();
2881 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR3, uReg);
2882 AssertRCReturn(rc, rc);
2883
2884 uReg = ASMGetCR4();
2885 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR4, uReg);
2886 AssertRCReturn(rc, rc);
2887 return rc;
2888}
2889
2890
2891#if HC_ARCH_BITS == 64
2892/**
2893 * Macro for adjusting host segment selectors to satisfy VT-x's VM-entry
2894 * requirements. See hmR0VmxSaveHostSegmentRegs().
2895 */
2896# define VMXLOCAL_ADJUST_HOST_SEG(seg, selValue) \
2897 if ((selValue) & (X86_SEL_RPL | X86_SEL_LDT)) \
2898 { \
2899 bool fValidSelector = true; \
2900 if ((selValue) & X86_SEL_LDT) \
2901 { \
2902 uint32_t uAttr = ASMGetSegAttr((selValue)); \
2903 fValidSelector = RT_BOOL(uAttr != UINT32_MAX && (uAttr & X86_DESC_P)); \
2904 } \
2905 if (fValidSelector) \
2906 { \
2907 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_##seg; \
2908 pVCpu->hm.s.vmx.RestoreHost.uHostSel##seg = (selValue); \
2909 } \
2910 (selValue) = 0; \
2911 }
2912#endif
2913
2914
2915/**
2916 * Saves the host segment registers and GDTR, IDTR, (TR, GS and FS bases) into
2917 * the host-state area in the VMCS.
2918 *
2919 * @returns VBox status code.
2920 * @param pVM The cross context VM structure.
2921 * @param pVCpu The cross context virtual CPU structure.
2922 */
2923DECLINLINE(int) hmR0VmxSaveHostSegmentRegs(PVM pVM, PVMCPU pVCpu)
2924{
2925 int rc = VERR_INTERNAL_ERROR_5;
2926
2927#if HC_ARCH_BITS == 64
2928 /*
2929 * If we've executed guest code using VT-x, the host-state bits will be messed up. We
2930 * should -not- save the messed up state without restoring the original host-state. See @bugref{7240}.
2931 *
2932 * This apparently can happen (most likely the FPU changes), deal with it rather than asserting.
2933 * Was observed booting Solaris10u10 32-bit guest.
2934 */
2935 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
2936 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
2937 {
2938 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags,
2939 pVCpu->idCpu));
2940 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
2941 }
2942 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
2943#else
2944 RT_NOREF(pVCpu);
2945#endif
2946
2947 /*
2948 * Host DS, ES, FS and GS segment registers.
2949 */
2950#if HC_ARCH_BITS == 64
2951 RTSEL uSelDS = ASMGetDS();
2952 RTSEL uSelES = ASMGetES();
2953 RTSEL uSelFS = ASMGetFS();
2954 RTSEL uSelGS = ASMGetGS();
2955#else
2956 RTSEL uSelDS = 0;
2957 RTSEL uSelES = 0;
2958 RTSEL uSelFS = 0;
2959 RTSEL uSelGS = 0;
2960#endif
2961
2962 /*
2963 * Host CS and SS segment registers.
2964 */
2965 RTSEL uSelCS = ASMGetCS();
2966 RTSEL uSelSS = ASMGetSS();
2967
2968 /*
2969 * Host TR segment register.
2970 */
2971 RTSEL uSelTR = ASMGetTR();
2972
2973#if HC_ARCH_BITS == 64
2974 /*
2975 * Determine if the host segment registers are suitable for VT-x. Otherwise use zero to gain VM-entry and restore them
2976 * before we get preempted. See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers".
2977 */
2978 VMXLOCAL_ADJUST_HOST_SEG(DS, uSelDS);
2979 VMXLOCAL_ADJUST_HOST_SEG(ES, uSelES);
2980 VMXLOCAL_ADJUST_HOST_SEG(FS, uSelFS);
2981 VMXLOCAL_ADJUST_HOST_SEG(GS, uSelGS);
2982# undef VMXLOCAL_ADJUST_HOST_SEG
2983#endif
2984
2985 /* Verification based on Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers" */
2986 Assert(!(uSelCS & X86_SEL_RPL)); Assert(!(uSelCS & X86_SEL_LDT));
2987 Assert(!(uSelSS & X86_SEL_RPL)); Assert(!(uSelSS & X86_SEL_LDT));
2988 Assert(!(uSelDS & X86_SEL_RPL)); Assert(!(uSelDS & X86_SEL_LDT));
2989 Assert(!(uSelES & X86_SEL_RPL)); Assert(!(uSelES & X86_SEL_LDT));
2990 Assert(!(uSelFS & X86_SEL_RPL)); Assert(!(uSelFS & X86_SEL_LDT));
2991 Assert(!(uSelGS & X86_SEL_RPL)); Assert(!(uSelGS & X86_SEL_LDT));
2992 Assert(!(uSelTR & X86_SEL_RPL)); Assert(!(uSelTR & X86_SEL_LDT));
2993 Assert(uSelCS);
2994 Assert(uSelTR);
2995
2996 /* Assertion is right but we would not have updated u32ExitCtls yet. */
2997#if 0
2998 if (!(pVCpu->hm.s.vmx.u32ExitCtls & VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE))
2999 Assert(uSelSS != 0);
3000#endif
3001
3002 /* Write these host selector fields into the host-state area in the VMCS. */
3003 rc = VMXWriteVmcs32(VMX_VMCS16_HOST_CS_SEL, uSelCS);
3004 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_SS_SEL, uSelSS);
3005#if HC_ARCH_BITS == 64
3006 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_DS_SEL, uSelDS);
3007 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_ES_SEL, uSelES);
3008 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_FS_SEL, uSelFS);
3009 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_GS_SEL, uSelGS);
3010#else
3011 NOREF(uSelDS);
3012 NOREF(uSelES);
3013 NOREF(uSelFS);
3014 NOREF(uSelGS);
3015#endif
3016 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_TR_SEL, uSelTR);
3017 AssertRCReturn(rc, rc);
3018
3019 /*
3020 * Host GDTR and IDTR.
3021 */
3022 RTGDTR Gdtr;
3023 RTIDTR Idtr;
3024 RT_ZERO(Gdtr);
3025 RT_ZERO(Idtr);
3026 ASMGetGDTR(&Gdtr);
3027 ASMGetIDTR(&Idtr);
3028 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, Gdtr.pGdt);
3029 rc |= VMXWriteVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, Idtr.pIdt);
3030 AssertRCReturn(rc, rc);
3031
3032#if HC_ARCH_BITS == 64
3033 /*
3034 * Determine if we need to manually need to restore the GDTR and IDTR limits as VT-x zaps them to the
3035 * maximum limit (0xffff) on every VM-exit.
3036 */
3037 if (Gdtr.cbGdt != 0xffff)
3038 {
3039 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDTR;
3040 AssertCompile(sizeof(Gdtr) == sizeof(X86XDTR64));
3041 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostGdtr, &Gdtr, sizeof(X86XDTR64));
3042 }
3043
3044 /*
3045 * IDT limit is effectively capped at 0xfff. (See Intel spec. 6.14.1 "64-Bit Mode IDT"
3046 * and Intel spec. 6.2 "Exception and Interrupt Vectors".) Therefore if the host has the limit as 0xfff, VT-x
3047 * bloating the limit to 0xffff shouldn't cause any different CPU behavior. However, several hosts either insists
3048 * on 0xfff being the limit (Windows Patch Guard) or uses the limit for other purposes (darwin puts the CPU ID in there
3049 * but botches sidt alignment in at least one consumer). So, we're only allowing IDTR.LIMIT to be left at 0xffff on
3050 * hosts where we are pretty sure it won't cause trouble.
3051 */
3052# if defined(RT_OS_LINUX) || defined(RT_OS_SOLARIS)
3053 if (Idtr.cbIdt < 0x0fff)
3054# else
3055 if (Idtr.cbIdt != 0xffff)
3056# endif
3057 {
3058 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_IDTR;
3059 AssertCompile(sizeof(Idtr) == sizeof(X86XDTR64));
3060 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostIdtr, &Idtr, sizeof(X86XDTR64));
3061 }
3062#endif
3063
3064 /*
3065 * Host TR base. Verify that TR selector doesn't point past the GDT. Masking off the TI and RPL bits
3066 * is effectively what the CPU does for "scaling by 8". TI is always 0 and RPL should be too in most cases.
3067 */
3068 AssertMsgReturn((uSelTR | X86_SEL_RPL_LDT) <= Gdtr.cbGdt,
3069 ("hmR0VmxSaveHostSegmentRegs: TR selector exceeds limit. TR=%RTsel cbGdt=%#x\n", uSelTR, Gdtr.cbGdt),
3070 VERR_VMX_INVALID_HOST_STATE);
3071
3072 PCX86DESCHC pDesc = (PCX86DESCHC)(Gdtr.pGdt + (uSelTR & X86_SEL_MASK));
3073#if HC_ARCH_BITS == 64
3074 uintptr_t uTRBase = X86DESC64_BASE(pDesc);
3075
3076 /*
3077 * VT-x unconditionally restores the TR limit to 0x67 and type to 11 (32-bit busy TSS) on all VM-exits.
3078 * The type is the same for 64-bit busy TSS[1]. The limit needs manual restoration if the host has something else.
3079 * Task switching is not supported in 64-bit mode[2], but the limit still matters as IOPM is supported in 64-bit mode.
3080 * Restoring the limit lazily while returning to ring-3 is safe because IOPM is not applicable in ring-0.
3081 *
3082 * [1] See Intel spec. 3.5 "System Descriptor Types".
3083 * [2] See Intel spec. 7.2.3 "TSS Descriptor in 64-bit mode".
3084 */
3085 Assert(pDesc->System.u4Type == 11);
3086 if ( pDesc->System.u16LimitLow != 0x67
3087 || pDesc->System.u4LimitHigh)
3088 {
3089 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_TR;
3090 /* If the host has made GDT read-only, we would need to temporarily toggle CR0.WP before writing the GDT. */
3091 if (pVM->hm.s.fHostKernelFeatures & SUPKERNELFEATURES_GDT_READ_ONLY)
3092 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_READ_ONLY;
3093 pVCpu->hm.s.vmx.RestoreHost.uHostSelTR = uSelTR;
3094
3095 /* Store the GDTR here as we need it while restoring TR. */
3096 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostGdtr, &Gdtr, sizeof(X86XDTR64));
3097 }
3098#else
3099 NOREF(pVM);
3100 uintptr_t uTRBase = X86DESC_BASE(pDesc);
3101#endif
3102 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_TR_BASE, uTRBase);
3103 AssertRCReturn(rc, rc);
3104
3105 /*
3106 * Host FS base and GS base.
3107 */
3108#if HC_ARCH_BITS == 64
3109 uint64_t u64FSBase = ASMRdMsr(MSR_K8_FS_BASE);
3110 uint64_t u64GSBase = ASMRdMsr(MSR_K8_GS_BASE);
3111 rc = VMXWriteVmcs64(VMX_VMCS_HOST_FS_BASE, u64FSBase);
3112 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_GS_BASE, u64GSBase);
3113 AssertRCReturn(rc, rc);
3114
3115 /* Store the base if we have to restore FS or GS manually as we need to restore the base as well. */
3116 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_FS)
3117 pVCpu->hm.s.vmx.RestoreHost.uHostFSBase = u64FSBase;
3118 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_GS)
3119 pVCpu->hm.s.vmx.RestoreHost.uHostGSBase = u64GSBase;
3120#endif
3121 return rc;
3122}
3123
3124
3125/**
3126 * Saves certain host MSRs in the VM-exit MSR-load area and some in the
3127 * host-state area of the VMCS. Theses MSRs will be automatically restored on
3128 * the host after every successful VM-exit.
3129 *
3130 * @returns VBox status code.
3131 * @param pVM The cross context VM structure.
3132 * @param pVCpu The cross context virtual CPU structure.
3133 *
3134 * @remarks No-long-jump zone!!!
3135 */
3136DECLINLINE(int) hmR0VmxSaveHostMsrs(PVM pVM, PVMCPU pVCpu)
3137{
3138 NOREF(pVM);
3139
3140 AssertPtr(pVCpu);
3141 AssertPtr(pVCpu->hm.s.vmx.pvHostMsr);
3142
3143 /*
3144 * Save MSRs that we restore lazily (due to preemption or transition to ring-3)
3145 * rather than swapping them on every VM-entry.
3146 */
3147 hmR0VmxLazySaveHostMsrs(pVCpu);
3148
3149 /*
3150 * Host Sysenter MSRs.
3151 */
3152 int rc = VMXWriteVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, ASMRdMsr_Low(MSR_IA32_SYSENTER_CS));
3153#if HC_ARCH_BITS == 32
3154 rc |= VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP));
3155 rc |= VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP));
3156#else
3157 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP));
3158 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP));
3159#endif
3160 AssertRCReturn(rc, rc);
3161
3162 /*
3163 * Host EFER MSR.
3164 * If the CPU supports the newer VMCS controls for managing EFER, use it.
3165 * Otherwise it's done as part of auto-load/store MSR area in the VMCS, see hmR0VmxLoadGuestMsrs().
3166 */
3167 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
3168 {
3169 rc = VMXWriteVmcs64(VMX_VMCS64_HOST_EFER_FULL, pVM->hm.s.vmx.u64HostEfer);
3170 AssertRCReturn(rc, rc);
3171 }
3172
3173 /** @todo IA32_PERF_GLOBALCTRL, IA32_PAT also see
3174 * hmR0VmxLoadGuestExitCtls() !! */
3175
3176 return rc;
3177}
3178
3179
3180/**
3181 * Figures out if we need to swap the EFER MSR which is particularly expensive.
3182 *
3183 * We check all relevant bits. For now, that's everything besides LMA/LME, as
3184 * these two bits are handled by VM-entry, see hmR0VmxLoadGuestExitCtls() and
3185 * hmR0VMxLoadGuestEntryCtls().
3186 *
3187 * @returns true if we need to load guest EFER, false otherwise.
3188 * @param pVCpu The cross context virtual CPU structure.
3189 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3190 * out-of-sync. Make sure to update the required fields
3191 * before using them.
3192 *
3193 * @remarks Requires EFER, CR4.
3194 * @remarks No-long-jump zone!!!
3195 */
3196static bool hmR0VmxShouldSwapEferMsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3197{
3198#ifdef HMVMX_ALWAYS_SWAP_EFER
3199 return true;
3200#endif
3201
3202#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
3203 /* For 32-bit hosts running 64-bit guests, we always swap EFER in the world-switcher. Nothing to do here. */
3204 if (CPUMIsGuestInLongMode(pVCpu))
3205 return false;
3206#endif
3207
3208 PVM pVM = pVCpu->CTX_SUFF(pVM);
3209 uint64_t u64HostEfer = pVM->hm.s.vmx.u64HostEfer;
3210 uint64_t u64GuestEfer = pMixedCtx->msrEFER;
3211
3212 /*
3213 * For 64-bit guests, if EFER.SCE bit differs, we need to swap to ensure that the
3214 * guest's SYSCALL behaviour isn't screwed. See @bugref{7386}.
3215 */
3216 if ( CPUMIsGuestInLongMode(pVCpu)
3217 && (u64GuestEfer & MSR_K6_EFER_SCE) != (u64HostEfer & MSR_K6_EFER_SCE))
3218 {
3219 return true;
3220 }
3221
3222 /*
3223 * If the guest uses PAE and EFER.NXE bit differs, we need to swap EFER as it
3224 * affects guest paging. 64-bit paging implies CR4.PAE as well.
3225 * See Intel spec. 4.5 "IA-32e Paging" and Intel spec. 4.1.1 "Three Paging Modes".
3226 */
3227 if ( (pMixedCtx->cr4 & X86_CR4_PAE)
3228 && (pMixedCtx->cr0 & X86_CR0_PG)
3229 && (u64GuestEfer & MSR_K6_EFER_NXE) != (u64HostEfer & MSR_K6_EFER_NXE))
3230 {
3231 /* Assert that host is PAE capable. */
3232 Assert(pVM->hm.s.cpuid.u32AMDFeatureEDX & X86_CPUID_EXT_FEATURE_EDX_NX);
3233 return true;
3234 }
3235
3236 /** @todo Check the latest Intel spec. for any other bits,
3237 * like SMEP/SMAP? */
3238 return false;
3239}
3240
3241
3242/**
3243 * Sets up VM-entry controls in the VMCS. These controls can affect things done
3244 * on VM-exit; e.g. "load debug controls", see Intel spec. 24.8.1 "VM-entry
3245 * controls".
3246 *
3247 * @returns VBox status code.
3248 * @param pVCpu The cross context virtual CPU structure.
3249 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3250 * out-of-sync. Make sure to update the required fields
3251 * before using them.
3252 *
3253 * @remarks Requires EFER.
3254 * @remarks No-long-jump zone!!!
3255 */
3256DECLINLINE(int) hmR0VmxLoadGuestEntryCtls(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3257{
3258 int rc = VINF_SUCCESS;
3259 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_ENTRY_CTLS))
3260 {
3261 PVM pVM = pVCpu->CTX_SUFF(pVM);
3262 uint32_t val = pVM->hm.s.vmx.Msrs.VmxEntry.n.disallowed0; /* Bits set here must be set in the VMCS. */
3263 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxEntry.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3264
3265 /* Load debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x capable CPUs only supports the 1-setting of this bit. */
3266 val |= VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG;
3267
3268 /* Set if the guest is in long mode. This will set/clear the EFER.LMA bit on VM-entry. */
3269 if (CPUMIsGuestInLongModeEx(pMixedCtx))
3270 {
3271 val |= VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST;
3272 Log4(("Load[%RU32]: VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST\n", pVCpu->idCpu));
3273 }
3274 else
3275 Assert(!(val & VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST));
3276
3277 /* If the CPU supports the newer VMCS controls for managing guest/host EFER, use it. */
3278 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
3279 && hmR0VmxShouldSwapEferMsr(pVCpu, pMixedCtx))
3280 {
3281 val |= VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR;
3282 Log4(("Load[%RU32]: VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR\n", pVCpu->idCpu));
3283 }
3284
3285 /*
3286 * The following should -not- be set (since we're not in SMM mode):
3287 * - VMX_VMCS_CTRL_ENTRY_ENTRY_SMM
3288 * - VMX_VMCS_CTRL_ENTRY_DEACTIVATE_DUALMON
3289 */
3290
3291 /** @todo VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PERF_MSR,
3292 * VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PAT_MSR. */
3293
3294 if ((val & zap) != val)
3295 {
3296 LogRel(("hmR0VmxLoadGuestEntryCtls: Invalid VM-entry controls combo! cpu=%RX64 val=%RX64 zap=%RX64\n",
3297 pVM->hm.s.vmx.Msrs.VmxEntry.n.disallowed0, val, zap));
3298 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_ENTRY;
3299 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3300 }
3301
3302 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY, val);
3303 AssertRCReturn(rc, rc);
3304
3305 pVCpu->hm.s.vmx.u32EntryCtls = val;
3306 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_ENTRY_CTLS);
3307 }
3308 return rc;
3309}
3310
3311
3312/**
3313 * Sets up the VM-exit controls in the VMCS.
3314 *
3315 * @returns VBox status code.
3316 * @param pVCpu The cross context virtual CPU structure.
3317 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3318 * out-of-sync. Make sure to update the required fields
3319 * before using them.
3320 *
3321 * @remarks Requires EFER.
3322 */
3323DECLINLINE(int) hmR0VmxLoadGuestExitCtls(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3324{
3325 NOREF(pMixedCtx);
3326
3327 int rc = VINF_SUCCESS;
3328 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_EXIT_CTLS))
3329 {
3330 PVM pVM = pVCpu->CTX_SUFF(pVM);
3331 uint32_t val = pVM->hm.s.vmx.Msrs.VmxExit.n.disallowed0; /* Bits set here must be set in the VMCS. */
3332 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3333
3334 /* Save debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x CPUs only supported the 1-setting of this bit. */
3335 val |= VMX_VMCS_CTRL_EXIT_SAVE_DEBUG;
3336
3337 /*
3338 * Set the host long mode active (EFER.LMA) bit (which Intel calls "Host address-space size") if necessary.
3339 * On VM-exit, VT-x sets both the host EFER.LMA and EFER.LME bit to this value. See assertion in hmR0VmxSaveHostMsrs().
3340 */
3341#if HC_ARCH_BITS == 64
3342 val |= VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE;
3343 Log4(("Load[%RU32]: VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE\n", pVCpu->idCpu));
3344#else
3345 Assert( pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64
3346 || pVCpu->hm.s.vmx.pfnStartVM == VMXR0StartVM32);
3347 /* Set the host address-space size based on the switcher, not guest state. See @bugref{8432}. */
3348 if (pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64)
3349 {
3350 /* The switcher returns to long mode, EFER is managed by the switcher. */
3351 val |= VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE;
3352 Log4(("Load[%RU32]: VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE\n", pVCpu->idCpu));
3353 }
3354 else
3355 Assert(!(val & VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE));
3356#endif
3357
3358 /* If the newer VMCS fields for managing EFER exists, use it. */
3359 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
3360 && hmR0VmxShouldSwapEferMsr(pVCpu, pMixedCtx))
3361 {
3362 val |= VMX_VMCS_CTRL_EXIT_SAVE_GUEST_EFER_MSR
3363 | VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR;
3364 Log4(("Load[%RU32]: VMX_VMCS_CTRL_EXIT_SAVE_GUEST_EFER_MSR, VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR\n", pVCpu->idCpu));
3365 }
3366
3367 /* Don't acknowledge external interrupts on VM-exit. We want to let the host do that. */
3368 Assert(!(val & VMX_VMCS_CTRL_EXIT_ACK_EXT_INT));
3369
3370 /** @todo VMX_VMCS_CTRL_EXIT_LOAD_PERF_MSR,
3371 * VMX_VMCS_CTRL_EXIT_SAVE_GUEST_PAT_MSR,
3372 * VMX_VMCS_CTRL_EXIT_LOAD_HOST_PAT_MSR. */
3373
3374 if ( pVM->hm.s.vmx.fUsePreemptTimer
3375 && (pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_SAVE_VMX_PREEMPT_TIMER))
3376 val |= VMX_VMCS_CTRL_EXIT_SAVE_VMX_PREEMPT_TIMER;
3377
3378 if ((val & zap) != val)
3379 {
3380 LogRel(("hmR0VmxSetupProcCtls: Invalid VM-exit controls combo! cpu=%RX64 val=%RX64 zap=%RX64\n",
3381 pVM->hm.s.vmx.Msrs.VmxExit.n.disallowed0, val, zap));
3382 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_EXIT;
3383 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3384 }
3385
3386 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT, val);
3387 AssertRCReturn(rc, rc);
3388
3389 pVCpu->hm.s.vmx.u32ExitCtls = val;
3390 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_EXIT_CTLS);
3391 }
3392 return rc;
3393}
3394
3395
3396/**
3397 * Sets the TPR threshold in the VMCS.
3398 *
3399 * @returns VBox status code.
3400 * @param pVCpu The cross context virtual CPU structure.
3401 * @param u32TprThreshold The TPR threshold (task-priority class only).
3402 */
3403DECLINLINE(int) hmR0VmxApicSetTprThreshold(PVMCPU pVCpu, uint32_t u32TprThreshold)
3404{
3405 Assert(!(u32TprThreshold & 0xfffffff0)); /* Bits 31:4 MBZ. */
3406 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW); RT_NOREF_PV(pVCpu);
3407 return VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
3408}
3409
3410
3411/**
3412 * Loads the guest APIC and related state.
3413 *
3414 * @returns VBox status code.
3415 * @param pVCpu The cross context virtual CPU structure.
3416 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3417 * out-of-sync. Make sure to update the required fields
3418 * before using them.
3419 *
3420 * @remarks No-long-jump zone!!!
3421 */
3422DECLINLINE(int) hmR0VmxLoadGuestApicState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3423{
3424 NOREF(pMixedCtx);
3425
3426 int rc = VINF_SUCCESS;
3427 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE))
3428 {
3429 if ( PDMHasApic(pVCpu->CTX_SUFF(pVM))
3430 && APICIsEnabled(pVCpu))
3431 {
3432 /*
3433 * Setup TPR shadowing.
3434 */
3435 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
3436 {
3437 Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
3438
3439 bool fPendingIntr = false;
3440 uint8_t u8Tpr = 0;
3441 uint8_t u8PendingIntr = 0;
3442 rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, &u8PendingIntr);
3443 AssertRCReturn(rc, rc);
3444
3445 /*
3446 * If there are interrupts pending but masked by the TPR, instruct VT-x to cause a TPR-below-threshold VM-exit
3447 * when the guest lowers its TPR below the priority of the pending interrupt so we can deliver the interrupt.
3448 * If there are no interrupts pending, set threshold to 0 to not cause any TPR-below-threshold VM-exits.
3449 */
3450 pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR] = u8Tpr;
3451 uint32_t u32TprThreshold = 0;
3452 if (fPendingIntr)
3453 {
3454 /* Bits 3:0 of the TPR threshold field correspond to bits 7:4 of the TPR (which is the Task-Priority Class). */
3455 const uint8_t u8PendingPriority = u8PendingIntr >> 4;
3456 const uint8_t u8TprPriority = u8Tpr >> 4;
3457 if (u8PendingPriority <= u8TprPriority)
3458 u32TprThreshold = u8PendingPriority;
3459 }
3460
3461 rc = hmR0VmxApicSetTprThreshold(pVCpu, u32TprThreshold);
3462 AssertRCReturn(rc, rc);
3463 }
3464 }
3465 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
3466 }
3467
3468 return rc;
3469}
3470
3471
3472/**
3473 * Gets the guest's interruptibility-state ("interrupt shadow" as AMD calls it).
3474 *
3475 * @returns Guest's interruptibility-state.
3476 * @param pVCpu The cross context virtual CPU structure.
3477 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3478 * out-of-sync. Make sure to update the required fields
3479 * before using them.
3480 *
3481 * @remarks No-long-jump zone!!!
3482 */
3483DECLINLINE(uint32_t) hmR0VmxGetGuestIntrState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3484{
3485 /*
3486 * Check if we should inhibit interrupt delivery due to instructions like STI and MOV SS.
3487 */
3488 uint32_t uIntrState = 0;
3489 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3490 {
3491 /* If inhibition is active, RIP & RFLAGS should've been accessed (i.e. read previously from the VMCS or from ring-3). */
3492 AssertMsg(HMVMXCPU_GST_IS_SET(pVCpu, HMVMX_UPDATED_GUEST_RIP | HMVMX_UPDATED_GUEST_RFLAGS),
3493 ("%#x\n", HMVMXCPU_GST_VALUE(pVCpu)));
3494 if (pMixedCtx->rip == EMGetInhibitInterruptsPC(pVCpu))
3495 {
3496 if (pMixedCtx->eflags.Bits.u1IF)
3497 uIntrState = VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI;
3498 else
3499 uIntrState = VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS;
3500 }
3501 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3502 {
3503 /*
3504 * We can clear the inhibit force flag as even if we go back to the recompiler without executing guest code in
3505 * VT-x, the flag's condition to be cleared is met and thus the cleared state is correct.
3506 */
3507 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
3508 }
3509 }
3510
3511 /*
3512 * NMIs to the guest are blocked after an NMI is injected until the guest executes an IRET. We only
3513 * bother with virtual-NMI blocking when we have support for virtual NMIs in the CPU, otherwise
3514 * setting this would block host-NMIs and IRET will not clear the blocking.
3515 *
3516 * See Intel spec. 26.6.1 "Interruptibility state". See @bugref{7445}.
3517 */
3518 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS)
3519 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI))
3520 {
3521 uIntrState |= VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI;
3522 }
3523
3524 return uIntrState;
3525}
3526
3527
3528/**
3529 * Loads the guest's interruptibility-state into the guest-state area in the
3530 * VMCS.
3531 *
3532 * @returns VBox status code.
3533 * @param pVCpu The cross context virtual CPU structure.
3534 * @param uIntrState The interruptibility-state to set.
3535 */
3536static int hmR0VmxLoadGuestIntrState(PVMCPU pVCpu, uint32_t uIntrState)
3537{
3538 NOREF(pVCpu);
3539 AssertMsg(!(uIntrState & 0xfffffff0), ("%#x\n", uIntrState)); /* Bits 31:4 MBZ. */
3540 Assert((uIntrState & 0x3) != 0x3); /* Block-by-STI and MOV SS cannot be simultaneously set. */
3541 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, uIntrState);
3542 AssertRC(rc);
3543 return rc;
3544}
3545
3546
3547/**
3548 * Loads the exception intercepts required for guest execution in the VMCS.
3549 *
3550 * @returns VBox status code.
3551 * @param pVCpu The cross context virtual CPU structure.
3552 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3553 * out-of-sync. Make sure to update the required fields
3554 * before using them.
3555 */
3556static int hmR0VmxLoadGuestXcptIntercepts(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3557{
3558 NOREF(pMixedCtx);
3559 int rc = VINF_SUCCESS;
3560 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS))
3561 {
3562 /* The remaining exception intercepts are handled elsewhere, e.g. in hmR0VmxLoadSharedCR0(). */
3563 if (pVCpu->hm.s.fGIMTrapXcptUD)
3564 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_UD);
3565#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
3566 else
3567 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_UD);
3568#endif
3569
3570 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_AC));
3571 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_DB));
3572
3573 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
3574 AssertRCReturn(rc, rc);
3575
3576 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS);
3577 Log4(("Load[%RU32]: VMX_VMCS32_CTRL_EXCEPTION_BITMAP=%#RX64 fContextUseFlags=%#RX32\n", pVCpu->idCpu,
3578 pVCpu->hm.s.vmx.u32XcptBitmap, HMCPU_CF_VALUE(pVCpu)));
3579 }
3580 return rc;
3581}
3582
3583
3584/**
3585 * Loads the guest's RIP into the guest-state area in the VMCS.
3586 *
3587 * @returns VBox status code.
3588 * @param pVCpu The cross context virtual CPU structure.
3589 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3590 * out-of-sync. Make sure to update the required fields
3591 * before using them.
3592 *
3593 * @remarks No-long-jump zone!!!
3594 */
3595static int hmR0VmxLoadGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3596{
3597 int rc = VINF_SUCCESS;
3598 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RIP))
3599 {
3600 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RIP, pMixedCtx->rip);
3601 AssertRCReturn(rc, rc);
3602
3603 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RIP);
3604 Log4(("Load[%RU32]: VMX_VMCS_GUEST_RIP=%#RX64 fContextUseFlags=%#RX32\n", pVCpu->idCpu, pMixedCtx->rip,
3605 HMCPU_CF_VALUE(pVCpu)));
3606 }
3607 return rc;
3608}
3609
3610
3611/**
3612 * Loads the guest's RSP into the guest-state area in the VMCS.
3613 *
3614 * @returns VBox status code.
3615 * @param pVCpu The cross context virtual CPU structure.
3616 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3617 * out-of-sync. Make sure to update the required fields
3618 * before using them.
3619 *
3620 * @remarks No-long-jump zone!!!
3621 */
3622static int hmR0VmxLoadGuestRsp(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3623{
3624 int rc = VINF_SUCCESS;
3625 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RSP))
3626 {
3627 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RSP, pMixedCtx->rsp);
3628 AssertRCReturn(rc, rc);
3629
3630 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RSP);
3631 Log4(("Load[%RU32]: VMX_VMCS_GUEST_RSP=%#RX64\n", pVCpu->idCpu, pMixedCtx->rsp));
3632 }
3633 return rc;
3634}
3635
3636
3637/**
3638 * Loads the guest's RFLAGS into the guest-state area in the VMCS.
3639 *
3640 * @returns VBox status code.
3641 * @param pVCpu The cross context virtual CPU structure.
3642 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3643 * out-of-sync. Make sure to update the required fields
3644 * before using them.
3645 *
3646 * @remarks No-long-jump zone!!!
3647 */
3648static int hmR0VmxLoadGuestRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3649{
3650 int rc = VINF_SUCCESS;
3651 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RFLAGS))
3652 {
3653 /* Intel spec. 2.3.1 "System Flags and Fields in IA-32e Mode" claims the upper 32-bits of RFLAGS are reserved (MBZ).
3654 Let us assert it as such and use 32-bit VMWRITE. */
3655 Assert(!(pMixedCtx->rflags.u64 >> 32));
3656 X86EFLAGS Eflags = pMixedCtx->eflags;
3657 /** @todo r=bird: There shall be no need to OR in X86_EFL_1 here, nor
3658 * shall there be any reason for clearing bits 63:22, 15, 5 and 3.
3659 * These will never be cleared/set, unless some other part of the VMM
3660 * code is buggy - in which case we're better of finding and fixing
3661 * those bugs than hiding them. */
3662 Assert(Eflags.u32 & X86_EFL_RA1_MASK);
3663 Assert(!(Eflags.u32 & ~(X86_EFL_1 | X86_EFL_LIVE_MASK)));
3664 Eflags.u32 &= VMX_EFLAGS_RESERVED_0; /* Bits 22-31, 15, 5 & 3 MBZ. */
3665 Eflags.u32 |= VMX_EFLAGS_RESERVED_1; /* Bit 1 MB1. */
3666
3667 /*
3668 * If we're emulating real-mode using Virtual 8086 mode, save the real-mode eflags so we can restore them on VM-exit.
3669 * Modify the real-mode guest's eflags so that VT-x can run the real-mode guest code under Virtual 8086 mode.
3670 */
3671 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3672 {
3673 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
3674 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
3675 pVCpu->hm.s.vmx.RealMode.Eflags.u32 = Eflags.u32; /* Save the original eflags of the real-mode guest. */
3676 Eflags.Bits.u1VM = 1; /* Set the Virtual 8086 mode bit. */
3677 Eflags.Bits.u2IOPL = 0; /* Change IOPL to 0, otherwise certain instructions won't fault. */
3678 }
3679
3680 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_RFLAGS, Eflags.u32);
3681 AssertRCReturn(rc, rc);
3682
3683 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RFLAGS);
3684 Log4(("Load[%RU32]: VMX_VMCS_GUEST_RFLAGS=%#RX32\n", pVCpu->idCpu, Eflags.u32));
3685 }
3686 return rc;
3687}
3688
3689
3690/**
3691 * Loads the guest RIP, RSP and RFLAGS into the guest-state area in the VMCS.
3692 *
3693 * @returns VBox status code.
3694 * @param pVCpu The cross context virtual CPU structure.
3695 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3696 * out-of-sync. Make sure to update the required fields
3697 * before using them.
3698 *
3699 * @remarks No-long-jump zone!!!
3700 */
3701DECLINLINE(int) hmR0VmxLoadGuestRipRspRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3702{
3703 int rc = hmR0VmxLoadGuestRip(pVCpu, pMixedCtx);
3704 rc |= hmR0VmxLoadGuestRsp(pVCpu, pMixedCtx);
3705 rc |= hmR0VmxLoadGuestRflags(pVCpu, pMixedCtx);
3706 AssertRCReturn(rc, rc);
3707 return rc;
3708}
3709
3710
3711/**
3712 * Loads the guest CR0 control register into the guest-state area in the VMCS.
3713 * CR0 is partially shared with the host and we have to consider the FPU bits.
3714 *
3715 * @returns VBox status code.
3716 * @param pVCpu The cross context virtual CPU structure.
3717 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3718 * out-of-sync. Make sure to update the required fields
3719 * before using them.
3720 *
3721 * @remarks No-long-jump zone!!!
3722 */
3723static int hmR0VmxLoadSharedCR0(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3724{
3725 /*
3726 * Guest CR0.
3727 * Guest FPU.
3728 */
3729 int rc = VINF_SUCCESS;
3730 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0))
3731 {
3732 Assert(!(pMixedCtx->cr0 >> 32));
3733 uint32_t u32GuestCR0 = pMixedCtx->cr0;
3734 PVM pVM = pVCpu->CTX_SUFF(pVM);
3735
3736 /* The guest's view (read access) of its CR0 is unblemished. */
3737 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, u32GuestCR0);
3738 AssertRCReturn(rc, rc);
3739 Log4(("Load[%RU32]: VMX_VMCS_CTRL_CR0_READ_SHADOW=%#RX32\n", pVCpu->idCpu, u32GuestCR0));
3740
3741 /* Setup VT-x's view of the guest CR0. */
3742 /* Minimize VM-exits due to CR3 changes when we have NestedPaging. */
3743 if (pVM->hm.s.fNestedPaging)
3744 {
3745 if (CPUMIsGuestPagingEnabledEx(pMixedCtx))
3746 {
3747 /* The guest has paging enabled, let it access CR3 without causing a VM-exit if supported. */
3748 pVCpu->hm.s.vmx.u32ProcCtls &= ~( VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT
3749 | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT);
3750 }
3751 else
3752 {
3753 /* The guest doesn't have paging enabled, make CR3 access cause a VM-exit to update our shadow. */
3754 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT
3755 | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT;
3756 }
3757
3758 /* If we have unrestricted guest execution, we never have to intercept CR3 reads. */
3759 if (pVM->hm.s.vmx.fUnrestrictedGuest)
3760 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT;
3761
3762 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
3763 AssertRCReturn(rc, rc);
3764 }
3765 else
3766 u32GuestCR0 |= X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
3767
3768 /*
3769 * Guest FPU bits.
3770 * Intel spec. 23.8 "Restrictions on VMX operation" mentions that CR0.NE bit must always be set on the first
3771 * CPUs to support VT-x and no mention of with regards to UX in VM-entry checks.
3772 */
3773 u32GuestCR0 |= X86_CR0_NE;
3774 bool fInterceptNM = false;
3775 if (CPUMIsGuestFPUStateActive(pVCpu))
3776 {
3777 fInterceptNM = false; /* Guest FPU active, no need to VM-exit on #NM. */
3778 /* The guest should still get #NM exceptions when it expects it to, so we should not clear TS & MP bits here.
3779 We're only concerned about -us- not intercepting #NMs when the guest-FPU is active. Not the guest itself! */
3780 }
3781 else
3782 {
3783 fInterceptNM = true; /* Guest FPU inactive, VM-exit on #NM for lazy FPU loading. */
3784 u32GuestCR0 |= X86_CR0_TS /* Guest can task switch quickly and do lazy FPU syncing. */
3785 | X86_CR0_MP; /* FWAIT/WAIT should not ignore CR0.TS and should generate #NM. */
3786 }
3787
3788 /* Catch floating point exceptions if we need to report them to the guest in a different way. */
3789 bool fInterceptMF = false;
3790 if (!(pMixedCtx->cr0 & X86_CR0_NE))
3791 fInterceptMF = true;
3792
3793 /* Finally, intercept all exceptions as we cannot directly inject them in real-mode, see hmR0VmxInjectEventVmcs(). */
3794 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3795 {
3796 Assert(PDMVmmDevHeapIsEnabled(pVM));
3797 Assert(pVM->hm.s.vmx.pRealModeTSS);
3798 pVCpu->hm.s.vmx.u32XcptBitmap |= HMVMX_REAL_MODE_XCPT_MASK;
3799 fInterceptNM = true;
3800 fInterceptMF = true;
3801 }
3802 else
3803 {
3804 /* For now, cleared here as mode-switches can happen outside HM/VT-x. See @bugref{7626#c11}. */
3805 pVCpu->hm.s.vmx.u32XcptBitmap &= ~HMVMX_REAL_MODE_XCPT_MASK;
3806 }
3807 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS);
3808
3809 if (fInterceptNM)
3810 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_NM);
3811 else
3812 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_NM);
3813
3814 if (fInterceptMF)
3815 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_MF);
3816 else
3817 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_MF);
3818
3819 /* Additional intercepts for debugging, define these yourself explicitly. */
3820#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
3821 pVCpu->hm.s.vmx.u32XcptBitmap |= 0
3822 | RT_BIT(X86_XCPT_BP)
3823 | RT_BIT(X86_XCPT_DE)
3824 | RT_BIT(X86_XCPT_NM)
3825 | RT_BIT(X86_XCPT_TS)
3826 | RT_BIT(X86_XCPT_UD)
3827 | RT_BIT(X86_XCPT_NP)
3828 | RT_BIT(X86_XCPT_SS)
3829 | RT_BIT(X86_XCPT_GP)
3830 | RT_BIT(X86_XCPT_PF)
3831 | RT_BIT(X86_XCPT_MF)
3832 ;
3833#elif defined(HMVMX_ALWAYS_TRAP_PF)
3834 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_PF);
3835#endif
3836
3837 Assert(pVM->hm.s.fNestedPaging || (pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT(X86_XCPT_PF)));
3838
3839 /* Set/clear the CR0 specific bits along with their exceptions (PE, PG, CD, NW). */
3840 uint32_t uSetCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
3841 uint32_t uZapCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
3842 if (pVM->hm.s.vmx.fUnrestrictedGuest) /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG). */
3843 uSetCR0 &= ~(X86_CR0_PE | X86_CR0_PG);
3844 else
3845 Assert((uSetCR0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG));
3846
3847 u32GuestCR0 |= uSetCR0;
3848 u32GuestCR0 &= uZapCR0;
3849 u32GuestCR0 &= ~(X86_CR0_CD | X86_CR0_NW); /* Always enable caching. */
3850
3851 /* Write VT-x's view of the guest CR0 into the VMCS. */
3852 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR0, u32GuestCR0);
3853 AssertRCReturn(rc, rc);
3854 Log4(("Load[%RU32]: VMX_VMCS_GUEST_CR0=%#RX32 (uSetCR0=%#RX32 uZapCR0=%#RX32)\n", pVCpu->idCpu, u32GuestCR0, uSetCR0,
3855 uZapCR0));
3856
3857 /*
3858 * CR0 is shared between host and guest along with a CR0 read shadow. Therefore, certain bits must not be changed
3859 * by the guest because VT-x ignores saving/restoring them (namely CD, ET, NW) and for certain other bits
3860 * we want to be notified immediately of guest CR0 changes (e.g. PG to update our shadow page tables).
3861 */
3862 uint32_t u32CR0Mask = 0;
3863 u32CR0Mask = X86_CR0_PE
3864 | X86_CR0_NE
3865 | X86_CR0_WP
3866 | X86_CR0_PG
3867 | X86_CR0_ET /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.ET */
3868 | X86_CR0_CD /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.CD */
3869 | X86_CR0_NW; /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.NW */
3870
3871 /** @todo Avoid intercepting CR0.PE with unrestricted guests. Fix PGM
3872 * enmGuestMode to be in-sync with the current mode. See @bugref{6398}
3873 * and @bugref{6944}. */
3874#if 0
3875 if (pVM->hm.s.vmx.fUnrestrictedGuest)
3876 u32CR0Mask &= ~X86_CR0_PE;
3877#endif
3878 if (pVM->hm.s.fNestedPaging)
3879 u32CR0Mask &= ~X86_CR0_WP;
3880
3881 /* If the guest FPU state is active, don't need to VM-exit on writes to FPU related bits in CR0. */
3882 if (fInterceptNM)
3883 {
3884 u32CR0Mask |= X86_CR0_TS
3885 | X86_CR0_MP;
3886 }
3887
3888 /* Write the CR0 mask into the VMCS and update the VCPU's copy of the current CR0 mask. */
3889 pVCpu->hm.s.vmx.u32CR0Mask = u32CR0Mask;
3890 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_MASK, u32CR0Mask);
3891 AssertRCReturn(rc, rc);
3892 Log4(("Load[%RU32]: VMX_VMCS_CTRL_CR0_MASK=%#RX32\n", pVCpu->idCpu, u32CR0Mask));
3893
3894 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR0);
3895 }
3896 return rc;
3897}
3898
3899
3900/**
3901 * Loads the guest control registers (CR3, CR4) into the guest-state area
3902 * in the VMCS.
3903 *
3904 * @returns VBox strict status code.
3905 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
3906 * without unrestricted guest access and the VMMDev is not presently
3907 * mapped (e.g. EFI32).
3908 *
3909 * @param pVCpu The cross context virtual CPU structure.
3910 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3911 * out-of-sync. Make sure to update the required fields
3912 * before using them.
3913 *
3914 * @remarks No-long-jump zone!!!
3915 */
3916static VBOXSTRICTRC hmR0VmxLoadGuestCR3AndCR4(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3917{
3918 int rc = VINF_SUCCESS;
3919 PVM pVM = pVCpu->CTX_SUFF(pVM);
3920
3921 /*
3922 * Guest CR2.
3923 * It's always loaded in the assembler code. Nothing to do here.
3924 */
3925
3926 /*
3927 * Guest CR3.
3928 */
3929 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR3))
3930 {
3931 RTGCPHYS GCPhysGuestCR3 = NIL_RTGCPHYS;
3932 if (pVM->hm.s.fNestedPaging)
3933 {
3934 pVCpu->hm.s.vmx.HCPhysEPTP = PGMGetHyperCR3(pVCpu);
3935
3936 /* Validate. See Intel spec. 28.2.2 "EPT Translation Mechanism" and 24.6.11 "Extended-Page-Table Pointer (EPTP)" */
3937 Assert(pVCpu->hm.s.vmx.HCPhysEPTP);
3938 Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & UINT64_C(0xfff0000000000000)));
3939 Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & 0xfff));
3940
3941 /* VMX_EPT_MEMTYPE_WB support is already checked in hmR0VmxSetupTaggedTlb(). */
3942 pVCpu->hm.s.vmx.HCPhysEPTP |= VMX_EPT_MEMTYPE_WB
3943 | (VMX_EPT_PAGE_WALK_LENGTH_DEFAULT << VMX_EPT_PAGE_WALK_LENGTH_SHIFT);
3944
3945 /* Validate. See Intel spec. 26.2.1 "Checks on VMX Controls" */
3946 AssertMsg( ((pVCpu->hm.s.vmx.HCPhysEPTP >> 3) & 0x07) == 3 /* Bits 3:5 (EPT page walk length - 1) must be 3. */
3947 && ((pVCpu->hm.s.vmx.HCPhysEPTP >> 7) & 0x1f) == 0, /* Bits 7:11 MBZ. */
3948 ("EPTP %#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
3949 AssertMsg( !((pVCpu->hm.s.vmx.HCPhysEPTP >> 6) & 0x01) /* Bit 6 (EPT accessed & dirty bit). */
3950 || (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EPT_ACCESS_DIRTY),
3951 ("EPTP accessed/dirty bit not supported by CPU but set %#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
3952
3953 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, pVCpu->hm.s.vmx.HCPhysEPTP);
3954 AssertRCReturn(rc, rc);
3955 Log4(("Load[%RU32]: VMX_VMCS64_CTRL_EPTP_FULL=%#RX64\n", pVCpu->idCpu, pVCpu->hm.s.vmx.HCPhysEPTP));
3956
3957 if ( pVM->hm.s.vmx.fUnrestrictedGuest
3958 || CPUMIsGuestPagingEnabledEx(pMixedCtx))
3959 {
3960 /* If the guest is in PAE mode, pass the PDPEs to VT-x using the VMCS fields. */
3961 if (CPUMIsGuestInPAEModeEx(pMixedCtx))
3962 {
3963 rc = PGMGstGetPaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
3964 AssertRCReturn(rc, rc);
3965 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, pVCpu->hm.s.aPdpes[0].u);
3966 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, pVCpu->hm.s.aPdpes[1].u);
3967 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, pVCpu->hm.s.aPdpes[2].u);
3968 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, pVCpu->hm.s.aPdpes[3].u);
3969 AssertRCReturn(rc, rc);
3970 }
3971
3972 /* The guest's view of its CR3 is unblemished with Nested Paging when the guest is using paging or we
3973 have Unrestricted Execution to handle the guest when it's not using paging. */
3974 GCPhysGuestCR3 = pMixedCtx->cr3;
3975 }
3976 else
3977 {
3978 /*
3979 * The guest is not using paging, but the CPU (VT-x) has to. While the guest thinks it accesses physical memory
3980 * directly, we use our identity-mapped page table to map guest-linear to guest-physical addresses.
3981 * EPT takes care of translating it to host-physical addresses.
3982 */
3983 RTGCPHYS GCPhys;
3984 Assert(pVM->hm.s.vmx.pNonPagingModeEPTPageTable);
3985
3986 /* We obtain it here every time as the guest could have relocated this PCI region. */
3987 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
3988 if (RT_SUCCESS(rc))
3989 { /* likely */ }
3990 else if (rc == VERR_PDM_DEV_HEAP_R3_TO_GCPHYS)
3991 {
3992 Log4(("Load[%RU32]: VERR_PDM_DEV_HEAP_R3_TO_GCPHYS -> VINF_EM_RESCHEDULE_REM\n", pVCpu->idCpu));
3993 return VINF_EM_RESCHEDULE_REM; /* We cannot execute now, switch to REM/IEM till the guest maps in VMMDev. */
3994 }
3995 else
3996 AssertMsgFailedReturn(("%Rrc\n", rc), rc);
3997
3998 GCPhysGuestCR3 = GCPhys;
3999 }
4000
4001 Log4(("Load[%RU32]: VMX_VMCS_GUEST_CR3=%#RGp (GstN)\n", pVCpu->idCpu, GCPhysGuestCR3));
4002 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_CR3, GCPhysGuestCR3);
4003 }
4004 else
4005 {
4006 /* Non-nested paging case, just use the hypervisor's CR3. */
4007 RTHCPHYS HCPhysGuestCR3 = PGMGetHyperCR3(pVCpu);
4008
4009 Log4(("Load[%RU32]: VMX_VMCS_GUEST_CR3=%#RHv (HstN)\n", pVCpu->idCpu, HCPhysGuestCR3));
4010 rc = VMXWriteVmcsHstN(VMX_VMCS_GUEST_CR3, HCPhysGuestCR3);
4011 }
4012 AssertRCReturn(rc, rc);
4013
4014 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR3);
4015 }
4016
4017 /*
4018 * Guest CR4.
4019 * ASSUMES this is done everytime we get in from ring-3! (XCR0)
4020 */
4021 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR4))
4022 {
4023 Assert(!(pMixedCtx->cr4 >> 32));
4024 uint32_t u32GuestCR4 = pMixedCtx->cr4;
4025
4026 /* The guest's view of its CR4 is unblemished. */
4027 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, u32GuestCR4);
4028 AssertRCReturn(rc, rc);
4029 Log4(("Load[%RU32]: VMX_VMCS_CTRL_CR4_READ_SHADOW=%#RX32\n", pVCpu->idCpu, u32GuestCR4));
4030
4031 /* Setup VT-x's view of the guest CR4. */
4032 /*
4033 * If we're emulating real-mode using virtual-8086 mode, we want to redirect software interrupts to the 8086 program
4034 * interrupt handler. Clear the VME bit (the interrupt redirection bitmap is already all 0, see hmR3InitFinalizeR0())
4035 * See Intel spec. 20.2 "Software Interrupt Handling Methods While in Virtual-8086 Mode".
4036 */
4037 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4038 {
4039 Assert(pVM->hm.s.vmx.pRealModeTSS);
4040 Assert(PDMVmmDevHeapIsEnabled(pVM));
4041 u32GuestCR4 &= ~X86_CR4_VME;
4042 }
4043
4044 if (pVM->hm.s.fNestedPaging)
4045 {
4046 if ( !CPUMIsGuestPagingEnabledEx(pMixedCtx)
4047 && !pVM->hm.s.vmx.fUnrestrictedGuest)
4048 {
4049 /* We use 4 MB pages in our identity mapping page table when the guest doesn't have paging. */
4050 u32GuestCR4 |= X86_CR4_PSE;
4051 /* Our identity mapping is a 32-bit page directory. */
4052 u32GuestCR4 &= ~X86_CR4_PAE;
4053 }
4054 /* else use guest CR4.*/
4055 }
4056 else
4057 {
4058 /*
4059 * The shadow paging modes and guest paging modes are different, the shadow is in accordance with the host
4060 * paging mode and thus we need to adjust VT-x's view of CR4 depending on our shadow page tables.
4061 */
4062 switch (pVCpu->hm.s.enmShadowMode)
4063 {
4064 case PGMMODE_REAL: /* Real-mode. */
4065 case PGMMODE_PROTECTED: /* Protected mode without paging. */
4066 case PGMMODE_32_BIT: /* 32-bit paging. */
4067 {
4068 u32GuestCR4 &= ~X86_CR4_PAE;
4069 break;
4070 }
4071
4072 case PGMMODE_PAE: /* PAE paging. */
4073 case PGMMODE_PAE_NX: /* PAE paging with NX. */
4074 {
4075 u32GuestCR4 |= X86_CR4_PAE;
4076 break;
4077 }
4078
4079 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
4080 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
4081#ifdef VBOX_ENABLE_64_BITS_GUESTS
4082 break;
4083#endif
4084 default:
4085 AssertFailed();
4086 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
4087 }
4088 }
4089
4090 /* We need to set and clear the CR4 specific bits here (mainly the X86_CR4_VMXE bit). */
4091 uint64_t uSetCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
4092 uint64_t uZapCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
4093 u32GuestCR4 |= uSetCR4;
4094 u32GuestCR4 &= uZapCR4;
4095
4096 /* Write VT-x's view of the guest CR4 into the VMCS. */
4097 Log4(("Load[%RU32]: VMX_VMCS_GUEST_CR4=%#RX32 (Set=%#RX32 Zap=%#RX32)\n", pVCpu->idCpu, u32GuestCR4, uSetCR4, uZapCR4));
4098 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR4, u32GuestCR4);
4099 AssertRCReturn(rc, rc);
4100
4101 /* Setup CR4 mask. CR4 flags owned by the host, if the guest attempts to change them, that would cause a VM-exit. */
4102 uint32_t u32CR4Mask = X86_CR4_VME
4103 | X86_CR4_PAE
4104 | X86_CR4_PGE
4105 | X86_CR4_PSE
4106 | X86_CR4_VMXE;
4107 if (pVM->cpum.ro.HostFeatures.fXSaveRstor)
4108 u32CR4Mask |= X86_CR4_OSXSAVE;
4109 pVCpu->hm.s.vmx.u32CR4Mask = u32CR4Mask;
4110 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_MASK, u32CR4Mask);
4111 AssertRCReturn(rc, rc);
4112
4113 /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
4114 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pMixedCtx->cr4 & X86_CR4_OSXSAVE) && pMixedCtx->aXcr[0] != ASMGetXcr0();
4115
4116 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR4);
4117 }
4118 return rc;
4119}
4120
4121
4122/**
4123 * Loads the guest debug registers into the guest-state area in the VMCS.
4124 *
4125 * This also sets up whether \#DB and MOV DRx accesses cause VM-exits.
4126 *
4127 * The guest debug bits are partially shared with the host (e.g. DR6, DR0-3).
4128 *
4129 * @returns VBox status code.
4130 * @param pVCpu The cross context virtual CPU structure.
4131 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4132 * out-of-sync. Make sure to update the required fields
4133 * before using them.
4134 *
4135 * @remarks No-long-jump zone!!!
4136 */
4137static int hmR0VmxLoadSharedDebugState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4138{
4139 if (!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_DEBUG))
4140 return VINF_SUCCESS;
4141
4142#ifdef VBOX_STRICT
4143 /* Validate. Intel spec. 26.3.1.1 "Checks on Guest Controls Registers, Debug Registers, MSRs" */
4144 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG)
4145 {
4146 /* Validate. Intel spec. 17.2 "Debug Registers", recompiler paranoia checks. */
4147 Assert((pMixedCtx->dr[7] & (X86_DR7_MBZ_MASK | X86_DR7_RAZ_MASK)) == 0); /* Bits 63:32, 15, 14, 12, 11 are reserved. */
4148 Assert((pMixedCtx->dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK); /* Bit 10 is reserved (RA1). */
4149 }
4150#endif
4151
4152 int rc;
4153 PVM pVM = pVCpu->CTX_SUFF(pVM);
4154 bool fSteppingDB = false;
4155 bool fInterceptMovDRx = false;
4156 if (pVCpu->hm.s.fSingleInstruction)
4157 {
4158 /* If the CPU supports the monitor trap flag, use it for single stepping in DBGF and avoid intercepting #DB. */
4159 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG)
4160 {
4161 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG;
4162 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
4163 AssertRCReturn(rc, rc);
4164 Assert(fSteppingDB == false);
4165 }
4166 else
4167 {
4168 pMixedCtx->eflags.u32 |= X86_EFL_TF;
4169 pVCpu->hm.s.fClearTrapFlag = true;
4170 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RFLAGS);
4171 fSteppingDB = true;
4172 }
4173 }
4174
4175 if ( fSteppingDB
4176 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
4177 {
4178 /*
4179 * Use the combined guest and host DRx values found in the hypervisor
4180 * register set because the debugger has breakpoints active or someone
4181 * is single stepping on the host side without a monitor trap flag.
4182 *
4183 * Note! DBGF expects a clean DR6 state before executing guest code.
4184 */
4185#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4186 if ( CPUMIsGuestInLongModeEx(pMixedCtx)
4187 && !CPUMIsHyperDebugStateActivePending(pVCpu))
4188 {
4189 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
4190 Assert(CPUMIsHyperDebugStateActivePending(pVCpu));
4191 Assert(!CPUMIsGuestDebugStateActivePending(pVCpu));
4192 }
4193 else
4194#endif
4195 if (!CPUMIsHyperDebugStateActive(pVCpu))
4196 {
4197 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
4198 Assert(CPUMIsHyperDebugStateActive(pVCpu));
4199 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
4200 }
4201
4202 /* Update DR7. (The other DRx values are handled by CPUM one way or the other.) */
4203 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, (uint32_t)CPUMGetHyperDR7(pVCpu));
4204 AssertRCReturn(rc, rc);
4205
4206 pVCpu->hm.s.fUsingHyperDR7 = true;
4207 fInterceptMovDRx = true;
4208 }
4209 else
4210 {
4211 /*
4212 * If the guest has enabled debug registers, we need to load them prior to
4213 * executing guest code so they'll trigger at the right time.
4214 */
4215 if (pMixedCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD)) /** @todo Why GD? */
4216 {
4217#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4218 if ( CPUMIsGuestInLongModeEx(pMixedCtx)
4219 && !CPUMIsGuestDebugStateActivePending(pVCpu))
4220 {
4221 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
4222 Assert(CPUMIsGuestDebugStateActivePending(pVCpu));
4223 Assert(!CPUMIsHyperDebugStateActivePending(pVCpu));
4224 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
4225 }
4226 else
4227#endif
4228 if (!CPUMIsGuestDebugStateActive(pVCpu))
4229 {
4230 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
4231 Assert(CPUMIsGuestDebugStateActive(pVCpu));
4232 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
4233 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
4234 }
4235 Assert(!fInterceptMovDRx);
4236 }
4237 /*
4238 * If no debugging enabled, we'll lazy load DR0-3. Unlike on AMD-V, we
4239 * must intercept #DB in order to maintain a correct DR6 guest value, and
4240 * because we need to intercept it to prevent nested #DBs from hanging the
4241 * CPU, we end up always having to intercept it. See hmR0VmxInitXcptBitmap.
4242 */
4243#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4244 else if ( !CPUMIsGuestDebugStateActivePending(pVCpu)
4245 && !CPUMIsGuestDebugStateActive(pVCpu))
4246#else
4247 else if (!CPUMIsGuestDebugStateActive(pVCpu))
4248#endif
4249 {
4250 fInterceptMovDRx = true;
4251 }
4252
4253 /* Update guest DR7. */
4254 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, pMixedCtx->dr[7]);
4255 AssertRCReturn(rc, rc);
4256
4257 pVCpu->hm.s.fUsingHyperDR7 = false;
4258 }
4259
4260 /*
4261 * Update the processor-based VM-execution controls regarding intercepting MOV DRx instructions.
4262 */
4263 if (fInterceptMovDRx)
4264 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT;
4265 else
4266 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT;
4267 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
4268 AssertRCReturn(rc, rc);
4269
4270 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_DEBUG);
4271 return VINF_SUCCESS;
4272}
4273
4274
4275#ifdef VBOX_STRICT
4276/**
4277 * Strict function to validate segment registers.
4278 *
4279 * @remarks ASSUMES CR0 is up to date.
4280 */
4281static void hmR0VmxValidateSegmentRegs(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
4282{
4283 /* Validate segment registers. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers". */
4284 /* NOTE: The reason we check for attribute value 0 and not just the unusable bit here is because hmR0VmxWriteSegmentReg()
4285 * only updates the VMCS' copy of the value with the unusable bit and doesn't change the guest-context value. */
4286 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
4287 && ( !CPUMIsGuestInRealModeEx(pCtx)
4288 && !CPUMIsGuestInV86ModeEx(pCtx)))
4289 {
4290 /* Protected mode checks */
4291 /* CS */
4292 Assert(pCtx->cs.Attr.n.u1Present);
4293 Assert(!(pCtx->cs.Attr.u & 0xf00));
4294 Assert(!(pCtx->cs.Attr.u & 0xfffe0000));
4295 Assert( (pCtx->cs.u32Limit & 0xfff) == 0xfff
4296 || !(pCtx->cs.Attr.n.u1Granularity));
4297 Assert( !(pCtx->cs.u32Limit & 0xfff00000)
4298 || (pCtx->cs.Attr.n.u1Granularity));
4299 /* CS cannot be loaded with NULL in protected mode. */
4300 Assert(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE)); /** @todo is this really true even for 64-bit CS? */
4301 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
4302 Assert(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl);
4303 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
4304 Assert(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl);
4305 else
4306 AssertMsgFailed(("Invalid CS Type %#x\n", pCtx->cs.Attr.n.u2Dpl));
4307 /* SS */
4308 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
4309 Assert(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL));
4310 if ( !(pCtx->cr0 & X86_CR0_PE)
4311 || pCtx->cs.Attr.n.u4Type == 3)
4312 {
4313 Assert(!pCtx->ss.Attr.n.u2Dpl);
4314 }
4315 if (pCtx->ss.Attr.u && !(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
4316 {
4317 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
4318 Assert(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7);
4319 Assert(pCtx->ss.Attr.n.u1Present);
4320 Assert(!(pCtx->ss.Attr.u & 0xf00));
4321 Assert(!(pCtx->ss.Attr.u & 0xfffe0000));
4322 Assert( (pCtx->ss.u32Limit & 0xfff) == 0xfff
4323 || !(pCtx->ss.Attr.n.u1Granularity));
4324 Assert( !(pCtx->ss.u32Limit & 0xfff00000)
4325 || (pCtx->ss.Attr.n.u1Granularity));
4326 }
4327 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxWriteSegmentReg(). */
4328 if (pCtx->ds.Attr.u && !(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
4329 {
4330 Assert(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4331 Assert(pCtx->ds.Attr.n.u1Present);
4332 Assert(pCtx->ds.Attr.n.u4Type > 11 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL));
4333 Assert(!(pCtx->ds.Attr.u & 0xf00));
4334 Assert(!(pCtx->ds.Attr.u & 0xfffe0000));
4335 Assert( (pCtx->ds.u32Limit & 0xfff) == 0xfff
4336 || !(pCtx->ds.Attr.n.u1Granularity));
4337 Assert( !(pCtx->ds.u32Limit & 0xfff00000)
4338 || (pCtx->ds.Attr.n.u1Granularity));
4339 Assert( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4340 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ));
4341 }
4342 if (pCtx->es.Attr.u && !(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
4343 {
4344 Assert(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4345 Assert(pCtx->es.Attr.n.u1Present);
4346 Assert(pCtx->es.Attr.n.u4Type > 11 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL));
4347 Assert(!(pCtx->es.Attr.u & 0xf00));
4348 Assert(!(pCtx->es.Attr.u & 0xfffe0000));
4349 Assert( (pCtx->es.u32Limit & 0xfff) == 0xfff
4350 || !(pCtx->es.Attr.n.u1Granularity));
4351 Assert( !(pCtx->es.u32Limit & 0xfff00000)
4352 || (pCtx->es.Attr.n.u1Granularity));
4353 Assert( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4354 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ));
4355 }
4356 if (pCtx->fs.Attr.u && !(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
4357 {
4358 Assert(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4359 Assert(pCtx->fs.Attr.n.u1Present);
4360 Assert(pCtx->fs.Attr.n.u4Type > 11 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL));
4361 Assert(!(pCtx->fs.Attr.u & 0xf00));
4362 Assert(!(pCtx->fs.Attr.u & 0xfffe0000));
4363 Assert( (pCtx->fs.u32Limit & 0xfff) == 0xfff
4364 || !(pCtx->fs.Attr.n.u1Granularity));
4365 Assert( !(pCtx->fs.u32Limit & 0xfff00000)
4366 || (pCtx->fs.Attr.n.u1Granularity));
4367 Assert( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4368 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ));
4369 }
4370 if (pCtx->gs.Attr.u && !(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
4371 {
4372 Assert(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4373 Assert(pCtx->gs.Attr.n.u1Present);
4374 Assert(pCtx->gs.Attr.n.u4Type > 11 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL));
4375 Assert(!(pCtx->gs.Attr.u & 0xf00));
4376 Assert(!(pCtx->gs.Attr.u & 0xfffe0000));
4377 Assert( (pCtx->gs.u32Limit & 0xfff) == 0xfff
4378 || !(pCtx->gs.Attr.n.u1Granularity));
4379 Assert( !(pCtx->gs.u32Limit & 0xfff00000)
4380 || (pCtx->gs.Attr.n.u1Granularity));
4381 Assert( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4382 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ));
4383 }
4384 /* 64-bit capable CPUs. */
4385# if HC_ARCH_BITS == 64
4386 Assert(!(pCtx->cs.u64Base >> 32));
4387 Assert(!pCtx->ss.Attr.u || !(pCtx->ss.u64Base >> 32));
4388 Assert(!pCtx->ds.Attr.u || !(pCtx->ds.u64Base >> 32));
4389 Assert(!pCtx->es.Attr.u || !(pCtx->es.u64Base >> 32));
4390# endif
4391 }
4392 else if ( CPUMIsGuestInV86ModeEx(pCtx)
4393 || ( CPUMIsGuestInRealModeEx(pCtx)
4394 && !pVM->hm.s.vmx.fUnrestrictedGuest))
4395 {
4396 /* Real and v86 mode checks. */
4397 /* hmR0VmxWriteSegmentReg() writes the modified in VMCS. We want what we're feeding to VT-x. */
4398 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
4399 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4400 {
4401 u32CSAttr = 0xf3; u32SSAttr = 0xf3; u32DSAttr = 0xf3; u32ESAttr = 0xf3; u32FSAttr = 0xf3; u32GSAttr = 0xf3;
4402 }
4403 else
4404 {
4405 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u; u32DSAttr = pCtx->ds.Attr.u;
4406 u32ESAttr = pCtx->es.Attr.u; u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
4407 }
4408
4409 /* CS */
4410 AssertMsg((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), ("CS base %#x %#x\n", pCtx->cs.u64Base, pCtx->cs.Sel));
4411 Assert(pCtx->cs.u32Limit == 0xffff);
4412 Assert(u32CSAttr == 0xf3);
4413 /* SS */
4414 Assert(pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4);
4415 Assert(pCtx->ss.u32Limit == 0xffff);
4416 Assert(u32SSAttr == 0xf3);
4417 /* DS */
4418 Assert(pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4);
4419 Assert(pCtx->ds.u32Limit == 0xffff);
4420 Assert(u32DSAttr == 0xf3);
4421 /* ES */
4422 Assert(pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4);
4423 Assert(pCtx->es.u32Limit == 0xffff);
4424 Assert(u32ESAttr == 0xf3);
4425 /* FS */
4426 Assert(pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4);
4427 Assert(pCtx->fs.u32Limit == 0xffff);
4428 Assert(u32FSAttr == 0xf3);
4429 /* GS */
4430 Assert(pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4);
4431 Assert(pCtx->gs.u32Limit == 0xffff);
4432 Assert(u32GSAttr == 0xf3);
4433 /* 64-bit capable CPUs. */
4434# if HC_ARCH_BITS == 64
4435 Assert(!(pCtx->cs.u64Base >> 32));
4436 Assert(!u32SSAttr || !(pCtx->ss.u64Base >> 32));
4437 Assert(!u32DSAttr || !(pCtx->ds.u64Base >> 32));
4438 Assert(!u32ESAttr || !(pCtx->es.u64Base >> 32));
4439# endif
4440 }
4441}
4442#endif /* VBOX_STRICT */
4443
4444
4445/**
4446 * Writes a guest segment register into the guest-state area in the VMCS.
4447 *
4448 * @returns VBox status code.
4449 * @param pVCpu The cross context virtual CPU structure.
4450 * @param idxSel Index of the selector in the VMCS.
4451 * @param idxLimit Index of the segment limit in the VMCS.
4452 * @param idxBase Index of the segment base in the VMCS.
4453 * @param idxAccess Index of the access rights of the segment in the VMCS.
4454 * @param pSelReg Pointer to the segment selector.
4455 *
4456 * @remarks No-long-jump zone!!!
4457 */
4458static int hmR0VmxWriteSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase,
4459 uint32_t idxAccess, PCPUMSELREG pSelReg)
4460{
4461 int rc = VMXWriteVmcs32(idxSel, pSelReg->Sel); /* 16-bit guest selector field. */
4462 rc |= VMXWriteVmcs32(idxLimit, pSelReg->u32Limit); /* 32-bit guest segment limit field. */
4463 rc |= VMXWriteVmcsGstN(idxBase, pSelReg->u64Base); /* Natural width guest segment base field.*/
4464 AssertRCReturn(rc, rc);
4465
4466 uint32_t u32Access = pSelReg->Attr.u;
4467 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4468 {
4469 /* VT-x requires our real-using-v86 mode hack to override the segment access-right bits. */
4470 u32Access = 0xf3;
4471 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
4472 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
4473 }
4474 else
4475 {
4476 /*
4477 * The way to differentiate between whether this is really a null selector or was just a selector loaded with 0 in
4478 * real-mode is using the segment attributes. A selector loaded in real-mode with the value 0 is valid and usable in
4479 * protected-mode and we should -not- mark it as an unusable segment. Both the recompiler & VT-x ensures NULL selectors
4480 * loaded in protected-mode have their attribute as 0.
4481 */
4482 if (!u32Access)
4483 u32Access = X86DESCATTR_UNUSABLE;
4484 }
4485
4486 /* Validate segment access rights. Refer to Intel spec. "26.3.1.2 Checks on Guest Segment Registers". */
4487 AssertMsg((u32Access & X86DESCATTR_UNUSABLE) || (u32Access & X86_SEL_TYPE_ACCESSED),
4488 ("Access bit not set for usable segment. idx=%#x sel=%#x attr %#x\n", idxBase, pSelReg, pSelReg->Attr.u));
4489
4490 rc = VMXWriteVmcs32(idxAccess, u32Access); /* 32-bit guest segment access-rights field. */
4491 AssertRCReturn(rc, rc);
4492 return rc;
4493}
4494
4495
4496/**
4497 * Loads the guest segment registers, GDTR, IDTR, LDTR, (TR, FS and GS bases)
4498 * into the guest-state area in the VMCS.
4499 *
4500 * @returns VBox status code.
4501 * @param pVCpu The cross context virtual CPU structure.
4502 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4503 * out-of-sync. Make sure to update the required fields
4504 * before using them.
4505 *
4506 * @remarks ASSUMES pMixedCtx->cr0 is up to date (strict builds validation).
4507 * @remarks No-long-jump zone!!!
4508 */
4509static int hmR0VmxLoadGuestSegmentRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4510{
4511 int rc = VERR_INTERNAL_ERROR_5;
4512 PVM pVM = pVCpu->CTX_SUFF(pVM);
4513
4514 /*
4515 * Guest Segment registers: CS, SS, DS, ES, FS, GS.
4516 */
4517 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS))
4518 {
4519 /* Save the segment attributes for real-on-v86 mode hack, so we can restore them on VM-exit. */
4520 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4521 {
4522 pVCpu->hm.s.vmx.RealMode.AttrCS.u = pMixedCtx->cs.Attr.u;
4523 pVCpu->hm.s.vmx.RealMode.AttrSS.u = pMixedCtx->ss.Attr.u;
4524 pVCpu->hm.s.vmx.RealMode.AttrDS.u = pMixedCtx->ds.Attr.u;
4525 pVCpu->hm.s.vmx.RealMode.AttrES.u = pMixedCtx->es.Attr.u;
4526 pVCpu->hm.s.vmx.RealMode.AttrFS.u = pMixedCtx->fs.Attr.u;
4527 pVCpu->hm.s.vmx.RealMode.AttrGS.u = pMixedCtx->gs.Attr.u;
4528 }
4529
4530#ifdef VBOX_WITH_REM
4531 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
4532 {
4533 Assert(pVM->hm.s.vmx.pRealModeTSS);
4534 AssertCompile(PGMMODE_REAL < PGMMODE_PROTECTED);
4535 if ( pVCpu->hm.s.vmx.fWasInRealMode
4536 && PGMGetGuestMode(pVCpu) >= PGMMODE_PROTECTED)
4537 {
4538 /* Signal that the recompiler must flush its code-cache as the guest -may- rewrite code it will later execute
4539 in real-mode (e.g. OpenBSD 4.0) */
4540 REMFlushTBs(pVM);
4541 Log4(("Load[%RU32]: Switch to protected mode detected!\n", pVCpu->idCpu));
4542 pVCpu->hm.s.vmx.fWasInRealMode = false;
4543 }
4544 }
4545#endif
4546 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_CS_SEL, VMX_VMCS32_GUEST_CS_LIMIT, VMX_VMCS_GUEST_CS_BASE,
4547 VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS, &pMixedCtx->cs);
4548 AssertRCReturn(rc, rc);
4549 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_SS_SEL, VMX_VMCS32_GUEST_SS_LIMIT, VMX_VMCS_GUEST_SS_BASE,
4550 VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS, &pMixedCtx->ss);
4551 AssertRCReturn(rc, rc);
4552 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_DS_SEL, VMX_VMCS32_GUEST_DS_LIMIT, VMX_VMCS_GUEST_DS_BASE,
4553 VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS, &pMixedCtx->ds);
4554 AssertRCReturn(rc, rc);
4555 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_ES_SEL, VMX_VMCS32_GUEST_ES_LIMIT, VMX_VMCS_GUEST_ES_BASE,
4556 VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS, &pMixedCtx->es);
4557 AssertRCReturn(rc, rc);
4558 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FS_SEL, VMX_VMCS32_GUEST_FS_LIMIT, VMX_VMCS_GUEST_FS_BASE,
4559 VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS, &pMixedCtx->fs);
4560 AssertRCReturn(rc, rc);
4561 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_GS_SEL, VMX_VMCS32_GUEST_GS_LIMIT, VMX_VMCS_GUEST_GS_BASE,
4562 VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS, &pMixedCtx->gs);
4563 AssertRCReturn(rc, rc);
4564
4565#ifdef VBOX_STRICT
4566 /* Validate. */
4567 hmR0VmxValidateSegmentRegs(pVM, pVCpu, pMixedCtx);
4568#endif
4569
4570 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS);
4571 Log4(("Load[%RU32]: CS=%#RX16 Base=%#RX64 Limit=%#RX32 Attr=%#RX32\n", pVCpu->idCpu, pMixedCtx->cs.Sel,
4572 pMixedCtx->cs.u64Base, pMixedCtx->cs.u32Limit, pMixedCtx->cs.Attr.u));
4573 }
4574
4575 /*
4576 * Guest TR.
4577 */
4578 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_TR))
4579 {
4580 /*
4581 * Real-mode emulation using virtual-8086 mode with CR4.VME. Interrupt redirection is achieved
4582 * using the interrupt redirection bitmap (all bits cleared to let the guest handle INT-n's) in the TSS.
4583 * See hmR3InitFinalizeR0() to see how pRealModeTSS is setup.
4584 */
4585 uint16_t u16Sel = 0;
4586 uint32_t u32Limit = 0;
4587 uint64_t u64Base = 0;
4588 uint32_t u32AccessRights = 0;
4589
4590 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4591 {
4592 u16Sel = pMixedCtx->tr.Sel;
4593 u32Limit = pMixedCtx->tr.u32Limit;
4594 u64Base = pMixedCtx->tr.u64Base;
4595 u32AccessRights = pMixedCtx->tr.Attr.u;
4596 }
4597 else
4598 {
4599 Assert(pVM->hm.s.vmx.pRealModeTSS);
4600 Assert(PDMVmmDevHeapIsEnabled(pVM)); /* Guaranteed by HMR3CanExecuteGuest() -XXX- what about inner loop changes? */
4601
4602 /* We obtain it here every time as PCI regions could be reconfigured in the guest, changing the VMMDev base. */
4603 RTGCPHYS GCPhys;
4604 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
4605 AssertRCReturn(rc, rc);
4606
4607 X86DESCATTR DescAttr;
4608 DescAttr.u = 0;
4609 DescAttr.n.u1Present = 1;
4610 DescAttr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
4611
4612 u16Sel = 0;
4613 u32Limit = HM_VTX_TSS_SIZE;
4614 u64Base = GCPhys; /* in real-mode phys = virt. */
4615 u32AccessRights = DescAttr.u;
4616 }
4617
4618 /* Validate. */
4619 Assert(!(u16Sel & RT_BIT(2)));
4620 AssertMsg( (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_386_TSS_BUSY
4621 || (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_286_TSS_BUSY, ("TSS is not busy!? %#x\n", u32AccessRights));
4622 AssertMsg(!(u32AccessRights & X86DESCATTR_UNUSABLE), ("TR unusable bit is not clear!? %#x\n", u32AccessRights));
4623 Assert(!(u32AccessRights & RT_BIT(4))); /* System MBZ.*/
4624 Assert(u32AccessRights & RT_BIT(7)); /* Present MB1.*/
4625 Assert(!(u32AccessRights & 0xf00)); /* 11:8 MBZ. */
4626 Assert(!(u32AccessRights & 0xfffe0000)); /* 31:17 MBZ. */
4627 Assert( (u32Limit & 0xfff) == 0xfff
4628 || !(u32AccessRights & RT_BIT(15))); /* Granularity MBZ. */
4629 Assert( !(pMixedCtx->tr.u32Limit & 0xfff00000)
4630 || (u32AccessRights & RT_BIT(15))); /* Granularity MB1. */
4631
4632 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_TR_SEL, u16Sel);
4633 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_LIMIT, u32Limit);
4634 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_TR_BASE, u64Base);
4635 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, u32AccessRights);
4636 AssertRCReturn(rc, rc);
4637
4638 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_TR);
4639 Log4(("Load[%RU32]: VMX_VMCS_GUEST_TR_BASE=%#RX64\n", pVCpu->idCpu, u64Base));
4640 }
4641
4642 /*
4643 * Guest GDTR.
4644 */
4645 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_GDTR))
4646 {
4647 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, pMixedCtx->gdtr.cbGdt);
4648 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, pMixedCtx->gdtr.pGdt);
4649 AssertRCReturn(rc, rc);
4650
4651 /* Validate. */
4652 Assert(!(pMixedCtx->gdtr.cbGdt & 0xffff0000)); /* Bits 31:16 MBZ. */
4653
4654 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_GDTR);
4655 Log4(("Load[%RU32]: VMX_VMCS_GUEST_GDTR_BASE=%#RX64\n", pVCpu->idCpu, pMixedCtx->gdtr.pGdt));
4656 }
4657
4658 /*
4659 * Guest LDTR.
4660 */
4661 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LDTR))
4662 {
4663 /* The unusable bit is specific to VT-x, if it's a null selector mark it as an unusable segment. */
4664 uint32_t u32Access = 0;
4665 if (!pMixedCtx->ldtr.Attr.u)
4666 u32Access = X86DESCATTR_UNUSABLE;
4667 else
4668 u32Access = pMixedCtx->ldtr.Attr.u;
4669
4670 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_LDTR_SEL, pMixedCtx->ldtr.Sel);
4671 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_LIMIT, pMixedCtx->ldtr.u32Limit);
4672 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_LDTR_BASE, pMixedCtx->ldtr.u64Base);
4673 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, u32Access);
4674 AssertRCReturn(rc, rc);
4675
4676 /* Validate. */
4677 if (!(u32Access & X86DESCATTR_UNUSABLE))
4678 {
4679 Assert(!(pMixedCtx->ldtr.Sel & RT_BIT(2))); /* TI MBZ. */
4680 Assert(pMixedCtx->ldtr.Attr.n.u4Type == 2); /* Type MB2 (LDT). */
4681 Assert(!pMixedCtx->ldtr.Attr.n.u1DescType); /* System MBZ. */
4682 Assert(pMixedCtx->ldtr.Attr.n.u1Present == 1); /* Present MB1. */
4683 Assert(!pMixedCtx->ldtr.Attr.n.u4LimitHigh); /* 11:8 MBZ. */
4684 Assert(!(pMixedCtx->ldtr.Attr.u & 0xfffe0000)); /* 31:17 MBZ. */
4685 Assert( (pMixedCtx->ldtr.u32Limit & 0xfff) == 0xfff
4686 || !pMixedCtx->ldtr.Attr.n.u1Granularity); /* Granularity MBZ. */
4687 Assert( !(pMixedCtx->ldtr.u32Limit & 0xfff00000)
4688 || pMixedCtx->ldtr.Attr.n.u1Granularity); /* Granularity MB1. */
4689 }
4690
4691 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_LDTR);
4692 Log4(("Load[%RU32]: VMX_VMCS_GUEST_LDTR_BASE=%#RX64\n", pVCpu->idCpu, pMixedCtx->ldtr.u64Base));
4693 }
4694
4695 /*
4696 * Guest IDTR.
4697 */
4698 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_IDTR))
4699 {
4700 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, pMixedCtx->idtr.cbIdt);
4701 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, pMixedCtx->idtr.pIdt);
4702 AssertRCReturn(rc, rc);
4703
4704 /* Validate. */
4705 Assert(!(pMixedCtx->idtr.cbIdt & 0xffff0000)); /* Bits 31:16 MBZ. */
4706
4707 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_IDTR);
4708 Log4(("Load[%RU32]: VMX_VMCS_GUEST_IDTR_BASE=%#RX64\n", pVCpu->idCpu, pMixedCtx->idtr.pIdt));
4709 }
4710
4711 return VINF_SUCCESS;
4712}
4713
4714
4715/**
4716 * Loads certain guest MSRs into the VM-entry MSR-load and VM-exit MSR-store
4717 * areas.
4718 *
4719 * These MSRs will automatically be loaded to the host CPU on every successful
4720 * VM-entry and stored from the host CPU on every successful VM-exit. This also
4721 * creates/updates MSR slots for the host MSRs. The actual host MSR values are
4722 * -not- updated here for performance reasons. See hmR0VmxSaveHostMsrs().
4723 *
4724 * Also loads the sysenter MSRs into the guest-state area in the VMCS.
4725 *
4726 * @returns VBox status code.
4727 * @param pVCpu The cross context virtual CPU structure.
4728 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4729 * out-of-sync. Make sure to update the required fields
4730 * before using them.
4731 *
4732 * @remarks No-long-jump zone!!!
4733 */
4734static int hmR0VmxLoadGuestMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4735{
4736 AssertPtr(pVCpu);
4737 AssertPtr(pVCpu->hm.s.vmx.pvGuestMsr);
4738
4739 /*
4740 * MSRs that we use the auto-load/store MSR area in the VMCS.
4741 */
4742 PVM pVM = pVCpu->CTX_SUFF(pVM);
4743 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_GUEST_AUTO_MSRS))
4744 {
4745 /* For 64-bit hosts, we load/restore them lazily, see hmR0VmxLazyLoadGuestMsrs(). */
4746#if HC_ARCH_BITS == 32
4747 if (pVM->hm.s.fAllow64BitGuests)
4748 {
4749 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_LSTAR, pMixedCtx->msrLSTAR, false, NULL);
4750 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K6_STAR, pMixedCtx->msrSTAR, false, NULL);
4751 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_SF_MASK, pMixedCtx->msrSFMASK, false, NULL);
4752 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_KERNEL_GS_BASE, pMixedCtx->msrKERNELGSBASE, false, NULL);
4753 AssertRCReturn(rc, rc);
4754# ifdef LOG_ENABLED
4755 PVMXAUTOMSR pMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
4756 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.cMsrs; i++, pMsr++)
4757 {
4758 Log4(("Load[%RU32]: MSR[%RU32]: u32Msr=%#RX32 u64Value=%#RX64\n", pVCpu->idCpu, i, pMsr->u32Msr,
4759 pMsr->u64Value));
4760 }
4761# endif
4762 }
4763#endif
4764 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_GUEST_AUTO_MSRS);
4765 }
4766
4767 /*
4768 * Guest Sysenter MSRs.
4769 * These flags are only set when MSR-bitmaps are not supported by the CPU and we cause
4770 * VM-exits on WRMSRs for these MSRs.
4771 */
4772 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR))
4773 {
4774 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, pMixedCtx->SysEnter.cs); AssertRCReturn(rc, rc);
4775 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR);
4776 }
4777
4778 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR))
4779 {
4780 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, pMixedCtx->SysEnter.eip); AssertRCReturn(rc, rc);
4781 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR);
4782 }
4783
4784 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR))
4785 {
4786 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, pMixedCtx->SysEnter.esp); AssertRCReturn(rc, rc);
4787 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR);
4788 }
4789
4790 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_EFER_MSR))
4791 {
4792 if (hmR0VmxShouldSwapEferMsr(pVCpu, pMixedCtx))
4793 {
4794 /*
4795 * If the CPU supports VMCS controls for swapping EFER, use it. Otherwise, we have no option
4796 * but to use the auto-load store MSR area in the VMCS for swapping EFER. See @bugref{7368}.
4797 */
4798 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
4799 {
4800 int rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_EFER_FULL, pMixedCtx->msrEFER);
4801 AssertRCReturn(rc,rc);
4802 Log4(("Load[%RU32]: VMX_VMCS64_GUEST_EFER_FULL=%#RX64\n", pVCpu->idCpu, pMixedCtx->msrEFER));
4803 }
4804 else
4805 {
4806 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K6_EFER, pMixedCtx->msrEFER, false /* fUpdateHostMsr */,
4807 NULL /* pfAddedAndUpdated */);
4808 AssertRCReturn(rc, rc);
4809
4810 /* We need to intercept reads too, see @bugref{7386#c16}. */
4811 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
4812 hmR0VmxSetMsrPermission(pVCpu, MSR_K6_EFER, VMXMSREXIT_INTERCEPT_READ, VMXMSREXIT_INTERCEPT_WRITE);
4813 Log4(("Load[%RU32]: MSR[--]: u32Msr=%#RX32 u64Value=%#RX64 cMsrs=%u\n", pVCpu->idCpu, MSR_K6_EFER,
4814 pMixedCtx->msrEFER, pVCpu->hm.s.vmx.cMsrs));
4815 }
4816 }
4817 else if (!pVM->hm.s.vmx.fSupportsVmcsEfer)
4818 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, MSR_K6_EFER);
4819 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_EFER_MSR);
4820 }
4821
4822 return VINF_SUCCESS;
4823}
4824
4825
4826/**
4827 * Loads the guest activity state into the guest-state area in the VMCS.
4828 *
4829 * @returns VBox status code.
4830 * @param pVCpu The cross context virtual CPU structure.
4831 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4832 * out-of-sync. Make sure to update the required fields
4833 * before using them.
4834 *
4835 * @remarks No-long-jump zone!!!
4836 */
4837static int hmR0VmxLoadGuestActivityState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4838{
4839 NOREF(pMixedCtx);
4840 /** @todo See if we can make use of other states, e.g.
4841 * VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN or HLT. */
4842 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_GUEST_ACTIVITY_STATE))
4843 {
4844 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, VMX_VMCS_GUEST_ACTIVITY_ACTIVE);
4845 AssertRCReturn(rc, rc);
4846
4847 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_GUEST_ACTIVITY_STATE);
4848 }
4849 return VINF_SUCCESS;
4850}
4851
4852
4853#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
4854/**
4855 * Check if guest state allows safe use of 32-bit switcher again.
4856 *
4857 * Segment bases and protected mode structures must be 32-bit addressable
4858 * because the 32-bit switcher will ignore high dword when writing these VMCS
4859 * fields. See @bugref{8432} for details.
4860 *
4861 * @returns true if safe, false if must continue to use the 64-bit switcher.
4862 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4863 * out-of-sync. Make sure to update the required fields
4864 * before using them.
4865 *
4866 * @remarks No-long-jump zone!!!
4867 */
4868static bool hmR0VmxIs32BitSwitcherSafe(PCPUMCTX pMixedCtx)
4869{
4870 if (pMixedCtx->gdtr.pGdt & UINT64_C(0xffffffff00000000))
4871 return false;
4872 if (pMixedCtx->idtr.pIdt & UINT64_C(0xffffffff00000000))
4873 return false;
4874 if (pMixedCtx->ldtr.u64Base & UINT64_C(0xffffffff00000000))
4875 return false;
4876 if (pMixedCtx->tr.u64Base & UINT64_C(0xffffffff00000000))
4877 return false;
4878 if (pMixedCtx->es.u64Base & UINT64_C(0xffffffff00000000))
4879 return false;
4880 if (pMixedCtx->cs.u64Base & UINT64_C(0xffffffff00000000))
4881 return false;
4882 if (pMixedCtx->ss.u64Base & UINT64_C(0xffffffff00000000))
4883 return false;
4884 if (pMixedCtx->ds.u64Base & UINT64_C(0xffffffff00000000))
4885 return false;
4886 if (pMixedCtx->fs.u64Base & UINT64_C(0xffffffff00000000))
4887 return false;
4888 if (pMixedCtx->gs.u64Base & UINT64_C(0xffffffff00000000))
4889 return false;
4890 /* All good, bases are 32-bit. */
4891 return true;
4892}
4893#endif
4894
4895
4896/**
4897 * Sets up the appropriate function to run guest code.
4898 *
4899 * @returns VBox status code.
4900 * @param pVCpu The cross context virtual CPU structure.
4901 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4902 * out-of-sync. Make sure to update the required fields
4903 * before using them.
4904 *
4905 * @remarks No-long-jump zone!!!
4906 */
4907static int hmR0VmxSetupVMRunHandler(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4908{
4909 if (CPUMIsGuestInLongModeEx(pMixedCtx))
4910 {
4911#ifndef VBOX_ENABLE_64_BITS_GUESTS
4912 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
4913#endif
4914 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
4915#if HC_ARCH_BITS == 32
4916 /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
4917 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0SwitcherStartVM64)
4918 {
4919 if (pVCpu->hm.s.vmx.pfnStartVM != NULL) /* Very first entry would have saved host-state already, ignore it. */
4920 {
4921 /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
4922 AssertMsg(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_VMX_EXIT_CTLS
4923 | HM_CHANGED_VMX_ENTRY_CTLS
4924 | HM_CHANGED_GUEST_EFER_MSR), ("flags=%#x\n", HMCPU_CF_VALUE(pVCpu)));
4925 }
4926 pVCpu->hm.s.vmx.pfnStartVM = VMXR0SwitcherStartVM64;
4927
4928 /* Mark that we've switched to 64-bit handler, we can't safely switch back to 32-bit for
4929 the rest of the VM run (until VM reset). See @bugref{8432#c7}. */
4930 pVCpu->hm.s.vmx.fSwitchedTo64on32 = true;
4931 Log4(("Load[%RU32]: hmR0VmxSetupVMRunHandler: selected 64-bit switcher\n", pVCpu->idCpu));
4932 }
4933#else
4934 /* 64-bit host. */
4935 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM64;
4936#endif
4937 }
4938 else
4939 {
4940 /* Guest is not in long mode, use the 32-bit handler. */
4941#if HC_ARCH_BITS == 32
4942 if ( pVCpu->hm.s.vmx.pfnStartVM != VMXR0StartVM32
4943 && !pVCpu->hm.s.vmx.fSwitchedTo64on32 /* If set, guest mode change does not imply switcher change. */
4944 && pVCpu->hm.s.vmx.pfnStartVM != NULL) /* Very first entry would have saved host-state already, ignore it. */
4945 {
4946 /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
4947 AssertMsg(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_VMX_EXIT_CTLS
4948 | HM_CHANGED_VMX_ENTRY_CTLS
4949 | HM_CHANGED_GUEST_EFER_MSR), ("flags=%#x\n", HMCPU_CF_VALUE(pVCpu)));
4950 }
4951# ifdef VBOX_ENABLE_64_BITS_GUESTS
4952 /*
4953 * Keep using the 64-bit switcher even though we're in 32-bit because of bad Intel design, see @bugref{8432#c7}.
4954 * If real-on-v86 mode is active, clear the 64-bit switcher flag because now we know the guest is in a sane
4955 * state where it's safe to use the 32-bit switcher. Otherwise check the guest state if it's safe to use
4956 * the much faster 32-bit switcher again.
4957 */
4958 if (!pVCpu->hm.s.vmx.fSwitchedTo64on32)
4959 {
4960 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0StartVM32)
4961 Log4(("Load[%RU32]: hmR0VmxSetupVMRunHandler: selected 32-bit switcher\n", pVCpu->idCpu));
4962 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4963 }
4964 else
4965 {
4966 Assert(pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64);
4967 if ( pVCpu->hm.s.vmx.RealMode.fRealOnV86Active
4968 || hmR0VmxIs32BitSwitcherSafe(pMixedCtx))
4969 {
4970 pVCpu->hm.s.vmx.fSwitchedTo64on32 = false;
4971 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4972 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_EFER_MSR
4973 | HM_CHANGED_VMX_ENTRY_CTLS
4974 | HM_CHANGED_VMX_EXIT_CTLS
4975 | HM_CHANGED_HOST_CONTEXT);
4976 Log4(("Load[%RU32]: hmR0VmxSetupVMRunHandler: selected 32-bit switcher (safe)\n", pVCpu->idCpu));
4977 }
4978 }
4979# else
4980 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4981# endif
4982#else
4983 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4984#endif
4985 }
4986 Assert(pVCpu->hm.s.vmx.pfnStartVM);
4987 return VINF_SUCCESS;
4988}
4989
4990
4991/**
4992 * Wrapper for running the guest code in VT-x.
4993 *
4994 * @returns VBox status code, no informational status codes.
4995 * @param pVM The cross context VM structure.
4996 * @param pVCpu The cross context virtual CPU structure.
4997 * @param pCtx Pointer to the guest-CPU context.
4998 *
4999 * @remarks No-long-jump zone!!!
5000 */
5001DECLINLINE(int) hmR0VmxRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
5002{
5003 /*
5004 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses floating-point operations
5005 * using SSE instructions. Some XMM registers (XMM6-XMM15) are callee-saved and thus the need for this XMM wrapper.
5006 * Refer MSDN docs. "Configuring Programs for 64-bit / x64 Software Conventions / Register Usage" for details.
5007 */
5008 bool const fResumeVM = RT_BOOL(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_LAUNCHED);
5009 /** @todo Add stats for resume vs launch. */
5010#ifdef VBOX_WITH_KERNEL_USING_XMM
5011 int rc = hmR0VMXStartVMWrapXMM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu, pVCpu->hm.s.vmx.pfnStartVM);
5012#else
5013 int rc = pVCpu->hm.s.vmx.pfnStartVM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu);
5014#endif
5015 AssertMsg(rc <= VINF_SUCCESS, ("%Rrc\n", rc));
5016 return rc;
5017}
5018
5019
5020/**
5021 * Reports world-switch error and dumps some useful debug info.
5022 *
5023 * @param pVM The cross context VM structure.
5024 * @param pVCpu The cross context virtual CPU structure.
5025 * @param rcVMRun The return code from VMLAUNCH/VMRESUME.
5026 * @param pCtx Pointer to the guest-CPU context.
5027 * @param pVmxTransient Pointer to the VMX transient structure (only
5028 * exitReason updated).
5029 */
5030static void hmR0VmxReportWorldSwitchError(PVM pVM, PVMCPU pVCpu, int rcVMRun, PCPUMCTX pCtx, PVMXTRANSIENT pVmxTransient)
5031{
5032 Assert(pVM);
5033 Assert(pVCpu);
5034 Assert(pCtx);
5035 Assert(pVmxTransient);
5036 HMVMX_ASSERT_PREEMPT_SAFE();
5037
5038 Log4(("VM-entry failure: %Rrc\n", rcVMRun));
5039 switch (rcVMRun)
5040 {
5041 case VERR_VMX_INVALID_VMXON_PTR:
5042 AssertFailed();
5043 break;
5044 case VINF_SUCCESS: /* VMLAUNCH/VMRESUME succeeded but VM-entry failed... yeah, true story. */
5045 case VERR_VMX_UNABLE_TO_START_VM: /* VMLAUNCH/VMRESUME itself failed. */
5046 {
5047 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &pVCpu->hm.s.vmx.LastError.u32ExitReason);
5048 rc |= VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
5049 rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
5050 AssertRC(rc);
5051
5052 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
5053 /* LastError.idCurrentCpu was already updated in hmR0VmxPreRunGuestCommitted().
5054 Cannot do it here as we may have been long preempted. */
5055
5056#ifdef VBOX_STRICT
5057 Log4(("uExitReason %#RX32 (VmxTransient %#RX16)\n", pVCpu->hm.s.vmx.LastError.u32ExitReason,
5058 pVmxTransient->uExitReason));
5059 Log4(("Exit Qualification %#RX64\n", pVmxTransient->uExitQualification));
5060 Log4(("InstrError %#RX32\n", pVCpu->hm.s.vmx.LastError.u32InstrError));
5061 if (pVCpu->hm.s.vmx.LastError.u32InstrError <= HMVMX_INSTR_ERROR_MAX)
5062 Log4(("InstrError Desc. \"%s\"\n", g_apszVmxInstrErrors[pVCpu->hm.s.vmx.LastError.u32InstrError]));
5063 else
5064 Log4(("InstrError Desc. Range exceeded %u\n", HMVMX_INSTR_ERROR_MAX));
5065 Log4(("Entered host CPU %u\n", pVCpu->hm.s.vmx.LastError.idEnteredCpu));
5066 Log4(("Current host CPU %u\n", pVCpu->hm.s.vmx.LastError.idCurrentCpu));
5067
5068 /* VMX control bits. */
5069 uint32_t u32Val;
5070 uint64_t u64Val;
5071 RTHCUINTREG uHCReg;
5072 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val); AssertRC(rc);
5073 Log4(("VMX_VMCS32_CTRL_PIN_EXEC %#RX32\n", u32Val));
5074 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val); AssertRC(rc);
5075 Log4(("VMX_VMCS32_CTRL_PROC_EXEC %#RX32\n", u32Val));
5076 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
5077 {
5078 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val); AssertRC(rc);
5079 Log4(("VMX_VMCS32_CTRL_PROC_EXEC2 %#RX32\n", u32Val));
5080 }
5081 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val); AssertRC(rc);
5082 Log4(("VMX_VMCS32_CTRL_ENTRY %#RX32\n", u32Val));
5083 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val); AssertRC(rc);
5084 Log4(("VMX_VMCS32_CTRL_EXIT %#RX32\n", u32Val));
5085 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, &u32Val); AssertRC(rc);
5086 Log4(("VMX_VMCS32_CTRL_CR3_TARGET_COUNT %#RX32\n", u32Val));
5087 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32Val); AssertRC(rc);
5088 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", u32Val));
5089 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &u32Val); AssertRC(rc);
5090 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", u32Val));
5091 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &u32Val); AssertRC(rc);
5092 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %u\n", u32Val));
5093 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, &u32Val); AssertRC(rc);
5094 Log4(("VMX_VMCS32_CTRL_TPR_THRESHOLD %u\n", u32Val));
5095 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &u32Val); AssertRC(rc);
5096 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT %u (guest MSRs)\n", u32Val));
5097 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
5098 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT %u (host MSRs)\n", u32Val));
5099 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
5100 Log4(("VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT %u (guest MSRs)\n", u32Val));
5101 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val); AssertRC(rc);
5102 Log4(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP %#RX32\n", u32Val));
5103 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, &u32Val); AssertRC(rc);
5104 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK %#RX32\n", u32Val));
5105 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, &u32Val); AssertRC(rc);
5106 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH %#RX32\n", u32Val));
5107 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
5108 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
5109 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
5110 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
5111 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
5112 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
5113 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
5114 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
5115 if (pVM->hm.s.fNestedPaging)
5116 {
5117 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
5118 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
5119 }
5120
5121 /* Guest bits. */
5122 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val); AssertRC(rc);
5123 Log4(("Old Guest Rip %#RX64 New %#RX64\n", pCtx->rip, u64Val));
5124 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val); AssertRC(rc);
5125 Log4(("Old Guest Rsp %#RX64 New %#RX64\n", pCtx->rsp, u64Val));
5126 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Val); AssertRC(rc);
5127 Log4(("Old Guest Rflags %#RX32 New %#RX32\n", pCtx->eflags.u32, u32Val));
5128 if (pVM->hm.s.vmx.fVpid)
5129 {
5130 rc = VMXReadVmcs32(VMX_VMCS16_VPID, &u32Val); AssertRC(rc);
5131 Log4(("VMX_VMCS16_VPID %u\n", u32Val));
5132 }
5133
5134 /* Host bits. */
5135 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR0, &uHCReg); AssertRC(rc);
5136 Log4(("Host CR0 %#RHr\n", uHCReg));
5137 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR3, &uHCReg); AssertRC(rc);
5138 Log4(("Host CR3 %#RHr\n", uHCReg));
5139 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR4, &uHCReg); AssertRC(rc);
5140 Log4(("Host CR4 %#RHr\n", uHCReg));
5141
5142 RTGDTR HostGdtr;
5143 PCX86DESCHC pDesc;
5144 ASMGetGDTR(&HostGdtr);
5145 rc = VMXReadVmcs32(VMX_VMCS16_HOST_CS_SEL, &u32Val); AssertRC(rc);
5146 Log4(("Host CS %#08x\n", u32Val));
5147 if (u32Val < HostGdtr.cbGdt)
5148 {
5149 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5150 hmR0DumpDescriptor(pDesc, u32Val, "CS: ");
5151 }
5152
5153 rc = VMXReadVmcs32(VMX_VMCS16_HOST_DS_SEL, &u32Val); AssertRC(rc);
5154 Log4(("Host DS %#08x\n", u32Val));
5155 if (u32Val < HostGdtr.cbGdt)
5156 {
5157 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5158 hmR0DumpDescriptor(pDesc, u32Val, "DS: ");
5159 }
5160
5161 rc = VMXReadVmcs32(VMX_VMCS16_HOST_ES_SEL, &u32Val); AssertRC(rc);
5162 Log4(("Host ES %#08x\n", u32Val));
5163 if (u32Val < HostGdtr.cbGdt)
5164 {
5165 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5166 hmR0DumpDescriptor(pDesc, u32Val, "ES: ");
5167 }
5168
5169 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FS_SEL, &u32Val); AssertRC(rc);
5170 Log4(("Host FS %#08x\n", u32Val));
5171 if (u32Val < HostGdtr.cbGdt)
5172 {
5173 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5174 hmR0DumpDescriptor(pDesc, u32Val, "FS: ");
5175 }
5176
5177 rc = VMXReadVmcs32(VMX_VMCS16_HOST_GS_SEL, &u32Val); AssertRC(rc);
5178 Log4(("Host GS %#08x\n", u32Val));
5179 if (u32Val < HostGdtr.cbGdt)
5180 {
5181 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5182 hmR0DumpDescriptor(pDesc, u32Val, "GS: ");
5183 }
5184
5185 rc = VMXReadVmcs32(VMX_VMCS16_HOST_SS_SEL, &u32Val); AssertRC(rc);
5186 Log4(("Host SS %#08x\n", u32Val));
5187 if (u32Val < HostGdtr.cbGdt)
5188 {
5189 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5190 hmR0DumpDescriptor(pDesc, u32Val, "SS: ");
5191 }
5192
5193 rc = VMXReadVmcs32(VMX_VMCS16_HOST_TR_SEL, &u32Val); AssertRC(rc);
5194 Log4(("Host TR %#08x\n", u32Val));
5195 if (u32Val < HostGdtr.cbGdt)
5196 {
5197 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5198 hmR0DumpDescriptor(pDesc, u32Val, "TR: ");
5199 }
5200
5201 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_TR_BASE, &uHCReg); AssertRC(rc);
5202 Log4(("Host TR Base %#RHv\n", uHCReg));
5203 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, &uHCReg); AssertRC(rc);
5204 Log4(("Host GDTR Base %#RHv\n", uHCReg));
5205 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, &uHCReg); AssertRC(rc);
5206 Log4(("Host IDTR Base %#RHv\n", uHCReg));
5207 rc = VMXReadVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, &u32Val); AssertRC(rc);
5208 Log4(("Host SYSENTER CS %#08x\n", u32Val));
5209 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_EIP, &uHCReg); AssertRC(rc);
5210 Log4(("Host SYSENTER EIP %#RHv\n", uHCReg));
5211 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_ESP, &uHCReg); AssertRC(rc);
5212 Log4(("Host SYSENTER ESP %#RHv\n", uHCReg));
5213 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RSP, &uHCReg); AssertRC(rc);
5214 Log4(("Host RSP %#RHv\n", uHCReg));
5215 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RIP, &uHCReg); AssertRC(rc);
5216 Log4(("Host RIP %#RHv\n", uHCReg));
5217# if HC_ARCH_BITS == 64
5218 Log4(("MSR_K6_EFER = %#RX64\n", ASMRdMsr(MSR_K6_EFER)));
5219 Log4(("MSR_K8_CSTAR = %#RX64\n", ASMRdMsr(MSR_K8_CSTAR)));
5220 Log4(("MSR_K8_LSTAR = %#RX64\n", ASMRdMsr(MSR_K8_LSTAR)));
5221 Log4(("MSR_K6_STAR = %#RX64\n", ASMRdMsr(MSR_K6_STAR)));
5222 Log4(("MSR_K8_SF_MASK = %#RX64\n", ASMRdMsr(MSR_K8_SF_MASK)));
5223 Log4(("MSR_K8_KERNEL_GS_BASE = %#RX64\n", ASMRdMsr(MSR_K8_KERNEL_GS_BASE)));
5224# endif
5225#endif /* VBOX_STRICT */
5226 break;
5227 }
5228
5229 default:
5230 /* Impossible */
5231 AssertMsgFailed(("hmR0VmxReportWorldSwitchError %Rrc (%#x)\n", rcVMRun, rcVMRun));
5232 break;
5233 }
5234 NOREF(pVM); NOREF(pCtx);
5235}
5236
5237
5238#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
5239#ifndef VMX_USE_CACHED_VMCS_ACCESSES
5240# error "VMX_USE_CACHED_VMCS_ACCESSES not defined when it should be!"
5241#endif
5242#ifdef VBOX_STRICT
5243static bool hmR0VmxIsValidWriteField(uint32_t idxField)
5244{
5245 switch (idxField)
5246 {
5247 case VMX_VMCS_GUEST_RIP:
5248 case VMX_VMCS_GUEST_RSP:
5249 case VMX_VMCS_GUEST_SYSENTER_EIP:
5250 case VMX_VMCS_GUEST_SYSENTER_ESP:
5251 case VMX_VMCS_GUEST_GDTR_BASE:
5252 case VMX_VMCS_GUEST_IDTR_BASE:
5253 case VMX_VMCS_GUEST_CS_BASE:
5254 case VMX_VMCS_GUEST_DS_BASE:
5255 case VMX_VMCS_GUEST_ES_BASE:
5256 case VMX_VMCS_GUEST_FS_BASE:
5257 case VMX_VMCS_GUEST_GS_BASE:
5258 case VMX_VMCS_GUEST_SS_BASE:
5259 case VMX_VMCS_GUEST_LDTR_BASE:
5260 case VMX_VMCS_GUEST_TR_BASE:
5261 case VMX_VMCS_GUEST_CR3:
5262 return true;
5263 }
5264 return false;
5265}
5266
5267static bool hmR0VmxIsValidReadField(uint32_t idxField)
5268{
5269 switch (idxField)
5270 {
5271 /* Read-only fields. */
5272 case VMX_VMCS_RO_EXIT_QUALIFICATION:
5273 return true;
5274 }
5275 /* Remaining readable fields should also be writable. */
5276 return hmR0VmxIsValidWriteField(idxField);
5277}
5278#endif /* VBOX_STRICT */
5279
5280
5281/**
5282 * Executes the specified handler in 64-bit mode.
5283 *
5284 * @returns VBox status code (no informational status codes).
5285 * @param pVM The cross context VM structure.
5286 * @param pVCpu The cross context virtual CPU structure.
5287 * @param pCtx Pointer to the guest CPU context.
5288 * @param enmOp The operation to perform.
5289 * @param cParams Number of parameters.
5290 * @param paParam Array of 32-bit parameters.
5291 */
5292VMMR0DECL(int) VMXR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, HM64ON32OP enmOp,
5293 uint32_t cParams, uint32_t *paParam)
5294{
5295 NOREF(pCtx);
5296
5297 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
5298 Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
5299 Assert(pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Write.aField));
5300 Assert(pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Read.aField));
5301
5302#ifdef VBOX_STRICT
5303 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries; i++)
5304 Assert(hmR0VmxIsValidWriteField(pVCpu->hm.s.vmx.VMCSCache.Write.aField[i]));
5305
5306 for (uint32_t i = 0; i <pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries; i++)
5307 Assert(hmR0VmxIsValidReadField(pVCpu->hm.s.vmx.VMCSCache.Read.aField[i]));
5308#endif
5309
5310 /* Disable interrupts. */
5311 RTCCUINTREG fOldEFlags = ASMIntDisableFlags();
5312
5313#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
5314 RTCPUID idHostCpu = RTMpCpuId();
5315 CPUMR0SetLApic(pVCpu, idHostCpu);
5316#endif
5317
5318 PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
5319 RTHCPHYS HCPhysCpuPage = pCpu->HCPhysMemObj;
5320
5321 /* Clear VMCS. Marking it inactive, clearing implementation-specific data and writing VMCS data back to memory. */
5322 VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
5323 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
5324
5325 /* Leave VMX Root Mode. */
5326 VMXDisable();
5327
5328 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
5329
5330 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
5331 CPUMSetHyperEIP(pVCpu, enmOp);
5332 for (int i = (int)cParams - 1; i >= 0; i--)
5333 CPUMPushHyper(pVCpu, paParam[i]);
5334
5335 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
5336
5337 /* Call the switcher. */
5338 int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum));
5339 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
5340
5341 /** @todo replace with hmR0VmxEnterRootMode() and hmR0VmxLeaveRootMode(). */
5342 /* Make sure the VMX instructions don't cause #UD faults. */
5343 SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
5344
5345 /* Re-enter VMX Root Mode */
5346 int rc2 = VMXEnable(HCPhysCpuPage);
5347 if (RT_FAILURE(rc2))
5348 {
5349 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
5350 ASMSetFlags(fOldEFlags);
5351 pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
5352 return rc2;
5353 }
5354
5355 rc2 = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
5356 AssertRC(rc2);
5357 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
5358 Assert(!(ASMGetFlags() & X86_EFL_IF));
5359 ASMSetFlags(fOldEFlags);
5360 return rc;
5361}
5362
5363
5364/**
5365 * Prepares for and executes VMLAUNCH (64-bit guests) for 32-bit hosts
5366 * supporting 64-bit guests.
5367 *
5368 * @returns VBox status code.
5369 * @param fResume Whether to VMLAUNCH or VMRESUME.
5370 * @param pCtx Pointer to the guest-CPU context.
5371 * @param pCache Pointer to the VMCS cache.
5372 * @param pVM The cross context VM structure.
5373 * @param pVCpu The cross context virtual CPU structure.
5374 */
5375DECLASM(int) VMXR0SwitcherStartVM64(RTHCUINT fResume, PCPUMCTX pCtx, PVMCSCACHE pCache, PVM pVM, PVMCPU pVCpu)
5376{
5377 NOREF(fResume);
5378
5379 PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
5380 RTHCPHYS HCPhysCpuPage = pCpu->HCPhysMemObj;
5381
5382#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5383 pCache->uPos = 1;
5384 pCache->interPD = PGMGetInterPaeCR3(pVM);
5385 pCache->pSwitcher = (uint64_t)pVM->hm.s.pfnHost32ToGuest64R0;
5386#endif
5387
5388#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
5389 pCache->TestIn.HCPhysCpuPage = 0;
5390 pCache->TestIn.HCPhysVmcs = 0;
5391 pCache->TestIn.pCache = 0;
5392 pCache->TestOut.HCPhysVmcs = 0;
5393 pCache->TestOut.pCache = 0;
5394 pCache->TestOut.pCtx = 0;
5395 pCache->TestOut.eflags = 0;
5396#else
5397 NOREF(pCache);
5398#endif
5399
5400 uint32_t aParam[10];
5401 aParam[0] = (uint32_t)(HCPhysCpuPage); /* Param 1: VMXON physical address - Lo. */
5402 aParam[1] = (uint32_t)(HCPhysCpuPage >> 32); /* Param 1: VMXON physical address - Hi. */
5403 aParam[2] = (uint32_t)(pVCpu->hm.s.vmx.HCPhysVmcs); /* Param 2: VMCS physical address - Lo. */
5404 aParam[3] = (uint32_t)(pVCpu->hm.s.vmx.HCPhysVmcs >> 32); /* Param 2: VMCS physical address - Hi. */
5405 aParam[4] = VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache);
5406 aParam[5] = 0;
5407 aParam[6] = VM_RC_ADDR(pVM, pVM);
5408 aParam[7] = 0;
5409 aParam[8] = VM_RC_ADDR(pVM, pVCpu);
5410 aParam[9] = 0;
5411
5412#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5413 pCtx->dr[4] = pVM->hm.s.vmx.pScratchPhys + 16 + 8;
5414 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 1;
5415#endif
5416 int rc = VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_VMXRCStartVM64, RT_ELEMENTS(aParam), &aParam[0]);
5417
5418#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5419 Assert(*(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) == 5);
5420 Assert(pCtx->dr[4] == 10);
5421 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 0xff;
5422#endif
5423
5424#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
5425 AssertMsg(pCache->TestIn.HCPhysCpuPage == HCPhysCpuPage, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysCpuPage, HCPhysCpuPage));
5426 AssertMsg(pCache->TestIn.HCPhysVmcs == pVCpu->hm.s.vmx.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
5427 pVCpu->hm.s.vmx.HCPhysVmcs));
5428 AssertMsg(pCache->TestIn.HCPhysVmcs == pCache->TestOut.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
5429 pCache->TestOut.HCPhysVmcs));
5430 AssertMsg(pCache->TestIn.pCache == pCache->TestOut.pCache, ("%RGv vs %RGv\n", pCache->TestIn.pCache,
5431 pCache->TestOut.pCache));
5432 AssertMsg(pCache->TestIn.pCache == VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache),
5433 ("%RGv vs %RGv\n", pCache->TestIn.pCache, VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache)));
5434 AssertMsg(pCache->TestIn.pCtx == pCache->TestOut.pCtx, ("%RGv vs %RGv\n", pCache->TestIn.pCtx,
5435 pCache->TestOut.pCtx));
5436 Assert(!(pCache->TestOut.eflags & X86_EFL_IF));
5437#endif
5438 return rc;
5439}
5440
5441
5442/**
5443 * Initialize the VMCS-Read cache.
5444 *
5445 * The VMCS cache is used for 32-bit hosts running 64-bit guests (except 32-bit
5446 * Darwin which runs with 64-bit paging in 32-bit mode) for 64-bit fields that
5447 * cannot be accessed in 32-bit mode. Some 64-bit fields -can- be accessed
5448 * (those that have a 32-bit FULL & HIGH part).
5449 *
5450 * @returns VBox status code.
5451 * @param pVM The cross context VM structure.
5452 * @param pVCpu The cross context virtual CPU structure.
5453 */
5454static int hmR0VmxInitVmcsReadCache(PVM pVM, PVMCPU pVCpu)
5455{
5456#define VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, idxField) \
5457{ \
5458 Assert(pCache->Read.aField[idxField##_CACHE_IDX] == 0); \
5459 pCache->Read.aField[idxField##_CACHE_IDX] = idxField; \
5460 pCache->Read.aFieldVal[idxField##_CACHE_IDX] = 0; \
5461 ++cReadFields; \
5462}
5463
5464 AssertPtr(pVM);
5465 AssertPtr(pVCpu);
5466 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
5467 uint32_t cReadFields = 0;
5468
5469 /*
5470 * Don't remove the #if 0'd fields in this code. They're listed here for consistency
5471 * and serve to indicate exceptions to the rules.
5472 */
5473
5474 /* Guest-natural selector base fields. */
5475#if 0
5476 /* These are 32-bit in practice. See Intel spec. 2.5 "Control Registers". */
5477 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR0);
5478 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR4);
5479#endif
5480 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_ES_BASE);
5481 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CS_BASE);
5482 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SS_BASE);
5483 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_DS_BASE);
5484 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_FS_BASE);
5485 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GS_BASE);
5486 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_LDTR_BASE);
5487 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_TR_BASE);
5488 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GDTR_BASE);
5489 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_IDTR_BASE);
5490 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RSP);
5491 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RIP);
5492#if 0
5493 /* Unused natural width guest-state fields. */
5494 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS);
5495 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3); /* Handled in Nested Paging case */
5496#endif
5497 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_ESP);
5498 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_EIP);
5499
5500 /* 64-bit guest-state fields; unused as we use two 32-bit VMREADs for these 64-bit fields (using "FULL" and "HIGH" fields). */
5501#if 0
5502 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL);
5503 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_DEBUGCTL_FULL);
5504 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PAT_FULL);
5505 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_EFER_FULL);
5506 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL);
5507 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE0_FULL);
5508 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE1_FULL);
5509 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE2_FULL);
5510 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE3_FULL);
5511#endif
5512
5513 /* Natural width guest-state fields. */
5514 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_QUALIFICATION);
5515#if 0
5516 /* Currently unused field. */
5517 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_GUEST_LINEAR_ADDR);
5518#endif
5519
5520 if (pVM->hm.s.fNestedPaging)
5521 {
5522 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3);
5523 AssertMsg(cReadFields == VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields,
5524 VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX));
5525 pCache->Read.cValidEntries = VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX;
5526 }
5527 else
5528 {
5529 AssertMsg(cReadFields == VMX_VMCS_MAX_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields, VMX_VMCS_MAX_CACHE_IDX));
5530 pCache->Read.cValidEntries = VMX_VMCS_MAX_CACHE_IDX;
5531 }
5532
5533#undef VMXLOCAL_INIT_READ_CACHE_FIELD
5534 return VINF_SUCCESS;
5535}
5536
5537
5538/**
5539 * Writes a field into the VMCS. This can either directly invoke a VMWRITE or
5540 * queue up the VMWRITE by using the VMCS write cache (on 32-bit hosts, except
5541 * darwin, running 64-bit guests).
5542 *
5543 * @returns VBox status code.
5544 * @param pVCpu The cross context virtual CPU structure.
5545 * @param idxField The VMCS field encoding.
5546 * @param u64Val 16, 32 or 64-bit value.
5547 */
5548VMMR0DECL(int) VMXWriteVmcs64Ex(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
5549{
5550 int rc;
5551 switch (idxField)
5552 {
5553 /*
5554 * These fields consists of a "FULL" and a "HIGH" part which can be written to individually.
5555 */
5556 /* 64-bit Control fields. */
5557 case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL:
5558 case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL:
5559 case VMX_VMCS64_CTRL_MSR_BITMAP_FULL:
5560 case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL:
5561 case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL:
5562 case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL:
5563 case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL:
5564 case VMX_VMCS64_CTRL_TSC_OFFSET_FULL:
5565 case VMX_VMCS64_CTRL_VAPIC_PAGEADDR_FULL:
5566 case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL:
5567 case VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL:
5568 case VMX_VMCS64_CTRL_EPTP_FULL:
5569 case VMX_VMCS64_CTRL_EPTP_LIST_FULL:
5570 /* 64-bit Guest-state fields. */
5571 case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL:
5572 case VMX_VMCS64_GUEST_DEBUGCTL_FULL:
5573 case VMX_VMCS64_GUEST_PAT_FULL:
5574 case VMX_VMCS64_GUEST_EFER_FULL:
5575 case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL:
5576 case VMX_VMCS64_GUEST_PDPTE0_FULL:
5577 case VMX_VMCS64_GUEST_PDPTE1_FULL:
5578 case VMX_VMCS64_GUEST_PDPTE2_FULL:
5579 case VMX_VMCS64_GUEST_PDPTE3_FULL:
5580 /* 64-bit Host-state fields. */
5581 case VMX_VMCS64_HOST_PAT_FULL:
5582 case VMX_VMCS64_HOST_EFER_FULL:
5583 case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL:
5584 {
5585 rc = VMXWriteVmcs32(idxField, u64Val);
5586 rc |= VMXWriteVmcs32(idxField + 1, (uint32_t)(u64Val >> 32));
5587 break;
5588 }
5589
5590 /*
5591 * These fields do not have high and low parts. Queue up the VMWRITE by using the VMCS write-cache (for 64-bit
5592 * values). When we switch the host to 64-bit mode for running 64-bit guests, these VMWRITEs get executed then.
5593 */
5594 /* Natural-width Guest-state fields. */
5595 case VMX_VMCS_GUEST_CR3:
5596 case VMX_VMCS_GUEST_ES_BASE:
5597 case VMX_VMCS_GUEST_CS_BASE:
5598 case VMX_VMCS_GUEST_SS_BASE:
5599 case VMX_VMCS_GUEST_DS_BASE:
5600 case VMX_VMCS_GUEST_FS_BASE:
5601 case VMX_VMCS_GUEST_GS_BASE:
5602 case VMX_VMCS_GUEST_LDTR_BASE:
5603 case VMX_VMCS_GUEST_TR_BASE:
5604 case VMX_VMCS_GUEST_GDTR_BASE:
5605 case VMX_VMCS_GUEST_IDTR_BASE:
5606 case VMX_VMCS_GUEST_RSP:
5607 case VMX_VMCS_GUEST_RIP:
5608 case VMX_VMCS_GUEST_SYSENTER_ESP:
5609 case VMX_VMCS_GUEST_SYSENTER_EIP:
5610 {
5611 if (!(u64Val >> 32))
5612 {
5613 /* If this field is 64-bit, VT-x will zero out the top bits. */
5614 rc = VMXWriteVmcs32(idxField, (uint32_t)u64Val);
5615 }
5616 else
5617 {
5618 /* Assert that only the 32->64 switcher case should ever come here. */
5619 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests);
5620 rc = VMXWriteCachedVmcsEx(pVCpu, idxField, u64Val);
5621 }
5622 break;
5623 }
5624
5625 default:
5626 {
5627 AssertMsgFailed(("VMXWriteVmcs64Ex: Invalid field %#RX32 (pVCpu=%p u64Val=%#RX64)\n", idxField, pVCpu, u64Val));
5628 rc = VERR_INVALID_PARAMETER;
5629 break;
5630 }
5631 }
5632 AssertRCReturn(rc, rc);
5633 return rc;
5634}
5635
5636
5637/**
5638 * Queue up a VMWRITE by using the VMCS write cache.
5639 * This is only used on 32-bit hosts (except darwin) for 64-bit guests.
5640 *
5641 * @param pVCpu The cross context virtual CPU structure.
5642 * @param idxField The VMCS field encoding.
5643 * @param u64Val 16, 32 or 64-bit value.
5644 */
5645VMMR0DECL(int) VMXWriteCachedVmcsEx(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
5646{
5647 AssertPtr(pVCpu);
5648 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
5649
5650 AssertMsgReturn(pCache->Write.cValidEntries < VMCSCACHE_MAX_ENTRY - 1,
5651 ("entries=%u\n", pCache->Write.cValidEntries), VERR_ACCESS_DENIED);
5652
5653 /* Make sure there are no duplicates. */
5654 for (uint32_t i = 0; i < pCache->Write.cValidEntries; i++)
5655 {
5656 if (pCache->Write.aField[i] == idxField)
5657 {
5658 pCache->Write.aFieldVal[i] = u64Val;
5659 return VINF_SUCCESS;
5660 }
5661 }
5662
5663 pCache->Write.aField[pCache->Write.cValidEntries] = idxField;
5664 pCache->Write.aFieldVal[pCache->Write.cValidEntries] = u64Val;
5665 pCache->Write.cValidEntries++;
5666 return VINF_SUCCESS;
5667}
5668#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
5669
5670
5671/**
5672 * Sets up the usage of TSC-offsetting and updates the VMCS.
5673 *
5674 * If offsetting is not possible, cause VM-exits on RDTSC(P)s. Also sets up the
5675 * VMX preemption timer.
5676 *
5677 * @returns VBox status code.
5678 * @param pVM The cross context VM structure.
5679 * @param pVCpu The cross context virtual CPU structure.
5680 *
5681 * @remarks No-long-jump zone!!!
5682 */
5683static void hmR0VmxUpdateTscOffsettingAndPreemptTimer(PVM pVM, PVMCPU pVCpu)
5684{
5685 int rc;
5686 bool fOffsettedTsc;
5687 bool fParavirtTsc;
5688 if (pVM->hm.s.vmx.fUsePreemptTimer)
5689 {
5690 uint64_t cTicksToDeadline = TMCpuTickGetDeadlineAndTscOffset(pVM, pVCpu, &pVCpu->hm.s.vmx.u64TSCOffset,
5691 &fOffsettedTsc, &fParavirtTsc);
5692
5693 /* Make sure the returned values have sane upper and lower boundaries. */
5694 uint64_t u64CpuHz = SUPGetCpuHzFromGipBySetIndex(g_pSUPGlobalInfoPage, pVCpu->iHostCpuSet);
5695 cTicksToDeadline = RT_MIN(cTicksToDeadline, u64CpuHz / 64); /* 1/64th of a second */
5696 cTicksToDeadline = RT_MAX(cTicksToDeadline, u64CpuHz / 2048); /* 1/2048th of a second */
5697 cTicksToDeadline >>= pVM->hm.s.vmx.cPreemptTimerShift;
5698
5699 uint32_t cPreemptionTickCount = (uint32_t)RT_MIN(cTicksToDeadline, UINT32_MAX - 16);
5700 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_PREEMPT_TIMER_VALUE, cPreemptionTickCount); AssertRC(rc);
5701 }
5702 else
5703 fOffsettedTsc = TMCpuTickCanUseRealTSC(pVM, pVCpu, &pVCpu->hm.s.vmx.u64TSCOffset, &fParavirtTsc);
5704
5705 /** @todo later optimize this to be done elsewhere and not before every
5706 * VM-entry. */
5707 if (fParavirtTsc)
5708 {
5709 /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
5710 information before every VM-entry, hence disable it for performance sake. */
5711#if 0
5712 rc = GIMR0UpdateParavirtTsc(pVM, 0 /* u64Offset */);
5713 AssertRC(rc);
5714#endif
5715 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
5716 }
5717
5718 if (fOffsettedTsc && RT_LIKELY(!pVCpu->hm.s.fDebugWantRdTscExit))
5719 {
5720 /* Note: VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT takes precedence over TSC_OFFSET, applies to RDTSCP too. */
5721 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, pVCpu->hm.s.vmx.u64TSCOffset); AssertRC(rc);
5722
5723 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT;
5724 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc);
5725 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
5726 }
5727 else
5728 {
5729 /* We can't use TSC-offsetting (non-fixed TSC, warp drive active etc.), VM-exit on RDTSC(P). */
5730 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT;
5731 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc);
5732 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
5733 }
5734}
5735
5736
5737#ifdef HMVMX_USE_IEM_EVENT_REFLECTION
5738/**
5739 * Gets the IEM exception flags for the specified vector and IDT vectoring /
5740 * VM-exit interruption info type.
5741 *
5742 * @returns The IEM exception flags.
5743 * @param uVector The event vector.
5744 * @param uVmxVectorType The VMX event type.
5745 *
5746 * @remarks This function currently only constructs flags required for
5747 * IEMEvaluateRecursiveXcpt and not the complete flags (e.g, error-code
5748 * and CR2 aspects of an exception are not included).
5749 */
5750static uint32_t hmR0VmxGetIemXcptFlags(uint8_t uVector, uint32_t uVmxVectorType)
5751{
5752 uint32_t fIemXcptFlags;
5753 switch (uVmxVectorType)
5754 {
5755 case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
5756 case VMX_IDT_VECTORING_INFO_TYPE_NMI:
5757 fIemXcptFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
5758 break;
5759
5760 case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
5761 fIemXcptFlags = IEM_XCPT_FLAGS_T_EXT_INT;
5762 break;
5763
5764 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
5765 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_ICEBP_INSTR;
5766 break;
5767
5768 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT:
5769 {
5770 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
5771 if (uVector == X86_XCPT_BP)
5772 fIemXcptFlags |= IEM_XCPT_FLAGS_BP_INSTR;
5773 else if (uVector == X86_XCPT_OF)
5774 fIemXcptFlags |= IEM_XCPT_FLAGS_OF_INSTR;
5775 else
5776 {
5777 fIemXcptFlags = 0;
5778 AssertMsgFailed(("Unexpected vector for software int. uVector=%#x", uVector));
5779 }
5780 break;
5781 }
5782
5783 default:
5784 fIemXcptFlags = 0;
5785 AssertMsgFailed(("Unexpected vector type! uVmxVectorType=%#x uVector=%#x", uVmxVectorType, uVector));
5786 break;
5787 }
5788 return fIemXcptFlags;
5789}
5790
5791#else
5792/**
5793 * Determines if an exception is a contributory exception.
5794 *
5795 * Contributory exceptions are ones which can cause double-faults unless the
5796 * original exception was a benign exception. Page-fault is intentionally not
5797 * included here as it's a conditional contributory exception.
5798 *
5799 * @returns true if the exception is contributory, false otherwise.
5800 * @param uVector The exception vector.
5801 */
5802DECLINLINE(bool) hmR0VmxIsContributoryXcpt(const uint32_t uVector)
5803{
5804 switch (uVector)
5805 {
5806 case X86_XCPT_GP:
5807 case X86_XCPT_SS:
5808 case X86_XCPT_NP:
5809 case X86_XCPT_TS:
5810 case X86_XCPT_DE:
5811 return true;
5812 default:
5813 break;
5814 }
5815 return false;
5816}
5817#endif /* HMVMX_USE_IEM_EVENT_REFLECTION */
5818
5819
5820/**
5821 * Sets an event as a pending event to be injected into the guest.
5822 *
5823 * @param pVCpu The cross context virtual CPU structure.
5824 * @param u32IntInfo The VM-entry interruption-information field.
5825 * @param cbInstr The VM-entry instruction length in bytes (for software
5826 * interrupts, exceptions and privileged software
5827 * exceptions).
5828 * @param u32ErrCode The VM-entry exception error code.
5829 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
5830 * page-fault.
5831 *
5832 * @remarks Statistics counter assumes this is a guest event being injected or
5833 * re-injected into the guest, i.e. 'StatInjectPendingReflect' is
5834 * always incremented.
5835 */
5836DECLINLINE(void) hmR0VmxSetPendingEvent(PVMCPU pVCpu, uint32_t u32IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
5837 RTGCUINTPTR GCPtrFaultAddress)
5838{
5839 Assert(!pVCpu->hm.s.Event.fPending);
5840 pVCpu->hm.s.Event.fPending = true;
5841 pVCpu->hm.s.Event.u64IntInfo = u32IntInfo;
5842 pVCpu->hm.s.Event.u32ErrCode = u32ErrCode;
5843 pVCpu->hm.s.Event.cbInstr = cbInstr;
5844 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
5845}
5846
5847
5848/**
5849 * Sets a double-fault (\#DF) exception as pending-for-injection into the VM.
5850 *
5851 * @param pVCpu The cross context virtual CPU structure.
5852 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
5853 * out-of-sync. Make sure to update the required fields
5854 * before using them.
5855 */
5856DECLINLINE(void) hmR0VmxSetPendingXcptDF(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5857{
5858 NOREF(pMixedCtx);
5859 uint32_t u32IntInfo = X86_XCPT_DF | VMX_EXIT_INTERRUPTION_INFO_VALID;
5860 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
5861 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
5862 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
5863}
5864
5865
5866/**
5867 * Handle a condition that occurred while delivering an event through the guest
5868 * IDT.
5869 *
5870 * @returns Strict VBox status code (i.e. informational status codes too).
5871 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
5872 * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought
5873 * to continue execution of the guest which will delivery the \#DF.
5874 * @retval VINF_EM_RESET if we detected a triple-fault condition.
5875 * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
5876 *
5877 * @param pVCpu The cross context virtual CPU structure.
5878 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
5879 * out-of-sync. Make sure to update the required fields
5880 * before using them.
5881 * @param pVmxTransient Pointer to the VMX transient structure.
5882 *
5883 * @remarks No-long-jump zone!!!
5884 */
5885static VBOXSTRICTRC hmR0VmxCheckExitDueToEventDelivery(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
5886{
5887 uint32_t const uExitVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVmxTransient->uExitIntInfo);
5888
5889 int rc2 = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient); AssertRCReturn(rc2, rc2);
5890 rc2 = hmR0VmxReadExitIntInfoVmcs(pVmxTransient); AssertRCReturn(rc2, rc2);
5891
5892 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
5893 if (VMX_IDT_VECTORING_INFO_VALID(pVmxTransient->uIdtVectoringInfo))
5894 {
5895 uint32_t const uIdtVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
5896 uint32_t const uIdtVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
5897#ifdef HMVMX_USE_IEM_EVENT_REFLECTION
5898 /* See Intel spec. 30.7.1.1 "Reflecting Exceptions to Guest Software". */
5899 IEMXCPTRAISE enmRaise;
5900 IEMXCPTRAISEINFO fRaiseInfo;
5901 if (VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo))
5902 {
5903 uint32_t const uExitVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uExitIntInfo);
5904 uint32_t const fIdtVectorFlags = hmR0VmxGetIemXcptFlags(uIdtVector, uIdtVectorType);
5905 uint32_t const fExitVectorFlags = hmR0VmxGetIemXcptFlags(uExitVector, uExitVectorType);
5906 AssertMsg( uExitVectorType == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT
5907 || uExitVectorType == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI,
5908 ("hmR0VmxCheckExitDueToEventDelivery: Unexpected VM-exit interruption info. type %#x!\n", uExitVectorType));
5909 enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fIdtVectorFlags, uIdtVector, fExitVectorFlags, uExitVector,
5910 &fRaiseInfo);
5911
5912 if (fRaiseInfo & (IEMXCPTRAISEINFO_EXT_INT_XCPT | IEMXCPTRAISEINFO_NMI_XCPT))
5913 {
5914 /*
5915 * For some reason we go back to the interpreter if delivery of an external interrupt or
5916 * NMI causes an exception, see hmR0VmxExitXcptOrNmi. As long as we go back to the interpret
5917 * we need to keep the previous (first) event pending, hence this hack.
5918 */
5919 enmRaise = IEMXCPTRAISE_PREV_EVENT;
5920
5921 /* Determine a vectoring #PF condition, see comment in hmR0VmxExitXcptPF(). */
5922 if (fRaiseInfo & (IEMXCPTRAISEINFO_EXT_INT_PF | IEMXCPTRAISEINFO_NMI_PF))
5923 pVmxTransient->fVectoringPF = true;
5924 }
5925 }
5926 else
5927 {
5928 /*
5929 * If event delivery caused an EPT violation/misconfig or APIC access VM-exit, then the VM-exit
5930 * interruption-information will not be valid as it's not an exception and we end up here.
5931 *
5932 * If the event was an external interrupt or hardare exception (incl. NMI) it is sufficient to
5933 * reflect this event to the guest after handling the VM-exit.
5934 *
5935 * If the event was a software interrupt (generated with INT n) or a software exception (generated
5936 * by INT3/INTO) or a privileged software exception (generated by INT1), we can handle the VM-exit
5937 * and continue guest execution which will re-execute the instruction rather than re-injecting the
5938 * event, as that can cause premature trips to ring-3 before injection and involve TRPM which
5939 * currently has no way of storing that the exceptions were caused by these special instructions.
5940 */
5941 if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
5942 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
5943 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT)
5944 enmRaise = IEMXCPTRAISE_PREV_EVENT;
5945 else
5946 enmRaise = IEMXCPTRAISE_REEXEC_INSTR;
5947 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
5948 }
5949
5950 /*
5951 * On CPUs that support Virtual NMIs, if this VM-exit (be it an exception or EPT violation/misconfig
5952 * etc.) occurred while delivering the NMI, we need to clear the block-by-NMI field in the guest
5953 * interruptibility-state before re-delivering the NMI after handling the VM-exit. Otherwise the
5954 * subsequent VM-entry would fail.
5955 *
5956 * See Intel spec. 30.7.1.2 "Resuming Guest Software after Handling an Exception". See @bugref{7445}.
5957 */
5958 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS)
5959 && uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
5960 && ( enmRaise == IEMXCPTRAISE_PREV_EVENT
5961 || (fRaiseInfo & IEMXCPTRAISEINFO_NMI_PF))
5962 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI))
5963 {
5964 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
5965 }
5966
5967 switch (enmRaise)
5968 {
5969 case IEMXCPTRAISE_CURRENT_XCPT:
5970 case IEMXCPTRAISE_REEXEC_INSTR:
5971 Assert(rcStrict == VINF_SUCCESS);
5972 break;
5973
5974 case IEMXCPTRAISE_PREV_EVENT:
5975 {
5976 /*
5977 * Re-raise the previous (first) exception/interrupt as delivery caused a premature VM-exit.
5978 */
5979 Assert( uIdtVectorType != VMX_IDT_VECTORING_INFO_TYPE_SW_INT
5980 && uIdtVectorType != VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
5981 && uIdtVectorType != VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT);
5982
5983 uint32_t u32ErrCode;
5984 if (VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVmxTransient->uIdtVectoringInfo))
5985 {
5986 rc2 = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
5987 AssertRCReturn(rc2, rc2);
5988 u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
5989 }
5990 else
5991 u32ErrCode = 0;
5992
5993 /* If uExitVector is #PF, CR2 value will be updated from the VMCS if it's a guest #PF, see hmR0VmxExitXcptPF(). */
5994 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
5995 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
5996 0 /* cbInstr */, u32ErrCode, pMixedCtx->cr2);
5997
5998 Log4(("IDT: vcpu[%RU32] Pending vectoring event %#RX64 Err=%#RX32\n", pVCpu->idCpu, pVCpu->hm.s.Event.u64IntInfo,
5999 pVCpu->hm.s.Event.u32ErrCode));
6000 Assert(rcStrict == VINF_SUCCESS);
6001 break;
6002 }
6003
6004 case IEMXCPTRAISE_DOUBLE_FAULT:
6005 {
6006 /*
6007 * Determing a vectoring double #PF condition. Used later, when PGM evaluates the
6008 * second #PF as a guest #PF (and not a shadow #PF) and needs to be converted into a #DF.
6009 */
6010 if (fRaiseInfo & IEMXCPTRAISEINFO_PF_PF)
6011 {
6012 pVmxTransient->fVectoringDoublePF = true;
6013 Log4(("IDT: vcpu[%RU32] Vectoring double #PF %#RX64 cr2=%#RX64\n", pVCpu->idCpu, pVCpu->hm.s.Event.u64IntInfo,
6014 pMixedCtx->cr2));
6015 rcStrict = VINF_SUCCESS;
6016 }
6017 else
6018 {
6019 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
6020 hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
6021 Log4(("IDT: vcpu[%RU32] Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->idCpu,
6022 pVCpu->hm.s.Event.u64IntInfo, uIdtVector, uExitVector));
6023 rcStrict = VINF_HM_DOUBLE_FAULT;
6024 }
6025 break;
6026 }
6027
6028 case IEMXCPTRAISE_TRIPLE_FAULT:
6029 {
6030 Log4(("IDT: vcpu[%RU32] Pending vectoring triple-fault uIdt=%#x uExit=%#x\n", pVCpu->idCpu, uIdtVector,
6031 uExitVector));
6032 rcStrict = VINF_EM_RESET;
6033 break;
6034 }
6035
6036 case IEMXCPTRAISE_CPU_HANG:
6037 {
6038 Log4(("IDT: vcpu[%RU32] Bad guest! Entering CPU hang. fRaiseInfo=%#x\n", pVCpu->idCpu, fRaiseInfo));
6039 rcStrict = VERR_EM_GUEST_CPU_HANG;
6040 break;
6041 }
6042
6043 default:
6044 {
6045 AssertMsgFailed(("IDT: vcpu[%RU32] Unexpected/invalid value! enmRaise=%#x\n", pVCpu->idCpu, enmRaise));
6046 rcStrict = VERR_VMX_IPE_2;
6047 break;
6048 }
6049 }
6050#else
6051 typedef enum
6052 {
6053 VMXREFLECTXCPT_XCPT, /* Reflect the exception to the guest or for further evaluation by VMM. */
6054 VMXREFLECTXCPT_DF, /* Reflect the exception as a double-fault to the guest. */
6055 VMXREFLECTXCPT_TF, /* Indicate a triple faulted state to the VMM. */
6056 VMXREFLECTXCPT_HANG, /* Indicate bad VM trying to deadlock the CPU. */
6057 VMXREFLECTXCPT_NONE /* Nothing to reflect. */
6058 } VMXREFLECTXCPT;
6059
6060 /* See Intel spec. 30.7.1.1 "Reflecting Exceptions to Guest Software". */
6061 VMXREFLECTXCPT enmReflect = VMXREFLECTXCPT_NONE;
6062 if (VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo))
6063 {
6064 if (uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT)
6065 {
6066 enmReflect = VMXREFLECTXCPT_XCPT;
6067#ifdef VBOX_STRICT
6068 if ( hmR0VmxIsContributoryXcpt(uIdtVector)
6069 && uExitVector == X86_XCPT_PF)
6070 {
6071 Log4(("IDT: vcpu[%RU32] Contributory #PF uCR2=%#RX64\n", pVCpu->idCpu, pMixedCtx->cr2));
6072 }
6073#endif
6074 if ( uExitVector == X86_XCPT_PF
6075 && uIdtVector == X86_XCPT_PF)
6076 {
6077 pVmxTransient->fVectoringDoublePF = true;
6078 Log4(("IDT: vcpu[%RU32] Vectoring Double #PF uCR2=%#RX64\n", pVCpu->idCpu, pMixedCtx->cr2));
6079 }
6080 else if ( uExitVector == X86_XCPT_AC
6081 && uIdtVector == X86_XCPT_AC)
6082 {
6083 enmReflect = VMXREFLECTXCPT_HANG;
6084 Log4(("IDT: Nested #AC - Bad guest\n"));
6085 }
6086 else if ( (pVCpu->hm.s.vmx.u32XcptBitmap & HMVMX_CONTRIBUTORY_XCPT_MASK)
6087 && hmR0VmxIsContributoryXcpt(uExitVector)
6088 && ( hmR0VmxIsContributoryXcpt(uIdtVector)
6089 || uIdtVector == X86_XCPT_PF))
6090 {
6091 enmReflect = VMXREFLECTXCPT_DF;
6092 }
6093 else if (uIdtVector == X86_XCPT_DF)
6094 enmReflect = VMXREFLECTXCPT_TF;
6095 }
6096 else if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT
6097 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI)
6098 {
6099 /*
6100 * Ignore software interrupts (INT n), software exceptions (#BP, #OF) and
6101 * privileged software exception (#DB from ICEBP) as they reoccur when restarting the instruction.
6102 */
6103 enmReflect = VMXREFLECTXCPT_XCPT;
6104
6105 if (uExitVector == X86_XCPT_PF)
6106 {
6107 pVmxTransient->fVectoringPF = true;
6108 Log4(("IDT: vcpu[%RU32] Vectoring #PF due to Ext-Int/NMI. uCR2=%#RX64\n", pVCpu->idCpu, pMixedCtx->cr2));
6109 }
6110 }
6111 }
6112 else if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
6113 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT
6114 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI)
6115 {
6116 /*
6117 * If event delivery caused an EPT violation/misconfig or APIC access VM-exit, then the VM-exit
6118 * interruption-information will not be valid as it's not an exception and we end up here. In such cases,
6119 * it is sufficient to reflect the original exception to the guest after handling the VM-exit.
6120 */
6121 enmReflect = VMXREFLECTXCPT_XCPT;
6122 }
6123
6124 /*
6125 * On CPUs that support Virtual NMIs, if this VM-exit (be it an exception or EPT violation/misconfig etc.) occurred
6126 * while delivering the NMI, we need to clear the block-by-NMI field in the guest interruptibility-state before
6127 * re-delivering the NMI after handling the VM-exit. Otherwise the subsequent VM-entry would fail.
6128 *
6129 * See Intel spec. 30.7.1.2 "Resuming Guest Software after Handling an Exception". See @bugref{7445}.
6130 */
6131 if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
6132 && enmReflect == VMXREFLECTXCPT_XCPT
6133 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI)
6134 && VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6135 {
6136 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6137 }
6138
6139 switch (enmReflect)
6140 {
6141 case VMXREFLECTXCPT_XCPT:
6142 {
6143 Assert( uIdtVectorType != VMX_IDT_VECTORING_INFO_TYPE_SW_INT
6144 && uIdtVectorType != VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
6145 && uIdtVectorType != VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT);
6146
6147 uint32_t u32ErrCode = 0;
6148 if (VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVmxTransient->uIdtVectoringInfo))
6149 {
6150 rc2 = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
6151 AssertRCReturn(rc2, rc2);
6152 u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
6153 }
6154
6155 /* If uExitVector is #PF, CR2 value will be updated from the VMCS if it's a guest #PF. See hmR0VmxExitXcptPF(). */
6156 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
6157 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
6158 0 /* cbInstr */, u32ErrCode, pMixedCtx->cr2);
6159 rcStrict = VINF_SUCCESS;
6160 Log4(("IDT: vcpu[%RU32] Pending vectoring event %#RX64 Err=%#RX32\n", pVCpu->idCpu,
6161 pVCpu->hm.s.Event.u64IntInfo, pVCpu->hm.s.Event.u32ErrCode));
6162
6163 break;
6164 }
6165
6166 case VMXREFLECTXCPT_DF:
6167 {
6168 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
6169 hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
6170 rcStrict = VINF_HM_DOUBLE_FAULT;
6171 Log4(("IDT: vcpu[%RU32] Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->idCpu,
6172 pVCpu->hm.s.Event.u64IntInfo, uIdtVector, uExitVector));
6173
6174 break;
6175 }
6176
6177 case VMXREFLECTXCPT_TF:
6178 {
6179 rcStrict = VINF_EM_RESET;
6180 Log4(("IDT: vcpu[%RU32] Pending vectoring triple-fault uIdt=%#x uExit=%#x\n", pVCpu->idCpu, uIdtVector,
6181 uExitVector));
6182 break;
6183 }
6184
6185 case VMXREFLECTXCPT_HANG:
6186 {
6187 rcStrict = VERR_EM_GUEST_CPU_HANG;
6188 break;
6189 }
6190
6191 default:
6192 Assert(rcStrict == VINF_SUCCESS);
6193 break;
6194 }
6195#endif /* HMVMX_USE_IEM_EVENT_REFLECTION */
6196 }
6197 else if ( VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo)
6198 && VMX_EXIT_INTERRUPTION_INFO_NMI_UNBLOCK_IRET(pVmxTransient->uExitIntInfo)
6199 && uExitVector != X86_XCPT_DF
6200 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI))
6201 {
6202 /*
6203 * Execution of IRET caused this fault when NMI blocking was in effect (i.e we're in the guest NMI handler).
6204 * We need to set the block-by-NMI field so that NMIs remain blocked until the IRET execution is restarted.
6205 * See Intel spec. 30.7.1.2 "Resuming guest software after handling an exception".
6206 */
6207 if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6208 {
6209 Log4(("hmR0VmxCheckExitDueToEventDelivery: vcpu[%RU32] Setting VMCPU_FF_BLOCK_NMIS. Valid=%RTbool uExitReason=%u\n",
6210 pVCpu->idCpu, VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo), pVmxTransient->uExitReason));
6211 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
6212 }
6213 }
6214
6215 Assert( rcStrict == VINF_SUCCESS || rcStrict == VINF_HM_DOUBLE_FAULT
6216 || rcStrict == VINF_EM_RESET || rcStrict == VERR_EM_GUEST_CPU_HANG);
6217 return rcStrict;
6218}
6219
6220
6221/**
6222 * Saves the guest's CR0 register from the VMCS into the guest-CPU context.
6223 *
6224 * @returns VBox status code.
6225 * @param pVCpu The cross context virtual CPU structure.
6226 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6227 * out-of-sync. Make sure to update the required fields
6228 * before using them.
6229 *
6230 * @remarks No-long-jump zone!!!
6231 */
6232static int hmR0VmxSaveGuestCR0(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6233{
6234 NOREF(pMixedCtx);
6235
6236 /*
6237 * While in the middle of saving guest-CR0, we could get preempted and re-invoked from the preemption hook,
6238 * see hmR0VmxLeave(). Safer to just make this code non-preemptible.
6239 */
6240 VMMRZCallRing3Disable(pVCpu);
6241 HM_DISABLE_PREEMPT();
6242
6243 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0))
6244 {
6245#ifndef DEBUG_bird /** @todo this triggers running bs3-cpu-generated-1.img with --debug-command-line
6246 * and 'dbgc-init' containing:
6247 * sxe "xcpt_de"
6248 * sxe "xcpt_bp"
6249 * sxi "xcpt_gp"
6250 * sxi "xcpt_ss"
6251 * sxi "xcpt_np"
6252 */
6253 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0));
6254#endif
6255 uint32_t uVal = 0;
6256 uint32_t uShadow = 0;
6257 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &uVal);
6258 rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uShadow);
6259 AssertRCReturn(rc, rc);
6260
6261 uVal = (uShadow & pVCpu->hm.s.vmx.u32CR0Mask) | (uVal & ~pVCpu->hm.s.vmx.u32CR0Mask);
6262 CPUMSetGuestCR0(pVCpu, uVal);
6263 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0);
6264 }
6265
6266 HM_RESTORE_PREEMPT();
6267 VMMRZCallRing3Enable(pVCpu);
6268 return VINF_SUCCESS;
6269}
6270
6271
6272/**
6273 * Saves the guest's CR4 register from the VMCS into the guest-CPU context.
6274 *
6275 * @returns VBox status code.
6276 * @param pVCpu The cross context virtual CPU structure.
6277 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6278 * out-of-sync. Make sure to update the required fields
6279 * before using them.
6280 *
6281 * @remarks No-long-jump zone!!!
6282 */
6283static int hmR0VmxSaveGuestCR4(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6284{
6285 NOREF(pMixedCtx);
6286
6287 int rc = VINF_SUCCESS;
6288 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR4))
6289 {
6290 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR4));
6291 uint32_t uVal = 0;
6292 uint32_t uShadow = 0;
6293 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &uVal);
6294 rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uShadow);
6295 AssertRCReturn(rc, rc);
6296
6297 uVal = (uShadow & pVCpu->hm.s.vmx.u32CR4Mask) | (uVal & ~pVCpu->hm.s.vmx.u32CR4Mask);
6298 CPUMSetGuestCR4(pVCpu, uVal);
6299 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR4);
6300 }
6301 return rc;
6302}
6303
6304
6305/**
6306 * Saves the guest's RIP register from the VMCS into the guest-CPU context.
6307 *
6308 * @returns VBox status code.
6309 * @param pVCpu The cross context virtual CPU structure.
6310 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6311 * out-of-sync. Make sure to update the required fields
6312 * before using them.
6313 *
6314 * @remarks No-long-jump zone!!!
6315 */
6316static int hmR0VmxSaveGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6317{
6318 int rc = VINF_SUCCESS;
6319 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RIP))
6320 {
6321 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RIP));
6322 uint64_t u64Val = 0;
6323 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val);
6324 AssertRCReturn(rc, rc);
6325
6326 pMixedCtx->rip = u64Val;
6327 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RIP);
6328 }
6329 return rc;
6330}
6331
6332
6333/**
6334 * Saves the guest's RSP register from the VMCS into the guest-CPU context.
6335 *
6336 * @returns VBox status code.
6337 * @param pVCpu The cross context virtual CPU structure.
6338 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6339 * out-of-sync. Make sure to update the required fields
6340 * before using them.
6341 *
6342 * @remarks No-long-jump zone!!!
6343 */
6344static int hmR0VmxSaveGuestRsp(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6345{
6346 int rc = VINF_SUCCESS;
6347 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RSP))
6348 {
6349 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RSP));
6350 uint64_t u64Val = 0;
6351 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val);
6352 AssertRCReturn(rc, rc);
6353
6354 pMixedCtx->rsp = u64Val;
6355 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RSP);
6356 }
6357 return rc;
6358}
6359
6360
6361/**
6362 * Saves the guest's RFLAGS from the VMCS into the guest-CPU context.
6363 *
6364 * @returns VBox status code.
6365 * @param pVCpu The cross context virtual CPU structure.
6366 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6367 * out-of-sync. Make sure to update the required fields
6368 * before using them.
6369 *
6370 * @remarks No-long-jump zone!!!
6371 */
6372static int hmR0VmxSaveGuestRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6373{
6374 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS))
6375 {
6376 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RFLAGS));
6377 uint32_t uVal = 0;
6378 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &uVal);
6379 AssertRCReturn(rc, rc);
6380
6381 pMixedCtx->eflags.u32 = uVal;
6382 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active) /* Undo our real-on-v86-mode changes to eflags if necessary. */
6383 {
6384 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
6385 Log4(("Saving real-mode EFLAGS VT-x view=%#RX32\n", pMixedCtx->eflags.u32));
6386
6387 pMixedCtx->eflags.Bits.u1VM = 0;
6388 pMixedCtx->eflags.Bits.u2IOPL = pVCpu->hm.s.vmx.RealMode.Eflags.Bits.u2IOPL;
6389 }
6390
6391 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS);
6392 }
6393 return VINF_SUCCESS;
6394}
6395
6396
6397/**
6398 * Wrapper for saving the guest's RIP, RSP and RFLAGS from the VMCS into the
6399 * guest-CPU context.
6400 */
6401DECLINLINE(int) hmR0VmxSaveGuestRipRspRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6402{
6403 int rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
6404 rc |= hmR0VmxSaveGuestRsp(pVCpu, pMixedCtx);
6405 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
6406 return rc;
6407}
6408
6409
6410/**
6411 * Saves the guest's interruptibility-state ("interrupt shadow" as AMD calls it)
6412 * from the guest-state area in the VMCS.
6413 *
6414 * @param pVCpu The cross context virtual CPU structure.
6415 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6416 * out-of-sync. Make sure to update the required fields
6417 * before using them.
6418 *
6419 * @remarks No-long-jump zone!!!
6420 */
6421static void hmR0VmxSaveGuestIntrState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6422{
6423 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_INTR_STATE))
6424 {
6425 uint32_t uIntrState = 0;
6426 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &uIntrState);
6427 AssertRC(rc);
6428
6429 if (!uIntrState)
6430 {
6431 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
6432 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
6433
6434 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6435 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6436 }
6437 else
6438 {
6439 if (uIntrState & ( VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS
6440 | VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI))
6441 {
6442 rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
6443 AssertRC(rc);
6444 rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx); /* for hmR0VmxGetGuestIntrState(). */
6445 AssertRC(rc);
6446
6447 EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
6448 Assert(VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS));
6449 }
6450 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
6451 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
6452
6453 if (uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI)
6454 {
6455 if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6456 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
6457 }
6458 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6459 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6460 }
6461
6462 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_INTR_STATE);
6463 }
6464}
6465
6466
6467/**
6468 * Saves the guest's activity state.
6469 *
6470 * @returns VBox status code.
6471 * @param pVCpu The cross context virtual CPU structure.
6472 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6473 * out-of-sync. Make sure to update the required fields
6474 * before using them.
6475 *
6476 * @remarks No-long-jump zone!!!
6477 */
6478static int hmR0VmxSaveGuestActivityState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6479{
6480 NOREF(pMixedCtx);
6481 /* Nothing to do for now until we make use of different guest-CPU activity state. Just update the flag. */
6482 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_ACTIVITY_STATE);
6483 return VINF_SUCCESS;
6484}
6485
6486
6487/**
6488 * Saves the guest SYSENTER MSRs (SYSENTER_CS, SYSENTER_EIP, SYSENTER_ESP) from
6489 * the current VMCS into the guest-CPU context.
6490 *
6491 * @returns VBox status code.
6492 * @param pVCpu The cross context virtual CPU structure.
6493 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6494 * out-of-sync. Make sure to update the required fields
6495 * before using them.
6496 *
6497 * @remarks No-long-jump zone!!!
6498 */
6499static int hmR0VmxSaveGuestSysenterMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6500{
6501 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR))
6502 {
6503 Assert(!HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR));
6504 uint32_t u32Val = 0;
6505 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, &u32Val); AssertRCReturn(rc, rc);
6506 pMixedCtx->SysEnter.cs = u32Val;
6507 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR);
6508 }
6509
6510 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR))
6511 {
6512 Assert(!HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR));
6513 uint64_t u64Val = 0;
6514 int rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, &u64Val); AssertRCReturn(rc, rc);
6515 pMixedCtx->SysEnter.eip = u64Val;
6516 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR);
6517 }
6518 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR))
6519 {
6520 Assert(!HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR));
6521 uint64_t u64Val = 0;
6522 int rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, &u64Val); AssertRCReturn(rc, rc);
6523 pMixedCtx->SysEnter.esp = u64Val;
6524 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR);
6525 }
6526 return VINF_SUCCESS;
6527}
6528
6529
6530/**
6531 * Saves the set of guest MSRs (that we restore lazily while leaving VT-x) from
6532 * the CPU back into the guest-CPU context.
6533 *
6534 * @returns VBox status code.
6535 * @param pVCpu The cross context virtual CPU structure.
6536 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6537 * out-of-sync. Make sure to update the required fields
6538 * before using them.
6539 *
6540 * @remarks No-long-jump zone!!!
6541 */
6542static int hmR0VmxSaveGuestLazyMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6543{
6544 /* Since this can be called from our preemption hook it's safer to make the guest-MSRs update non-preemptible. */
6545 VMMRZCallRing3Disable(pVCpu);
6546 HM_DISABLE_PREEMPT();
6547
6548 /* Doing the check here ensures we don't overwrite already-saved guest MSRs from a preemption hook. */
6549 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS))
6550 {
6551 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS));
6552 hmR0VmxLazySaveGuestMsrs(pVCpu, pMixedCtx);
6553 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS);
6554 }
6555
6556 HM_RESTORE_PREEMPT();
6557 VMMRZCallRing3Enable(pVCpu);
6558
6559 return VINF_SUCCESS;
6560}
6561
6562
6563/**
6564 * Saves the auto load/store'd guest MSRs from the current VMCS into
6565 * the guest-CPU context.
6566 *
6567 * @returns VBox status code.
6568 * @param pVCpu The cross context virtual CPU structure.
6569 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6570 * out-of-sync. Make sure to update the required fields
6571 * before using them.
6572 *
6573 * @remarks No-long-jump zone!!!
6574 */
6575static int hmR0VmxSaveGuestAutoLoadStoreMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6576{
6577 if (HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS))
6578 return VINF_SUCCESS;
6579
6580 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_GUEST_AUTO_MSRS));
6581 PVMXAUTOMSR pMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
6582 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
6583 Log4(("hmR0VmxSaveGuestAutoLoadStoreMsrs: cMsrs=%u\n", cMsrs));
6584 for (uint32_t i = 0; i < cMsrs; i++, pMsr++)
6585 {
6586 switch (pMsr->u32Msr)
6587 {
6588 case MSR_K8_TSC_AUX: CPUMR0SetGuestTscAux(pVCpu, pMsr->u64Value); break;
6589 case MSR_K8_LSTAR: pMixedCtx->msrLSTAR = pMsr->u64Value; break;
6590 case MSR_K6_STAR: pMixedCtx->msrSTAR = pMsr->u64Value; break;
6591 case MSR_K8_SF_MASK: pMixedCtx->msrSFMASK = pMsr->u64Value; break;
6592 case MSR_K8_KERNEL_GS_BASE: pMixedCtx->msrKERNELGSBASE = pMsr->u64Value; break;
6593 case MSR_K6_EFER: /* Nothing to do here since we intercept writes, see hmR0VmxLoadGuestMsrs(). */
6594 break;
6595
6596 default:
6597 {
6598 AssertMsgFailed(("Unexpected MSR in auto-load/store area. uMsr=%#RX32 cMsrs=%u\n", pMsr->u32Msr, cMsrs));
6599 pVCpu->hm.s.u32HMError = pMsr->u32Msr;
6600 return VERR_HM_UNEXPECTED_LD_ST_MSR;
6601 }
6602 }
6603 }
6604
6605 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS);
6606 return VINF_SUCCESS;
6607}
6608
6609
6610/**
6611 * Saves the guest control registers from the current VMCS into the guest-CPU
6612 * context.
6613 *
6614 * @returns VBox status code.
6615 * @param pVCpu The cross context virtual CPU structure.
6616 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6617 * out-of-sync. Make sure to update the required fields
6618 * before using them.
6619 *
6620 * @remarks No-long-jump zone!!!
6621 */
6622static int hmR0VmxSaveGuestControlRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6623{
6624 /* Guest CR0. Guest FPU. */
6625 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
6626 AssertRCReturn(rc, rc);
6627
6628 /* Guest CR4. */
6629 rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
6630 AssertRCReturn(rc, rc);
6631
6632 /* Guest CR2 - updated always during the world-switch or in #PF. */
6633 /* Guest CR3. Only changes with Nested Paging. This must be done -after- saving CR0 and CR4 from the guest! */
6634 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR3))
6635 {
6636 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR3));
6637 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0));
6638 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR4));
6639
6640 PVM pVM = pVCpu->CTX_SUFF(pVM);
6641 if ( pVM->hm.s.vmx.fUnrestrictedGuest
6642 || ( pVM->hm.s.fNestedPaging
6643 && CPUMIsGuestPagingEnabledEx(pMixedCtx)))
6644 {
6645 uint64_t u64Val = 0;
6646 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_CR3, &u64Val);
6647 if (pMixedCtx->cr3 != u64Val)
6648 {
6649 CPUMSetGuestCR3(pVCpu, u64Val);
6650 if (VMMRZCallRing3IsEnabled(pVCpu))
6651 {
6652 PGMUpdateCR3(pVCpu, u64Val);
6653 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
6654 }
6655 else
6656 {
6657 /* Set the force flag to inform PGM about it when necessary. It is cleared by PGMUpdateCR3().*/
6658 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
6659 }
6660 }
6661
6662 /* If the guest is in PAE mode, sync back the PDPE's into the guest state. */
6663 if (CPUMIsGuestInPAEModeEx(pMixedCtx)) /* Reads CR0, CR4 and EFER MSR (EFER is always up-to-date). */
6664 {
6665 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &pVCpu->hm.s.aPdpes[0].u);
6666 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &pVCpu->hm.s.aPdpes[1].u);
6667 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &pVCpu->hm.s.aPdpes[2].u);
6668 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &pVCpu->hm.s.aPdpes[3].u);
6669 AssertRCReturn(rc, rc);
6670
6671 if (VMMRZCallRing3IsEnabled(pVCpu))
6672 {
6673 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
6674 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
6675 }
6676 else
6677 {
6678 /* Set the force flag to inform PGM about it when necessary. It is cleared by PGMGstUpdatePaePdpes(). */
6679 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES);
6680 }
6681 }
6682 }
6683
6684 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR3);
6685 }
6686
6687 /*
6688 * Consider this scenario: VM-exit -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp -> hmR0VmxCallRing3Callback()
6689 * -> VMMRZCallRing3Disable() -> hmR0VmxSaveGuestState() -> Set VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp
6690 * -> continue with VM-exit handling -> hmR0VmxSaveGuestControlRegs() and here we are.
6691 *
6692 * The reason for such complicated handling is because VM-exits that call into PGM expect CR3 to be up-to-date and thus
6693 * if any CR3-saves -before- the VM-exit (longjmp) postponed the CR3 update via the force-flag, any VM-exit handler that
6694 * calls into PGM when it re-saves CR3 will end up here and we call PGMUpdateCR3(). This is why the code below should
6695 * -NOT- check if HMVMX_UPDATED_GUEST_CR3 is already set or not!
6696 *
6697 * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again. We cover for it here.
6698 */
6699 if (VMMRZCallRing3IsEnabled(pVCpu))
6700 {
6701 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
6702 PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
6703
6704 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
6705 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
6706
6707 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
6708 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
6709 }
6710
6711 return rc;
6712}
6713
6714
6715/**
6716 * Reads a guest segment register from the current VMCS into the guest-CPU
6717 * context.
6718 *
6719 * @returns VBox status code.
6720 * @param pVCpu The cross context virtual CPU structure.
6721 * @param idxSel Index of the selector in the VMCS.
6722 * @param idxLimit Index of the segment limit in the VMCS.
6723 * @param idxBase Index of the segment base in the VMCS.
6724 * @param idxAccess Index of the access rights of the segment in the VMCS.
6725 * @param pSelReg Pointer to the segment selector.
6726 *
6727 * @remarks No-long-jump zone!!!
6728 * @remarks Never call this function directly!!! Use the VMXLOCAL_READ_SEG()
6729 * macro as that takes care of whether to read from the VMCS cache or
6730 * not.
6731 */
6732DECLINLINE(int) hmR0VmxReadSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase, uint32_t idxAccess,
6733 PCPUMSELREG pSelReg)
6734{
6735 NOREF(pVCpu);
6736
6737 uint32_t u32Val = 0;
6738 int rc = VMXReadVmcs32(idxSel, &u32Val);
6739 AssertRCReturn(rc, rc);
6740 pSelReg->Sel = (uint16_t)u32Val;
6741 pSelReg->ValidSel = (uint16_t)u32Val;
6742 pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
6743
6744 rc = VMXReadVmcs32(idxLimit, &u32Val);
6745 AssertRCReturn(rc, rc);
6746 pSelReg->u32Limit = u32Val;
6747
6748 uint64_t u64Val = 0;
6749 rc = VMXReadVmcsGstNByIdxVal(idxBase, &u64Val);
6750 AssertRCReturn(rc, rc);
6751 pSelReg->u64Base = u64Val;
6752
6753 rc = VMXReadVmcs32(idxAccess, &u32Val);
6754 AssertRCReturn(rc, rc);
6755 pSelReg->Attr.u = u32Val;
6756
6757 /*
6758 * If VT-x marks the segment as unusable, most other bits remain undefined:
6759 * - For CS the L, D and G bits have meaning.
6760 * - For SS the DPL has meaning (it -is- the CPL for Intel and VBox).
6761 * - For the remaining data segments no bits are defined.
6762 *
6763 * The present bit and the unusable bit has been observed to be set at the
6764 * same time (the selector was supposed to be invalid as we started executing
6765 * a V8086 interrupt in ring-0).
6766 *
6767 * What should be important for the rest of the VBox code, is that the P bit is
6768 * cleared. Some of the other VBox code recognizes the unusable bit, but
6769 * AMD-V certainly don't, and REM doesn't really either. So, to be on the
6770 * safe side here, we'll strip off P and other bits we don't care about. If
6771 * any code breaks because Attr.u != 0 when Sel < 4, it should be fixed.
6772 *
6773 * See Intel spec. 27.3.2 "Saving Segment Registers and Descriptor-Table Registers".
6774 */
6775 if (pSelReg->Attr.u & X86DESCATTR_UNUSABLE)
6776 {
6777 Assert(idxSel != VMX_VMCS16_GUEST_TR_SEL); /* TR is the only selector that can never be unusable. */
6778
6779 /* Masking off: X86DESCATTR_P, X86DESCATTR_LIMIT_HIGH, and X86DESCATTR_AVL. The latter two are really irrelevant. */
6780 pSelReg->Attr.u &= X86DESCATTR_UNUSABLE | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
6781 | X86DESCATTR_DPL | X86DESCATTR_TYPE | X86DESCATTR_DT;
6782
6783 Log4(("hmR0VmxReadSegmentReg: Unusable idxSel=%#x attr=%#x -> %#x\n", idxSel, u32Val, pSelReg->Attr.u));
6784#ifdef DEBUG_bird
6785 AssertMsg((u32Val & ~X86DESCATTR_P) == pSelReg->Attr.u,
6786 ("%#x: %#x != %#x (sel=%#x base=%#llx limit=%#x)\n",
6787 idxSel, u32Val, pSelReg->Attr.u, pSelReg->Sel, pSelReg->u64Base, pSelReg->u32Limit));
6788#endif
6789 }
6790 return VINF_SUCCESS;
6791}
6792
6793
6794#ifdef VMX_USE_CACHED_VMCS_ACCESSES
6795# define VMXLOCAL_READ_SEG(Sel, CtxSel) \
6796 hmR0VmxReadSegmentReg(pVCpu, VMX_VMCS16_GUEST_##Sel##_SEL, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
6797 VMX_VMCS_GUEST_##Sel##_BASE_CACHE_IDX, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, &pMixedCtx->CtxSel)
6798#else
6799# define VMXLOCAL_READ_SEG(Sel, CtxSel) \
6800 hmR0VmxReadSegmentReg(pVCpu, VMX_VMCS16_GUEST_##Sel##_SEL, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
6801 VMX_VMCS_GUEST_##Sel##_BASE, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, &pMixedCtx->CtxSel)
6802#endif
6803
6804
6805/**
6806 * Saves the guest segment registers from the current VMCS into the guest-CPU
6807 * context.
6808 *
6809 * @returns VBox status code.
6810 * @param pVCpu The cross context virtual CPU structure.
6811 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6812 * out-of-sync. Make sure to update the required fields
6813 * before using them.
6814 *
6815 * @remarks No-long-jump zone!!!
6816 */
6817static int hmR0VmxSaveGuestSegmentRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6818{
6819 /* Guest segment registers. */
6820 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SEGMENT_REGS))
6821 {
6822 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS));
6823 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
6824 AssertRCReturn(rc, rc);
6825
6826 rc = VMXLOCAL_READ_SEG(CS, cs);
6827 rc |= VMXLOCAL_READ_SEG(SS, ss);
6828 rc |= VMXLOCAL_READ_SEG(DS, ds);
6829 rc |= VMXLOCAL_READ_SEG(ES, es);
6830 rc |= VMXLOCAL_READ_SEG(FS, fs);
6831 rc |= VMXLOCAL_READ_SEG(GS, gs);
6832 AssertRCReturn(rc, rc);
6833
6834 /* Restore segment attributes for real-on-v86 mode hack. */
6835 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6836 {
6837 pMixedCtx->cs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrCS.u;
6838 pMixedCtx->ss.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrSS.u;
6839 pMixedCtx->ds.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrDS.u;
6840 pMixedCtx->es.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrES.u;
6841 pMixedCtx->fs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrFS.u;
6842 pMixedCtx->gs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrGS.u;
6843 }
6844 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SEGMENT_REGS);
6845 }
6846
6847 return VINF_SUCCESS;
6848}
6849
6850
6851/**
6852 * Saves the guest descriptor table registers and task register from the current
6853 * VMCS into the guest-CPU context.
6854 *
6855 * @returns VBox status code.
6856 * @param pVCpu The cross context virtual CPU structure.
6857 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6858 * out-of-sync. Make sure to update the required fields
6859 * before using them.
6860 *
6861 * @remarks No-long-jump zone!!!
6862 */
6863static int hmR0VmxSaveGuestTableRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6864{
6865 int rc = VINF_SUCCESS;
6866
6867 /* Guest LDTR. */
6868 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LDTR))
6869 {
6870 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LDTR));
6871 rc = VMXLOCAL_READ_SEG(LDTR, ldtr);
6872 AssertRCReturn(rc, rc);
6873 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LDTR);
6874 }
6875
6876 /* Guest GDTR. */
6877 uint64_t u64Val = 0;
6878 uint32_t u32Val = 0;
6879 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_GDTR))
6880 {
6881 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_GDTR));
6882 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
6883 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val); AssertRCReturn(rc, rc);
6884 pMixedCtx->gdtr.pGdt = u64Val;
6885 pMixedCtx->gdtr.cbGdt = u32Val;
6886 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_GDTR);
6887 }
6888
6889 /* Guest IDTR. */
6890 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_IDTR))
6891 {
6892 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_IDTR));
6893 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
6894 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val); AssertRCReturn(rc, rc);
6895 pMixedCtx->idtr.pIdt = u64Val;
6896 pMixedCtx->idtr.cbIdt = u32Val;
6897 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_IDTR);
6898 }
6899
6900 /* Guest TR. */
6901 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_TR))
6902 {
6903 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_TR));
6904 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
6905 AssertRCReturn(rc, rc);
6906
6907 /* For real-mode emulation using virtual-8086 mode we have the fake TSS (pRealModeTSS) in TR, don't save the fake one. */
6908 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6909 {
6910 rc = VMXLOCAL_READ_SEG(TR, tr);
6911 AssertRCReturn(rc, rc);
6912 }
6913 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_TR);
6914 }
6915 return rc;
6916}
6917
6918#undef VMXLOCAL_READ_SEG
6919
6920
6921/**
6922 * Saves the guest debug-register DR7 from the current VMCS into the guest-CPU
6923 * context.
6924 *
6925 * @returns VBox status code.
6926 * @param pVCpu The cross context virtual CPU structure.
6927 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6928 * out-of-sync. Make sure to update the required fields
6929 * before using them.
6930 *
6931 * @remarks No-long-jump zone!!!
6932 */
6933static int hmR0VmxSaveGuestDR7(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6934{
6935 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_DR7))
6936 {
6937 if (!pVCpu->hm.s.fUsingHyperDR7)
6938 {
6939 /* Upper 32-bits are always zero. See Intel spec. 2.7.3 "Loading and Storing Debug Registers". */
6940 uint32_t u32Val;
6941 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_DR7, &u32Val); AssertRCReturn(rc, rc);
6942 pMixedCtx->dr[7] = u32Val;
6943 }
6944
6945 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_DR7);
6946 }
6947 return VINF_SUCCESS;
6948}
6949
6950
6951/**
6952 * Saves the guest APIC state from the current VMCS into the guest-CPU context.
6953 *
6954 * @returns VBox status code.
6955 * @param pVCpu The cross context virtual CPU structure.
6956 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6957 * out-of-sync. Make sure to update the required fields
6958 * before using them.
6959 *
6960 * @remarks No-long-jump zone!!!
6961 */
6962static int hmR0VmxSaveGuestApicState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6963{
6964 NOREF(pMixedCtx);
6965
6966 /* Updating TPR is already done in hmR0VmxPostRunGuest(). Just update the flag. */
6967 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_APIC_STATE);
6968 return VINF_SUCCESS;
6969}
6970
6971
6972/**
6973 * Saves the entire guest state from the currently active VMCS into the
6974 * guest-CPU context.
6975 *
6976 * This essentially VMREADs all guest-data.
6977 *
6978 * @returns VBox status code.
6979 * @param pVCpu The cross context virtual CPU structure.
6980 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
6981 * out-of-sync. Make sure to update the required fields
6982 * before using them.
6983 */
6984static int hmR0VmxSaveGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6985{
6986 Assert(pVCpu);
6987 Assert(pMixedCtx);
6988
6989 if (HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL)
6990 return VINF_SUCCESS;
6991
6992 /* Though we can longjmp to ring-3 due to log-flushes here and get recalled
6993 again on the ring-3 callback path, there is no real need to. */
6994 if (VMMRZCallRing3IsEnabled(pVCpu))
6995 VMMR0LogFlushDisable(pVCpu);
6996 else
6997 Assert(VMMR0IsLogFlushDisabled(pVCpu));
6998 Log4Func(("vcpu[%RU32]\n", pVCpu->idCpu));
6999
7000 int rc = hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
7001 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestRipRspRflags failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
7002
7003 rc = hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
7004 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestControlRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
7005
7006 rc = hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
7007 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestSegmentRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
7008
7009 rc = hmR0VmxSaveGuestTableRegs(pVCpu, pMixedCtx);
7010 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestTableRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
7011
7012 rc = hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
7013 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestDR7 failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
7014
7015 rc = hmR0VmxSaveGuestSysenterMsrs(pVCpu, pMixedCtx);
7016 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestSysenterMsrs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
7017
7018 rc = hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
7019 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestLazyMsrs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
7020
7021 rc = hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
7022 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestAutoLoadStoreMsrs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
7023
7024 rc = hmR0VmxSaveGuestActivityState(pVCpu, pMixedCtx);
7025 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestActivityState failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
7026
7027 rc = hmR0VmxSaveGuestApicState(pVCpu, pMixedCtx);
7028 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestApicState failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
7029
7030 AssertMsg(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL,
7031 ("Missed guest state bits while saving state; missing %RX32 (got %RX32, want %RX32) - check log for any previous errors!\n",
7032 HMVMX_UPDATED_GUEST_ALL ^ HMVMXCPU_GST_VALUE(pVCpu), HMVMXCPU_GST_VALUE(pVCpu), HMVMX_UPDATED_GUEST_ALL));
7033
7034 if (VMMRZCallRing3IsEnabled(pVCpu))
7035 VMMR0LogFlushEnable(pVCpu);
7036
7037 return VINF_SUCCESS;
7038}
7039
7040
7041/**
7042 * Saves basic guest registers needed for IEM instruction execution.
7043 *
7044 * @returns VBox status code (OR-able).
7045 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
7046 * @param pMixedCtx Pointer to the CPU context of the guest.
7047 * @param fMemory Whether the instruction being executed operates on
7048 * memory or not. Only CR0 is synced up if clear.
7049 * @param fNeedRsp Need RSP (any instruction working on GPRs or stack).
7050 */
7051static int hmR0VmxSaveGuestRegsForIemExec(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fMemory, bool fNeedRsp)
7052{
7053 /*
7054 * We assume all general purpose registers other than RSP are available.
7055 *
7056 * - RIP is a must, as it will be incremented or otherwise changed.
7057 * - RFLAGS are always required to figure the CPL.
7058 * - RSP isn't always required, however it's a GPR, so frequently required.
7059 * - SS and CS are the only segment register needed if IEM doesn't do memory
7060 * access (CPL + 16/32/64-bit mode), but we can only get all segment registers.
7061 * - CR0 is always required by IEM for the CPL, while CR3 and CR4 will only
7062 * be required for memory accesses.
7063 *
7064 * Note! Before IEM dispatches an exception, it will call us to sync in everything.
7065 */
7066 int rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
7067 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
7068 if (fNeedRsp)
7069 rc |= hmR0VmxSaveGuestRsp(pVCpu, pMixedCtx);
7070 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
7071 if (!fMemory)
7072 rc |= hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
7073 else
7074 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
7075 AssertRCReturn(rc, rc);
7076 return rc;
7077}
7078
7079
7080/**
7081 * Ensures that we've got a complete basic guest-context.
7082 *
7083 * This excludes the FPU, SSE, AVX, and similar extended state. The interface
7084 * is for the interpreter.
7085 *
7086 * @returns VBox status code.
7087 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
7088 * @param pMixedCtx Pointer to the guest-CPU context which may have data
7089 * needing to be synced in.
7090 * @thread EMT(pVCpu)
7091 */
7092VMMR0_INT_DECL(int) HMR0EnsureCompleteBasicContext(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7093{
7094 /* Note! Since this is only applicable to VT-x, the implementation is placed
7095 in the VT-x part of the sources instead of the generic stuff. */
7096 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fSupported)
7097 {
7098 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
7099 /*
7100 * For now, imply that the caller might change everything too. Do this after
7101 * saving the guest state so as to not trigger assertions.
7102 */
7103 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
7104 return rc;
7105 }
7106 return VINF_SUCCESS;
7107}
7108
7109
7110/**
7111 * Check per-VM and per-VCPU force flag actions that require us to go back to
7112 * ring-3 for one reason or another.
7113 *
7114 * @returns Strict VBox status code (i.e. informational status codes too)
7115 * @retval VINF_SUCCESS if we don't have any actions that require going back to
7116 * ring-3.
7117 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
7118 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
7119 * interrupts)
7120 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
7121 * all EMTs to be in ring-3.
7122 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
7123 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
7124 * to the EM loop.
7125 *
7126 * @param pVM The cross context VM structure.
7127 * @param pVCpu The cross context virtual CPU structure.
7128 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7129 * out-of-sync. Make sure to update the required fields
7130 * before using them.
7131 * @param fStepping Running in hmR0VmxRunGuestCodeStep().
7132 */
7133static VBOXSTRICTRC hmR0VmxCheckForceFlags(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fStepping)
7134{
7135 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7136
7137 /*
7138 * Anything pending? Should be more likely than not if we're doing a good job.
7139 */
7140 if ( !fStepping
7141 ? !VM_FF_IS_PENDING(pVM, VM_FF_HP_R0_PRE_HM_MASK)
7142 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HP_R0_PRE_HM_MASK)
7143 : !VM_FF_IS_PENDING(pVM, VM_FF_HP_R0_PRE_HM_STEP_MASK)
7144 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
7145 return VINF_SUCCESS;
7146
7147 /* We need the control registers now, make sure the guest-CPU context is updated. */
7148 int rc3 = hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
7149 AssertRCReturn(rc3, rc3);
7150
7151 /* Pending HM CR3 sync. */
7152 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
7153 {
7154 int rc2 = PGMUpdateCR3(pVCpu, pMixedCtx->cr3);
7155 AssertMsgReturn(rc2 == VINF_SUCCESS || rc2 == VINF_PGM_SYNC_CR3,
7156 ("%Rrc\n", rc2), RT_FAILURE_NP(rc2) ? rc2 : VERR_IPE_UNEXPECTED_INFO_STATUS);
7157 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
7158 }
7159
7160 /* Pending HM PAE PDPEs. */
7161 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
7162 {
7163 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
7164 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
7165 }
7166
7167 /* Pending PGM C3 sync. */
7168 if (VMCPU_FF_IS_PENDING(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
7169 {
7170 VBOXSTRICTRC rcStrict2 = PGMSyncCR3(pVCpu, pMixedCtx->cr0, pMixedCtx->cr3, pMixedCtx->cr4,
7171 VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
7172 if (rcStrict2 != VINF_SUCCESS)
7173 {
7174 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
7175 Log4(("hmR0VmxCheckForceFlags: PGMSyncCR3 forcing us back to ring-3. rc2=%d\n", VBOXSTRICTRC_VAL(rcStrict2)));
7176 return rcStrict2;
7177 }
7178 }
7179
7180 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
7181 if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK)
7182 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
7183 {
7184 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
7185 int rc2 = RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
7186 Log4(("hmR0VmxCheckForceFlags: HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc2));
7187 return rc2;
7188 }
7189
7190 /* Pending VM request packets, such as hardware interrupts. */
7191 if ( VM_FF_IS_PENDING(pVM, VM_FF_REQUEST)
7192 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_REQUEST))
7193 {
7194 Log4(("hmR0VmxCheckForceFlags: Pending VM request forcing us back to ring-3\n"));
7195 return VINF_EM_PENDING_REQUEST;
7196 }
7197
7198 /* Pending PGM pool flushes. */
7199 if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
7200 {
7201 Log4(("hmR0VmxCheckForceFlags: PGM pool flush pending forcing us back to ring-3\n"));
7202 return VINF_PGM_POOL_FLUSH_PENDING;
7203 }
7204
7205 /* Pending DMA requests. */
7206 if (VM_FF_IS_PENDING(pVM, VM_FF_PDM_DMA))
7207 {
7208 Log4(("hmR0VmxCheckForceFlags: Pending DMA request forcing us back to ring-3\n"));
7209 return VINF_EM_RAW_TO_R3;
7210 }
7211
7212 return VINF_SUCCESS;
7213}
7214
7215
7216/**
7217 * Converts any TRPM trap into a pending HM event. This is typically used when
7218 * entering from ring-3 (not longjmp returns).
7219 *
7220 * @param pVCpu The cross context virtual CPU structure.
7221 */
7222static void hmR0VmxTrpmTrapToPendingEvent(PVMCPU pVCpu)
7223{
7224 Assert(TRPMHasTrap(pVCpu));
7225 Assert(!pVCpu->hm.s.Event.fPending);
7226
7227 uint8_t uVector;
7228 TRPMEVENT enmTrpmEvent;
7229 RTGCUINT uErrCode;
7230 RTGCUINTPTR GCPtrFaultAddress;
7231 uint8_t cbInstr;
7232
7233 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
7234 AssertRC(rc);
7235
7236 /* Refer Intel spec. 24.8.3 "VM-entry Controls for Event Injection" for the format of u32IntInfo. */
7237 uint32_t u32IntInfo = uVector | VMX_EXIT_INTERRUPTION_INFO_VALID;
7238 if (enmTrpmEvent == TRPM_TRAP)
7239 {
7240 switch (uVector)
7241 {
7242 case X86_XCPT_NMI:
7243 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7244 break;
7245
7246 case X86_XCPT_BP:
7247 case X86_XCPT_OF:
7248 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7249 break;
7250
7251 case X86_XCPT_PF:
7252 case X86_XCPT_DF:
7253 case X86_XCPT_TS:
7254 case X86_XCPT_NP:
7255 case X86_XCPT_SS:
7256 case X86_XCPT_GP:
7257 case X86_XCPT_AC:
7258 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
7259 /* fall thru */
7260 default:
7261 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7262 break;
7263 }
7264 }
7265 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
7266 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7267 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
7268 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7269 else
7270 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
7271
7272 rc = TRPMResetTrap(pVCpu);
7273 AssertRC(rc);
7274 Log4(("TRPM->HM event: u32IntInfo=%#RX32 enmTrpmEvent=%d cbInstr=%u uErrCode=%#RX32 GCPtrFaultAddress=%#RGv\n",
7275 u32IntInfo, enmTrpmEvent, cbInstr, uErrCode, GCPtrFaultAddress));
7276
7277 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, uErrCode, GCPtrFaultAddress);
7278}
7279
7280
7281/**
7282 * Converts the pending HM event into a TRPM trap.
7283 *
7284 * @param pVCpu The cross context virtual CPU structure.
7285 */
7286static void hmR0VmxPendingEventToTrpmTrap(PVMCPU pVCpu)
7287{
7288 Assert(pVCpu->hm.s.Event.fPending);
7289
7290 uint32_t uVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
7291 uint32_t uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVCpu->hm.s.Event.u64IntInfo);
7292 bool fErrorCodeValid = VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVCpu->hm.s.Event.u64IntInfo);
7293 uint32_t uErrorCode = pVCpu->hm.s.Event.u32ErrCode;
7294
7295 /* If a trap was already pending, we did something wrong! */
7296 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
7297
7298 TRPMEVENT enmTrapType;
7299 switch (uVectorType)
7300 {
7301 case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
7302 enmTrapType = TRPM_HARDWARE_INT;
7303 break;
7304
7305 case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
7306 enmTrapType = TRPM_SOFTWARE_INT;
7307 break;
7308
7309 case VMX_IDT_VECTORING_INFO_TYPE_NMI:
7310 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
7311 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT: /* #BP and #OF */
7312 case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
7313 enmTrapType = TRPM_TRAP;
7314 break;
7315
7316 default:
7317 AssertMsgFailed(("Invalid trap type %#x\n", uVectorType));
7318 enmTrapType = TRPM_32BIT_HACK;
7319 break;
7320 }
7321
7322 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, enmTrapType));
7323
7324 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
7325 AssertRC(rc);
7326
7327 if (fErrorCodeValid)
7328 TRPMSetErrorCode(pVCpu, uErrorCode);
7329
7330 if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
7331 && uVector == X86_XCPT_PF)
7332 {
7333 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
7334 }
7335 else if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
7336 || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
7337 || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
7338 {
7339 AssertMsg( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
7340 || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
7341 ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
7342 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
7343 }
7344
7345 /* Clear any pending events from the VMCS. */
7346 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, 0); AssertRC(rc);
7347 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, 0); AssertRC(rc);
7348
7349 /* We're now done converting the pending event. */
7350 pVCpu->hm.s.Event.fPending = false;
7351}
7352
7353
7354/**
7355 * Does the necessary state syncing before returning to ring-3 for any reason
7356 * (longjmp, preemption, voluntary exits to ring-3) from VT-x.
7357 *
7358 * @returns VBox status code.
7359 * @param pVCpu The cross context virtual CPU structure.
7360 * @param pMixedCtx Pointer to the guest-CPU context. The data may
7361 * be out-of-sync. Make sure to update the required
7362 * fields before using them.
7363 * @param fSaveGuestState Whether to save the guest state or not.
7364 *
7365 * @remarks No-long-jmp zone!!!
7366 */
7367static int hmR0VmxLeave(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fSaveGuestState)
7368{
7369 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7370 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
7371
7372 RTCPUID idCpu = RTMpCpuId();
7373 Log4Func(("HostCpuId=%u\n", idCpu));
7374
7375 /*
7376 * !!! IMPORTANT !!!
7377 * If you modify code here, check whether hmR0VmxCallRing3Callback() needs to be updated too.
7378 */
7379
7380 /* Save the guest state if necessary. */
7381 if ( fSaveGuestState
7382 && HMVMXCPU_GST_VALUE(pVCpu) != HMVMX_UPDATED_GUEST_ALL)
7383 {
7384 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
7385 AssertRCReturn(rc, rc);
7386 Assert(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL);
7387 }
7388
7389 /* Restore host FPU state if necessary and resync on next R0 reentry .*/
7390 if (CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu))
7391 {
7392 /* We shouldn't reload CR0 without saving it first. */
7393 if (!fSaveGuestState)
7394 {
7395 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
7396 AssertRCReturn(rc, rc);
7397 }
7398 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
7399 }
7400
7401 /* Restore host debug registers if necessary and resync on next R0 reentry. */
7402#ifdef VBOX_STRICT
7403 if (CPUMIsHyperDebugStateActive(pVCpu))
7404 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT);
7405#endif
7406 if (CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */))
7407 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
7408 Assert(!CPUMIsGuestDebugStateActive(pVCpu) && !CPUMIsGuestDebugStateActivePending(pVCpu));
7409 Assert(!CPUMIsHyperDebugStateActive(pVCpu) && !CPUMIsHyperDebugStateActivePending(pVCpu));
7410
7411#if HC_ARCH_BITS == 64
7412 /* Restore host-state bits that VT-x only restores partially. */
7413 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
7414 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
7415 {
7416 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags, idCpu));
7417 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
7418 }
7419 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
7420#endif
7421
7422 /* Restore the lazy host MSRs as we're leaving VT-x context. */
7423 if (pVCpu->hm.s.vmx.fLazyMsrs)
7424 {
7425 /* We shouldn't reload the guest MSRs without saving it first. */
7426 if (!fSaveGuestState)
7427 {
7428 int rc = hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
7429 AssertRCReturn(rc, rc);
7430 }
7431 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS));
7432 hmR0VmxLazyRestoreHostMsrs(pVCpu);
7433 Assert(!pVCpu->hm.s.vmx.fLazyMsrs);
7434 }
7435
7436 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
7437 pVCpu->hm.s.vmx.fUpdatedHostMsrs = false;
7438
7439 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
7440 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatLoadGuestState);
7441 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit1);
7442 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit2);
7443 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitIO);
7444 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitMovCRx);
7445 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitXcptNmi);
7446 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
7447
7448 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
7449
7450 /** @todo This partially defeats the purpose of having preemption hooks.
7451 * The problem is, deregistering the hooks should be moved to a place that
7452 * lasts until the EMT is about to be destroyed not everytime while leaving HM
7453 * context.
7454 */
7455 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_ACTIVE)
7456 {
7457 int rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
7458 AssertRCReturn(rc, rc);
7459
7460 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
7461 Log4Func(("Cleared Vmcs. HostCpuId=%u\n", idCpu));
7462 }
7463 Assert(!(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_LAUNCHED));
7464 NOREF(idCpu);
7465
7466 return VINF_SUCCESS;
7467}
7468
7469
7470/**
7471 * Leaves the VT-x session.
7472 *
7473 * @returns VBox status code.
7474 * @param pVCpu The cross context virtual CPU structure.
7475 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7476 * out-of-sync. Make sure to update the required fields
7477 * before using them.
7478 *
7479 * @remarks No-long-jmp zone!!!
7480 */
7481DECLINLINE(int) hmR0VmxLeaveSession(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7482{
7483 HM_DISABLE_PREEMPT();
7484 HMVMX_ASSERT_CPU_SAFE();
7485 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
7486 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7487
7488 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
7489 and done this from the VMXR0ThreadCtxCallback(). */
7490 if (!pVCpu->hm.s.fLeaveDone)
7491 {
7492 int rc2 = hmR0VmxLeave(pVCpu, pMixedCtx, true /* fSaveGuestState */);
7493 AssertRCReturnStmt(rc2, HM_RESTORE_PREEMPT(), rc2);
7494 pVCpu->hm.s.fLeaveDone = true;
7495 }
7496 Assert(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL);
7497
7498 /*
7499 * !!! IMPORTANT !!!
7500 * If you modify code here, make sure to check whether hmR0VmxCallRing3Callback() needs to be updated too.
7501 */
7502
7503 /* Deregister hook now that we've left HM context before re-enabling preemption. */
7504 /** @todo Deregistering here means we need to VMCLEAR always
7505 * (longjmp/exit-to-r3) in VT-x which is not efficient. */
7506 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
7507 VMMR0ThreadCtxHookDisable(pVCpu);
7508
7509 /* Leave HM context. This takes care of local init (term). */
7510 int rc = HMR0LeaveCpu(pVCpu);
7511
7512 HM_RESTORE_PREEMPT();
7513 return rc;
7514}
7515
7516
7517/**
7518 * Does the necessary state syncing before doing a longjmp to ring-3.
7519 *
7520 * @returns VBox status code.
7521 * @param pVCpu The cross context virtual CPU structure.
7522 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7523 * out-of-sync. Make sure to update the required fields
7524 * before using them.
7525 *
7526 * @remarks No-long-jmp zone!!!
7527 */
7528DECLINLINE(int) hmR0VmxLongJmpToRing3(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7529{
7530 return hmR0VmxLeaveSession(pVCpu, pMixedCtx);
7531}
7532
7533
7534/**
7535 * Take necessary actions before going back to ring-3.
7536 *
7537 * An action requires us to go back to ring-3. This function does the necessary
7538 * steps before we can safely return to ring-3. This is not the same as longjmps
7539 * to ring-3, this is voluntary and prepares the guest so it may continue
7540 * executing outside HM (recompiler/IEM).
7541 *
7542 * @returns VBox status code.
7543 * @param pVM The cross context VM structure.
7544 * @param pVCpu The cross context virtual CPU structure.
7545 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7546 * out-of-sync. Make sure to update the required fields
7547 * before using them.
7548 * @param rcExit The reason for exiting to ring-3. Can be
7549 * VINF_VMM_UNKNOWN_RING3_CALL.
7550 */
7551static int hmR0VmxExitToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, VBOXSTRICTRC rcExit)
7552{
7553 Assert(pVM);
7554 Assert(pVCpu);
7555 Assert(pMixedCtx);
7556 HMVMX_ASSERT_PREEMPT_SAFE();
7557
7558 if (RT_UNLIKELY(rcExit == VERR_VMX_INVALID_VMCS_PTR))
7559 {
7560 VMXGetActivatedVmcs(&pVCpu->hm.s.vmx.LastError.u64VMCSPhys);
7561 pVCpu->hm.s.vmx.LastError.u32VMCSRevision = *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs;
7562 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
7563 /* LastError.idCurrentCpu was updated in hmR0VmxPreRunGuestCommitted(). */
7564 }
7565
7566 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
7567 VMMRZCallRing3Disable(pVCpu);
7568 Log4(("hmR0VmxExitToRing3: pVCpu=%p idCpu=%RU32 rcExit=%d\n", pVCpu, pVCpu->idCpu, VBOXSTRICTRC_VAL(rcExit)));
7569
7570 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
7571 if (pVCpu->hm.s.Event.fPending)
7572 {
7573 hmR0VmxPendingEventToTrpmTrap(pVCpu);
7574 Assert(!pVCpu->hm.s.Event.fPending);
7575 }
7576
7577 /* Clear interrupt-window and NMI-window controls as we re-evaluate it when we return from ring-3. */
7578 hmR0VmxClearIntNmiWindowsVmcs(pVCpu);
7579
7580 /* If we're emulating an instruction, we shouldn't have any TRPM traps pending
7581 and if we're injecting an event we should have a TRPM trap pending. */
7582 AssertMsg(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
7583#ifndef DEBUG_bird /* Triggered after firing an NMI against NT4SP1, possibly a tripple fault in progress. */
7584 AssertMsg(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
7585#endif
7586
7587 /* Save guest state and restore host state bits. */
7588 int rc = hmR0VmxLeaveSession(pVCpu, pMixedCtx);
7589 AssertRCReturn(rc, rc);
7590 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
7591 /* Thread-context hooks are unregistered at this point!!! */
7592
7593 /* Sync recompiler state. */
7594 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
7595 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
7596 | CPUM_CHANGED_LDTR
7597 | CPUM_CHANGED_GDTR
7598 | CPUM_CHANGED_IDTR
7599 | CPUM_CHANGED_TR
7600 | CPUM_CHANGED_HIDDEN_SEL_REGS);
7601 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0));
7602 if ( pVM->hm.s.fNestedPaging
7603 && CPUMIsGuestPagingEnabledEx(pMixedCtx))
7604 {
7605 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
7606 }
7607
7608 Assert(!pVCpu->hm.s.fClearTrapFlag);
7609
7610 /* On our way back from ring-3 reload the guest state if there is a possibility of it being changed. */
7611 if (rcExit != VINF_EM_RAW_INTERRUPT)
7612 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
7613
7614 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
7615
7616 /* We do -not- want any longjmp notifications after this! We must return to ring-3 ASAP. */
7617 VMMRZCallRing3RemoveNotification(pVCpu);
7618 VMMRZCallRing3Enable(pVCpu);
7619
7620 return rc;
7621}
7622
7623
7624/**
7625 * VMMRZCallRing3() callback wrapper which saves the guest state before we
7626 * longjump to ring-3 and possibly get preempted.
7627 *
7628 * @returns VBox status code.
7629 * @param pVCpu The cross context virtual CPU structure.
7630 * @param enmOperation The operation causing the ring-3 longjump.
7631 * @param pvUser Opaque pointer to the guest-CPU context. The data
7632 * may be out-of-sync. Make sure to update the required
7633 * fields before using them.
7634 */
7635static DECLCALLBACK(int) hmR0VmxCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
7636{
7637 if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
7638 {
7639 /*
7640 * !!! IMPORTANT !!!
7641 * If you modify code here, check whether hmR0VmxLeave() and hmR0VmxLeaveSession() needs to be updated too.
7642 * This is a stripped down version which gets out ASAP, trying to not trigger any further assertions.
7643 */
7644 VMMRZCallRing3RemoveNotification(pVCpu);
7645 VMMRZCallRing3Disable(pVCpu);
7646 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
7647 RTThreadPreemptDisable(&PreemptState);
7648
7649 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
7650 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
7651
7652#if HC_ARCH_BITS == 64
7653 /* Restore host-state bits that VT-x only restores partially. */
7654 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
7655 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
7656 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
7657 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
7658#endif
7659 /* Restore the lazy host MSRs as we're leaving VT-x context. */
7660 if (pVCpu->hm.s.vmx.fLazyMsrs)
7661 hmR0VmxLazyRestoreHostMsrs(pVCpu);
7662
7663 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
7664 pVCpu->hm.s.vmx.fUpdatedHostMsrs = false;
7665 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
7666 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_ACTIVE)
7667 {
7668 VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
7669 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
7670 }
7671
7672 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
7673 VMMR0ThreadCtxHookDisable(pVCpu);
7674 HMR0LeaveCpu(pVCpu);
7675 RTThreadPreemptRestore(&PreemptState);
7676 return VINF_SUCCESS;
7677 }
7678
7679 Assert(pVCpu);
7680 Assert(pvUser);
7681 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7682 HMVMX_ASSERT_PREEMPT_SAFE();
7683
7684 VMMRZCallRing3Disable(pVCpu);
7685 Assert(VMMR0IsLogFlushDisabled(pVCpu));
7686
7687 Log4(("hmR0VmxCallRing3Callback->hmR0VmxLongJmpToRing3 pVCpu=%p idCpu=%RU32 enmOperation=%d\n", pVCpu, pVCpu->idCpu,
7688 enmOperation));
7689
7690 int rc = hmR0VmxLongJmpToRing3(pVCpu, (PCPUMCTX)pvUser);
7691 AssertRCReturn(rc, rc);
7692
7693 VMMRZCallRing3Enable(pVCpu);
7694 return VINF_SUCCESS;
7695}
7696
7697
7698/**
7699 * Sets the interrupt-window exiting control in the VMCS which instructs VT-x to
7700 * cause a VM-exit as soon as the guest is in a state to receive interrupts.
7701 *
7702 * @param pVCpu The cross context virtual CPU structure.
7703 */
7704DECLINLINE(void) hmR0VmxSetIntWindowExitVmcs(PVMCPU pVCpu)
7705{
7706 if (RT_LIKELY(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT))
7707 {
7708 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT))
7709 {
7710 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT;
7711 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7712 AssertRC(rc);
7713 Log4(("Setup interrupt-window exiting\n"));
7714 }
7715 } /* else we will deliver interrupts whenever the guest exits next and is in a state to receive events. */
7716}
7717
7718
7719/**
7720 * Clears the interrupt-window exiting control in the VMCS.
7721 *
7722 * @param pVCpu The cross context virtual CPU structure.
7723 */
7724DECLINLINE(void) hmR0VmxClearIntWindowExitVmcs(PVMCPU pVCpu)
7725{
7726 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT);
7727 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT;
7728 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7729 AssertRC(rc);
7730 Log4(("Cleared interrupt-window exiting\n"));
7731}
7732
7733
7734/**
7735 * Sets the NMI-window exiting control in the VMCS which instructs VT-x to
7736 * cause a VM-exit as soon as the guest is in a state to receive NMIs.
7737 *
7738 * @param pVCpu The cross context virtual CPU structure.
7739 */
7740DECLINLINE(void) hmR0VmxSetNmiWindowExitVmcs(PVMCPU pVCpu)
7741{
7742 if (RT_LIKELY(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT))
7743 {
7744 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT))
7745 {
7746 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT;
7747 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7748 AssertRC(rc);
7749 Log4(("Setup NMI-window exiting\n"));
7750 }
7751 } /* else we will deliver NMIs whenever we VM-exit next, even possibly nesting NMIs. Can't be helped on ancient CPUs. */
7752}
7753
7754
7755/**
7756 * Clears the NMI-window exiting control in the VMCS.
7757 *
7758 * @param pVCpu The cross context virtual CPU structure.
7759 */
7760DECLINLINE(void) hmR0VmxClearNmiWindowExitVmcs(PVMCPU pVCpu)
7761{
7762 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT);
7763 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT;
7764 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7765 AssertRC(rc);
7766 Log4(("Cleared NMI-window exiting\n"));
7767}
7768
7769
7770/**
7771 * Evaluates the event to be delivered to the guest and sets it as the pending
7772 * event.
7773 *
7774 * @returns The VT-x guest-interruptibility state.
7775 * @param pVCpu The cross context virtual CPU structure.
7776 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7777 * out-of-sync. Make sure to update the required fields
7778 * before using them.
7779 */
7780static uint32_t hmR0VmxEvaluatePendingEvent(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7781{
7782 /* Get the current interruptibility-state of the guest and then figure out what can be injected. */
7783 uint32_t const uIntrState = hmR0VmxGetGuestIntrState(pVCpu, pMixedCtx);
7784 bool const fBlockMovSS = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
7785 bool const fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
7786 bool const fBlockNmi = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI);
7787
7788 Assert(!fBlockSti || HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS));
7789 Assert(!(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
7790 Assert(!fBlockSti || pMixedCtx->eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
7791 Assert(!TRPMHasTrap(pVCpu));
7792
7793 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
7794 APICUpdatePendingInterrupts(pVCpu);
7795
7796 /*
7797 * Toggling of interrupt force-flags here is safe since we update TRPM on premature exits
7798 * to ring-3 before executing guest code, see hmR0VmxExitToRing3(). We must NOT restore these force-flags.
7799 */
7800 /** @todo SMI. SMIs take priority over NMIs. */
7801 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts. */
7802 {
7803 /* On some CPUs block-by-STI also blocks NMIs. See Intel spec. 26.3.1.5 "Checks On Guest Non-Register State". */
7804 if ( !pVCpu->hm.s.Event.fPending
7805 && !fBlockNmi
7806 && !fBlockSti
7807 && !fBlockMovSS)
7808 {
7809 Log4(("Pending NMI vcpu[%RU32]\n", pVCpu->idCpu));
7810 uint32_t u32IntInfo = X86_XCPT_NMI | VMX_EXIT_INTERRUPTION_INFO_VALID;
7811 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7812
7813 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7814 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
7815 }
7816 else
7817 hmR0VmxSetNmiWindowExitVmcs(pVCpu);
7818 }
7819 /*
7820 * Check if the guest can receive external interrupts (PIC/APIC). Once PDMGetInterrupt() returns
7821 * a valid interrupt we must- deliver the interrupt. We can no longer re-request it from the APIC.
7822 */
7823 else if ( VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
7824 && !pVCpu->hm.s.fSingleInstruction)
7825 {
7826 Assert(!DBGFIsStepping(pVCpu));
7827 int rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
7828 AssertRC(rc);
7829 bool const fBlockInt = !(pMixedCtx->eflags.u32 & X86_EFL_IF);
7830 if ( !pVCpu->hm.s.Event.fPending
7831 && !fBlockInt
7832 && !fBlockSti
7833 && !fBlockMovSS)
7834 {
7835 uint8_t u8Interrupt;
7836 rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
7837 if (RT_SUCCESS(rc))
7838 {
7839 Log4(("Pending interrupt vcpu[%RU32] u8Interrupt=%#x \n", pVCpu->idCpu, u8Interrupt));
7840 uint32_t u32IntInfo = u8Interrupt | VMX_EXIT_INTERRUPTION_INFO_VALID;
7841 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7842
7843 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrfaultAddress */);
7844 }
7845 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
7846 {
7847 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
7848 hmR0VmxApicSetTprThreshold(pVCpu, u8Interrupt >> 4);
7849 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
7850
7851 /*
7852 * If the CPU doesn't have TPR shadowing, we will always get a VM-exit on TPR changes and
7853 * APICSetTpr() will end up setting the VMCPU_FF_INTERRUPT_APIC if required, so there is no
7854 * need to re-set this force-flag here.
7855 */
7856 }
7857 else
7858 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
7859 }
7860 else
7861 hmR0VmxSetIntWindowExitVmcs(pVCpu);
7862 }
7863
7864 return uIntrState;
7865}
7866
7867
7868/**
7869 * Sets a pending-debug exception to be delivered to the guest if the guest is
7870 * single-stepping in the VMCS.
7871 *
7872 * @param pVCpu The cross context virtual CPU structure.
7873 */
7874DECLINLINE(void) hmR0VmxSetPendingDebugXcptVmcs(PVMCPU pVCpu)
7875{
7876 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS)); NOREF(pVCpu);
7877 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, VMX_VMCS_GUEST_DEBUG_EXCEPTIONS_BS);
7878 AssertRC(rc);
7879}
7880
7881
7882/**
7883 * Injects any pending events into the guest if the guest is in a state to
7884 * receive them.
7885 *
7886 * @returns Strict VBox status code (i.e. informational status codes too).
7887 * @param pVCpu The cross context virtual CPU structure.
7888 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7889 * out-of-sync. Make sure to update the required fields
7890 * before using them.
7891 * @param uIntrState The VT-x guest-interruptibility state.
7892 * @param fStepping Running in hmR0VmxRunGuestCodeStep() and we should
7893 * return VINF_EM_DBG_STEPPED if the event was
7894 * dispatched directly.
7895 */
7896static VBOXSTRICTRC hmR0VmxInjectPendingEvent(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t uIntrState, bool fStepping)
7897{
7898 HMVMX_ASSERT_PREEMPT_SAFE();
7899 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7900
7901 bool fBlockMovSS = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
7902 bool fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
7903
7904 Assert(!fBlockSti || HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS));
7905 Assert(!(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
7906 Assert(!fBlockSti || pMixedCtx->eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
7907 Assert(!TRPMHasTrap(pVCpu));
7908
7909 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
7910 if (pVCpu->hm.s.Event.fPending)
7911 {
7912 /*
7913 * Do -not- clear any interrupt-window exiting control here. We might have an interrupt
7914 * pending even while injecting an event and in this case, we want a VM-exit as soon as
7915 * the guest is ready for the next interrupt, see @bugref{6208#c45}.
7916 *
7917 * See Intel spec. 26.6.5 "Interrupt-Window Exiting and Virtual-Interrupt Delivery".
7918 */
7919 uint32_t const uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
7920#ifdef VBOX_STRICT
7921 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
7922 {
7923 bool const fBlockInt = !(pMixedCtx->eflags.u32 & X86_EFL_IF);
7924 Assert(!fBlockInt);
7925 Assert(!fBlockSti);
7926 Assert(!fBlockMovSS);
7927 }
7928 else if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
7929 {
7930 bool const fBlockNmi = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI);
7931 Assert(!fBlockSti);
7932 Assert(!fBlockMovSS);
7933 Assert(!fBlockNmi);
7934 }
7935#endif
7936 Log4(("Injecting pending event vcpu[%RU32] u64IntInfo=%#RX64 Type=%#x\n", pVCpu->idCpu, pVCpu->hm.s.Event.u64IntInfo,
7937 (uint8_t)uIntType));
7938 rcStrict = hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, pVCpu->hm.s.Event.u64IntInfo, pVCpu->hm.s.Event.cbInstr,
7939 pVCpu->hm.s.Event.u32ErrCode, pVCpu->hm.s.Event.GCPtrFaultAddress,
7940 fStepping, &uIntrState);
7941 AssertRCReturn(VBOXSTRICTRC_VAL(rcStrict), rcStrict);
7942
7943 /* Update the interruptibility-state as it could have been changed by
7944 hmR0VmxInjectEventVmcs() (e.g. real-on-v86 guest injecting software interrupts) */
7945 fBlockMovSS = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
7946 fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
7947
7948 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
7949 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
7950 else
7951 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
7952 }
7953
7954 /* Deliver pending debug exception if the guest is single-stepping. Evaluate and set the BS bit. */
7955 if ( fBlockSti
7956 || fBlockMovSS)
7957 {
7958 if (!pVCpu->hm.s.fSingleInstruction)
7959 {
7960 /*
7961 * The pending-debug exceptions field is cleared on all VM-exits except VMX_EXIT_TPR_BELOW_THRESHOLD,
7962 * VMX_EXIT_MTF, VMX_EXIT_APIC_WRITE and VMX_EXIT_VIRTUALIZED_EOI.
7963 * See Intel spec. 27.3.4 "Saving Non-Register State".
7964 */
7965 Assert(!DBGFIsStepping(pVCpu));
7966 int rc2 = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
7967 AssertRCReturn(rc2, rc2);
7968 if (pMixedCtx->eflags.Bits.u1TF)
7969 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
7970 }
7971 else if (pMixedCtx->eflags.Bits.u1TF)
7972 {
7973 /*
7974 * We are single-stepping in the hypervisor debugger using EFLAGS.TF. Clear interrupt inhibition as setting the
7975 * BS bit would mean delivering a #DB to the guest upon VM-entry when it shouldn't be.
7976 */
7977 Assert(!(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG));
7978 uIntrState = 0;
7979 }
7980 }
7981
7982 /*
7983 * There's no need to clear the VM-entry interruption-information field here if we're not injecting anything.
7984 * VT-x clears the valid bit on every VM-exit. See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
7985 */
7986 int rc2 = hmR0VmxLoadGuestIntrState(pVCpu, uIntrState);
7987 AssertRC(rc2);
7988
7989 Assert(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping));
7990 NOREF(fBlockMovSS); NOREF(fBlockSti);
7991 return rcStrict;
7992}
7993
7994
7995/**
7996 * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
7997 *
7998 * @param pVCpu The cross context virtual CPU structure.
7999 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8000 * out-of-sync. Make sure to update the required fields
8001 * before using them.
8002 */
8003DECLINLINE(void) hmR0VmxSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
8004{
8005 NOREF(pMixedCtx);
8006 uint32_t u32IntInfo = X86_XCPT_UD | VMX_EXIT_INTERRUPTION_INFO_VALID;
8007 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
8008}
8009
8010
8011/**
8012 * Injects a double-fault (\#DF) exception into the VM.
8013 *
8014 * @returns Strict VBox status code (i.e. informational status codes too).
8015 * @param pVCpu The cross context virtual CPU structure.
8016 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8017 * out-of-sync. Make sure to update the required fields
8018 * before using them.
8019 * @param fStepping Whether we're running in hmR0VmxRunGuestCodeStep()
8020 * and should return VINF_EM_DBG_STEPPED if the event
8021 * is injected directly (register modified by us, not
8022 * by hardware on VM-entry).
8023 * @param puIntrState Pointer to the current guest interruptibility-state.
8024 * This interruptibility-state will be updated if
8025 * necessary. This cannot not be NULL.
8026 */
8027DECLINLINE(VBOXSTRICTRC) hmR0VmxInjectXcptDF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fStepping, uint32_t *puIntrState)
8028{
8029 uint32_t u32IntInfo = X86_XCPT_DF | VMX_EXIT_INTERRUPTION_INFO_VALID;
8030 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
8031 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
8032 return hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */,
8033 fStepping, puIntrState);
8034}
8035
8036
8037/**
8038 * Sets a debug (\#DB) exception as pending-for-injection into the VM.
8039 *
8040 * @param pVCpu The cross context virtual CPU structure.
8041 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8042 * out-of-sync. Make sure to update the required fields
8043 * before using them.
8044 */
8045DECLINLINE(void) hmR0VmxSetPendingXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
8046{
8047 NOREF(pMixedCtx);
8048 uint32_t u32IntInfo = X86_XCPT_DB | VMX_EXIT_INTERRUPTION_INFO_VALID;
8049 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
8050 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
8051}
8052
8053
8054/**
8055 * Sets an overflow (\#OF) exception as pending-for-injection into the VM.
8056 *
8057 * @param pVCpu The cross context virtual CPU structure.
8058 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8059 * out-of-sync. Make sure to update the required fields
8060 * before using them.
8061 * @param cbInstr The value of RIP that is to be pushed on the guest
8062 * stack.
8063 */
8064DECLINLINE(void) hmR0VmxSetPendingXcptOF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t cbInstr)
8065{
8066 NOREF(pMixedCtx);
8067 uint32_t u32IntInfo = X86_XCPT_OF | VMX_EXIT_INTERRUPTION_INFO_VALID;
8068 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
8069 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
8070}
8071
8072
8073/**
8074 * Injects a general-protection (\#GP) fault into the VM.
8075 *
8076 * @returns Strict VBox status code (i.e. informational status codes too).
8077 * @param pVCpu The cross context virtual CPU structure.
8078 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8079 * out-of-sync. Make sure to update the required fields
8080 * before using them.
8081 * @param fErrorCodeValid Whether the error code is valid (depends on the CPU
8082 * mode, i.e. in real-mode it's not valid).
8083 * @param u32ErrorCode The error code associated with the \#GP.
8084 * @param fStepping Whether we're running in
8085 * hmR0VmxRunGuestCodeStep() and should return
8086 * VINF_EM_DBG_STEPPED if the event is injected
8087 * directly (register modified by us, not by
8088 * hardware on VM-entry).
8089 * @param puIntrState Pointer to the current guest interruptibility-state.
8090 * This interruptibility-state will be updated if
8091 * necessary. This cannot not be NULL.
8092 */
8093DECLINLINE(VBOXSTRICTRC) hmR0VmxInjectXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fErrorCodeValid, uint32_t u32ErrorCode,
8094 bool fStepping, uint32_t *puIntrState)
8095{
8096 uint32_t u32IntInfo = X86_XCPT_GP | VMX_EXIT_INTERRUPTION_INFO_VALID;
8097 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
8098 if (fErrorCodeValid)
8099 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
8100 return hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, u32IntInfo, 0 /* cbInstr */, u32ErrorCode, 0 /* GCPtrFaultAddress */,
8101 fStepping, puIntrState);
8102}
8103
8104
8105#if 0 /* unused */
8106/**
8107 * Sets a general-protection (\#GP) exception as pending-for-injection into the
8108 * VM.
8109 *
8110 * @param pVCpu The cross context virtual CPU structure.
8111 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8112 * out-of-sync. Make sure to update the required fields
8113 * before using them.
8114 * @param u32ErrorCode The error code associated with the \#GP.
8115 */
8116DECLINLINE(void) hmR0VmxSetPendingXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t u32ErrorCode)
8117{
8118 NOREF(pMixedCtx);
8119 uint32_t u32IntInfo = X86_XCPT_GP | VMX_EXIT_INTERRUPTION_INFO_VALID;
8120 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
8121 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
8122 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrorCode, 0 /* GCPtrFaultAddress */);
8123}
8124#endif /* unused */
8125
8126
8127/**
8128 * Sets a software interrupt (INTn) as pending-for-injection into the VM.
8129 *
8130 * @param pVCpu The cross context virtual CPU structure.
8131 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8132 * out-of-sync. Make sure to update the required fields
8133 * before using them.
8134 * @param uVector The software interrupt vector number.
8135 * @param cbInstr The value of RIP that is to be pushed on the guest
8136 * stack.
8137 */
8138DECLINLINE(void) hmR0VmxSetPendingIntN(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint16_t uVector, uint32_t cbInstr)
8139{
8140 NOREF(pMixedCtx);
8141 uint32_t u32IntInfo = uVector | VMX_EXIT_INTERRUPTION_INFO_VALID;
8142 if ( uVector == X86_XCPT_BP
8143 || uVector == X86_XCPT_OF)
8144 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
8145 else
8146 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
8147 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
8148}
8149
8150
8151/**
8152 * Pushes a 2-byte value onto the real-mode (in virtual-8086 mode) guest's
8153 * stack.
8154 *
8155 * @returns Strict VBox status code (i.e. informational status codes too).
8156 * @retval VINF_EM_RESET if pushing a value to the stack caused a triple-fault.
8157 * @param pVM The cross context VM structure.
8158 * @param pMixedCtx Pointer to the guest-CPU context.
8159 * @param uValue The value to push to the guest stack.
8160 */
8161DECLINLINE(VBOXSTRICTRC) hmR0VmxRealModeGuestStackPush(PVM pVM, PCPUMCTX pMixedCtx, uint16_t uValue)
8162{
8163 /*
8164 * The stack limit is 0xffff in real-on-virtual 8086 mode. Real-mode with weird stack limits cannot be run in
8165 * virtual 8086 mode in VT-x. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
8166 * See Intel Instruction reference for PUSH and Intel spec. 22.33.1 "Segment Wraparound".
8167 */
8168 if (pMixedCtx->sp == 1)
8169 return VINF_EM_RESET;
8170 pMixedCtx->sp -= sizeof(uint16_t); /* May wrap around which is expected behaviour. */
8171 int rc = PGMPhysSimpleWriteGCPhys(pVM, pMixedCtx->ss.u64Base + pMixedCtx->sp, &uValue, sizeof(uint16_t));
8172 AssertRC(rc);
8173 return rc;
8174}
8175
8176
8177/**
8178 * Injects an event into the guest upon VM-entry by updating the relevant fields
8179 * in the VM-entry area in the VMCS.
8180 *
8181 * @returns Strict VBox status code (i.e. informational status codes too).
8182 * @retval VINF_SUCCESS if the event is successfully injected into the VMCS.
8183 * @retval VINF_EM_RESET if event injection resulted in a triple-fault.
8184 *
8185 * @param pVCpu The cross context virtual CPU structure.
8186 * @param pMixedCtx Pointer to the guest-CPU context. The data may
8187 * be out-of-sync. Make sure to update the required
8188 * fields before using them.
8189 * @param u64IntInfo The VM-entry interruption-information field.
8190 * @param cbInstr The VM-entry instruction length in bytes (for
8191 * software interrupts, exceptions and privileged
8192 * software exceptions).
8193 * @param u32ErrCode The VM-entry exception error code.
8194 * @param GCPtrFaultAddress The page-fault address for \#PF exceptions.
8195 * @param puIntrState Pointer to the current guest interruptibility-state.
8196 * This interruptibility-state will be updated if
8197 * necessary. This cannot not be NULL.
8198 * @param fStepping Whether we're running in
8199 * hmR0VmxRunGuestCodeStep() and should return
8200 * VINF_EM_DBG_STEPPED if the event is injected
8201 * directly (register modified by us, not by
8202 * hardware on VM-entry).
8203 *
8204 * @remarks Requires CR0!
8205 */
8206static VBOXSTRICTRC hmR0VmxInjectEventVmcs(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint64_t u64IntInfo, uint32_t cbInstr,
8207 uint32_t u32ErrCode, RTGCUINTREG GCPtrFaultAddress, bool fStepping,
8208 uint32_t *puIntrState)
8209{
8210 /* Intel spec. 24.8.3 "VM-Entry Controls for Event Injection" specifies the interruption-information field to be 32-bits. */
8211 AssertMsg(u64IntInfo >> 32 == 0, ("%#RX64\n", u64IntInfo));
8212 Assert(puIntrState);
8213 uint32_t u32IntInfo = (uint32_t)u64IntInfo;
8214
8215 uint32_t const uVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(u32IntInfo);
8216 uint32_t const uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(u32IntInfo);
8217
8218#ifdef VBOX_STRICT
8219 /* Validate the error-code-valid bit for hardware exceptions. */
8220 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT)
8221 {
8222 switch (uVector)
8223 {
8224 case X86_XCPT_PF:
8225 case X86_XCPT_DF:
8226 case X86_XCPT_TS:
8227 case X86_XCPT_NP:
8228 case X86_XCPT_SS:
8229 case X86_XCPT_GP:
8230 case X86_XCPT_AC:
8231 AssertMsg(VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(u32IntInfo),
8232 ("Error-code-valid bit not set for exception that has an error code uVector=%#x\n", uVector));
8233 /* fall thru */
8234 default:
8235 break;
8236 }
8237 }
8238#endif
8239
8240 /* Cannot inject an NMI when block-by-MOV SS is in effect. */
8241 Assert( uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI
8242 || !(*puIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS));
8243
8244 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[uVector & MASK_INJECT_IRQ_STAT]);
8245
8246 /* We require CR0 to check if the guest is in real-mode. */
8247 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
8248 AssertRCReturn(rc, rc);
8249
8250 /*
8251 * Hardware interrupts & exceptions cannot be delivered through the software interrupt redirection bitmap to the real
8252 * mode task in virtual-8086 mode. We must jump to the interrupt handler in the (real-mode) guest.
8253 * See Intel spec. 20.3 "Interrupt and Exception handling in Virtual-8086 Mode" for interrupt & exception classes.
8254 * See Intel spec. 20.1.4 "Interrupt and Exception Handling" for real-mode interrupt handling.
8255 */
8256 if (CPUMIsGuestInRealModeEx(pMixedCtx))
8257 {
8258 PVM pVM = pVCpu->CTX_SUFF(pVM);
8259 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
8260 {
8261 Assert(PDMVmmDevHeapIsEnabled(pVM));
8262 Assert(pVM->hm.s.vmx.pRealModeTSS);
8263
8264 /* We require RIP, RSP, RFLAGS, CS, IDTR. Save the required ones from the VMCS. */
8265 rc = hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
8266 rc |= hmR0VmxSaveGuestTableRegs(pVCpu, pMixedCtx);
8267 rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
8268 AssertRCReturn(rc, rc);
8269 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RIP));
8270
8271 /* Check if the interrupt handler is present in the IVT (real-mode IDT). IDT limit is (4N - 1). */
8272 size_t const cbIdtEntry = sizeof(X86IDTR16);
8273 if (uVector * cbIdtEntry + (cbIdtEntry - 1) > pMixedCtx->idtr.cbIdt)
8274 {
8275 /* If we are trying to inject a #DF with no valid IDT entry, return a triple-fault. */
8276 if (uVector == X86_XCPT_DF)
8277 return VINF_EM_RESET;
8278
8279 /* If we're injecting a #GP with no valid IDT entry, inject a double-fault. */
8280 if (uVector == X86_XCPT_GP)
8281 return hmR0VmxInjectXcptDF(pVCpu, pMixedCtx, fStepping, puIntrState);
8282
8283 /* If we're injecting an interrupt/exception with no valid IDT entry, inject a general-protection fault. */
8284 /* No error codes for exceptions in real-mode. See Intel spec. 20.1.4 "Interrupt and Exception Handling" */
8285 return hmR0VmxInjectXcptGP(pVCpu, pMixedCtx, false /* fErrCodeValid */, 0 /* u32ErrCode */,
8286 fStepping, puIntrState);
8287 }
8288
8289 /* Software exceptions (#BP and #OF exceptions thrown as a result of INT3 or INTO) */
8290 uint16_t uGuestIp = pMixedCtx->ip;
8291 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT)
8292 {
8293 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF);
8294 /* #BP and #OF are both benign traps, we need to resume the next instruction. */
8295 uGuestIp = pMixedCtx->ip + (uint16_t)cbInstr;
8296 }
8297 else if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT)
8298 uGuestIp = pMixedCtx->ip + (uint16_t)cbInstr;
8299
8300 /* Get the code segment selector and offset from the IDT entry for the interrupt handler. */
8301 X86IDTR16 IdtEntry;
8302 RTGCPHYS GCPhysIdtEntry = (RTGCPHYS)pMixedCtx->idtr.pIdt + uVector * cbIdtEntry;
8303 rc = PGMPhysSimpleReadGCPhys(pVM, &IdtEntry, GCPhysIdtEntry, cbIdtEntry);
8304 AssertRCReturn(rc, rc);
8305
8306 /* Construct the stack frame for the interrupt/exception handler. */
8307 VBOXSTRICTRC rcStrict;
8308 rcStrict = hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, pMixedCtx->eflags.u32);
8309 if (rcStrict == VINF_SUCCESS)
8310 rcStrict = hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, pMixedCtx->cs.Sel);
8311 if (rcStrict == VINF_SUCCESS)
8312 rcStrict = hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, uGuestIp);
8313
8314 /* Clear the required eflag bits and jump to the interrupt/exception handler. */
8315 if (rcStrict == VINF_SUCCESS)
8316 {
8317 pMixedCtx->eflags.u32 &= ~(X86_EFL_IF | X86_EFL_TF | X86_EFL_RF | X86_EFL_AC);
8318 pMixedCtx->rip = IdtEntry.offSel;
8319 pMixedCtx->cs.Sel = IdtEntry.uSel;
8320 pMixedCtx->cs.ValidSel = IdtEntry.uSel;
8321 pMixedCtx->cs.u64Base = IdtEntry.uSel << cbIdtEntry;
8322 if ( uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT
8323 && uVector == X86_XCPT_PF)
8324 pMixedCtx->cr2 = GCPtrFaultAddress;
8325
8326 /* If any other guest-state bits are changed here, make sure to update
8327 hmR0VmxPreRunGuestCommitted() when thread-context hooks are used. */
8328 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS
8329 | HM_CHANGED_GUEST_RIP
8330 | HM_CHANGED_GUEST_RFLAGS
8331 | HM_CHANGED_GUEST_RSP);
8332
8333 /* We're clearing interrupts, which means no block-by-STI interrupt-inhibition. */
8334 if (*puIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
8335 {
8336 Assert( uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI
8337 && uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT);
8338 Log4(("Clearing inhibition due to STI.\n"));
8339 *puIntrState &= ~VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI;
8340 }
8341 Log4(("Injecting real-mode: u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x Eflags=%#x CS:EIP=%04x:%04x\n",
8342 u32IntInfo, u32ErrCode, cbInstr, pMixedCtx->eflags.u, pMixedCtx->cs.Sel, pMixedCtx->eip));
8343
8344 /* The event has been truly dispatched. Mark it as no longer pending so we don't attempt to 'undo'
8345 it, if we are returning to ring-3 before executing guest code. */
8346 pVCpu->hm.s.Event.fPending = false;
8347
8348 /* Make hmR0VmxPreRunGuest return if we're stepping since we've changed cs:rip. */
8349 if (fStepping)
8350 rcStrict = VINF_EM_DBG_STEPPED;
8351 }
8352 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
8353 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8354 return rcStrict;
8355 }
8356
8357 /*
8358 * For unrestricted execution enabled CPUs running real-mode guests, we must not set the deliver-error-code bit.
8359 * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
8360 */
8361 u32IntInfo &= ~VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
8362 }
8363
8364 /* Validate. */
8365 Assert(VMX_EXIT_INTERRUPTION_INFO_IS_VALID(u32IntInfo)); /* Bit 31 (Valid bit) must be set by caller. */
8366 Assert(!VMX_EXIT_INTERRUPTION_INFO_NMI_UNBLOCK_IRET(u32IntInfo)); /* Bit 12 MBZ. */
8367 Assert(!(u32IntInfo & 0x7ffff000)); /* Bits 30:12 MBZ. */
8368
8369 /* Inject. */
8370 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, u32IntInfo);
8371 if (VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(u32IntInfo))
8372 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, u32ErrCode);
8373 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, cbInstr);
8374
8375 if ( VMX_EXIT_INTERRUPTION_INFO_TYPE(u32IntInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT
8376 && uVector == X86_XCPT_PF)
8377 pMixedCtx->cr2 = GCPtrFaultAddress;
8378
8379 Log4(("Injecting vcpu[%RU32] u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x pMixedCtx->uCR2=%#RX64\n", pVCpu->idCpu,
8380 u32IntInfo, u32ErrCode, cbInstr, pMixedCtx->cr2));
8381
8382 AssertRCReturn(rc, rc);
8383 return VINF_SUCCESS;
8384}
8385
8386
8387/**
8388 * Clears the interrupt-window exiting control in the VMCS and if necessary
8389 * clears the current event in the VMCS as well.
8390 *
8391 * @returns VBox status code.
8392 * @param pVCpu The cross context virtual CPU structure.
8393 *
8394 * @remarks Use this function only to clear events that have not yet been
8395 * delivered to the guest but are injected in the VMCS!
8396 * @remarks No-long-jump zone!!!
8397 */
8398static void hmR0VmxClearIntNmiWindowsVmcs(PVMCPU pVCpu)
8399{
8400 Log4Func(("vcpu[%d]\n", pVCpu->idCpu));
8401
8402 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT)
8403 hmR0VmxClearIntWindowExitVmcs(pVCpu);
8404
8405 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT)
8406 hmR0VmxClearNmiWindowExitVmcs(pVCpu);
8407}
8408
8409
8410/**
8411 * Enters the VT-x session.
8412 *
8413 * @returns VBox status code.
8414 * @param pVM The cross context VM structure.
8415 * @param pVCpu The cross context virtual CPU structure.
8416 * @param pCpu Pointer to the CPU info struct.
8417 */
8418VMMR0DECL(int) VMXR0Enter(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
8419{
8420 AssertPtr(pVM);
8421 AssertPtr(pVCpu);
8422 Assert(pVM->hm.s.vmx.fSupported);
8423 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8424 NOREF(pCpu); NOREF(pVM);
8425
8426 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
8427 Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
8428
8429#ifdef VBOX_STRICT
8430 /* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
8431 RTCCUINTREG uHostCR4 = ASMGetCR4();
8432 if (!(uHostCR4 & X86_CR4_VMXE))
8433 {
8434 LogRel(("VMXR0Enter: X86_CR4_VMXE bit in CR4 is not set!\n"));
8435 return VERR_VMX_X86_CR4_VMXE_CLEARED;
8436 }
8437#endif
8438
8439 /*
8440 * Load the VCPU's VMCS as the current (and active) one.
8441 */
8442 Assert(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_CLEAR);
8443 int rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
8444 if (RT_FAILURE(rc))
8445 return rc;
8446
8447 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
8448 pVCpu->hm.s.fLeaveDone = false;
8449 Log4Func(("Activated Vmcs. HostCpuId=%u\n", RTMpCpuId()));
8450
8451 return VINF_SUCCESS;
8452}
8453
8454
8455/**
8456 * The thread-context callback (only on platforms which support it).
8457 *
8458 * @param enmEvent The thread-context event.
8459 * @param pVCpu The cross context virtual CPU structure.
8460 * @param fGlobalInit Whether global VT-x/AMD-V init. was used.
8461 * @thread EMT(pVCpu)
8462 */
8463VMMR0DECL(void) VMXR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
8464{
8465 NOREF(fGlobalInit);
8466
8467 switch (enmEvent)
8468 {
8469 case RTTHREADCTXEVENT_OUT:
8470 {
8471 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8472 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
8473 VMCPU_ASSERT_EMT(pVCpu);
8474
8475 PCPUMCTX pMixedCtx = CPUMQueryGuestCtxPtr(pVCpu);
8476
8477 /* No longjmps (logger flushes, locks) in this fragile context. */
8478 VMMRZCallRing3Disable(pVCpu);
8479 Log4Func(("Preempting: HostCpuId=%u\n", RTMpCpuId()));
8480
8481 /*
8482 * Restore host-state (FPU, debug etc.)
8483 */
8484 if (!pVCpu->hm.s.fLeaveDone)
8485 {
8486 /* Do -not- save guest-state here as we might already be in the middle of saving it (esp. bad if we are
8487 holding the PGM lock while saving the guest state (see hmR0VmxSaveGuestControlRegs()). */
8488 hmR0VmxLeave(pVCpu, pMixedCtx, false /* fSaveGuestState */);
8489 pVCpu->hm.s.fLeaveDone = true;
8490 }
8491
8492 /* Leave HM context, takes care of local init (term). */
8493 int rc = HMR0LeaveCpu(pVCpu);
8494 AssertRC(rc); NOREF(rc);
8495
8496 /* Restore longjmp state. */
8497 VMMRZCallRing3Enable(pVCpu);
8498 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
8499 break;
8500 }
8501
8502 case RTTHREADCTXEVENT_IN:
8503 {
8504 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8505 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
8506 VMCPU_ASSERT_EMT(pVCpu);
8507
8508 /* No longjmps here, as we don't want to trigger preemption (& its hook) while resuming. */
8509 VMMRZCallRing3Disable(pVCpu);
8510 Log4Func(("Resumed: HostCpuId=%u\n", RTMpCpuId()));
8511
8512 /* Initialize the bare minimum state required for HM. This takes care of
8513 initializing VT-x if necessary (onlined CPUs, local init etc.) */
8514 int rc = HMR0EnterCpu(pVCpu);
8515 AssertRC(rc);
8516 Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
8517
8518 /* Load the active VMCS as the current one. */
8519 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_CLEAR)
8520 {
8521 rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
8522 AssertRC(rc); NOREF(rc);
8523 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
8524 Log4Func(("Resumed: Activated Vmcs. HostCpuId=%u\n", RTMpCpuId()));
8525 }
8526 pVCpu->hm.s.fLeaveDone = false;
8527
8528 /* Restore longjmp state. */
8529 VMMRZCallRing3Enable(pVCpu);
8530 break;
8531 }
8532
8533 default:
8534 break;
8535 }
8536}
8537
8538
8539/**
8540 * Saves the host state in the VMCS host-state.
8541 * Sets up the VM-exit MSR-load area.
8542 *
8543 * The CPU state will be loaded from these fields on every successful VM-exit.
8544 *
8545 * @returns VBox status code.
8546 * @param pVM The cross context VM structure.
8547 * @param pVCpu The cross context virtual CPU structure.
8548 *
8549 * @remarks No-long-jump zone!!!
8550 */
8551static int hmR0VmxSaveHostState(PVM pVM, PVMCPU pVCpu)
8552{
8553 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8554
8555 int rc = VINF_SUCCESS;
8556 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_CONTEXT))
8557 {
8558 rc = hmR0VmxSaveHostControlRegs(pVM, pVCpu);
8559 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostControlRegisters failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8560
8561 rc = hmR0VmxSaveHostSegmentRegs(pVM, pVCpu);
8562 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostSegmentRegisters failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8563
8564 rc = hmR0VmxSaveHostMsrs(pVM, pVCpu);
8565 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostMsrs failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8566
8567 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_HOST_CONTEXT);
8568 }
8569 return rc;
8570}
8571
8572
8573/**
8574 * Saves the host state in the VMCS host-state.
8575 *
8576 * @returns VBox status code.
8577 * @param pVM The cross context VM structure.
8578 * @param pVCpu The cross context virtual CPU structure.
8579 *
8580 * @remarks No-long-jump zone!!!
8581 */
8582VMMR0DECL(int) VMXR0SaveHostState(PVM pVM, PVMCPU pVCpu)
8583{
8584 AssertPtr(pVM);
8585 AssertPtr(pVCpu);
8586
8587 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
8588
8589 /* Save the host state here while entering HM context. When thread-context hooks are used, we might get preempted
8590 and have to resave the host state but most of the time we won't be, so do it here before we disable interrupts. */
8591 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8592 return hmR0VmxSaveHostState(pVM, pVCpu);
8593}
8594
8595
8596/**
8597 * Loads the guest state into the VMCS guest-state area.
8598 *
8599 * The will typically be done before VM-entry when the guest-CPU state and the
8600 * VMCS state may potentially be out of sync.
8601 *
8602 * Sets up the VM-entry MSR-load and VM-exit MSR-store areas. Sets up the
8603 * VM-entry controls.
8604 * Sets up the appropriate VMX non-root function to execute guest code based on
8605 * the guest CPU mode.
8606 *
8607 * @returns VBox strict status code.
8608 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
8609 * without unrestricted guest access and the VMMDev is not presently
8610 * mapped (e.g. EFI32).
8611 *
8612 * @param pVM The cross context VM structure.
8613 * @param pVCpu The cross context virtual CPU structure.
8614 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8615 * out-of-sync. Make sure to update the required fields
8616 * before using them.
8617 *
8618 * @remarks No-long-jump zone!!!
8619 */
8620static VBOXSTRICTRC hmR0VmxLoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
8621{
8622 AssertPtr(pVM);
8623 AssertPtr(pVCpu);
8624 AssertPtr(pMixedCtx);
8625 HMVMX_ASSERT_PREEMPT_SAFE();
8626
8627 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
8628
8629 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestState, x);
8630
8631 /* Determine real-on-v86 mode. */
8632 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = false;
8633 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
8634 && CPUMIsGuestInRealModeEx(pMixedCtx))
8635 {
8636 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = true;
8637 }
8638
8639 /*
8640 * Load the guest-state into the VMCS.
8641 * Any ordering dependency among the sub-functions below must be explicitly stated using comments.
8642 * Ideally, assert that the cross-dependent bits are up-to-date at the point of using it.
8643 */
8644 int rc = hmR0VmxSetupVMRunHandler(pVCpu, pMixedCtx);
8645 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSetupVMRunHandler! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8646
8647 /* This needs to be done after hmR0VmxSetupVMRunHandler() as changing pfnStartVM may require VM-entry control updates. */
8648 rc = hmR0VmxLoadGuestEntryCtls(pVCpu, pMixedCtx);
8649 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestEntryCtls! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8650
8651 /* This needs to be done after hmR0VmxSetupVMRunHandler() as changing pfnStartVM may require VM-exit control updates. */
8652 rc = hmR0VmxLoadGuestExitCtls(pVCpu, pMixedCtx);
8653 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSetupExitCtls failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8654
8655 rc = hmR0VmxLoadGuestActivityState(pVCpu, pMixedCtx);
8656 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestActivityState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8657
8658 VBOXSTRICTRC rcStrict = hmR0VmxLoadGuestCR3AndCR4(pVCpu, pMixedCtx);
8659 if (rcStrict == VINF_SUCCESS)
8660 { /* likely */ }
8661 else
8662 {
8663 Assert(rcStrict == VINF_EM_RESCHEDULE_REM || RT_FAILURE_NP(rcStrict));
8664 return rcStrict;
8665 }
8666
8667 /* Assumes pMixedCtx->cr0 is up-to-date (strict builds require CR0 for segment register validation checks). */
8668 rc = hmR0VmxLoadGuestSegmentRegs(pVCpu, pMixedCtx);
8669 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestSegmentRegs: rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8670
8671 /* This needs to be done after hmR0VmxLoadGuestEntryCtls() and hmR0VmxLoadGuestExitCtls() as it may alter controls if we
8672 determine we don't have to swap EFER after all. */
8673 rc = hmR0VmxLoadGuestMsrs(pVCpu, pMixedCtx);
8674 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestMsrs! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8675
8676 rc = hmR0VmxLoadGuestApicState(pVCpu, pMixedCtx);
8677 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestApicState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8678
8679 rc = hmR0VmxLoadGuestXcptIntercepts(pVCpu, pMixedCtx);
8680 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestXcptIntercepts! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8681
8682 /*
8683 * Loading Rflags here is fine, even though Rflags.TF might depend on guest debug state (which is not loaded here).
8684 * It is re-evaluated and updated if necessary in hmR0VmxLoadSharedState().
8685 */
8686 rc = hmR0VmxLoadGuestRipRspRflags(pVCpu, pMixedCtx);
8687 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestRipRspRflags! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8688
8689 /* Clear any unused and reserved bits. */
8690 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR2);
8691
8692 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestState, x);
8693 return rc;
8694}
8695
8696
8697/**
8698 * Loads the state shared between the host and guest into the VMCS.
8699 *
8700 * @param pVM The cross context VM structure.
8701 * @param pVCpu The cross context virtual CPU structure.
8702 * @param pCtx Pointer to the guest-CPU context.
8703 *
8704 * @remarks No-long-jump zone!!!
8705 */
8706static void hmR0VmxLoadSharedState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
8707{
8708 NOREF(pVM);
8709
8710 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8711 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8712
8713 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0))
8714 {
8715 int rc = hmR0VmxLoadSharedCR0(pVCpu, pCtx);
8716 AssertRC(rc);
8717 }
8718
8719 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_DEBUG))
8720 {
8721 int rc = hmR0VmxLoadSharedDebugState(pVCpu, pCtx);
8722 AssertRC(rc);
8723
8724 /* Loading shared debug bits might have changed eflags.TF bit for debugging purposes. */
8725 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RFLAGS))
8726 {
8727 rc = hmR0VmxLoadGuestRflags(pVCpu, pCtx);
8728 AssertRC(rc);
8729 }
8730 }
8731
8732 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS))
8733 {
8734 hmR0VmxLazyLoadGuestMsrs(pVCpu, pCtx);
8735 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS);
8736 }
8737
8738 /* Loading CR0, debug state might have changed intercepts, update VMCS. */
8739 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS))
8740 {
8741 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_AC));
8742 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_DB));
8743 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
8744 AssertRC(rc);
8745 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS);
8746 }
8747
8748 AssertMsg(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE),
8749 ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
8750}
8751
8752
8753/**
8754 * Worker for loading the guest-state bits in the inner VT-x execution loop.
8755 *
8756 * @returns Strict VBox status code (i.e. informational status codes too).
8757 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
8758 * without unrestricted guest access and the VMMDev is not presently
8759 * mapped (e.g. EFI32).
8760 *
8761 * @param pVM The cross context VM structure.
8762 * @param pVCpu The cross context virtual CPU structure.
8763 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8764 * out-of-sync. Make sure to update the required fields
8765 * before using them.
8766 *
8767 * @remarks No-long-jump zone!!!
8768 */
8769static VBOXSTRICTRC hmR0VmxLoadGuestStateOptimal(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
8770{
8771 HMVMX_ASSERT_PREEMPT_SAFE();
8772 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8773 Assert(VMMR0IsLogFlushDisabled(pVCpu));
8774
8775 Log5(("LoadFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
8776#ifdef HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
8777 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
8778#endif
8779
8780 /*
8781 * RIP is what changes the most often and hence if it's the only bit needing to be
8782 * updated, we shall handle it early for performance reasons.
8783 */
8784 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
8785 if (HMCPU_CF_IS_SET_ONLY(pVCpu, HM_CHANGED_GUEST_RIP))
8786 {
8787 rcStrict = hmR0VmxLoadGuestRip(pVCpu, pMixedCtx);
8788 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8789 { /* likely */}
8790 else
8791 {
8792 AssertMsgFailedReturn(("hmR0VmxLoadGuestStateOptimal: hmR0VmxLoadGuestRip failed! rc=%Rrc\n",
8793 VBOXSTRICTRC_VAL(rcStrict)), rcStrict);
8794 }
8795 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadMinimal);
8796 }
8797 else if (HMCPU_CF_VALUE(pVCpu))
8798 {
8799 rcStrict = hmR0VmxLoadGuestState(pVM, pVCpu, pMixedCtx);
8800 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8801 { /* likely */}
8802 else
8803 {
8804 AssertMsg(rcStrict == VINF_EM_RESCHEDULE_REM,
8805 ("hmR0VmxLoadGuestStateOptimal: hmR0VmxLoadGuestState failed! rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8806 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8807 return rcStrict;
8808 }
8809 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadFull);
8810 }
8811
8812 /* All the guest state bits should be loaded except maybe the host context and/or the shared host/guest bits. */
8813 AssertMsg( !HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_ALL_GUEST)
8814 || HMCPU_CF_IS_PENDING_ONLY(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE),
8815 ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
8816 return rcStrict;
8817}
8818
8819
8820/**
8821 * Does the preparations before executing guest code in VT-x.
8822 *
8823 * This may cause longjmps to ring-3 and may even result in rescheduling to the
8824 * recompiler/IEM. We must be cautious what we do here regarding committing
8825 * guest-state information into the VMCS assuming we assuredly execute the
8826 * guest in VT-x mode.
8827 *
8828 * If we fall back to the recompiler/IEM after updating the VMCS and clearing
8829 * the common-state (TRPM/forceflags), we must undo those changes so that the
8830 * recompiler/IEM can (and should) use them when it resumes guest execution.
8831 * Otherwise such operations must be done when we can no longer exit to ring-3.
8832 *
8833 * @returns Strict VBox status code (i.e. informational status codes too).
8834 * @retval VINF_SUCCESS if we can proceed with running the guest, interrupts
8835 * have been disabled.
8836 * @retval VINF_EM_RESET if a triple-fault occurs while injecting a
8837 * double-fault into the guest.
8838 * @retval VINF_EM_DBG_STEPPED if @a fStepping is true and an event was
8839 * dispatched directly.
8840 * @retval VINF_* scheduling changes, we have to go back to ring-3.
8841 *
8842 * @param pVM The cross context VM structure.
8843 * @param pVCpu The cross context virtual CPU structure.
8844 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8845 * out-of-sync. Make sure to update the required fields
8846 * before using them.
8847 * @param pVmxTransient Pointer to the VMX transient structure.
8848 * @param fStepping Set if called from hmR0VmxRunGuestCodeStep(). Makes
8849 * us ignore some of the reasons for returning to
8850 * ring-3, and return VINF_EM_DBG_STEPPED if event
8851 * dispatching took place.
8852 */
8853static VBOXSTRICTRC hmR0VmxPreRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, bool fStepping)
8854{
8855 Assert(VMMRZCallRing3IsEnabled(pVCpu));
8856
8857#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
8858 PGMRZDynMapFlushAutoSet(pVCpu);
8859#endif
8860
8861 /* Check force flag actions that might require us to go back to ring-3. */
8862 VBOXSTRICTRC rcStrict = hmR0VmxCheckForceFlags(pVM, pVCpu, pMixedCtx, fStepping);
8863 if (rcStrict == VINF_SUCCESS)
8864 { /* FFs doesn't get set all the time. */ }
8865 else
8866 return rcStrict;
8867
8868#ifndef IEM_VERIFICATION_MODE_FULL
8869 /*
8870 * Setup the virtualized-APIC accesses.
8871 *
8872 * Note! This can cause a longjumps to R3 due to the acquisition of the PGM lock
8873 * in both PGMHandlerPhysicalReset() and IOMMMIOMapMMIOHCPage(), see @bugref{8721}.
8874 *
8875 * This is the reason we do it here and not in hmR0VmxLoadGuestState().
8876 */
8877 if ( !pVCpu->hm.s.vmx.u64MsrApicBase
8878 && (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)
8879 && PDMHasApic(pVM))
8880 {
8881 uint64_t const u64MsrApicBase = APICGetBaseMsrNoCheck(pVCpu);
8882 Assert(u64MsrApicBase);
8883 Assert(pVM->hm.s.vmx.HCPhysApicAccess);
8884
8885 RTGCPHYS const GCPhysApicBase = u64MsrApicBase & PAGE_BASE_GC_MASK;
8886
8887 /* Unalias any existing mapping. */
8888 int rc = PGMHandlerPhysicalReset(pVM, GCPhysApicBase);
8889 AssertRCReturn(rc, rc);
8890
8891 /* Map the HC APIC-access page in place of the MMIO page, also updates the shadow page tables if necessary. */
8892 Log4(("hmR0VmxPreRunGuest: VCPU%u: Mapped HC APIC-access page at %#RGp\n", pVCpu->idCpu, GCPhysApicBase));
8893 rc = IOMMMIOMapMMIOHCPage(pVM, pVCpu, GCPhysApicBase, pVM->hm.s.vmx.HCPhysApicAccess, X86_PTE_RW | X86_PTE_P);
8894 AssertRCReturn(rc, rc);
8895
8896 /* Update the per-VCPU cache of the APIC base MSR. */
8897 pVCpu->hm.s.vmx.u64MsrApicBase = u64MsrApicBase;
8898 }
8899#endif /* !IEM_VERIFICATION_MODE_FULL */
8900
8901 if (TRPMHasTrap(pVCpu))
8902 hmR0VmxTrpmTrapToPendingEvent(pVCpu);
8903 uint32_t uIntrState = hmR0VmxEvaluatePendingEvent(pVCpu, pMixedCtx);
8904
8905 /*
8906 * Event injection may take locks (currently the PGM lock for real-on-v86 case) and thus needs to be done with
8907 * longjmps or interrupts + preemption enabled. Event injection might also result in triple-faulting the VM.
8908 */
8909 rcStrict = hmR0VmxInjectPendingEvent(pVCpu, pMixedCtx, uIntrState, fStepping);
8910 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8911 { /* likely */ }
8912 else
8913 {
8914 AssertMsg(rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
8915 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8916 return rcStrict;
8917 }
8918
8919 /*
8920 * No longjmps to ring-3 from this point on!!!
8921 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
8922 * This also disables flushing of the R0-logger instance (if any).
8923 */
8924 VMMRZCallRing3Disable(pVCpu);
8925
8926 /*
8927 * Load the guest state bits.
8928 *
8929 * We cannot perform longjmps while loading the guest state because we do not preserve the
8930 * host/guest state (although the VMCS will be preserved) across longjmps which can cause
8931 * CPU migration.
8932 *
8933 * If we are injecting events to a real-on-v86 mode guest, we will have to update
8934 * RIP and some segment registers, i.e. hmR0VmxInjectPendingEvent()->hmR0VmxInjectEventVmcs().
8935 * Hence, loading of the guest state needs to be done -after- injection of events.
8936 */
8937 rcStrict = hmR0VmxLoadGuestStateOptimal(pVM, pVCpu, pMixedCtx);
8938 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8939 { /* likely */ }
8940 else
8941 {
8942 VMMRZCallRing3Enable(pVCpu);
8943 return rcStrict;
8944 }
8945
8946 /*
8947 * We disable interrupts so that we don't miss any interrupts that would flag preemption (IPI/timers etc.)
8948 * when thread-context hooks aren't used and we've been running with preemption disabled for a while.
8949 *
8950 * We need to check for force-flags that could've possible been altered since we last checked them (e.g.
8951 * by PDMGetInterrupt() leaving the PDM critical section, see @bugref{6398}).
8952 *
8953 * We also check a couple of other force-flags as a last opportunity to get the EMT back to ring-3 before
8954 * executing guest code.
8955 */
8956 pVmxTransient->fEFlags = ASMIntDisableFlags();
8957
8958 if ( ( !VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
8959 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
8960 || ( fStepping /* Optimized for the non-stepping case, so a bit of unnecessary work when stepping. */
8961 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK & ~(VMCPU_FF_TIMER | VMCPU_FF_PDM_CRITSECT))) )
8962 {
8963 if (!RTThreadPreemptIsPending(NIL_RTTHREAD))
8964 {
8965 pVCpu->hm.s.Event.fPending = false;
8966
8967 /*
8968 * We've injected any pending events. This is really the point of no return (to ring-3).
8969 *
8970 * Note! The caller expects to continue with interrupts & longjmps disabled on successful
8971 * returns from this function, so don't enable them here.
8972 */
8973 return VINF_SUCCESS;
8974 }
8975
8976 STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
8977 rcStrict = VINF_EM_RAW_INTERRUPT;
8978 }
8979 else
8980 {
8981 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
8982 rcStrict = VINF_EM_RAW_TO_R3;
8983 }
8984
8985 ASMSetFlags(pVmxTransient->fEFlags);
8986 VMMRZCallRing3Enable(pVCpu);
8987
8988 return rcStrict;
8989}
8990
8991
8992/**
8993 * Prepares to run guest code in VT-x and we've committed to doing so. This
8994 * means there is no backing out to ring-3 or anywhere else at this
8995 * point.
8996 *
8997 * @param pVM The cross context VM structure.
8998 * @param pVCpu The cross context virtual CPU structure.
8999 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
9000 * out-of-sync. Make sure to update the required fields
9001 * before using them.
9002 * @param pVmxTransient Pointer to the VMX transient structure.
9003 *
9004 * @remarks Called with preemption disabled.
9005 * @remarks No-long-jump zone!!!
9006 */
9007static void hmR0VmxPreRunGuestCommitted(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
9008{
9009 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
9010 Assert(VMMR0IsLogFlushDisabled(pVCpu));
9011 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
9012
9013 /*
9014 * Indicate start of guest execution and where poking EMT out of guest-context is recognized.
9015 */
9016 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
9017 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
9018
9019#ifdef HMVMX_ALWAYS_SWAP_FPU_STATE
9020 if (!CPUMIsGuestFPUStateActive(pVCpu))
9021 if (CPUMR0LoadGuestFPU(pVM, pVCpu) == VINF_CPUM_HOST_CR0_MODIFIED)
9022 HMCPU_CF_SET(pVCpu, HM_CHANGED_HOST_CONTEXT);
9023 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
9024#endif
9025
9026 if ( pVCpu->hm.s.fPreloadGuestFpu
9027 && !CPUMIsGuestFPUStateActive(pVCpu))
9028 {
9029 if (CPUMR0LoadGuestFPU(pVM, pVCpu) == VINF_CPUM_HOST_CR0_MODIFIED)
9030 HMCPU_CF_SET(pVCpu, HM_CHANGED_HOST_CONTEXT);
9031 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0));
9032 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
9033 }
9034
9035 /*
9036 * Lazy-update of the host MSRs values in the auto-load/store MSR area.
9037 */
9038 if ( !pVCpu->hm.s.vmx.fUpdatedHostMsrs
9039 && pVCpu->hm.s.vmx.cMsrs > 0)
9040 {
9041 hmR0VmxUpdateAutoLoadStoreHostMsrs(pVCpu);
9042 }
9043
9044 /*
9045 * Load the host state bits as we may've been preempted (only happens when
9046 * thread-context hooks are used or when hmR0VmxSetupVMRunHandler() changes pfnStartVM).
9047 * Note that the 64-on-32 switcher saves the (64-bit) host state into the VMCS and
9048 * if we change the switcher back to 32-bit, we *must* save the 32-bit host state here.
9049 * See @bugref{8432}.
9050 */
9051 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_CONTEXT))
9052 {
9053 int rc = hmR0VmxSaveHostState(pVM, pVCpu);
9054 AssertRC(rc);
9055 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreemptSaveHostState);
9056 }
9057 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_CONTEXT));
9058
9059 /*
9060 * Load the state shared between host and guest (FPU, debug, lazy MSRs).
9061 */
9062 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE))
9063 hmR0VmxLoadSharedState(pVM, pVCpu, pMixedCtx);
9064 AssertMsg(!HMCPU_CF_VALUE(pVCpu), ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
9065
9066 /* Store status of the shared guest-host state at the time of VM-entry. */
9067#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
9068 if (CPUMIsGuestInLongModeEx(pMixedCtx))
9069 {
9070 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
9071 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
9072 }
9073 else
9074#endif
9075 {
9076 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
9077 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
9078 }
9079 pVmxTransient->fWasGuestFPUStateActive = CPUMIsGuestFPUStateActive(pVCpu);
9080
9081 /*
9082 * Cache the TPR-shadow for checking on every VM-exit if it might have changed.
9083 */
9084 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
9085 pVmxTransient->u8GuestTpr = pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR];
9086
9087 PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
9088 RTCPUID idCurrentCpu = pCpu->idCpu;
9089 if ( pVmxTransient->fUpdateTscOffsettingAndPreemptTimer
9090 || idCurrentCpu != pVCpu->hm.s.idLastCpu)
9091 {
9092 hmR0VmxUpdateTscOffsettingAndPreemptTimer(pVM, pVCpu);
9093 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = false;
9094 }
9095
9096 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
9097 hmR0VmxFlushTaggedTlb(pVCpu, pCpu); /* Invalidate the appropriate guest entries from the TLB. */
9098 Assert(idCurrentCpu == pVCpu->hm.s.idLastCpu);
9099 pVCpu->hm.s.vmx.LastError.idCurrentCpu = idCurrentCpu; /* Update the error reporting info. with the current host CPU. */
9100
9101 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
9102
9103 TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
9104 to start executing. */
9105
9106 /*
9107 * Load the TSC_AUX MSR when we are not intercepting RDTSCP.
9108 */
9109 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP)
9110 {
9111 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT))
9112 {
9113 bool fMsrUpdated;
9114 int rc2 = hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
9115 AssertRC(rc2);
9116 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS));
9117
9118 rc2 = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_TSC_AUX, CPUMR0GetGuestTscAux(pVCpu), true /* fUpdateHostMsr */,
9119 &fMsrUpdated);
9120 AssertRC(rc2);
9121 Assert(fMsrUpdated || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
9122
9123 /* Finally, mark that all host MSR values are updated so we don't redo it without leaving VT-x. See @bugref{6956}. */
9124 pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
9125 }
9126 else
9127 {
9128 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, MSR_K8_TSC_AUX);
9129 Assert(!pVCpu->hm.s.vmx.cMsrs || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
9130 }
9131 }
9132
9133#ifdef VBOX_STRICT
9134 hmR0VmxCheckAutoLoadStoreMsrs(pVCpu);
9135 hmR0VmxCheckHostEferMsr(pVCpu);
9136 AssertRC(hmR0VmxCheckVmcsCtls(pVCpu));
9137#endif
9138#ifdef HMVMX_ALWAYS_CHECK_GUEST_STATE
9139 uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVM, pVCpu, pMixedCtx);
9140 if (uInvalidReason != VMX_IGS_REASON_NOT_FOUND)
9141 Log4(("hmR0VmxCheckGuestState returned %#x\n", uInvalidReason));
9142#endif
9143}
9144
9145
9146/**
9147 * Performs some essential restoration of state after running guest code in
9148 * VT-x.
9149 *
9150 * @param pVM The cross context VM structure.
9151 * @param pVCpu The cross context virtual CPU structure.
9152 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
9153 * out-of-sync. Make sure to update the required fields
9154 * before using them.
9155 * @param pVmxTransient Pointer to the VMX transient structure.
9156 * @param rcVMRun Return code of VMLAUNCH/VMRESUME.
9157 *
9158 * @remarks Called with interrupts disabled, and returns with interrupts enabled!
9159 *
9160 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
9161 * unconditionally when it is safe to do so.
9162 */
9163static void hmR0VmxPostRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, int rcVMRun)
9164{
9165 NOREF(pVM);
9166
9167 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
9168
9169 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
9170 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
9171 HMVMXCPU_GST_RESET_TO(pVCpu, 0); /* Exits/longjmps to ring-3 requires saving the guest state. */
9172 pVmxTransient->fVmcsFieldsRead = 0; /* Transient fields need to be read from the VMCS. */
9173 pVmxTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
9174 pVmxTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
9175
9176 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT))
9177 TMCpuTickSetLastSeen(pVCpu, ASMReadTSC() + pVCpu->hm.s.vmx.u64TSCOffset);
9178
9179 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatExit1, x);
9180 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
9181 Assert(!ASMIntAreEnabled());
9182 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
9183
9184#ifdef HMVMX_ALWAYS_SWAP_FPU_STATE
9185 if (CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVM, pVCpu))
9186 {
9187 hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
9188 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
9189 }
9190#endif
9191
9192#if HC_ARCH_BITS == 64
9193 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_REQUIRED; /* Host state messed up by VT-x, we must restore. */
9194#endif
9195#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
9196 /* The 64-on-32 switcher maintains uVmcsState on its own and we need to leave it alone here. */
9197 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0SwitcherStartVM64)
9198 pVCpu->hm.s.vmx.uVmcsState |= HMVMX_VMCS_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
9199#else
9200 pVCpu->hm.s.vmx.uVmcsState |= HMVMX_VMCS_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
9201#endif
9202#ifdef VBOX_STRICT
9203 hmR0VmxCheckHostEferMsr(pVCpu); /* Verify that VMRUN/VMLAUNCH didn't modify host EFER. */
9204#endif
9205 ASMSetFlags(pVmxTransient->fEFlags); /* Enable interrupts. */
9206 VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
9207
9208 /* Save the basic VM-exit reason. Refer Intel spec. 24.9.1 "Basic VM-exit Information". */
9209 uint32_t uExitReason;
9210 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
9211 rc |= hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
9212 AssertRC(rc);
9213 pVmxTransient->uExitReason = (uint16_t)VMX_EXIT_REASON_BASIC(uExitReason);
9214 pVmxTransient->fVMEntryFailed = VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uEntryIntInfo);
9215
9216 /* If the VMLAUNCH/VMRESUME failed, we can bail out early. This does -not- cover VMX_EXIT_ERR_*. */
9217 if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
9218 {
9219 Log4(("VM-entry failure: pVCpu=%p idCpu=%RU32 rcVMRun=%Rrc fVMEntryFailed=%RTbool\n", pVCpu, pVCpu->idCpu, rcVMRun,
9220 pVmxTransient->fVMEntryFailed));
9221 return;
9222 }
9223
9224 /*
9225 * Update the VM-exit history array here even if the VM-entry failed due to:
9226 * - Invalid guest state.
9227 * - MSR loading.
9228 * - Machine-check event.
9229 *
9230 * In any of the above cases we will still have a "valid" VM-exit reason
9231 * despite @a fVMEntryFailed being false.
9232 *
9233 * See Intel spec. 26.7 "VM-Entry failures during or after loading guest state".
9234 */
9235 HMCPU_EXIT_HISTORY_ADD(pVCpu, pVmxTransient->uExitReason);
9236
9237 if (RT_LIKELY(!pVmxTransient->fVMEntryFailed))
9238 {
9239 /** @todo We can optimize this by only syncing with our force-flags when
9240 * really needed and keeping the VMCS state as it is for most
9241 * VM-exits. */
9242 /* Update the guest interruptibility-state from the VMCS. */
9243 hmR0VmxSaveGuestIntrState(pVCpu, pMixedCtx);
9244
9245#if defined(HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE) || defined(HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE)
9246 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
9247 AssertRC(rc);
9248#elif defined(HMVMX_ALWAYS_SAVE_GUEST_RFLAGS)
9249 rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
9250 AssertRC(rc);
9251#endif
9252
9253 /*
9254 * Sync the TPR shadow with our APIC state.
9255 */
9256 if ( (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
9257 && pVmxTransient->u8GuestTpr != pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR])
9258 {
9259 rc = APICSetTpr(pVCpu, pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR]);
9260 AssertRC(rc);
9261 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
9262 }
9263 }
9264}
9265
9266
9267/**
9268 * Runs the guest code using VT-x the normal way.
9269 *
9270 * @returns VBox status code.
9271 * @param pVM The cross context VM structure.
9272 * @param pVCpu The cross context virtual CPU structure.
9273 * @param pCtx Pointer to the guest-CPU context.
9274 *
9275 * @note Mostly the same as hmR0VmxRunGuestCodeStep().
9276 */
9277static VBOXSTRICTRC hmR0VmxRunGuestCodeNormal(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
9278{
9279 VMXTRANSIENT VmxTransient;
9280 VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
9281 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
9282 uint32_t cLoops = 0;
9283
9284 for (;; cLoops++)
9285 {
9286 Assert(!HMR0SuspendPending());
9287 HMVMX_ASSERT_CPU_SAFE();
9288
9289 /* Preparatory work for running guest code, this may force us to return
9290 to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
9291 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
9292 rcStrict = hmR0VmxPreRunGuest(pVM, pVCpu, pCtx, &VmxTransient, false /* fStepping */);
9293 if (rcStrict != VINF_SUCCESS)
9294 break;
9295
9296 hmR0VmxPreRunGuestCommitted(pVM, pVCpu, pCtx, &VmxTransient);
9297 int rcRun = hmR0VmxRunGuest(pVM, pVCpu, pCtx);
9298 /* The guest-CPU context is now outdated, 'pCtx' is to be treated as 'pMixedCtx' from this point on!!! */
9299
9300 /* Restore any residual host-state and save any bits shared between host
9301 and guest into the guest-CPU state. Re-enables interrupts! */
9302 hmR0VmxPostRunGuest(pVM, pVCpu, pCtx, &VmxTransient, rcRun);
9303
9304 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
9305 if (RT_SUCCESS(rcRun))
9306 { /* very likely */ }
9307 else
9308 {
9309 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
9310 hmR0VmxReportWorldSwitchError(pVM, pVCpu, rcRun, pCtx, &VmxTransient);
9311 return rcRun;
9312 }
9313
9314 /* Profile the VM-exit. */
9315 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
9316 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
9317 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
9318 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
9319 HMVMX_START_EXIT_DISPATCH_PROF();
9320
9321 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, pCtx, VmxTransient.uExitReason);
9322
9323 /* Handle the VM-exit. */
9324#ifdef HMVMX_USE_FUNCTION_TABLE
9325 rcStrict = g_apfnVMExitHandlers[VmxTransient.uExitReason](pVCpu, pCtx, &VmxTransient);
9326#else
9327 rcStrict = hmR0VmxHandleExit(pVCpu, pCtx, &VmxTransient, VmxTransient.uExitReason);
9328#endif
9329 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
9330 if (rcStrict == VINF_SUCCESS)
9331 {
9332 if (cLoops <= pVM->hm.s.cMaxResumeLoops)
9333 continue; /* likely */
9334 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
9335 rcStrict = VINF_EM_RAW_INTERRUPT;
9336 }
9337 break;
9338 }
9339
9340 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
9341 return rcStrict;
9342}
9343
9344
9345
9346/** @name Execution loop for single stepping, DBGF events and expensive Dtrace
9347 * probes.
9348 *
9349 * The following few functions and associated structure contains the bloat
9350 * necessary for providing detailed debug events and dtrace probes as well as
9351 * reliable host side single stepping. This works on the principle of
9352 * "subclassing" the normal execution loop and workers. We replace the loop
9353 * method completely and override selected helpers to add necessary adjustments
9354 * to their core operation.
9355 *
9356 * The goal is to keep the "parent" code lean and mean, so as not to sacrifice
9357 * any performance for debug and analysis features.
9358 *
9359 * @{
9360 */
9361
9362/**
9363 * Transient per-VCPU debug state of VMCS and related info. we save/restore in
9364 * the debug run loop.
9365 */
9366typedef struct VMXRUNDBGSTATE
9367{
9368 /** The RIP we started executing at. This is for detecting that we stepped. */
9369 uint64_t uRipStart;
9370 /** The CS we started executing with. */
9371 uint16_t uCsStart;
9372
9373 /** Whether we've actually modified the 1st execution control field. */
9374 bool fModifiedProcCtls : 1;
9375 /** Whether we've actually modified the 2nd execution control field. */
9376 bool fModifiedProcCtls2 : 1;
9377 /** Whether we've actually modified the exception bitmap. */
9378 bool fModifiedXcptBitmap : 1;
9379
9380 /** We desire the modified the CR0 mask to be cleared. */
9381 bool fClearCr0Mask : 1;
9382 /** We desire the modified the CR4 mask to be cleared. */
9383 bool fClearCr4Mask : 1;
9384 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC. */
9385 uint32_t fCpe1Extra;
9386 /** Stuff we do not want in VMX_VMCS32_CTRL_PROC_EXEC. */
9387 uint32_t fCpe1Unwanted;
9388 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC2. */
9389 uint32_t fCpe2Extra;
9390 /** Extra stuff we need in VMX_VMCS32_CTRL_EXCEPTION_BITMAP. */
9391 uint32_t bmXcptExtra;
9392 /** The sequence number of the Dtrace provider settings the state was
9393 * configured against. */
9394 uint32_t uDtraceSettingsSeqNo;
9395 /** VM-exits to check (one bit per VM-exit). */
9396 uint32_t bmExitsToCheck[3];
9397
9398 /** The initial VMX_VMCS32_CTRL_PROC_EXEC value (helps with restore). */
9399 uint32_t fProcCtlsInitial;
9400 /** The initial VMX_VMCS32_CTRL_PROC_EXEC2 value (helps with restore). */
9401 uint32_t fProcCtls2Initial;
9402 /** The initial VMX_VMCS32_CTRL_EXCEPTION_BITMAP value (helps with restore). */
9403 uint32_t bmXcptInitial;
9404} VMXRUNDBGSTATE;
9405AssertCompileMemberSize(VMXRUNDBGSTATE, bmExitsToCheck, (VMX_EXIT_MAX + 1 + 31) / 32 * 4);
9406typedef VMXRUNDBGSTATE *PVMXRUNDBGSTATE;
9407
9408
9409/**
9410 * Initializes the VMXRUNDBGSTATE structure.
9411 *
9412 * @param pVCpu The cross context virtual CPU structure of the
9413 * calling EMT.
9414 * @param pCtx The CPU register context to go with @a pVCpu.
9415 * @param pDbgState The structure to initialize.
9416 */
9417DECLINLINE(void) hmR0VmxRunDebugStateInit(PVMCPU pVCpu, PCCPUMCTX pCtx, PVMXRUNDBGSTATE pDbgState)
9418{
9419 pDbgState->uRipStart = pCtx->rip;
9420 pDbgState->uCsStart = pCtx->cs.Sel;
9421
9422 pDbgState->fModifiedProcCtls = false;
9423 pDbgState->fModifiedProcCtls2 = false;
9424 pDbgState->fModifiedXcptBitmap = false;
9425 pDbgState->fClearCr0Mask = false;
9426 pDbgState->fClearCr4Mask = false;
9427 pDbgState->fCpe1Extra = 0;
9428 pDbgState->fCpe1Unwanted = 0;
9429 pDbgState->fCpe2Extra = 0;
9430 pDbgState->bmXcptExtra = 0;
9431 pDbgState->fProcCtlsInitial = pVCpu->hm.s.vmx.u32ProcCtls;
9432 pDbgState->fProcCtls2Initial = pVCpu->hm.s.vmx.u32ProcCtls2;
9433 pDbgState->bmXcptInitial = pVCpu->hm.s.vmx.u32XcptBitmap;
9434}
9435
9436
9437/**
9438 * Updates the VMSC fields with changes requested by @a pDbgState.
9439 *
9440 * This is performed after hmR0VmxPreRunGuestDebugStateUpdate as well
9441 * immediately before executing guest code, i.e. when interrupts are disabled.
9442 * We don't check status codes here as we cannot easily assert or return in the
9443 * latter case.
9444 *
9445 * @param pVCpu The cross context virtual CPU structure.
9446 * @param pDbgState The debug state.
9447 */
9448DECLINLINE(void) hmR0VmxPreRunGuestDebugStateApply(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState)
9449{
9450 /*
9451 * Ensure desired flags in VMCS control fields are set.
9452 * (Ignoring write failure here, as we're committed and it's just debug extras.)
9453 *
9454 * Note! We load the shadow CR0 & CR4 bits when we flag the clearing, so
9455 * there should be no stale data in pCtx at this point.
9456 */
9457 if ( (pVCpu->hm.s.vmx.u32ProcCtls & pDbgState->fCpe1Extra) != pDbgState->fCpe1Extra
9458 || (pVCpu->hm.s.vmx.u32ProcCtls & pDbgState->fCpe1Unwanted))
9459 {
9460 pVCpu->hm.s.vmx.u32ProcCtls |= pDbgState->fCpe1Extra;
9461 pVCpu->hm.s.vmx.u32ProcCtls &= ~pDbgState->fCpe1Unwanted;
9462 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
9463 Log6(("hmR0VmxRunDebugStateRevert: VMX_VMCS32_CTRL_PROC_EXEC: %#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls));
9464 pDbgState->fModifiedProcCtls = true;
9465 }
9466
9467 if ((pVCpu->hm.s.vmx.u32ProcCtls2 & pDbgState->fCpe2Extra) != pDbgState->fCpe2Extra)
9468 {
9469 pVCpu->hm.s.vmx.u32ProcCtls2 |= pDbgState->fCpe2Extra;
9470 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pVCpu->hm.s.vmx.u32ProcCtls2);
9471 Log6(("hmR0VmxRunDebugStateRevert: VMX_VMCS32_CTRL_PROC_EXEC2: %#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls2));
9472 pDbgState->fModifiedProcCtls2 = true;
9473 }
9474
9475 if ((pVCpu->hm.s.vmx.u32XcptBitmap & pDbgState->bmXcptExtra) != pDbgState->bmXcptExtra)
9476 {
9477 pVCpu->hm.s.vmx.u32XcptBitmap |= pDbgState->bmXcptExtra;
9478 VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
9479 Log6(("hmR0VmxRunDebugStateRevert: VMX_VMCS32_CTRL_EXCEPTION_BITMAP: %#RX32\n", pVCpu->hm.s.vmx.u32XcptBitmap));
9480 pDbgState->fModifiedXcptBitmap = true;
9481 }
9482
9483 if (pDbgState->fClearCr0Mask && pVCpu->hm.s.vmx.u32CR0Mask != 0)
9484 {
9485 pVCpu->hm.s.vmx.u32CR0Mask = 0;
9486 VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_MASK, 0);
9487 Log6(("hmR0VmxRunDebugStateRevert: VMX_VMCS_CTRL_CR0_MASK: 0\n"));
9488 }
9489
9490 if (pDbgState->fClearCr4Mask && pVCpu->hm.s.vmx.u32CR4Mask != 0)
9491 {
9492 pVCpu->hm.s.vmx.u32CR4Mask = 0;
9493 VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_MASK, 0);
9494 Log6(("hmR0VmxRunDebugStateRevert: VMX_VMCS_CTRL_CR4_MASK: 0\n"));
9495 }
9496}
9497
9498
9499DECLINLINE(VBOXSTRICTRC) hmR0VmxRunDebugStateRevert(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState, VBOXSTRICTRC rcStrict)
9500{
9501 /*
9502 * Restore VM-exit control settings as we may not reenter this function the
9503 * next time around.
9504 */
9505 /* We reload the initial value, trigger what we can of recalculations the
9506 next time around. From the looks of things, that's all that's required atm. */
9507 if (pDbgState->fModifiedProcCtls)
9508 {
9509 if (!(pDbgState->fProcCtlsInitial & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT) && CPUMIsHyperDebugStateActive(pVCpu))
9510 pDbgState->fProcCtlsInitial |= VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT; /* Avoid assertion in hmR0VmxLeave */
9511 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pDbgState->fProcCtlsInitial);
9512 AssertRCReturn(rc2, rc2);
9513 pVCpu->hm.s.vmx.u32ProcCtls = pDbgState->fProcCtlsInitial;
9514 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0 | HM_CHANGED_GUEST_DEBUG);
9515 }
9516
9517 /* We're currently the only ones messing with this one, so just restore the
9518 cached value and reload the field. */
9519 if ( pDbgState->fModifiedProcCtls2
9520 && pVCpu->hm.s.vmx.u32ProcCtls2 != pDbgState->fProcCtls2Initial)
9521 {
9522 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pDbgState->fProcCtls2Initial);
9523 AssertRCReturn(rc2, rc2);
9524 pVCpu->hm.s.vmx.u32ProcCtls2 = pDbgState->fProcCtls2Initial;
9525 }
9526
9527 /* If we've modified the exception bitmap, we restore it and trigger
9528 reloading and partial recalculation the next time around. */
9529 if (pDbgState->fModifiedXcptBitmap)
9530 {
9531 pVCpu->hm.s.vmx.u32XcptBitmap = pDbgState->bmXcptInitial;
9532 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS | HM_CHANGED_GUEST_CR0);
9533 }
9534
9535 /* We assume hmR0VmxLoadSharedCR0 will recalculate and load the CR0 mask. */
9536 if (pDbgState->fClearCr0Mask)
9537 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
9538
9539 /* We assume hmR0VmxLoadGuestCR3AndCR4 will recalculate and load the CR4 mask. */
9540 if (pDbgState->fClearCr4Mask)
9541 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR4);
9542
9543 return rcStrict;
9544}
9545
9546
9547/**
9548 * Configures VM-exit controls for current DBGF and DTrace settings.
9549 *
9550 * This updates @a pDbgState and the VMCS execution control fields to reflect
9551 * the necessary VM-exits demanded by DBGF and DTrace.
9552 *
9553 * @param pVM The cross context VM structure.
9554 * @param pVCpu The cross context virtual CPU structure.
9555 * @param pCtx Pointer to the guest-CPU context.
9556 * @param pDbgState The debug state.
9557 * @param pVmxTransient Pointer to the VMX transient structure. May update
9558 * fUpdateTscOffsettingAndPreemptTimer.
9559 */
9560static void hmR0VmxPreRunGuestDebugStateUpdate(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx,
9561 PVMXRUNDBGSTATE pDbgState, PVMXTRANSIENT pVmxTransient)
9562{
9563 /*
9564 * Take down the dtrace serial number so we can spot changes.
9565 */
9566 pDbgState->uDtraceSettingsSeqNo = VBOXVMM_GET_SETTINGS_SEQ_NO();
9567 ASMCompilerBarrier();
9568
9569 /*
9570 * We'll rebuild most of the middle block of data members (holding the
9571 * current settings) as we go along here, so start by clearing it all.
9572 */
9573 pDbgState->bmXcptExtra = 0;
9574 pDbgState->fCpe1Extra = 0;
9575 pDbgState->fCpe1Unwanted = 0;
9576 pDbgState->fCpe2Extra = 0;
9577 for (unsigned i = 0; i < RT_ELEMENTS(pDbgState->bmExitsToCheck); i++)
9578 pDbgState->bmExitsToCheck[i] = 0;
9579
9580 /*
9581 * Software interrupts (INT XXh) - no idea how to trigger these...
9582 */
9583 if ( DBGF_IS_EVENT_ENABLED(pVM, DBGFEVENT_INTERRUPT_SOFTWARE)
9584 || VBOXVMM_INT_SOFTWARE_ENABLED())
9585 {
9586 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
9587 }
9588
9589 /*
9590 * INT3 breakpoints - triggered by #BP exceptions.
9591 */
9592 if (pVM->dbgf.ro.cEnabledInt3Breakpoints > 0)
9593 pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
9594
9595 /*
9596 * Exception bitmap and XCPT events+probes.
9597 */
9598 for (int iXcpt = 0; iXcpt < (DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST + 1); iXcpt++)
9599 if (DBGF_IS_EVENT_ENABLED(pVM, (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + iXcpt)))
9600 pDbgState->bmXcptExtra |= RT_BIT_32(iXcpt);
9601
9602 if (VBOXVMM_XCPT_DE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DE);
9603 if (VBOXVMM_XCPT_DB_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DB);
9604 if (VBOXVMM_XCPT_BP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
9605 if (VBOXVMM_XCPT_OF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_OF);
9606 if (VBOXVMM_XCPT_BR_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BR);
9607 if (VBOXVMM_XCPT_UD_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_UD);
9608 if (VBOXVMM_XCPT_NM_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NM);
9609 if (VBOXVMM_XCPT_DF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DF);
9610 if (VBOXVMM_XCPT_TS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_TS);
9611 if (VBOXVMM_XCPT_NP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NP);
9612 if (VBOXVMM_XCPT_SS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SS);
9613 if (VBOXVMM_XCPT_GP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_GP);
9614 if (VBOXVMM_XCPT_PF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_PF);
9615 if (VBOXVMM_XCPT_MF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_MF);
9616 if (VBOXVMM_XCPT_AC_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_AC);
9617 if (VBOXVMM_XCPT_XF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_XF);
9618 if (VBOXVMM_XCPT_VE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_VE);
9619 if (VBOXVMM_XCPT_SX_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SX);
9620
9621 if (pDbgState->bmXcptExtra)
9622 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
9623
9624 /*
9625 * Process events and probes for VM-exits, making sure we get the wanted VM-exits.
9626 *
9627 * Note! This is the reverse of waft hmR0VmxHandleExitDtraceEvents does.
9628 * So, when adding/changing/removing please don't forget to update it.
9629 *
9630 * Some of the macros are picking up local variables to save horizontal space,
9631 * (being able to see it in a table is the lesser evil here).
9632 */
9633#define IS_EITHER_ENABLED(a_pVM, a_EventSubName) \
9634 ( DBGF_IS_EVENT_ENABLED(a_pVM, RT_CONCAT(DBGFEVENT_, a_EventSubName)) \
9635 || RT_CONCAT3(VBOXVMM_, a_EventSubName, _ENABLED)() )
9636#define SET_ONLY_XBM_IF_EITHER_EN(a_EventSubName, a_uExit) \
9637 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9638 { AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9639 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9640 } else do { } while (0)
9641#define SET_CPE1_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec) \
9642 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9643 { \
9644 (pDbgState)->fCpe1Extra |= (a_fCtrlProcExec); \
9645 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9646 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9647 } else do { } while (0)
9648#define SET_CPEU_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fUnwantedCtrlProcExec) \
9649 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9650 { \
9651 (pDbgState)->fCpe1Unwanted |= (a_fUnwantedCtrlProcExec); \
9652 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9653 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9654 } else do { } while (0)
9655#define SET_CPE2_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec2) \
9656 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9657 { \
9658 (pDbgState)->fCpe2Extra |= (a_fCtrlProcExec2); \
9659 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9660 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9661 } else do { } while (0)
9662
9663 SET_ONLY_XBM_IF_EITHER_EN(EXIT_TASK_SWITCH, VMX_EXIT_TASK_SWITCH); /* unconditional */
9664 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_VIOLATION, VMX_EXIT_EPT_VIOLATION); /* unconditional */
9665 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_MISCONFIG, VMX_EXIT_EPT_MISCONFIG); /* unconditional (unless #VE) */
9666 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_ACCESS, VMX_EXIT_APIC_ACCESS); /* feature dependent, nothing to enable here */
9667 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_WRITE, VMX_EXIT_APIC_WRITE); /* feature dependent, nothing to enable here */
9668
9669 SET_ONLY_XBM_IF_EITHER_EN(INSTR_CPUID, VMX_EXIT_CPUID); /* unconditional */
9670 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CPUID, VMX_EXIT_CPUID);
9671 SET_ONLY_XBM_IF_EITHER_EN(INSTR_GETSEC, VMX_EXIT_GETSEC); /* unconditional */
9672 SET_ONLY_XBM_IF_EITHER_EN( EXIT_GETSEC, VMX_EXIT_GETSEC);
9673 SET_CPE1_XBM_IF_EITHER_EN(INSTR_HALT, VMX_EXIT_HLT, VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT); /* paranoia */
9674 SET_ONLY_XBM_IF_EITHER_EN( EXIT_HALT, VMX_EXIT_HLT);
9675 SET_ONLY_XBM_IF_EITHER_EN(INSTR_INVD, VMX_EXIT_INVD); /* unconditional */
9676 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVD, VMX_EXIT_INVD);
9677 SET_CPE1_XBM_IF_EITHER_EN(INSTR_INVLPG, VMX_EXIT_INVLPG, VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT);
9678 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVLPG, VMX_EXIT_INVLPG);
9679 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDPMC, VMX_EXIT_RDPMC, VMX_VMCS_CTRL_PROC_EXEC_RDPMC_EXIT);
9680 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDPMC, VMX_EXIT_RDPMC);
9681 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSC, VMX_EXIT_RDTSC, VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT);
9682 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSC, VMX_EXIT_RDTSC);
9683 SET_ONLY_XBM_IF_EITHER_EN(INSTR_RSM, VMX_EXIT_RSM); /* unconditional */
9684 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RSM, VMX_EXIT_RSM);
9685 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMM_CALL, VMX_EXIT_VMCALL); /* unconditional */
9686 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMM_CALL, VMX_EXIT_VMCALL);
9687 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMCLEAR, VMX_EXIT_VMCLEAR); /* unconditional */
9688 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMCLEAR, VMX_EXIT_VMCLEAR);
9689 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH); /* unconditional */
9690 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH);
9691 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRLD, VMX_EXIT_VMPTRLD); /* unconditional */
9692 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRLD, VMX_EXIT_VMPTRLD);
9693 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRST, VMX_EXIT_VMPTRST); /* unconditional */
9694 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRST, VMX_EXIT_VMPTRST);
9695 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMREAD, VMX_EXIT_VMREAD); /* unconditional */
9696 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMREAD, VMX_EXIT_VMREAD);
9697 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMRESUME, VMX_EXIT_VMRESUME); /* unconditional */
9698 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMRESUME, VMX_EXIT_VMRESUME);
9699 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMWRITE, VMX_EXIT_VMWRITE); /* unconditional */
9700 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMWRITE, VMX_EXIT_VMWRITE);
9701 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXOFF, VMX_EXIT_VMXOFF); /* unconditional */
9702 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXOFF, VMX_EXIT_VMXOFF);
9703 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXON, VMX_EXIT_VMXON); /* unconditional */
9704 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXON, VMX_EXIT_VMXON);
9705
9706 if ( IS_EITHER_ENABLED(pVM, INSTR_CRX_READ)
9707 || IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
9708 {
9709 int rc2 = hmR0VmxSaveGuestCR0(pVCpu, pCtx);
9710 rc2 |= hmR0VmxSaveGuestCR4(pVCpu, pCtx);
9711 rc2 |= hmR0VmxSaveGuestApicState(pVCpu, pCtx);
9712 AssertRC(rc2);
9713
9714#if 0 /** @todo fix me */
9715 pDbgState->fClearCr0Mask = true;
9716 pDbgState->fClearCr4Mask = true;
9717#endif
9718 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_READ))
9719 pDbgState->fCpe1Extra |= VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT | VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT;
9720 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
9721 pDbgState->fCpe1Extra |= VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT | VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT;
9722 pDbgState->fCpe1Unwanted |= VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW; /* risky? */
9723 /* Note! We currently don't use VMX_VMCS32_CTRL_CR3_TARGET_COUNT. It would
9724 require clearing here and in the loop if we start using it. */
9725 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_CRX);
9726 }
9727 else
9728 {
9729 if (pDbgState->fClearCr0Mask)
9730 {
9731 pDbgState->fClearCr0Mask = false;
9732 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
9733 }
9734 if (pDbgState->fClearCr4Mask)
9735 {
9736 pDbgState->fClearCr4Mask = false;
9737 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR4);
9738 }
9739 }
9740 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_READ, VMX_EXIT_MOV_CRX);
9741 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_WRITE, VMX_EXIT_MOV_CRX);
9742
9743 if ( IS_EITHER_ENABLED(pVM, INSTR_DRX_READ)
9744 || IS_EITHER_ENABLED(pVM, INSTR_DRX_WRITE))
9745 {
9746 /** @todo later, need to fix handler as it assumes this won't usually happen. */
9747 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_DRX);
9748 }
9749 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_READ, VMX_EXIT_MOV_DRX);
9750 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_WRITE, VMX_EXIT_MOV_DRX);
9751
9752 SET_CPEU_XBM_IF_EITHER_EN(INSTR_RDMSR, VMX_EXIT_RDMSR, VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS); /* risky clearing this? */
9753 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDMSR, VMX_EXIT_RDMSR);
9754 SET_CPEU_XBM_IF_EITHER_EN(INSTR_WRMSR, VMX_EXIT_WRMSR, VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS);
9755 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WRMSR, VMX_EXIT_WRMSR);
9756 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MWAIT, VMX_EXIT_MWAIT, VMX_VMCS_CTRL_PROC_EXEC_MWAIT_EXIT); /* paranoia */
9757 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MWAIT, VMX_EXIT_MWAIT);
9758 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MONITOR, VMX_EXIT_MONITOR, VMX_VMCS_CTRL_PROC_EXEC_MONITOR_EXIT); /* paranoia */
9759 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MONITOR, VMX_EXIT_MONITOR);
9760#if 0 /** @todo too slow, fix handler. */
9761 SET_CPE1_XBM_IF_EITHER_EN(INSTR_PAUSE, VMX_EXIT_PAUSE, VMX_VMCS_CTRL_PROC_EXEC_PAUSE_EXIT);
9762#endif
9763 SET_ONLY_XBM_IF_EITHER_EN( EXIT_PAUSE, VMX_EXIT_PAUSE);
9764
9765 if ( IS_EITHER_ENABLED(pVM, INSTR_SGDT)
9766 || IS_EITHER_ENABLED(pVM, INSTR_SIDT)
9767 || IS_EITHER_ENABLED(pVM, INSTR_LGDT)
9768 || IS_EITHER_ENABLED(pVM, INSTR_LIDT))
9769 {
9770 pDbgState->fCpe2Extra |= VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT;
9771 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XDTR_ACCESS);
9772 }
9773 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SGDT, VMX_EXIT_XDTR_ACCESS);
9774 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SIDT, VMX_EXIT_XDTR_ACCESS);
9775 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LGDT, VMX_EXIT_XDTR_ACCESS);
9776 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LIDT, VMX_EXIT_XDTR_ACCESS);
9777
9778 if ( IS_EITHER_ENABLED(pVM, INSTR_SLDT)
9779 || IS_EITHER_ENABLED(pVM, INSTR_STR)
9780 || IS_EITHER_ENABLED(pVM, INSTR_LLDT)
9781 || IS_EITHER_ENABLED(pVM, INSTR_LTR))
9782 {
9783 pDbgState->fCpe2Extra |= VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT;
9784 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_TR_ACCESS);
9785 }
9786 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SLDT, VMX_EXIT_TR_ACCESS);
9787 SET_ONLY_XBM_IF_EITHER_EN( EXIT_STR, VMX_EXIT_TR_ACCESS);
9788 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LLDT, VMX_EXIT_TR_ACCESS);
9789 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LTR, VMX_EXIT_TR_ACCESS);
9790
9791 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVEPT, VMX_EXIT_INVEPT); /* unconditional */
9792 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVEPT, VMX_EXIT_INVEPT);
9793 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSCP, VMX_EXIT_RDTSCP, VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT);
9794 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSCP, VMX_EXIT_RDTSCP);
9795 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVVPID, VMX_EXIT_INVVPID); /* unconditional */
9796 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVVPID, VMX_EXIT_INVVPID);
9797 SET_CPE2_XBM_IF_EITHER_EN(INSTR_WBINVD, VMX_EXIT_WBINVD, VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT);
9798 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WBINVD, VMX_EXIT_WBINVD);
9799 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSETBV, VMX_EXIT_XSETBV); /* unconditional */
9800 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XSETBV, VMX_EXIT_XSETBV);
9801 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDRAND, VMX_EXIT_RDRAND, VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT);
9802 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDRAND, VMX_EXIT_RDRAND);
9803 SET_CPE1_XBM_IF_EITHER_EN(INSTR_VMX_INVPCID, VMX_EXIT_INVPCID, VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT);
9804 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVPCID, VMX_EXIT_INVPCID);
9805 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMFUNC, VMX_EXIT_VMFUNC); /* unconditional for the current setup */
9806 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMFUNC, VMX_EXIT_VMFUNC);
9807 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDSEED, VMX_EXIT_RDSEED, VMX_VMCS_CTRL_PROC_EXEC2_RDSEED_EXIT);
9808 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDSEED, VMX_EXIT_RDSEED);
9809 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSAVES, VMX_EXIT_XSAVES); /* unconditional (enabled by host, guest cfg) */
9810 SET_ONLY_XBM_IF_EITHER_EN(EXIT_XSAVES, VMX_EXIT_XSAVES);
9811 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XRSTORS, VMX_EXIT_XRSTORS); /* unconditional (enabled by host, guest cfg) */
9812 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XRSTORS, VMX_EXIT_XRSTORS);
9813
9814#undef IS_EITHER_ENABLED
9815#undef SET_ONLY_XBM_IF_EITHER_EN
9816#undef SET_CPE1_XBM_IF_EITHER_EN
9817#undef SET_CPEU_XBM_IF_EITHER_EN
9818#undef SET_CPE2_XBM_IF_EITHER_EN
9819
9820 /*
9821 * Sanitize the control stuff.
9822 */
9823 pDbgState->fCpe2Extra &= pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1;
9824 if (pDbgState->fCpe2Extra)
9825 pDbgState->fCpe1Extra |= VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL;
9826 pDbgState->fCpe1Extra &= pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1;
9827 pDbgState->fCpe1Unwanted &= ~pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0;
9828 if (pVCpu->hm.s.fDebugWantRdTscExit != RT_BOOL(pDbgState->fCpe1Extra & VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT))
9829 {
9830 pVCpu->hm.s.fDebugWantRdTscExit ^= true;
9831 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
9832 }
9833
9834 Log6(("HM: debug state: cpe1=%#RX32 cpeu=%#RX32 cpe2=%#RX32%s%s\n",
9835 pDbgState->fCpe1Extra, pDbgState->fCpe1Unwanted, pDbgState->fCpe2Extra,
9836 pDbgState->fClearCr0Mask ? " clr-cr0" : "",
9837 pDbgState->fClearCr4Mask ? " clr-cr4" : ""));
9838}
9839
9840
9841/**
9842 * Fires off DBGF events and dtrace probes for a VM-exit, when it's
9843 * appropriate.
9844 *
9845 * The caller has checked the VM-exit against the
9846 * VMXRUNDBGSTATE::bmExitsToCheck bitmap. The caller has checked for NMIs
9847 * already, so we don't have to do that either.
9848 *
9849 * @returns Strict VBox status code (i.e. informational status codes too).
9850 * @param pVM The cross context VM structure.
9851 * @param pVCpu The cross context virtual CPU structure.
9852 * @param pMixedCtx Pointer to the guest-CPU context.
9853 * @param pVmxTransient Pointer to the VMX-transient structure.
9854 * @param uExitReason The VM-exit reason.
9855 *
9856 * @remarks The name of this function is displayed by dtrace, so keep it short
9857 * and to the point. No longer than 33 chars long, please.
9858 */
9859static VBOXSTRICTRC hmR0VmxHandleExitDtraceEvents(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx,
9860 PVMXTRANSIENT pVmxTransient, uint32_t uExitReason)
9861{
9862 /*
9863 * Translate the event into a DBGF event (enmEvent + uEventArg) and at the
9864 * same time check whether any corresponding Dtrace event is enabled (fDtrace).
9865 *
9866 * Note! This is the reverse operation of what hmR0VmxPreRunGuestDebugStateUpdate
9867 * does. Must add/change/remove both places. Same ordering, please.
9868 *
9869 * Added/removed events must also be reflected in the next section
9870 * where we dispatch dtrace events.
9871 */
9872 bool fDtrace1 = false;
9873 bool fDtrace2 = false;
9874 DBGFEVENTTYPE enmEvent1 = DBGFEVENT_END;
9875 DBGFEVENTTYPE enmEvent2 = DBGFEVENT_END;
9876 uint32_t uEventArg = 0;
9877#define SET_EXIT(a_EventSubName) \
9878 do { \
9879 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
9880 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
9881 } while (0)
9882#define SET_BOTH(a_EventSubName) \
9883 do { \
9884 enmEvent1 = RT_CONCAT(DBGFEVENT_INSTR_, a_EventSubName); \
9885 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
9886 fDtrace1 = RT_CONCAT3(VBOXVMM_INSTR_, a_EventSubName, _ENABLED)(); \
9887 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
9888 } while (0)
9889 switch (uExitReason)
9890 {
9891 case VMX_EXIT_MTF:
9892 return hmR0VmxExitMtf(pVCpu, pMixedCtx, pVmxTransient);
9893
9894 case VMX_EXIT_XCPT_OR_NMI:
9895 {
9896 uint8_t const idxVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVmxTransient->uExitIntInfo);
9897 switch (VMX_EXIT_INTERRUPTION_INFO_TYPE(pVmxTransient->uExitIntInfo))
9898 {
9899 case VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT:
9900 case VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT:
9901 case VMX_EXIT_INTERRUPTION_INFO_TYPE_PRIV_SW_XCPT:
9902 if (idxVector <= (unsigned)(DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST))
9903 {
9904 if (VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(pVmxTransient->uExitIntInfo))
9905 {
9906 hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
9907 uEventArg = pVmxTransient->uExitIntErrorCode;
9908 }
9909 enmEvent1 = (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + idxVector);
9910 switch (enmEvent1)
9911 {
9912 case DBGFEVENT_XCPT_DE: fDtrace1 = VBOXVMM_XCPT_DE_ENABLED(); break;
9913 case DBGFEVENT_XCPT_DB: fDtrace1 = VBOXVMM_XCPT_DB_ENABLED(); break;
9914 case DBGFEVENT_XCPT_BP: fDtrace1 = VBOXVMM_XCPT_BP_ENABLED(); break;
9915 case DBGFEVENT_XCPT_OF: fDtrace1 = VBOXVMM_XCPT_OF_ENABLED(); break;
9916 case DBGFEVENT_XCPT_BR: fDtrace1 = VBOXVMM_XCPT_BR_ENABLED(); break;
9917 case DBGFEVENT_XCPT_UD: fDtrace1 = VBOXVMM_XCPT_UD_ENABLED(); break;
9918 case DBGFEVENT_XCPT_NM: fDtrace1 = VBOXVMM_XCPT_NM_ENABLED(); break;
9919 case DBGFEVENT_XCPT_DF: fDtrace1 = VBOXVMM_XCPT_DF_ENABLED(); break;
9920 case DBGFEVENT_XCPT_TS: fDtrace1 = VBOXVMM_XCPT_TS_ENABLED(); break;
9921 case DBGFEVENT_XCPT_NP: fDtrace1 = VBOXVMM_XCPT_NP_ENABLED(); break;
9922 case DBGFEVENT_XCPT_SS: fDtrace1 = VBOXVMM_XCPT_SS_ENABLED(); break;
9923 case DBGFEVENT_XCPT_GP: fDtrace1 = VBOXVMM_XCPT_GP_ENABLED(); break;
9924 case DBGFEVENT_XCPT_PF: fDtrace1 = VBOXVMM_XCPT_PF_ENABLED(); break;
9925 case DBGFEVENT_XCPT_MF: fDtrace1 = VBOXVMM_XCPT_MF_ENABLED(); break;
9926 case DBGFEVENT_XCPT_AC: fDtrace1 = VBOXVMM_XCPT_AC_ENABLED(); break;
9927 case DBGFEVENT_XCPT_XF: fDtrace1 = VBOXVMM_XCPT_XF_ENABLED(); break;
9928 case DBGFEVENT_XCPT_VE: fDtrace1 = VBOXVMM_XCPT_VE_ENABLED(); break;
9929 case DBGFEVENT_XCPT_SX: fDtrace1 = VBOXVMM_XCPT_SX_ENABLED(); break;
9930 default: break;
9931 }
9932 }
9933 else
9934 AssertFailed();
9935 break;
9936
9937 case VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT:
9938 uEventArg = idxVector;
9939 enmEvent1 = DBGFEVENT_INTERRUPT_SOFTWARE;
9940 fDtrace1 = VBOXVMM_INT_SOFTWARE_ENABLED();
9941 break;
9942 }
9943 break;
9944 }
9945
9946 case VMX_EXIT_TRIPLE_FAULT:
9947 enmEvent1 = DBGFEVENT_TRIPLE_FAULT;
9948 //fDtrace1 = VBOXVMM_EXIT_TRIPLE_FAULT_ENABLED();
9949 break;
9950 case VMX_EXIT_TASK_SWITCH: SET_EXIT(TASK_SWITCH); break;
9951 case VMX_EXIT_EPT_VIOLATION: SET_EXIT(VMX_EPT_VIOLATION); break;
9952 case VMX_EXIT_EPT_MISCONFIG: SET_EXIT(VMX_EPT_MISCONFIG); break;
9953 case VMX_EXIT_APIC_ACCESS: SET_EXIT(VMX_VAPIC_ACCESS); break;
9954 case VMX_EXIT_APIC_WRITE: SET_EXIT(VMX_VAPIC_WRITE); break;
9955
9956 /* Instruction specific VM-exits: */
9957 case VMX_EXIT_CPUID: SET_BOTH(CPUID); break;
9958 case VMX_EXIT_GETSEC: SET_BOTH(GETSEC); break;
9959 case VMX_EXIT_HLT: SET_BOTH(HALT); break;
9960 case VMX_EXIT_INVD: SET_BOTH(INVD); break;
9961 case VMX_EXIT_INVLPG: SET_BOTH(INVLPG); break;
9962 case VMX_EXIT_RDPMC: SET_BOTH(RDPMC); break;
9963 case VMX_EXIT_RDTSC: SET_BOTH(RDTSC); break;
9964 case VMX_EXIT_RSM: SET_BOTH(RSM); break;
9965 case VMX_EXIT_VMCALL: SET_BOTH(VMM_CALL); break;
9966 case VMX_EXIT_VMCLEAR: SET_BOTH(VMX_VMCLEAR); break;
9967 case VMX_EXIT_VMLAUNCH: SET_BOTH(VMX_VMLAUNCH); break;
9968 case VMX_EXIT_VMPTRLD: SET_BOTH(VMX_VMPTRLD); break;
9969 case VMX_EXIT_VMPTRST: SET_BOTH(VMX_VMPTRST); break;
9970 case VMX_EXIT_VMREAD: SET_BOTH(VMX_VMREAD); break;
9971 case VMX_EXIT_VMRESUME: SET_BOTH(VMX_VMRESUME); break;
9972 case VMX_EXIT_VMWRITE: SET_BOTH(VMX_VMWRITE); break;
9973 case VMX_EXIT_VMXOFF: SET_BOTH(VMX_VMXOFF); break;
9974 case VMX_EXIT_VMXON: SET_BOTH(VMX_VMXON); break;
9975 case VMX_EXIT_MOV_CRX:
9976 hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
9977/** @todo r=bird: I feel these macros aren't very descriptive and needs to be at least 30 chars longer! ;-)
9978* Sensible abbreviations strongly recommended here because even with 130 columns this stuff get too wide! */
9979 if ( VMX_EXIT_QUALIFICATION_CRX_ACCESS(pVmxTransient->uExitQualification)
9980 == VMX_EXIT_QUALIFICATION_CRX_ACCESS_READ)
9981 SET_BOTH(CRX_READ);
9982 else
9983 SET_BOTH(CRX_WRITE);
9984 uEventArg = VMX_EXIT_QUALIFICATION_CRX_REGISTER(pVmxTransient->uExitQualification);
9985 break;
9986 case VMX_EXIT_MOV_DRX:
9987 hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
9988 if ( VMX_EXIT_QUALIFICATION_DRX_DIRECTION(pVmxTransient->uExitQualification)
9989 == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_READ)
9990 SET_BOTH(DRX_READ);
9991 else
9992 SET_BOTH(DRX_WRITE);
9993 uEventArg = VMX_EXIT_QUALIFICATION_DRX_REGISTER(pVmxTransient->uExitQualification);
9994 break;
9995 case VMX_EXIT_RDMSR: SET_BOTH(RDMSR); break;
9996 case VMX_EXIT_WRMSR: SET_BOTH(WRMSR); break;
9997 case VMX_EXIT_MWAIT: SET_BOTH(MWAIT); break;
9998 case VMX_EXIT_MONITOR: SET_BOTH(MONITOR); break;
9999 case VMX_EXIT_PAUSE: SET_BOTH(PAUSE); break;
10000 case VMX_EXIT_XDTR_ACCESS:
10001 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
10002 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_XDTR_INSINFO_INSTR_ID))
10003 {
10004 case VMX_XDTR_INSINFO_II_SGDT: SET_BOTH(SGDT); break;
10005 case VMX_XDTR_INSINFO_II_SIDT: SET_BOTH(SIDT); break;
10006 case VMX_XDTR_INSINFO_II_LGDT: SET_BOTH(LGDT); break;
10007 case VMX_XDTR_INSINFO_II_LIDT: SET_BOTH(LIDT); break;
10008 }
10009 break;
10010
10011 case VMX_EXIT_TR_ACCESS:
10012 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
10013 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_YYTR_INSINFO_INSTR_ID))
10014 {
10015 case VMX_YYTR_INSINFO_II_SLDT: SET_BOTH(SLDT); break;
10016 case VMX_YYTR_INSINFO_II_STR: SET_BOTH(STR); break;
10017 case VMX_YYTR_INSINFO_II_LLDT: SET_BOTH(LLDT); break;
10018 case VMX_YYTR_INSINFO_II_LTR: SET_BOTH(LTR); break;
10019 }
10020 break;
10021
10022 case VMX_EXIT_INVEPT: SET_BOTH(VMX_INVEPT); break;
10023 case VMX_EXIT_RDTSCP: SET_BOTH(RDTSCP); break;
10024 case VMX_EXIT_INVVPID: SET_BOTH(VMX_INVVPID); break;
10025 case VMX_EXIT_WBINVD: SET_BOTH(WBINVD); break;
10026 case VMX_EXIT_XSETBV: SET_BOTH(XSETBV); break;
10027 case VMX_EXIT_RDRAND: SET_BOTH(RDRAND); break;
10028 case VMX_EXIT_INVPCID: SET_BOTH(VMX_INVPCID); break;
10029 case VMX_EXIT_VMFUNC: SET_BOTH(VMX_VMFUNC); break;
10030 case VMX_EXIT_RDSEED: SET_BOTH(RDSEED); break;
10031 case VMX_EXIT_XSAVES: SET_BOTH(XSAVES); break;
10032 case VMX_EXIT_XRSTORS: SET_BOTH(XRSTORS); break;
10033
10034 /* Events that aren't relevant at this point. */
10035 case VMX_EXIT_EXT_INT:
10036 case VMX_EXIT_INT_WINDOW:
10037 case VMX_EXIT_NMI_WINDOW:
10038 case VMX_EXIT_TPR_BELOW_THRESHOLD:
10039 case VMX_EXIT_PREEMPT_TIMER:
10040 case VMX_EXIT_IO_INSTR:
10041 break;
10042
10043 /* Errors and unexpected events. */
10044 case VMX_EXIT_INIT_SIGNAL:
10045 case VMX_EXIT_SIPI:
10046 case VMX_EXIT_IO_SMI:
10047 case VMX_EXIT_SMI:
10048 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
10049 case VMX_EXIT_ERR_MSR_LOAD:
10050 case VMX_EXIT_ERR_MACHINE_CHECK:
10051 break;
10052
10053 default:
10054 AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
10055 break;
10056 }
10057#undef SET_BOTH
10058#undef SET_EXIT
10059
10060 /*
10061 * Dtrace tracepoints go first. We do them here at once so we don't
10062 * have to copy the guest state saving and stuff a few dozen times.
10063 * Down side is that we've got to repeat the switch, though this time
10064 * we use enmEvent since the probes are a subset of what DBGF does.
10065 */
10066 if (fDtrace1 || fDtrace2)
10067 {
10068 hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
10069 hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
10070 switch (enmEvent1)
10071 {
10072 /** @todo consider which extra parameters would be helpful for each probe. */
10073 case DBGFEVENT_END: break;
10074 case DBGFEVENT_XCPT_DE: VBOXVMM_XCPT_DE(pVCpu, pMixedCtx); break;
10075 case DBGFEVENT_XCPT_DB: VBOXVMM_XCPT_DB(pVCpu, pMixedCtx, pMixedCtx->dr[6]); break;
10076 case DBGFEVENT_XCPT_BP: VBOXVMM_XCPT_BP(pVCpu, pMixedCtx); break;
10077 case DBGFEVENT_XCPT_OF: VBOXVMM_XCPT_OF(pVCpu, pMixedCtx); break;
10078 case DBGFEVENT_XCPT_BR: VBOXVMM_XCPT_BR(pVCpu, pMixedCtx); break;
10079 case DBGFEVENT_XCPT_UD: VBOXVMM_XCPT_UD(pVCpu, pMixedCtx); break;
10080 case DBGFEVENT_XCPT_NM: VBOXVMM_XCPT_NM(pVCpu, pMixedCtx); break;
10081 case DBGFEVENT_XCPT_DF: VBOXVMM_XCPT_DF(pVCpu, pMixedCtx); break;
10082 case DBGFEVENT_XCPT_TS: VBOXVMM_XCPT_TS(pVCpu, pMixedCtx, uEventArg); break;
10083 case DBGFEVENT_XCPT_NP: VBOXVMM_XCPT_NP(pVCpu, pMixedCtx, uEventArg); break;
10084 case DBGFEVENT_XCPT_SS: VBOXVMM_XCPT_SS(pVCpu, pMixedCtx, uEventArg); break;
10085 case DBGFEVENT_XCPT_GP: VBOXVMM_XCPT_GP(pVCpu, pMixedCtx, uEventArg); break;
10086 case DBGFEVENT_XCPT_PF: VBOXVMM_XCPT_PF(pVCpu, pMixedCtx, uEventArg, pMixedCtx->cr2); break;
10087 case DBGFEVENT_XCPT_MF: VBOXVMM_XCPT_MF(pVCpu, pMixedCtx); break;
10088 case DBGFEVENT_XCPT_AC: VBOXVMM_XCPT_AC(pVCpu, pMixedCtx); break;
10089 case DBGFEVENT_XCPT_XF: VBOXVMM_XCPT_XF(pVCpu, pMixedCtx); break;
10090 case DBGFEVENT_XCPT_VE: VBOXVMM_XCPT_VE(pVCpu, pMixedCtx); break;
10091 case DBGFEVENT_XCPT_SX: VBOXVMM_XCPT_SX(pVCpu, pMixedCtx, uEventArg); break;
10092 case DBGFEVENT_INTERRUPT_SOFTWARE: VBOXVMM_INT_SOFTWARE(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
10093 case DBGFEVENT_INSTR_CPUID: VBOXVMM_INSTR_CPUID(pVCpu, pMixedCtx, pMixedCtx->eax, pMixedCtx->ecx); break;
10094 case DBGFEVENT_INSTR_GETSEC: VBOXVMM_INSTR_GETSEC(pVCpu, pMixedCtx); break;
10095 case DBGFEVENT_INSTR_HALT: VBOXVMM_INSTR_HALT(pVCpu, pMixedCtx); break;
10096 case DBGFEVENT_INSTR_INVD: VBOXVMM_INSTR_INVD(pVCpu, pMixedCtx); break;
10097 case DBGFEVENT_INSTR_INVLPG: VBOXVMM_INSTR_INVLPG(pVCpu, pMixedCtx); break;
10098 case DBGFEVENT_INSTR_RDPMC: VBOXVMM_INSTR_RDPMC(pVCpu, pMixedCtx); break;
10099 case DBGFEVENT_INSTR_RDTSC: VBOXVMM_INSTR_RDTSC(pVCpu, pMixedCtx); break;
10100 case DBGFEVENT_INSTR_RSM: VBOXVMM_INSTR_RSM(pVCpu, pMixedCtx); break;
10101 case DBGFEVENT_INSTR_CRX_READ: VBOXVMM_INSTR_CRX_READ(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
10102 case DBGFEVENT_INSTR_CRX_WRITE: VBOXVMM_INSTR_CRX_WRITE(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
10103 case DBGFEVENT_INSTR_DRX_READ: VBOXVMM_INSTR_DRX_READ(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
10104 case DBGFEVENT_INSTR_DRX_WRITE: VBOXVMM_INSTR_DRX_WRITE(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
10105 case DBGFEVENT_INSTR_RDMSR: VBOXVMM_INSTR_RDMSR(pVCpu, pMixedCtx, pMixedCtx->ecx); break;
10106 case DBGFEVENT_INSTR_WRMSR: VBOXVMM_INSTR_WRMSR(pVCpu, pMixedCtx, pMixedCtx->ecx,
10107 RT_MAKE_U64(pMixedCtx->eax, pMixedCtx->edx)); break;
10108 case DBGFEVENT_INSTR_MWAIT: VBOXVMM_INSTR_MWAIT(pVCpu, pMixedCtx); break;
10109 case DBGFEVENT_INSTR_MONITOR: VBOXVMM_INSTR_MONITOR(pVCpu, pMixedCtx); break;
10110 case DBGFEVENT_INSTR_PAUSE: VBOXVMM_INSTR_PAUSE(pVCpu, pMixedCtx); break;
10111 case DBGFEVENT_INSTR_SGDT: VBOXVMM_INSTR_SGDT(pVCpu, pMixedCtx); break;
10112 case DBGFEVENT_INSTR_SIDT: VBOXVMM_INSTR_SIDT(pVCpu, pMixedCtx); break;
10113 case DBGFEVENT_INSTR_LGDT: VBOXVMM_INSTR_LGDT(pVCpu, pMixedCtx); break;
10114 case DBGFEVENT_INSTR_LIDT: VBOXVMM_INSTR_LIDT(pVCpu, pMixedCtx); break;
10115 case DBGFEVENT_INSTR_SLDT: VBOXVMM_INSTR_SLDT(pVCpu, pMixedCtx); break;
10116 case DBGFEVENT_INSTR_STR: VBOXVMM_INSTR_STR(pVCpu, pMixedCtx); break;
10117 case DBGFEVENT_INSTR_LLDT: VBOXVMM_INSTR_LLDT(pVCpu, pMixedCtx); break;
10118 case DBGFEVENT_INSTR_LTR: VBOXVMM_INSTR_LTR(pVCpu, pMixedCtx); break;
10119 case DBGFEVENT_INSTR_RDTSCP: VBOXVMM_INSTR_RDTSCP(pVCpu, pMixedCtx); break;
10120 case DBGFEVENT_INSTR_WBINVD: VBOXVMM_INSTR_WBINVD(pVCpu, pMixedCtx); break;
10121 case DBGFEVENT_INSTR_XSETBV: VBOXVMM_INSTR_XSETBV(pVCpu, pMixedCtx); break;
10122 case DBGFEVENT_INSTR_RDRAND: VBOXVMM_INSTR_RDRAND(pVCpu, pMixedCtx); break;
10123 case DBGFEVENT_INSTR_RDSEED: VBOXVMM_INSTR_RDSEED(pVCpu, pMixedCtx); break;
10124 case DBGFEVENT_INSTR_XSAVES: VBOXVMM_INSTR_XSAVES(pVCpu, pMixedCtx); break;
10125 case DBGFEVENT_INSTR_XRSTORS: VBOXVMM_INSTR_XRSTORS(pVCpu, pMixedCtx); break;
10126 case DBGFEVENT_INSTR_VMM_CALL: VBOXVMM_INSTR_VMM_CALL(pVCpu, pMixedCtx); break;
10127 case DBGFEVENT_INSTR_VMX_VMCLEAR: VBOXVMM_INSTR_VMX_VMCLEAR(pVCpu, pMixedCtx); break;
10128 case DBGFEVENT_INSTR_VMX_VMLAUNCH: VBOXVMM_INSTR_VMX_VMLAUNCH(pVCpu, pMixedCtx); break;
10129 case DBGFEVENT_INSTR_VMX_VMPTRLD: VBOXVMM_INSTR_VMX_VMPTRLD(pVCpu, pMixedCtx); break;
10130 case DBGFEVENT_INSTR_VMX_VMPTRST: VBOXVMM_INSTR_VMX_VMPTRST(pVCpu, pMixedCtx); break;
10131 case DBGFEVENT_INSTR_VMX_VMREAD: VBOXVMM_INSTR_VMX_VMREAD(pVCpu, pMixedCtx); break;
10132 case DBGFEVENT_INSTR_VMX_VMRESUME: VBOXVMM_INSTR_VMX_VMRESUME(pVCpu, pMixedCtx); break;
10133 case DBGFEVENT_INSTR_VMX_VMWRITE: VBOXVMM_INSTR_VMX_VMWRITE(pVCpu, pMixedCtx); break;
10134 case DBGFEVENT_INSTR_VMX_VMXOFF: VBOXVMM_INSTR_VMX_VMXOFF(pVCpu, pMixedCtx); break;
10135 case DBGFEVENT_INSTR_VMX_VMXON: VBOXVMM_INSTR_VMX_VMXON(pVCpu, pMixedCtx); break;
10136 case DBGFEVENT_INSTR_VMX_INVEPT: VBOXVMM_INSTR_VMX_INVEPT(pVCpu, pMixedCtx); break;
10137 case DBGFEVENT_INSTR_VMX_INVVPID: VBOXVMM_INSTR_VMX_INVVPID(pVCpu, pMixedCtx); break;
10138 case DBGFEVENT_INSTR_VMX_INVPCID: VBOXVMM_INSTR_VMX_INVPCID(pVCpu, pMixedCtx); break;
10139 case DBGFEVENT_INSTR_VMX_VMFUNC: VBOXVMM_INSTR_VMX_VMFUNC(pVCpu, pMixedCtx); break;
10140 default: AssertMsgFailed(("enmEvent1=%d uExitReason=%d\n", enmEvent1, uExitReason)); break;
10141 }
10142 switch (enmEvent2)
10143 {
10144 /** @todo consider which extra parameters would be helpful for each probe. */
10145 case DBGFEVENT_END: break;
10146 case DBGFEVENT_EXIT_TASK_SWITCH: VBOXVMM_EXIT_TASK_SWITCH(pVCpu, pMixedCtx); break;
10147 case DBGFEVENT_EXIT_CPUID: VBOXVMM_EXIT_CPUID(pVCpu, pMixedCtx, pMixedCtx->eax, pMixedCtx->ecx); break;
10148 case DBGFEVENT_EXIT_GETSEC: VBOXVMM_EXIT_GETSEC(pVCpu, pMixedCtx); break;
10149 case DBGFEVENT_EXIT_HALT: VBOXVMM_EXIT_HALT(pVCpu, pMixedCtx); break;
10150 case DBGFEVENT_EXIT_INVD: VBOXVMM_EXIT_INVD(pVCpu, pMixedCtx); break;
10151 case DBGFEVENT_EXIT_INVLPG: VBOXVMM_EXIT_INVLPG(pVCpu, pMixedCtx); break;
10152 case DBGFEVENT_EXIT_RDPMC: VBOXVMM_EXIT_RDPMC(pVCpu, pMixedCtx); break;
10153 case DBGFEVENT_EXIT_RDTSC: VBOXVMM_EXIT_RDTSC(pVCpu, pMixedCtx); break;
10154 case DBGFEVENT_EXIT_RSM: VBOXVMM_EXIT_RSM(pVCpu, pMixedCtx); break;
10155 case DBGFEVENT_EXIT_CRX_READ: VBOXVMM_EXIT_CRX_READ(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
10156 case DBGFEVENT_EXIT_CRX_WRITE: VBOXVMM_EXIT_CRX_WRITE(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
10157 case DBGFEVENT_EXIT_DRX_READ: VBOXVMM_EXIT_DRX_READ(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
10158 case DBGFEVENT_EXIT_DRX_WRITE: VBOXVMM_EXIT_DRX_WRITE(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
10159 case DBGFEVENT_EXIT_RDMSR: VBOXVMM_EXIT_RDMSR(pVCpu, pMixedCtx, pMixedCtx->ecx); break;
10160 case DBGFEVENT_EXIT_WRMSR: VBOXVMM_EXIT_WRMSR(pVCpu, pMixedCtx, pMixedCtx->ecx,
10161 RT_MAKE_U64(pMixedCtx->eax, pMixedCtx->edx)); break;
10162 case DBGFEVENT_EXIT_MWAIT: VBOXVMM_EXIT_MWAIT(pVCpu, pMixedCtx); break;
10163 case DBGFEVENT_EXIT_MONITOR: VBOXVMM_EXIT_MONITOR(pVCpu, pMixedCtx); break;
10164 case DBGFEVENT_EXIT_PAUSE: VBOXVMM_EXIT_PAUSE(pVCpu, pMixedCtx); break;
10165 case DBGFEVENT_EXIT_SGDT: VBOXVMM_EXIT_SGDT(pVCpu, pMixedCtx); break;
10166 case DBGFEVENT_EXIT_SIDT: VBOXVMM_EXIT_SIDT(pVCpu, pMixedCtx); break;
10167 case DBGFEVENT_EXIT_LGDT: VBOXVMM_EXIT_LGDT(pVCpu, pMixedCtx); break;
10168 case DBGFEVENT_EXIT_LIDT: VBOXVMM_EXIT_LIDT(pVCpu, pMixedCtx); break;
10169 case DBGFEVENT_EXIT_SLDT: VBOXVMM_EXIT_SLDT(pVCpu, pMixedCtx); break;
10170 case DBGFEVENT_EXIT_STR: VBOXVMM_EXIT_STR(pVCpu, pMixedCtx); break;
10171 case DBGFEVENT_EXIT_LLDT: VBOXVMM_EXIT_LLDT(pVCpu, pMixedCtx); break;
10172 case DBGFEVENT_EXIT_LTR: VBOXVMM_EXIT_LTR(pVCpu, pMixedCtx); break;
10173 case DBGFEVENT_EXIT_RDTSCP: VBOXVMM_EXIT_RDTSCP(pVCpu, pMixedCtx); break;
10174 case DBGFEVENT_EXIT_WBINVD: VBOXVMM_EXIT_WBINVD(pVCpu, pMixedCtx); break;
10175 case DBGFEVENT_EXIT_XSETBV: VBOXVMM_EXIT_XSETBV(pVCpu, pMixedCtx); break;
10176 case DBGFEVENT_EXIT_RDRAND: VBOXVMM_EXIT_RDRAND(pVCpu, pMixedCtx); break;
10177 case DBGFEVENT_EXIT_RDSEED: VBOXVMM_EXIT_RDSEED(pVCpu, pMixedCtx); break;
10178 case DBGFEVENT_EXIT_XSAVES: VBOXVMM_EXIT_XSAVES(pVCpu, pMixedCtx); break;
10179 case DBGFEVENT_EXIT_XRSTORS: VBOXVMM_EXIT_XRSTORS(pVCpu, pMixedCtx); break;
10180 case DBGFEVENT_EXIT_VMM_CALL: VBOXVMM_EXIT_VMM_CALL(pVCpu, pMixedCtx); break;
10181 case DBGFEVENT_EXIT_VMX_VMCLEAR: VBOXVMM_EXIT_VMX_VMCLEAR(pVCpu, pMixedCtx); break;
10182 case DBGFEVENT_EXIT_VMX_VMLAUNCH: VBOXVMM_EXIT_VMX_VMLAUNCH(pVCpu, pMixedCtx); break;
10183 case DBGFEVENT_EXIT_VMX_VMPTRLD: VBOXVMM_EXIT_VMX_VMPTRLD(pVCpu, pMixedCtx); break;
10184 case DBGFEVENT_EXIT_VMX_VMPTRST: VBOXVMM_EXIT_VMX_VMPTRST(pVCpu, pMixedCtx); break;
10185 case DBGFEVENT_EXIT_VMX_VMREAD: VBOXVMM_EXIT_VMX_VMREAD(pVCpu, pMixedCtx); break;
10186 case DBGFEVENT_EXIT_VMX_VMRESUME: VBOXVMM_EXIT_VMX_VMRESUME(pVCpu, pMixedCtx); break;
10187 case DBGFEVENT_EXIT_VMX_VMWRITE: VBOXVMM_EXIT_VMX_VMWRITE(pVCpu, pMixedCtx); break;
10188 case DBGFEVENT_EXIT_VMX_VMXOFF: VBOXVMM_EXIT_VMX_VMXOFF(pVCpu, pMixedCtx); break;
10189 case DBGFEVENT_EXIT_VMX_VMXON: VBOXVMM_EXIT_VMX_VMXON(pVCpu, pMixedCtx); break;
10190 case DBGFEVENT_EXIT_VMX_INVEPT: VBOXVMM_EXIT_VMX_INVEPT(pVCpu, pMixedCtx); break;
10191 case DBGFEVENT_EXIT_VMX_INVVPID: VBOXVMM_EXIT_VMX_INVVPID(pVCpu, pMixedCtx); break;
10192 case DBGFEVENT_EXIT_VMX_INVPCID: VBOXVMM_EXIT_VMX_INVPCID(pVCpu, pMixedCtx); break;
10193 case DBGFEVENT_EXIT_VMX_VMFUNC: VBOXVMM_EXIT_VMX_VMFUNC(pVCpu, pMixedCtx); break;
10194 case DBGFEVENT_EXIT_VMX_EPT_MISCONFIG: VBOXVMM_EXIT_VMX_EPT_MISCONFIG(pVCpu, pMixedCtx); break;
10195 case DBGFEVENT_EXIT_VMX_EPT_VIOLATION: VBOXVMM_EXIT_VMX_EPT_VIOLATION(pVCpu, pMixedCtx); break;
10196 case DBGFEVENT_EXIT_VMX_VAPIC_ACCESS: VBOXVMM_EXIT_VMX_VAPIC_ACCESS(pVCpu, pMixedCtx); break;
10197 case DBGFEVENT_EXIT_VMX_VAPIC_WRITE: VBOXVMM_EXIT_VMX_VAPIC_WRITE(pVCpu, pMixedCtx); break;
10198 default: AssertMsgFailed(("enmEvent2=%d uExitReason=%d\n", enmEvent2, uExitReason)); break;
10199 }
10200 }
10201
10202 /*
10203 * Fire of the DBGF event, if enabled (our check here is just a quick one,
10204 * the DBGF call will do a full check).
10205 *
10206 * Note! DBGF sets DBGFEVENT_INTERRUPT_SOFTWARE in the bitmap.
10207 * Note! If we have to events, we prioritize the first, i.e. the instruction
10208 * one, in order to avoid event nesting.
10209 */
10210 if ( enmEvent1 != DBGFEVENT_END
10211 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent1))
10212 {
10213 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArg(pVM, pVCpu, enmEvent1, uEventArg, DBGFEVENTCTX_HM);
10214 if (rcStrict != VINF_SUCCESS)
10215 return rcStrict;
10216 }
10217 else if ( enmEvent2 != DBGFEVENT_END
10218 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent2))
10219 {
10220 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArg(pVM, pVCpu, enmEvent2, uEventArg, DBGFEVENTCTX_HM);
10221 if (rcStrict != VINF_SUCCESS)
10222 return rcStrict;
10223 }
10224
10225 return VINF_SUCCESS;
10226}
10227
10228
10229/**
10230 * Single-stepping VM-exit filtering.
10231 *
10232 * This is preprocessing the VM-exits and deciding whether we've gotten far
10233 * enough to return VINF_EM_DBG_STEPPED already. If not, normal VM-exit
10234 * handling is performed.
10235 *
10236 * @returns Strict VBox status code (i.e. informational status codes too).
10237 * @param pVM The cross context VM structure.
10238 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
10239 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
10240 * out-of-sync. Make sure to update the required
10241 * fields before using them.
10242 * @param pVmxTransient Pointer to the VMX-transient structure.
10243 * @param uExitReason The VM-exit reason.
10244 * @param pDbgState The debug state.
10245 */
10246DECLINLINE(VBOXSTRICTRC) hmR0VmxRunDebugHandleExit(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient,
10247 uint32_t uExitReason, PVMXRUNDBGSTATE pDbgState)
10248{
10249 /*
10250 * Expensive (saves context) generic dtrace VM-exit probe.
10251 */
10252 if (!VBOXVMM_R0_HMVMX_VMEXIT_ENABLED())
10253 { /* more likely */ }
10254 else
10255 {
10256 hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
10257 hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
10258 VBOXVMM_R0_HMVMX_VMEXIT(pVCpu, pMixedCtx, pVmxTransient->uExitReason, pVmxTransient->uExitQualification);
10259 }
10260
10261 /*
10262 * Check for host NMI, just to get that out of the way.
10263 */
10264 if (uExitReason != VMX_EXIT_XCPT_OR_NMI)
10265 { /* normally likely */ }
10266 else
10267 {
10268 int rc2 = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
10269 AssertRCReturn(rc2, rc2);
10270 uint32_t uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(pVmxTransient->uExitIntInfo);
10271 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
10272 return hmR0VmxExitXcptOrNmi(pVCpu, pMixedCtx, pVmxTransient);
10273 }
10274
10275 /*
10276 * Check for single stepping event if we're stepping.
10277 */
10278 if (pVCpu->hm.s.fSingleInstruction)
10279 {
10280 switch (uExitReason)
10281 {
10282 case VMX_EXIT_MTF:
10283 return hmR0VmxExitMtf(pVCpu, pMixedCtx, pVmxTransient);
10284
10285 /* Various events: */
10286 case VMX_EXIT_XCPT_OR_NMI:
10287 case VMX_EXIT_EXT_INT:
10288 case VMX_EXIT_TRIPLE_FAULT:
10289 case VMX_EXIT_INT_WINDOW:
10290 case VMX_EXIT_NMI_WINDOW:
10291 case VMX_EXIT_TASK_SWITCH:
10292 case VMX_EXIT_TPR_BELOW_THRESHOLD:
10293 case VMX_EXIT_APIC_ACCESS:
10294 case VMX_EXIT_EPT_VIOLATION:
10295 case VMX_EXIT_EPT_MISCONFIG:
10296 case VMX_EXIT_PREEMPT_TIMER:
10297
10298 /* Instruction specific VM-exits: */
10299 case VMX_EXIT_CPUID:
10300 case VMX_EXIT_GETSEC:
10301 case VMX_EXIT_HLT:
10302 case VMX_EXIT_INVD:
10303 case VMX_EXIT_INVLPG:
10304 case VMX_EXIT_RDPMC:
10305 case VMX_EXIT_RDTSC:
10306 case VMX_EXIT_RSM:
10307 case VMX_EXIT_VMCALL:
10308 case VMX_EXIT_VMCLEAR:
10309 case VMX_EXIT_VMLAUNCH:
10310 case VMX_EXIT_VMPTRLD:
10311 case VMX_EXIT_VMPTRST:
10312 case VMX_EXIT_VMREAD:
10313 case VMX_EXIT_VMRESUME:
10314 case VMX_EXIT_VMWRITE:
10315 case VMX_EXIT_VMXOFF:
10316 case VMX_EXIT_VMXON:
10317 case VMX_EXIT_MOV_CRX:
10318 case VMX_EXIT_MOV_DRX:
10319 case VMX_EXIT_IO_INSTR:
10320 case VMX_EXIT_RDMSR:
10321 case VMX_EXIT_WRMSR:
10322 case VMX_EXIT_MWAIT:
10323 case VMX_EXIT_MONITOR:
10324 case VMX_EXIT_PAUSE:
10325 case VMX_EXIT_XDTR_ACCESS:
10326 case VMX_EXIT_TR_ACCESS:
10327 case VMX_EXIT_INVEPT:
10328 case VMX_EXIT_RDTSCP:
10329 case VMX_EXIT_INVVPID:
10330 case VMX_EXIT_WBINVD:
10331 case VMX_EXIT_XSETBV:
10332 case VMX_EXIT_RDRAND:
10333 case VMX_EXIT_INVPCID:
10334 case VMX_EXIT_VMFUNC:
10335 case VMX_EXIT_RDSEED:
10336 case VMX_EXIT_XSAVES:
10337 case VMX_EXIT_XRSTORS:
10338 {
10339 int rc2 = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
10340 rc2 |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
10341 AssertRCReturn(rc2, rc2);
10342 if ( pMixedCtx->rip != pDbgState->uRipStart
10343 || pMixedCtx->cs.Sel != pDbgState->uCsStart)
10344 return VINF_EM_DBG_STEPPED;
10345 break;
10346 }
10347
10348 /* Errors and unexpected events: */
10349 case VMX_EXIT_INIT_SIGNAL:
10350 case VMX_EXIT_SIPI:
10351 case VMX_EXIT_IO_SMI:
10352 case VMX_EXIT_SMI:
10353 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
10354 case VMX_EXIT_ERR_MSR_LOAD:
10355 case VMX_EXIT_ERR_MACHINE_CHECK:
10356 case VMX_EXIT_APIC_WRITE: /* Some talk about this being fault like, so I guess we must process it? */
10357 break;
10358
10359 default:
10360 AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
10361 break;
10362 }
10363 }
10364
10365 /*
10366 * Check for debugger event breakpoints and dtrace probes.
10367 */
10368 if ( uExitReason < RT_ELEMENTS(pDbgState->bmExitsToCheck) * 32U
10369 && ASMBitTest(pDbgState->bmExitsToCheck, uExitReason) )
10370 {
10371 VBOXSTRICTRC rcStrict = hmR0VmxHandleExitDtraceEvents(pVM, pVCpu, pMixedCtx, pVmxTransient, uExitReason);
10372 if (rcStrict != VINF_SUCCESS)
10373 return rcStrict;
10374 }
10375
10376 /*
10377 * Normal processing.
10378 */
10379#ifdef HMVMX_USE_FUNCTION_TABLE
10380 return g_apfnVMExitHandlers[uExitReason](pVCpu, pMixedCtx, pVmxTransient);
10381#else
10382 return hmR0VmxHandleExit(pVCpu, pMixedCtx, pVmxTransient, uExitReason);
10383#endif
10384}
10385
10386
10387/**
10388 * Single steps guest code using VT-x.
10389 *
10390 * @returns Strict VBox status code (i.e. informational status codes too).
10391 * @param pVM The cross context VM structure.
10392 * @param pVCpu The cross context virtual CPU structure.
10393 * @param pCtx Pointer to the guest-CPU context.
10394 *
10395 * @note Mostly the same as hmR0VmxRunGuestCodeNormal().
10396 */
10397static VBOXSTRICTRC hmR0VmxRunGuestCodeDebug(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
10398{
10399 VMXTRANSIENT VmxTransient;
10400 VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
10401
10402 /* Set HMCPU indicators. */
10403 bool const fSavedSingleInstruction = pVCpu->hm.s.fSingleInstruction;
10404 pVCpu->hm.s.fSingleInstruction = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
10405 pVCpu->hm.s.fDebugWantRdTscExit = false;
10406 pVCpu->hm.s.fUsingDebugLoop = true;
10407
10408 /* State we keep to help modify and later restore the VMCS fields we alter, and for detecting steps. */
10409 VMXRUNDBGSTATE DbgState;
10410 hmR0VmxRunDebugStateInit(pVCpu, pCtx, &DbgState);
10411 hmR0VmxPreRunGuestDebugStateUpdate(pVM, pVCpu, pCtx, &DbgState, &VmxTransient);
10412
10413 /*
10414 * The loop.
10415 */
10416 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
10417 for (uint32_t cLoops = 0; ; cLoops++)
10418 {
10419 Assert(!HMR0SuspendPending());
10420 HMVMX_ASSERT_CPU_SAFE();
10421 bool fStepping = pVCpu->hm.s.fSingleInstruction;
10422
10423 /*
10424 * Preparatory work for running guest code, this may force us to return
10425 * to ring-3. This bugger disables interrupts on VINF_SUCCESS!
10426 */
10427 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
10428 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &DbgState); /* Set up execute controls the next to can respond to. */
10429 rcStrict = hmR0VmxPreRunGuest(pVM, pVCpu, pCtx, &VmxTransient, fStepping);
10430 if (rcStrict != VINF_SUCCESS)
10431 break;
10432
10433 hmR0VmxPreRunGuestCommitted(pVM, pVCpu, pCtx, &VmxTransient);
10434 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &DbgState); /* Override any obnoxious code in the above two calls. */
10435
10436 /*
10437 * Now we can run the guest code.
10438 */
10439 int rcRun = hmR0VmxRunGuest(pVM, pVCpu, pCtx);
10440
10441 /* The guest-CPU context is now outdated, 'pCtx' is to be treated as 'pMixedCtx' from this point on!!! */
10442
10443 /*
10444 * Restore any residual host-state and save any bits shared between host
10445 * and guest into the guest-CPU state. Re-enables interrupts!
10446 */
10447 hmR0VmxPostRunGuest(pVM, pVCpu, pCtx, &VmxTransient, rcRun);
10448
10449 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
10450 if (RT_SUCCESS(rcRun))
10451 { /* very likely */ }
10452 else
10453 {
10454 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
10455 hmR0VmxReportWorldSwitchError(pVM, pVCpu, rcRun, pCtx, &VmxTransient);
10456 return rcRun;
10457 }
10458
10459 /* Profile the VM-exit. */
10460 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
10461 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
10462 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
10463 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
10464 HMVMX_START_EXIT_DISPATCH_PROF();
10465
10466 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, pCtx, VmxTransient.uExitReason);
10467
10468 /*
10469 * Handle the VM-exit - we quit earlier on certain VM-exits, see hmR0VmxHandleExitDebug().
10470 */
10471 rcStrict = hmR0VmxRunDebugHandleExit(pVM, pVCpu, pCtx, &VmxTransient, VmxTransient.uExitReason, &DbgState);
10472 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
10473 if (rcStrict != VINF_SUCCESS)
10474 break;
10475 if (cLoops > pVM->hm.s.cMaxResumeLoops)
10476 {
10477 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
10478 rcStrict = VINF_EM_RAW_INTERRUPT;
10479 break;
10480 }
10481
10482 /*
10483 * Stepping: Did the RIP change, if so, consider it a single step.
10484 * Otherwise, make sure one of the TFs gets set.
10485 */
10486 if (fStepping)
10487 {
10488 int rc2 = hmR0VmxSaveGuestRip(pVCpu, pCtx);
10489 rc2 |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pCtx);
10490 AssertRCReturn(rc2, rc2);
10491 if ( pCtx->rip != DbgState.uRipStart
10492 || pCtx->cs.Sel != DbgState.uCsStart)
10493 {
10494 rcStrict = VINF_EM_DBG_STEPPED;
10495 break;
10496 }
10497 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
10498 }
10499
10500 /*
10501 * Update when dtrace settings changes (DBGF kicks us, so no need to check).
10502 */
10503 if (VBOXVMM_GET_SETTINGS_SEQ_NO() != DbgState.uDtraceSettingsSeqNo)
10504 hmR0VmxPreRunGuestDebugStateUpdate(pVM, pVCpu, pCtx, &DbgState, &VmxTransient);
10505 }
10506
10507 /*
10508 * Clear the X86_EFL_TF if necessary.
10509 */
10510 if (pVCpu->hm.s.fClearTrapFlag)
10511 {
10512 int rc2 = hmR0VmxSaveGuestRflags(pVCpu, pCtx);
10513 AssertRCReturn(rc2, rc2);
10514 pVCpu->hm.s.fClearTrapFlag = false;
10515 pCtx->eflags.Bits.u1TF = 0;
10516 }
10517 /** @todo there seems to be issues with the resume flag when the monitor trap
10518 * flag is pending without being used. Seen early in bios init when
10519 * accessing APIC page in protected mode. */
10520
10521 /*
10522 * Restore VM-exit control settings as we may not reenter this function the
10523 * next time around.
10524 */
10525 rcStrict = hmR0VmxRunDebugStateRevert(pVCpu, &DbgState, rcStrict);
10526
10527 /* Restore HMCPU indicators. */
10528 pVCpu->hm.s.fUsingDebugLoop = false;
10529 pVCpu->hm.s.fDebugWantRdTscExit = false;
10530 pVCpu->hm.s.fSingleInstruction = fSavedSingleInstruction;
10531
10532 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
10533 return rcStrict;
10534}
10535
10536
10537/** @} */
10538
10539
10540/**
10541 * Checks if any expensive dtrace probes are enabled and we should go to the
10542 * debug loop.
10543 *
10544 * @returns true if we should use debug loop, false if not.
10545 */
10546static bool hmR0VmxAnyExpensiveProbesEnabled(void)
10547{
10548 /* It's probably faster to OR the raw 32-bit counter variables together.
10549 Since the variables are in an array and the probes are next to one
10550 another (more or less), we have good locality. So, better read
10551 eight-nine cache lines ever time and only have one conditional, than
10552 128+ conditionals, right? */
10553 return ( VBOXVMM_R0_HMVMX_VMEXIT_ENABLED_RAW() /* expensive too due to context */
10554 | VBOXVMM_XCPT_DE_ENABLED_RAW()
10555 | VBOXVMM_XCPT_DB_ENABLED_RAW()
10556 | VBOXVMM_XCPT_BP_ENABLED_RAW()
10557 | VBOXVMM_XCPT_OF_ENABLED_RAW()
10558 | VBOXVMM_XCPT_BR_ENABLED_RAW()
10559 | VBOXVMM_XCPT_UD_ENABLED_RAW()
10560 | VBOXVMM_XCPT_NM_ENABLED_RAW()
10561 | VBOXVMM_XCPT_DF_ENABLED_RAW()
10562 | VBOXVMM_XCPT_TS_ENABLED_RAW()
10563 | VBOXVMM_XCPT_NP_ENABLED_RAW()
10564 | VBOXVMM_XCPT_SS_ENABLED_RAW()
10565 | VBOXVMM_XCPT_GP_ENABLED_RAW()
10566 | VBOXVMM_XCPT_PF_ENABLED_RAW()
10567 | VBOXVMM_XCPT_MF_ENABLED_RAW()
10568 | VBOXVMM_XCPT_AC_ENABLED_RAW()
10569 | VBOXVMM_XCPT_XF_ENABLED_RAW()
10570 | VBOXVMM_XCPT_VE_ENABLED_RAW()
10571 | VBOXVMM_XCPT_SX_ENABLED_RAW()
10572 | VBOXVMM_INT_SOFTWARE_ENABLED_RAW()
10573 | VBOXVMM_INT_HARDWARE_ENABLED_RAW()
10574 ) != 0
10575 || ( VBOXVMM_INSTR_HALT_ENABLED_RAW()
10576 | VBOXVMM_INSTR_MWAIT_ENABLED_RAW()
10577 | VBOXVMM_INSTR_MONITOR_ENABLED_RAW()
10578 | VBOXVMM_INSTR_CPUID_ENABLED_RAW()
10579 | VBOXVMM_INSTR_INVD_ENABLED_RAW()
10580 | VBOXVMM_INSTR_WBINVD_ENABLED_RAW()
10581 | VBOXVMM_INSTR_INVLPG_ENABLED_RAW()
10582 | VBOXVMM_INSTR_RDTSC_ENABLED_RAW()
10583 | VBOXVMM_INSTR_RDTSCP_ENABLED_RAW()
10584 | VBOXVMM_INSTR_RDPMC_ENABLED_RAW()
10585 | VBOXVMM_INSTR_RDMSR_ENABLED_RAW()
10586 | VBOXVMM_INSTR_WRMSR_ENABLED_RAW()
10587 | VBOXVMM_INSTR_CRX_READ_ENABLED_RAW()
10588 | VBOXVMM_INSTR_CRX_WRITE_ENABLED_RAW()
10589 | VBOXVMM_INSTR_DRX_READ_ENABLED_RAW()
10590 | VBOXVMM_INSTR_DRX_WRITE_ENABLED_RAW()
10591 | VBOXVMM_INSTR_PAUSE_ENABLED_RAW()
10592 | VBOXVMM_INSTR_XSETBV_ENABLED_RAW()
10593 | VBOXVMM_INSTR_SIDT_ENABLED_RAW()
10594 | VBOXVMM_INSTR_LIDT_ENABLED_RAW()
10595 | VBOXVMM_INSTR_SGDT_ENABLED_RAW()
10596 | VBOXVMM_INSTR_LGDT_ENABLED_RAW()
10597 | VBOXVMM_INSTR_SLDT_ENABLED_RAW()
10598 | VBOXVMM_INSTR_LLDT_ENABLED_RAW()
10599 | VBOXVMM_INSTR_STR_ENABLED_RAW()
10600 | VBOXVMM_INSTR_LTR_ENABLED_RAW()
10601 | VBOXVMM_INSTR_GETSEC_ENABLED_RAW()
10602 | VBOXVMM_INSTR_RSM_ENABLED_RAW()
10603 | VBOXVMM_INSTR_RDRAND_ENABLED_RAW()
10604 | VBOXVMM_INSTR_RDSEED_ENABLED_RAW()
10605 | VBOXVMM_INSTR_XSAVES_ENABLED_RAW()
10606 | VBOXVMM_INSTR_XRSTORS_ENABLED_RAW()
10607 | VBOXVMM_INSTR_VMM_CALL_ENABLED_RAW()
10608 | VBOXVMM_INSTR_VMX_VMCLEAR_ENABLED_RAW()
10609 | VBOXVMM_INSTR_VMX_VMLAUNCH_ENABLED_RAW()
10610 | VBOXVMM_INSTR_VMX_VMPTRLD_ENABLED_RAW()
10611 | VBOXVMM_INSTR_VMX_VMPTRST_ENABLED_RAW()
10612 | VBOXVMM_INSTR_VMX_VMREAD_ENABLED_RAW()
10613 | VBOXVMM_INSTR_VMX_VMRESUME_ENABLED_RAW()
10614 | VBOXVMM_INSTR_VMX_VMWRITE_ENABLED_RAW()
10615 | VBOXVMM_INSTR_VMX_VMXOFF_ENABLED_RAW()
10616 | VBOXVMM_INSTR_VMX_VMXON_ENABLED_RAW()
10617 | VBOXVMM_INSTR_VMX_VMFUNC_ENABLED_RAW()
10618 | VBOXVMM_INSTR_VMX_INVEPT_ENABLED_RAW()
10619 | VBOXVMM_INSTR_VMX_INVVPID_ENABLED_RAW()
10620 | VBOXVMM_INSTR_VMX_INVPCID_ENABLED_RAW()
10621 ) != 0
10622 || ( VBOXVMM_EXIT_TASK_SWITCH_ENABLED_RAW()
10623 | VBOXVMM_EXIT_HALT_ENABLED_RAW()
10624 | VBOXVMM_EXIT_MWAIT_ENABLED_RAW()
10625 | VBOXVMM_EXIT_MONITOR_ENABLED_RAW()
10626 | VBOXVMM_EXIT_CPUID_ENABLED_RAW()
10627 | VBOXVMM_EXIT_INVD_ENABLED_RAW()
10628 | VBOXVMM_EXIT_WBINVD_ENABLED_RAW()
10629 | VBOXVMM_EXIT_INVLPG_ENABLED_RAW()
10630 | VBOXVMM_EXIT_RDTSC_ENABLED_RAW()
10631 | VBOXVMM_EXIT_RDTSCP_ENABLED_RAW()
10632 | VBOXVMM_EXIT_RDPMC_ENABLED_RAW()
10633 | VBOXVMM_EXIT_RDMSR_ENABLED_RAW()
10634 | VBOXVMM_EXIT_WRMSR_ENABLED_RAW()
10635 | VBOXVMM_EXIT_CRX_READ_ENABLED_RAW()
10636 | VBOXVMM_EXIT_CRX_WRITE_ENABLED_RAW()
10637 | VBOXVMM_EXIT_DRX_READ_ENABLED_RAW()
10638 | VBOXVMM_EXIT_DRX_WRITE_ENABLED_RAW()
10639 | VBOXVMM_EXIT_PAUSE_ENABLED_RAW()
10640 | VBOXVMM_EXIT_XSETBV_ENABLED_RAW()
10641 | VBOXVMM_EXIT_SIDT_ENABLED_RAW()
10642 | VBOXVMM_EXIT_LIDT_ENABLED_RAW()
10643 | VBOXVMM_EXIT_SGDT_ENABLED_RAW()
10644 | VBOXVMM_EXIT_LGDT_ENABLED_RAW()
10645 | VBOXVMM_EXIT_SLDT_ENABLED_RAW()
10646 | VBOXVMM_EXIT_LLDT_ENABLED_RAW()
10647 | VBOXVMM_EXIT_STR_ENABLED_RAW()
10648 | VBOXVMM_EXIT_LTR_ENABLED_RAW()
10649 | VBOXVMM_EXIT_GETSEC_ENABLED_RAW()
10650 | VBOXVMM_EXIT_RSM_ENABLED_RAW()
10651 | VBOXVMM_EXIT_RDRAND_ENABLED_RAW()
10652 | VBOXVMM_EXIT_RDSEED_ENABLED_RAW()
10653 | VBOXVMM_EXIT_XSAVES_ENABLED_RAW()
10654 | VBOXVMM_EXIT_XRSTORS_ENABLED_RAW()
10655 | VBOXVMM_EXIT_VMM_CALL_ENABLED_RAW()
10656 | VBOXVMM_EXIT_VMX_VMCLEAR_ENABLED_RAW()
10657 | VBOXVMM_EXIT_VMX_VMLAUNCH_ENABLED_RAW()
10658 | VBOXVMM_EXIT_VMX_VMPTRLD_ENABLED_RAW()
10659 | VBOXVMM_EXIT_VMX_VMPTRST_ENABLED_RAW()
10660 | VBOXVMM_EXIT_VMX_VMREAD_ENABLED_RAW()
10661 | VBOXVMM_EXIT_VMX_VMRESUME_ENABLED_RAW()
10662 | VBOXVMM_EXIT_VMX_VMWRITE_ENABLED_RAW()
10663 | VBOXVMM_EXIT_VMX_VMXOFF_ENABLED_RAW()
10664 | VBOXVMM_EXIT_VMX_VMXON_ENABLED_RAW()
10665 | VBOXVMM_EXIT_VMX_VMFUNC_ENABLED_RAW()
10666 | VBOXVMM_EXIT_VMX_INVEPT_ENABLED_RAW()
10667 | VBOXVMM_EXIT_VMX_INVVPID_ENABLED_RAW()
10668 | VBOXVMM_EXIT_VMX_INVPCID_ENABLED_RAW()
10669 | VBOXVMM_EXIT_VMX_EPT_VIOLATION_ENABLED_RAW()
10670 | VBOXVMM_EXIT_VMX_EPT_MISCONFIG_ENABLED_RAW()
10671 | VBOXVMM_EXIT_VMX_VAPIC_ACCESS_ENABLED_RAW()
10672 | VBOXVMM_EXIT_VMX_VAPIC_WRITE_ENABLED_RAW()
10673 ) != 0;
10674}
10675
10676
10677/**
10678 * Runs the guest code using VT-x.
10679 *
10680 * @returns Strict VBox status code (i.e. informational status codes too).
10681 * @param pVM The cross context VM structure.
10682 * @param pVCpu The cross context virtual CPU structure.
10683 * @param pCtx Pointer to the guest-CPU context.
10684 */
10685VMMR0DECL(VBOXSTRICTRC) VMXR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
10686{
10687 Assert(VMMRZCallRing3IsEnabled(pVCpu));
10688 Assert(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL);
10689 HMVMX_ASSERT_PREEMPT_SAFE();
10690
10691 VMMRZCallRing3SetNotification(pVCpu, hmR0VmxCallRing3Callback, pCtx);
10692
10693 VBOXSTRICTRC rcStrict;
10694 if ( !pVCpu->hm.s.fUseDebugLoop
10695 && (!VBOXVMM_ANY_PROBES_ENABLED() || !hmR0VmxAnyExpensiveProbesEnabled())
10696 && !DBGFIsStepping(pVCpu)
10697 && !pVM->dbgf.ro.cEnabledInt3Breakpoints)
10698 rcStrict = hmR0VmxRunGuestCodeNormal(pVM, pVCpu, pCtx);
10699 else
10700 rcStrict = hmR0VmxRunGuestCodeDebug(pVM, pVCpu, pCtx);
10701
10702 if (rcStrict == VERR_EM_INTERPRETER)
10703 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
10704 else if (rcStrict == VINF_EM_RESET)
10705 rcStrict = VINF_EM_TRIPLE_FAULT;
10706
10707 int rc2 = hmR0VmxExitToRing3(pVM, pVCpu, pCtx, rcStrict);
10708 if (RT_FAILURE(rc2))
10709 {
10710 pVCpu->hm.s.u32HMError = (uint32_t)VBOXSTRICTRC_VAL(rcStrict);
10711 rcStrict = rc2;
10712 }
10713 Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
10714 return rcStrict;
10715}
10716
10717
10718#ifndef HMVMX_USE_FUNCTION_TABLE
10719DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, uint32_t rcReason)
10720{
10721# ifdef DEBUG_ramshankar
10722# define RETURN_EXIT_CALL(a_CallExpr) \
10723 do { \
10724 int rc2 = hmR0VmxSaveGuestState(pVCpu, pMixedCtx); AssertRC(rc2); \
10725 VBOXSTRICTRC rcStrict = a_CallExpr; \
10726 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST); \
10727 return rcStrict; \
10728 } while (0)
10729# else
10730# define RETURN_EXIT_CALL(a_CallExpr) return a_CallExpr
10731# endif
10732 switch (rcReason)
10733 {
10734 case VMX_EXIT_EPT_MISCONFIG: RETURN_EXIT_CALL(hmR0VmxExitEptMisconfig(pVCpu, pMixedCtx, pVmxTransient));
10735 case VMX_EXIT_EPT_VIOLATION: RETURN_EXIT_CALL(hmR0VmxExitEptViolation(pVCpu, pMixedCtx, pVmxTransient));
10736 case VMX_EXIT_IO_INSTR: RETURN_EXIT_CALL(hmR0VmxExitIoInstr(pVCpu, pMixedCtx, pVmxTransient));
10737 case VMX_EXIT_CPUID: RETURN_EXIT_CALL(hmR0VmxExitCpuid(pVCpu, pMixedCtx, pVmxTransient));
10738 case VMX_EXIT_RDTSC: RETURN_EXIT_CALL(hmR0VmxExitRdtsc(pVCpu, pMixedCtx, pVmxTransient));
10739 case VMX_EXIT_RDTSCP: RETURN_EXIT_CALL(hmR0VmxExitRdtscp(pVCpu, pMixedCtx, pVmxTransient));
10740 case VMX_EXIT_APIC_ACCESS: RETURN_EXIT_CALL(hmR0VmxExitApicAccess(pVCpu, pMixedCtx, pVmxTransient));
10741 case VMX_EXIT_XCPT_OR_NMI: RETURN_EXIT_CALL(hmR0VmxExitXcptOrNmi(pVCpu, pMixedCtx, pVmxTransient));
10742 case VMX_EXIT_MOV_CRX: RETURN_EXIT_CALL(hmR0VmxExitMovCRx(pVCpu, pMixedCtx, pVmxTransient));
10743 case VMX_EXIT_EXT_INT: RETURN_EXIT_CALL(hmR0VmxExitExtInt(pVCpu, pMixedCtx, pVmxTransient));
10744 case VMX_EXIT_INT_WINDOW: RETURN_EXIT_CALL(hmR0VmxExitIntWindow(pVCpu, pMixedCtx, pVmxTransient));
10745 case VMX_EXIT_MWAIT: RETURN_EXIT_CALL(hmR0VmxExitMwait(pVCpu, pMixedCtx, pVmxTransient));
10746 case VMX_EXIT_MONITOR: RETURN_EXIT_CALL(hmR0VmxExitMonitor(pVCpu, pMixedCtx, pVmxTransient));
10747 case VMX_EXIT_TASK_SWITCH: RETURN_EXIT_CALL(hmR0VmxExitTaskSwitch(pVCpu, pMixedCtx, pVmxTransient));
10748 case VMX_EXIT_PREEMPT_TIMER: RETURN_EXIT_CALL(hmR0VmxExitPreemptTimer(pVCpu, pMixedCtx, pVmxTransient));
10749 case VMX_EXIT_RDMSR: RETURN_EXIT_CALL(hmR0VmxExitRdmsr(pVCpu, pMixedCtx, pVmxTransient));
10750 case VMX_EXIT_WRMSR: RETURN_EXIT_CALL(hmR0VmxExitWrmsr(pVCpu, pMixedCtx, pVmxTransient));
10751 case VMX_EXIT_MOV_DRX: RETURN_EXIT_CALL(hmR0VmxExitMovDRx(pVCpu, pMixedCtx, pVmxTransient));
10752 case VMX_EXIT_TPR_BELOW_THRESHOLD: RETURN_EXIT_CALL(hmR0VmxExitTprBelowThreshold(pVCpu, pMixedCtx, pVmxTransient));
10753 case VMX_EXIT_HLT: RETURN_EXIT_CALL(hmR0VmxExitHlt(pVCpu, pMixedCtx, pVmxTransient));
10754 case VMX_EXIT_INVD: RETURN_EXIT_CALL(hmR0VmxExitInvd(pVCpu, pMixedCtx, pVmxTransient));
10755 case VMX_EXIT_INVLPG: RETURN_EXIT_CALL(hmR0VmxExitInvlpg(pVCpu, pMixedCtx, pVmxTransient));
10756 case VMX_EXIT_RSM: RETURN_EXIT_CALL(hmR0VmxExitRsm(pVCpu, pMixedCtx, pVmxTransient));
10757 case VMX_EXIT_MTF: RETURN_EXIT_CALL(hmR0VmxExitMtf(pVCpu, pMixedCtx, pVmxTransient));
10758 case VMX_EXIT_PAUSE: RETURN_EXIT_CALL(hmR0VmxExitPause(pVCpu, pMixedCtx, pVmxTransient));
10759 case VMX_EXIT_XDTR_ACCESS: RETURN_EXIT_CALL(hmR0VmxExitXdtrAccess(pVCpu, pMixedCtx, pVmxTransient));
10760 case VMX_EXIT_TR_ACCESS: RETURN_EXIT_CALL(hmR0VmxExitXdtrAccess(pVCpu, pMixedCtx, pVmxTransient));
10761 case VMX_EXIT_WBINVD: RETURN_EXIT_CALL(hmR0VmxExitWbinvd(pVCpu, pMixedCtx, pVmxTransient));
10762 case VMX_EXIT_XSETBV: RETURN_EXIT_CALL(hmR0VmxExitXsetbv(pVCpu, pMixedCtx, pVmxTransient));
10763 case VMX_EXIT_RDRAND: RETURN_EXIT_CALL(hmR0VmxExitRdrand(pVCpu, pMixedCtx, pVmxTransient));
10764 case VMX_EXIT_INVPCID: RETURN_EXIT_CALL(hmR0VmxExitInvpcid(pVCpu, pMixedCtx, pVmxTransient));
10765 case VMX_EXIT_GETSEC: RETURN_EXIT_CALL(hmR0VmxExitGetsec(pVCpu, pMixedCtx, pVmxTransient));
10766 case VMX_EXIT_RDPMC: RETURN_EXIT_CALL(hmR0VmxExitRdpmc(pVCpu, pMixedCtx, pVmxTransient));
10767 case VMX_EXIT_VMCALL: RETURN_EXIT_CALL(hmR0VmxExitVmcall(pVCpu, pMixedCtx, pVmxTransient));
10768
10769 case VMX_EXIT_TRIPLE_FAULT: return hmR0VmxExitTripleFault(pVCpu, pMixedCtx, pVmxTransient);
10770 case VMX_EXIT_NMI_WINDOW: return hmR0VmxExitNmiWindow(pVCpu, pMixedCtx, pVmxTransient);
10771 case VMX_EXIT_INIT_SIGNAL: return hmR0VmxExitInitSignal(pVCpu, pMixedCtx, pVmxTransient);
10772 case VMX_EXIT_SIPI: return hmR0VmxExitSipi(pVCpu, pMixedCtx, pVmxTransient);
10773 case VMX_EXIT_IO_SMI: return hmR0VmxExitIoSmi(pVCpu, pMixedCtx, pVmxTransient);
10774 case VMX_EXIT_SMI: return hmR0VmxExitSmi(pVCpu, pMixedCtx, pVmxTransient);
10775 case VMX_EXIT_ERR_MSR_LOAD: return hmR0VmxExitErrMsrLoad(pVCpu, pMixedCtx, pVmxTransient);
10776 case VMX_EXIT_ERR_INVALID_GUEST_STATE: return hmR0VmxExitErrInvalidGuestState(pVCpu, pMixedCtx, pVmxTransient);
10777 case VMX_EXIT_ERR_MACHINE_CHECK: return hmR0VmxExitErrMachineCheck(pVCpu, pMixedCtx, pVmxTransient);
10778
10779 case VMX_EXIT_VMCLEAR:
10780 case VMX_EXIT_VMLAUNCH:
10781 case VMX_EXIT_VMPTRLD:
10782 case VMX_EXIT_VMPTRST:
10783 case VMX_EXIT_VMREAD:
10784 case VMX_EXIT_VMRESUME:
10785 case VMX_EXIT_VMWRITE:
10786 case VMX_EXIT_VMXOFF:
10787 case VMX_EXIT_VMXON:
10788 case VMX_EXIT_INVEPT:
10789 case VMX_EXIT_INVVPID:
10790 case VMX_EXIT_VMFUNC:
10791 case VMX_EXIT_XSAVES:
10792 case VMX_EXIT_XRSTORS:
10793 return hmR0VmxExitSetPendingXcptUD(pVCpu, pMixedCtx, pVmxTransient);
10794 case VMX_EXIT_ENCLS:
10795 case VMX_EXIT_RDSEED: /* only spurious VM-exits, so undefined */
10796 case VMX_EXIT_PML_FULL:
10797 default:
10798 return hmR0VmxExitErrUndefined(pVCpu, pMixedCtx, pVmxTransient);
10799 }
10800#undef RETURN_EXIT_CALL
10801}
10802#endif /* !HMVMX_USE_FUNCTION_TABLE */
10803
10804
10805#ifdef VBOX_STRICT
10806/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
10807# define HMVMX_ASSERT_PREEMPT_CPUID_VAR() \
10808 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
10809
10810# define HMVMX_ASSERT_PREEMPT_CPUID() \
10811 do { \
10812 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
10813 AssertMsg(idAssertCpu == idAssertCpuNow, ("VMX %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
10814 } while (0)
10815
10816# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS() \
10817 do { \
10818 AssertPtr(pVCpu); \
10819 AssertPtr(pMixedCtx); \
10820 AssertPtr(pVmxTransient); \
10821 Assert(pVmxTransient->fVMEntryFailed == false); \
10822 Assert(ASMIntAreEnabled()); \
10823 HMVMX_ASSERT_PREEMPT_SAFE(); \
10824 HMVMX_ASSERT_PREEMPT_CPUID_VAR(); \
10825 Log4Func(("vcpu[%RU32] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v\n", pVCpu->idCpu)); \
10826 HMVMX_ASSERT_PREEMPT_SAFE(); \
10827 if (VMMR0IsLogFlushDisabled(pVCpu)) \
10828 HMVMX_ASSERT_PREEMPT_CPUID(); \
10829 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
10830 } while (0)
10831
10832# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS() \
10833 do { \
10834 Log4Func(("\n")); \
10835 } while (0)
10836#else /* nonstrict builds: */
10837# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS() \
10838 do { \
10839 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
10840 NOREF(pVCpu); NOREF(pMixedCtx); NOREF(pVmxTransient); \
10841 } while (0)
10842# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS() do { } while (0)
10843#endif
10844
10845
10846/**
10847 * Advances the guest RIP by the specified number of bytes.
10848 *
10849 * @param pVCpu The cross context virtual CPU structure.
10850 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
10851 * out-of-sync. Make sure to update the required fields
10852 * before using them.
10853 * @param cbInstr Number of bytes to advance the RIP by.
10854 *
10855 * @remarks No-long-jump zone!!!
10856 */
10857DECLINLINE(void) hmR0VmxAdvanceGuestRipBy(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t cbInstr)
10858{
10859 /* Advance the RIP. */
10860 pMixedCtx->rip += cbInstr;
10861 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP);
10862
10863 /* Update interrupt inhibition. */
10864 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
10865 && pMixedCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
10866 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
10867}
10868
10869
10870/**
10871 * Advances the guest RIP after reading it from the VMCS.
10872 *
10873 * @returns VBox status code, no informational status codes.
10874 * @param pVCpu The cross context virtual CPU structure.
10875 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
10876 * out-of-sync. Make sure to update the required fields
10877 * before using them.
10878 * @param pVmxTransient Pointer to the VMX transient structure.
10879 *
10880 * @remarks No-long-jump zone!!!
10881 */
10882static int hmR0VmxAdvanceGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10883{
10884 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
10885 rc |= hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
10886 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
10887 AssertRCReturn(rc, rc);
10888
10889 hmR0VmxAdvanceGuestRipBy(pVCpu, pMixedCtx, pVmxTransient->cbInstr);
10890
10891 /*
10892 * Deliver a debug exception to the guest if it is single-stepping. Don't directly inject a #DB but use the
10893 * pending debug exception field as it takes care of priority of events.
10894 *
10895 * See Intel spec. 32.2.1 "Debug Exceptions".
10896 */
10897 if ( !pVCpu->hm.s.fSingleInstruction
10898 && pMixedCtx->eflags.Bits.u1TF)
10899 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
10900
10901 return VINF_SUCCESS;
10902}
10903
10904
10905/**
10906 * Tries to determine what part of the guest-state VT-x has deemed as invalid
10907 * and update error record fields accordingly.
10908 *
10909 * @return VMX_IGS_* return codes.
10910 * @retval VMX_IGS_REASON_NOT_FOUND if this function could not find anything
10911 * wrong with the guest state.
10912 *
10913 * @param pVM The cross context VM structure.
10914 * @param pVCpu The cross context virtual CPU structure.
10915 * @param pCtx Pointer to the guest-CPU state.
10916 *
10917 * @remarks This function assumes our cache of the VMCS controls
10918 * are valid, i.e. hmR0VmxCheckVmcsCtls() succeeded.
10919 */
10920static uint32_t hmR0VmxCheckGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
10921{
10922#define HMVMX_ERROR_BREAK(err) { uError = (err); break; }
10923#define HMVMX_CHECK_BREAK(expr, err) if (!(expr)) { \
10924 uError = (err); \
10925 break; \
10926 } else do { } while (0)
10927
10928 int rc;
10929 uint32_t uError = VMX_IGS_ERROR;
10930 uint32_t u32Val;
10931 bool fUnrestrictedGuest = pVM->hm.s.vmx.fUnrestrictedGuest;
10932
10933 do
10934 {
10935 /*
10936 * CR0.
10937 */
10938 uint32_t uSetCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
10939 uint32_t uZapCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
10940 /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG).
10941 See Intel spec. 26.3.1 "Checks on Guest Control Registers, Debug Registers and MSRs." */
10942 if (fUnrestrictedGuest)
10943 uSetCR0 &= ~(X86_CR0_PE | X86_CR0_PG);
10944
10945 uint32_t u32GuestCR0;
10946 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32GuestCR0);
10947 AssertRCBreak(rc);
10948 HMVMX_CHECK_BREAK((u32GuestCR0 & uSetCR0) == uSetCR0, VMX_IGS_CR0_FIXED1);
10949 HMVMX_CHECK_BREAK(!(u32GuestCR0 & ~uZapCR0), VMX_IGS_CR0_FIXED0);
10950 if ( !fUnrestrictedGuest
10951 && (u32GuestCR0 & X86_CR0_PG)
10952 && !(u32GuestCR0 & X86_CR0_PE))
10953 {
10954 HMVMX_ERROR_BREAK(VMX_IGS_CR0_PG_PE_COMBO);
10955 }
10956
10957 /*
10958 * CR4.
10959 */
10960 uint64_t uSetCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
10961 uint64_t uZapCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
10962
10963 uint32_t u32GuestCR4;
10964 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &u32GuestCR4);
10965 AssertRCBreak(rc);
10966 HMVMX_CHECK_BREAK((u32GuestCR4 & uSetCR4) == uSetCR4, VMX_IGS_CR4_FIXED1);
10967 HMVMX_CHECK_BREAK(!(u32GuestCR4 & ~uZapCR4), VMX_IGS_CR4_FIXED0);
10968
10969 /*
10970 * IA32_DEBUGCTL MSR.
10971 */
10972 uint64_t u64Val;
10973 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, &u64Val);
10974 AssertRCBreak(rc);
10975 if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG)
10976 && (u64Val & 0xfffffe3c)) /* Bits 31:9, bits 5:2 MBZ. */
10977 {
10978 HMVMX_ERROR_BREAK(VMX_IGS_DEBUGCTL_MSR_RESERVED);
10979 }
10980 uint64_t u64DebugCtlMsr = u64Val;
10981
10982#ifdef VBOX_STRICT
10983 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
10984 AssertRCBreak(rc);
10985 Assert(u32Val == pVCpu->hm.s.vmx.u32EntryCtls);
10986#endif
10987 bool const fLongModeGuest = RT_BOOL(pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST);
10988
10989 /*
10990 * RIP and RFLAGS.
10991 */
10992 uint32_t u32Eflags;
10993#if HC_ARCH_BITS == 64
10994 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RIP, &u64Val);
10995 AssertRCBreak(rc);
10996 /* pCtx->rip can be different than the one in the VMCS (e.g. run guest code and VM-exits that don't update it). */
10997 if ( !fLongModeGuest
10998 || !pCtx->cs.Attr.n.u1Long)
10999 {
11000 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffff00000000)), VMX_IGS_LONGMODE_RIP_INVALID);
11001 }
11002 /** @todo If the processor supports N < 64 linear-address bits, bits 63:N
11003 * must be identical if the "IA-32e mode guest" VM-entry
11004 * control is 1 and CS.L is 1. No check applies if the
11005 * CPU supports 64 linear-address bits. */
11006
11007 /* Flags in pCtx can be different (real-on-v86 for instance). We are only concerned about the VMCS contents here. */
11008 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RFLAGS, &u64Val);
11009 AssertRCBreak(rc);
11010 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffc08028)), /* Bit 63:22, Bit 15, 5, 3 MBZ. */
11011 VMX_IGS_RFLAGS_RESERVED);
11012 HMVMX_CHECK_BREAK((u64Val & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
11013 u32Eflags = u64Val;
11014#else
11015 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Eflags);
11016 AssertRCBreak(rc);
11017 HMVMX_CHECK_BREAK(!(u32Eflags & 0xffc08028), VMX_IGS_RFLAGS_RESERVED); /* Bit 31:22, Bit 15, 5, 3 MBZ. */
11018 HMVMX_CHECK_BREAK((u32Eflags & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
11019#endif
11020
11021 if ( fLongModeGuest
11022 || ( fUnrestrictedGuest
11023 && !(u32GuestCR0 & X86_CR0_PE)))
11024 {
11025 HMVMX_CHECK_BREAK(!(u32Eflags & X86_EFL_VM), VMX_IGS_RFLAGS_VM_INVALID);
11026 }
11027
11028 uint32_t u32EntryInfo;
11029 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32EntryInfo);
11030 AssertRCBreak(rc);
11031 if ( VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(u32EntryInfo)
11032 && VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
11033 {
11034 HMVMX_CHECK_BREAK(u32Eflags & X86_EFL_IF, VMX_IGS_RFLAGS_IF_INVALID);
11035 }
11036
11037 /*
11038 * 64-bit checks.
11039 */
11040#if HC_ARCH_BITS == 64
11041 if (fLongModeGuest)
11042 {
11043 HMVMX_CHECK_BREAK(u32GuestCR0 & X86_CR0_PG, VMX_IGS_CR0_PG_LONGMODE);
11044 HMVMX_CHECK_BREAK(u32GuestCR4 & X86_CR4_PAE, VMX_IGS_CR4_PAE_LONGMODE);
11045 }
11046
11047 if ( !fLongModeGuest
11048 && (u32GuestCR4 & X86_CR4_PCIDE))
11049 {
11050 HMVMX_ERROR_BREAK(VMX_IGS_CR4_PCIDE);
11051 }
11052
11053 /** @todo CR3 field must be such that bits 63:52 and bits in the range
11054 * 51:32 beyond the processor's physical-address width are 0. */
11055
11056 if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG)
11057 && (pCtx->dr[7] & X86_DR7_MBZ_MASK))
11058 {
11059 HMVMX_ERROR_BREAK(VMX_IGS_DR7_RESERVED);
11060 }
11061
11062 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, &u64Val);
11063 AssertRCBreak(rc);
11064 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_ESP_NOT_CANONICAL);
11065
11066 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, &u64Val);
11067 AssertRCBreak(rc);
11068 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_EIP_NOT_CANONICAL);
11069#endif
11070
11071 /*
11072 * PERF_GLOBAL MSR.
11073 */
11074 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PERF_MSR)
11075 {
11076 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL, &u64Val);
11077 AssertRCBreak(rc);
11078 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffff8fffffffc)),
11079 VMX_IGS_PERF_GLOBAL_MSR_RESERVED); /* Bits 63:35, bits 31:2 MBZ. */
11080 }
11081
11082 /*
11083 * PAT MSR.
11084 */
11085 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PAT_MSR)
11086 {
11087 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PAT_FULL, &u64Val);
11088 AssertRCBreak(rc);
11089 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0x707070707070707)), VMX_IGS_PAT_MSR_RESERVED);
11090 for (unsigned i = 0; i < 8; i++)
11091 {
11092 uint8_t u8Val = (u64Val & 0xff);
11093 if ( u8Val != 0 /* UC */
11094 && u8Val != 1 /* WC */
11095 && u8Val != 4 /* WT */
11096 && u8Val != 5 /* WP */
11097 && u8Val != 6 /* WB */
11098 && u8Val != 7 /* UC- */)
11099 {
11100 HMVMX_ERROR_BREAK(VMX_IGS_PAT_MSR_INVALID);
11101 }
11102 u64Val >>= 8;
11103 }
11104 }
11105
11106 /*
11107 * EFER MSR.
11108 */
11109 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR)
11110 {
11111 Assert(pVM->hm.s.vmx.fSupportsVmcsEfer);
11112 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_EFER_FULL, &u64Val);
11113 AssertRCBreak(rc);
11114 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffffffffff2fe)),
11115 VMX_IGS_EFER_MSR_RESERVED); /* Bits 63:12, bit 9, bits 7:1 MBZ. */
11116 HMVMX_CHECK_BREAK(RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL( pVCpu->hm.s.vmx.u32EntryCtls
11117 & VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST),
11118 VMX_IGS_EFER_LMA_GUEST_MODE_MISMATCH);
11119 HMVMX_CHECK_BREAK( fUnrestrictedGuest
11120 || !(u32GuestCR0 & X86_CR0_PG)
11121 || RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL(u64Val & MSR_K6_EFER_LME),
11122 VMX_IGS_EFER_LMA_LME_MISMATCH);
11123 }
11124
11125 /*
11126 * Segment registers.
11127 */
11128 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
11129 || !(pCtx->ldtr.Sel & X86_SEL_LDT), VMX_IGS_LDTR_TI_INVALID);
11130 if (!(u32Eflags & X86_EFL_VM))
11131 {
11132 /* CS */
11133 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1Present, VMX_IGS_CS_ATTR_P_INVALID);
11134 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xf00), VMX_IGS_CS_ATTR_RESERVED);
11135 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xfffe0000), VMX_IGS_CS_ATTR_RESERVED);
11136 HMVMX_CHECK_BREAK( (pCtx->cs.u32Limit & 0xfff) == 0xfff
11137 || !(pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
11138 HMVMX_CHECK_BREAK( !(pCtx->cs.u32Limit & 0xfff00000)
11139 || (pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
11140 /* CS cannot be loaded with NULL in protected mode. */
11141 HMVMX_CHECK_BREAK(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_CS_ATTR_UNUSABLE);
11142 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1DescType, VMX_IGS_CS_ATTR_S_INVALID);
11143 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
11144 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_UNEQUAL);
11145 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
11146 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_MISMATCH);
11147 else if (pVM->hm.s.vmx.fUnrestrictedGuest && pCtx->cs.Attr.n.u4Type == 3)
11148 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == 0, VMX_IGS_CS_ATTR_DPL_INVALID);
11149 else
11150 HMVMX_ERROR_BREAK(VMX_IGS_CS_ATTR_TYPE_INVALID);
11151
11152 /* SS */
11153 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
11154 || (pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL), VMX_IGS_SS_CS_RPL_UNEQUAL);
11155 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL), VMX_IGS_SS_ATTR_DPL_RPL_UNEQUAL);
11156 if ( !(pCtx->cr0 & X86_CR0_PE)
11157 || pCtx->cs.Attr.n.u4Type == 3)
11158 {
11159 HMVMX_CHECK_BREAK(!pCtx->ss.Attr.n.u2Dpl, VMX_IGS_SS_ATTR_DPL_INVALID);
11160 }
11161 if (!(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
11162 {
11163 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7, VMX_IGS_SS_ATTR_TYPE_INVALID);
11164 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u1Present, VMX_IGS_SS_ATTR_P_INVALID);
11165 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xf00), VMX_IGS_SS_ATTR_RESERVED);
11166 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xfffe0000), VMX_IGS_SS_ATTR_RESERVED);
11167 HMVMX_CHECK_BREAK( (pCtx->ss.u32Limit & 0xfff) == 0xfff
11168 || !(pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
11169 HMVMX_CHECK_BREAK( !(pCtx->ss.u32Limit & 0xfff00000)
11170 || (pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
11171 }
11172
11173 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxWriteSegmentReg(). */
11174 if (!(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
11175 {
11176 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_DS_ATTR_A_INVALID);
11177 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u1Present, VMX_IGS_DS_ATTR_P_INVALID);
11178 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
11179 || pCtx->ds.Attr.n.u4Type > 11
11180 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
11181 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xf00), VMX_IGS_DS_ATTR_RESERVED);
11182 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xfffe0000), VMX_IGS_DS_ATTR_RESERVED);
11183 HMVMX_CHECK_BREAK( (pCtx->ds.u32Limit & 0xfff) == 0xfff
11184 || !(pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
11185 HMVMX_CHECK_BREAK( !(pCtx->ds.u32Limit & 0xfff00000)
11186 || (pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
11187 HMVMX_CHECK_BREAK( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
11188 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_DS_ATTR_TYPE_INVALID);
11189 }
11190 if (!(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
11191 {
11192 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_ES_ATTR_A_INVALID);
11193 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u1Present, VMX_IGS_ES_ATTR_P_INVALID);
11194 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
11195 || pCtx->es.Attr.n.u4Type > 11
11196 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
11197 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xf00), VMX_IGS_ES_ATTR_RESERVED);
11198 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xfffe0000), VMX_IGS_ES_ATTR_RESERVED);
11199 HMVMX_CHECK_BREAK( (pCtx->es.u32Limit & 0xfff) == 0xfff
11200 || !(pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
11201 HMVMX_CHECK_BREAK( !(pCtx->es.u32Limit & 0xfff00000)
11202 || (pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
11203 HMVMX_CHECK_BREAK( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
11204 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_ES_ATTR_TYPE_INVALID);
11205 }
11206 if (!(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
11207 {
11208 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_FS_ATTR_A_INVALID);
11209 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u1Present, VMX_IGS_FS_ATTR_P_INVALID);
11210 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
11211 || pCtx->fs.Attr.n.u4Type > 11
11212 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL), VMX_IGS_FS_ATTR_DPL_RPL_UNEQUAL);
11213 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xf00), VMX_IGS_FS_ATTR_RESERVED);
11214 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xfffe0000), VMX_IGS_FS_ATTR_RESERVED);
11215 HMVMX_CHECK_BREAK( (pCtx->fs.u32Limit & 0xfff) == 0xfff
11216 || !(pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
11217 HMVMX_CHECK_BREAK( !(pCtx->fs.u32Limit & 0xfff00000)
11218 || (pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
11219 HMVMX_CHECK_BREAK( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
11220 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_FS_ATTR_TYPE_INVALID);
11221 }
11222 if (!(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
11223 {
11224 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_GS_ATTR_A_INVALID);
11225 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u1Present, VMX_IGS_GS_ATTR_P_INVALID);
11226 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
11227 || pCtx->gs.Attr.n.u4Type > 11
11228 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL), VMX_IGS_GS_ATTR_DPL_RPL_UNEQUAL);
11229 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xf00), VMX_IGS_GS_ATTR_RESERVED);
11230 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xfffe0000), VMX_IGS_GS_ATTR_RESERVED);
11231 HMVMX_CHECK_BREAK( (pCtx->gs.u32Limit & 0xfff) == 0xfff
11232 || !(pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
11233 HMVMX_CHECK_BREAK( !(pCtx->gs.u32Limit & 0xfff00000)
11234 || (pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
11235 HMVMX_CHECK_BREAK( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
11236 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_GS_ATTR_TYPE_INVALID);
11237 }
11238 /* 64-bit capable CPUs. */
11239#if HC_ARCH_BITS == 64
11240 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
11241 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
11242 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
11243 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
11244 HMVMX_CHECK_BREAK(!(pCtx->cs.u64Base >> 32), VMX_IGS_LONGMODE_CS_BASE_INVALID);
11245 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ss.u64Base >> 32),
11246 VMX_IGS_LONGMODE_SS_BASE_INVALID);
11247 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ds.u64Base >> 32),
11248 VMX_IGS_LONGMODE_DS_BASE_INVALID);
11249 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->es.u64Base >> 32),
11250 VMX_IGS_LONGMODE_ES_BASE_INVALID);
11251#endif
11252 }
11253 else
11254 {
11255 /* V86 mode checks. */
11256 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
11257 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
11258 {
11259 u32CSAttr = 0xf3; u32SSAttr = 0xf3;
11260 u32DSAttr = 0xf3; u32ESAttr = 0xf3;
11261 u32FSAttr = 0xf3; u32GSAttr = 0xf3;
11262 }
11263 else
11264 {
11265 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u;
11266 u32DSAttr = pCtx->ds.Attr.u; u32ESAttr = pCtx->es.Attr.u;
11267 u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
11268 }
11269
11270 /* CS */
11271 HMVMX_CHECK_BREAK((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), VMX_IGS_V86_CS_BASE_INVALID);
11272 HMVMX_CHECK_BREAK(pCtx->cs.u32Limit == 0xffff, VMX_IGS_V86_CS_LIMIT_INVALID);
11273 HMVMX_CHECK_BREAK(u32CSAttr == 0xf3, VMX_IGS_V86_CS_ATTR_INVALID);
11274 /* SS */
11275 HMVMX_CHECK_BREAK((pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4), VMX_IGS_V86_SS_BASE_INVALID);
11276 HMVMX_CHECK_BREAK(pCtx->ss.u32Limit == 0xffff, VMX_IGS_V86_SS_LIMIT_INVALID);
11277 HMVMX_CHECK_BREAK(u32SSAttr == 0xf3, VMX_IGS_V86_SS_ATTR_INVALID);
11278 /* DS */
11279 HMVMX_CHECK_BREAK((pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4), VMX_IGS_V86_DS_BASE_INVALID);
11280 HMVMX_CHECK_BREAK(pCtx->ds.u32Limit == 0xffff, VMX_IGS_V86_DS_LIMIT_INVALID);
11281 HMVMX_CHECK_BREAK(u32DSAttr == 0xf3, VMX_IGS_V86_DS_ATTR_INVALID);
11282 /* ES */
11283 HMVMX_CHECK_BREAK((pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4), VMX_IGS_V86_ES_BASE_INVALID);
11284 HMVMX_CHECK_BREAK(pCtx->es.u32Limit == 0xffff, VMX_IGS_V86_ES_LIMIT_INVALID);
11285 HMVMX_CHECK_BREAK(u32ESAttr == 0xf3, VMX_IGS_V86_ES_ATTR_INVALID);
11286 /* FS */
11287 HMVMX_CHECK_BREAK((pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4), VMX_IGS_V86_FS_BASE_INVALID);
11288 HMVMX_CHECK_BREAK(pCtx->fs.u32Limit == 0xffff, VMX_IGS_V86_FS_LIMIT_INVALID);
11289 HMVMX_CHECK_BREAK(u32FSAttr == 0xf3, VMX_IGS_V86_FS_ATTR_INVALID);
11290 /* GS */
11291 HMVMX_CHECK_BREAK((pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4), VMX_IGS_V86_GS_BASE_INVALID);
11292 HMVMX_CHECK_BREAK(pCtx->gs.u32Limit == 0xffff, VMX_IGS_V86_GS_LIMIT_INVALID);
11293 HMVMX_CHECK_BREAK(u32GSAttr == 0xf3, VMX_IGS_V86_GS_ATTR_INVALID);
11294 /* 64-bit capable CPUs. */
11295#if HC_ARCH_BITS == 64
11296 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
11297 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
11298 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
11299 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
11300 HMVMX_CHECK_BREAK(!(pCtx->cs.u64Base >> 32), VMX_IGS_LONGMODE_CS_BASE_INVALID);
11301 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ss.u64Base >> 32),
11302 VMX_IGS_LONGMODE_SS_BASE_INVALID);
11303 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ds.u64Base >> 32),
11304 VMX_IGS_LONGMODE_DS_BASE_INVALID);
11305 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->es.u64Base >> 32),
11306 VMX_IGS_LONGMODE_ES_BASE_INVALID);
11307#endif
11308 }
11309
11310 /*
11311 * TR.
11312 */
11313 HMVMX_CHECK_BREAK(!(pCtx->tr.Sel & X86_SEL_LDT), VMX_IGS_TR_TI_INVALID);
11314 /* 64-bit capable CPUs. */
11315#if HC_ARCH_BITS == 64
11316 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->tr.u64Base), VMX_IGS_TR_BASE_NOT_CANONICAL);
11317#endif
11318 if (fLongModeGuest)
11319 {
11320 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u4Type == 11, /* 64-bit busy TSS. */
11321 VMX_IGS_LONGMODE_TR_ATTR_TYPE_INVALID);
11322 }
11323 else
11324 {
11325 HMVMX_CHECK_BREAK( pCtx->tr.Attr.n.u4Type == 3 /* 16-bit busy TSS. */
11326 || pCtx->tr.Attr.n.u4Type == 11, /* 32-bit busy TSS.*/
11327 VMX_IGS_TR_ATTR_TYPE_INVALID);
11328 }
11329 HMVMX_CHECK_BREAK(!pCtx->tr.Attr.n.u1DescType, VMX_IGS_TR_ATTR_S_INVALID);
11330 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u1Present, VMX_IGS_TR_ATTR_P_INVALID);
11331 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & 0xf00), VMX_IGS_TR_ATTR_RESERVED); /* Bits 11:8 MBZ. */
11332 HMVMX_CHECK_BREAK( (pCtx->tr.u32Limit & 0xfff) == 0xfff
11333 || !(pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
11334 HMVMX_CHECK_BREAK( !(pCtx->tr.u32Limit & 0xfff00000)
11335 || (pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
11336 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_TR_ATTR_UNUSABLE);
11337
11338 /*
11339 * GDTR and IDTR.
11340 */
11341#if HC_ARCH_BITS == 64
11342 rc = VMXReadVmcs64(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
11343 AssertRCBreak(rc);
11344 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_GDTR_BASE_NOT_CANONICAL);
11345
11346 rc = VMXReadVmcs64(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
11347 AssertRCBreak(rc);
11348 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_IDTR_BASE_NOT_CANONICAL);
11349#endif
11350
11351 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
11352 AssertRCBreak(rc);
11353 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_GDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
11354
11355 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
11356 AssertRCBreak(rc);
11357 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_IDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
11358
11359 /*
11360 * Guest Non-Register State.
11361 */
11362 /* Activity State. */
11363 uint32_t u32ActivityState;
11364 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, &u32ActivityState);
11365 AssertRCBreak(rc);
11366 HMVMX_CHECK_BREAK( !u32ActivityState
11367 || (u32ActivityState & MSR_IA32_VMX_MISC_ACTIVITY_STATES(pVM->hm.s.vmx.Msrs.u64Misc)),
11368 VMX_IGS_ACTIVITY_STATE_INVALID);
11369 HMVMX_CHECK_BREAK( !(pCtx->ss.Attr.n.u2Dpl)
11370 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT, VMX_IGS_ACTIVITY_STATE_HLT_INVALID);
11371 uint32_t u32IntrState;
11372 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &u32IntrState);
11373 AssertRCBreak(rc);
11374 if ( u32IntrState == VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS
11375 || u32IntrState == VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
11376 {
11377 HMVMX_CHECK_BREAK(u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE, VMX_IGS_ACTIVITY_STATE_ACTIVE_INVALID);
11378 }
11379
11380 /** @todo Activity state and injecting interrupts. Left as a todo since we
11381 * currently don't use activity states but ACTIVE. */
11382
11383 HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_ENTRY_SMM)
11384 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_SIPI_WAIT, VMX_IGS_ACTIVITY_STATE_SIPI_WAIT_INVALID);
11385
11386 /* Guest interruptibility-state. */
11387 HMVMX_CHECK_BREAK(!(u32IntrState & 0xfffffff0), VMX_IGS_INTERRUPTIBILITY_STATE_RESERVED);
11388 HMVMX_CHECK_BREAK((u32IntrState & ( VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI
11389 | VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS))
11390 != ( VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI
11391 | VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS),
11392 VMX_IGS_INTERRUPTIBILITY_STATE_STI_MOVSS_INVALID);
11393 HMVMX_CHECK_BREAK( (u32Eflags & X86_EFL_IF)
11394 || !(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI),
11395 VMX_IGS_INTERRUPTIBILITY_STATE_STI_EFL_INVALID);
11396 if (VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(u32EntryInfo))
11397 {
11398 if (VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
11399 {
11400 HMVMX_CHECK_BREAK( !(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
11401 && !(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS),
11402 VMX_IGS_INTERRUPTIBILITY_STATE_EXT_INT_INVALID);
11403 }
11404 else if (VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
11405 {
11406 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS),
11407 VMX_IGS_INTERRUPTIBILITY_STATE_MOVSS_INVALID);
11408 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI),
11409 VMX_IGS_INTERRUPTIBILITY_STATE_STI_INVALID);
11410 }
11411 }
11412 /** @todo Assumes the processor is not in SMM. */
11413 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI),
11414 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_INVALID);
11415 HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_ENTRY_SMM)
11416 || (u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI),
11417 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_SMM_INVALID);
11418 if ( (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI)
11419 && VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(u32EntryInfo)
11420 && VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
11421 {
11422 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI),
11423 VMX_IGS_INTERRUPTIBILITY_STATE_NMI_INVALID);
11424 }
11425
11426 /* Pending debug exceptions. */
11427#if HC_ARCH_BITS == 64
11428 rc = VMXReadVmcs64(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, &u64Val);
11429 AssertRCBreak(rc);
11430 /* Bits 63:15, Bit 13, Bits 11:4 MBZ. */
11431 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffffaff0)), VMX_IGS_LONGMODE_PENDING_DEBUG_RESERVED);
11432 u32Val = u64Val; /* For pending debug exceptions checks below. */
11433#else
11434 rc = VMXReadVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, &u32Val);
11435 AssertRCBreak(rc);
11436 /* Bits 31:15, Bit 13, Bits 11:4 MBZ. */
11437 HMVMX_CHECK_BREAK(!(u32Val & 0xffffaff0), VMX_IGS_PENDING_DEBUG_RESERVED);
11438#endif
11439
11440 if ( (u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
11441 || (u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS)
11442 || u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT)
11443 {
11444 if ( (u32Eflags & X86_EFL_TF)
11445 && !(u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
11446 {
11447 /* Bit 14 is PendingDebug.BS. */
11448 HMVMX_CHECK_BREAK(u32Val & RT_BIT(14), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_SET);
11449 }
11450 if ( !(u32Eflags & X86_EFL_TF)
11451 || (u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
11452 {
11453 /* Bit 14 is PendingDebug.BS. */
11454 HMVMX_CHECK_BREAK(!(u32Val & RT_BIT(14)), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_CLEAR);
11455 }
11456 }
11457
11458 /* VMCS link pointer. */
11459 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, &u64Val);
11460 AssertRCBreak(rc);
11461 if (u64Val != UINT64_C(0xffffffffffffffff))
11462 {
11463 HMVMX_CHECK_BREAK(!(u64Val & 0xfff), VMX_IGS_VMCS_LINK_PTR_RESERVED);
11464 /** @todo Bits beyond the processor's physical-address width MBZ. */
11465 /** @todo 32-bit located in memory referenced by value of this field (as a
11466 * physical address) must contain the processor's VMCS revision ID. */
11467 /** @todo SMM checks. */
11468 }
11469
11470 /** @todo Checks on Guest Page-Directory-Pointer-Table Entries when guest is
11471 * not using Nested Paging? */
11472 if ( pVM->hm.s.fNestedPaging
11473 && !fLongModeGuest
11474 && CPUMIsGuestInPAEModeEx(pCtx))
11475 {
11476 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &u64Val);
11477 AssertRCBreak(rc);
11478 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11479
11480 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &u64Val);
11481 AssertRCBreak(rc);
11482 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11483
11484 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &u64Val);
11485 AssertRCBreak(rc);
11486 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11487
11488 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &u64Val);
11489 AssertRCBreak(rc);
11490 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11491 }
11492
11493 /* Shouldn't happen but distinguish it from AssertRCBreak() errors. */
11494 if (uError == VMX_IGS_ERROR)
11495 uError = VMX_IGS_REASON_NOT_FOUND;
11496 } while (0);
11497
11498 pVCpu->hm.s.u32HMError = uError;
11499 return uError;
11500
11501#undef HMVMX_ERROR_BREAK
11502#undef HMVMX_CHECK_BREAK
11503}
11504
11505/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
11506/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
11507/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
11508
11509/** @name VM-exit handlers.
11510 * @{
11511 */
11512
11513/**
11514 * VM-exit handler for external interrupts (VMX_EXIT_EXT_INT).
11515 */
11516HMVMX_EXIT_DECL hmR0VmxExitExtInt(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11517{
11518 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11519 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
11520 /* Windows hosts (32-bit and 64-bit) have DPC latency issues. See @bugref{6853}. */
11521 if (VMMR0ThreadCtxHookIsEnabled(pVCpu))
11522 return VINF_SUCCESS;
11523 return VINF_EM_RAW_INTERRUPT;
11524}
11525
11526
11527/**
11528 * VM-exit handler for exceptions or NMIs (VMX_EXIT_XCPT_OR_NMI).
11529 */
11530HMVMX_EXIT_DECL hmR0VmxExitXcptOrNmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11531{
11532 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11533 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitXcptNmi, y3);
11534
11535 int rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
11536 AssertRCReturn(rc, rc);
11537
11538 uint32_t uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(pVmxTransient->uExitIntInfo);
11539 Assert( !(pVCpu->hm.s.vmx.u32ExitCtls & VMX_VMCS_CTRL_EXIT_ACK_EXT_INT)
11540 && uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT);
11541 Assert(VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo));
11542
11543 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
11544 {
11545 /*
11546 * This cannot be a guest NMI as the only way for the guest to receive an NMI is if we injected it ourselves and
11547 * anything we inject is not going to cause a VM-exit directly for the event being injected.
11548 * See Intel spec. 27.2.3 "Information for VM Exits During Event Delivery".
11549 *
11550 * Dispatch the NMI to the host. See Intel spec. 27.5.5 "Updating Non-Register State".
11551 */
11552 VMXDispatchHostNmi();
11553 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
11554 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11555 return VINF_SUCCESS;
11556 }
11557
11558 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
11559 VBOXSTRICTRC rcStrictRc1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
11560 if (RT_UNLIKELY(rcStrictRc1 == VINF_SUCCESS))
11561 { /* likely */ }
11562 else
11563 {
11564 if (rcStrictRc1 == VINF_HM_DOUBLE_FAULT)
11565 rcStrictRc1 = VINF_SUCCESS;
11566 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11567 return rcStrictRc1;
11568 }
11569
11570 uint32_t uExitIntInfo = pVmxTransient->uExitIntInfo;
11571 uint32_t uVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(uExitIntInfo);
11572 switch (uIntType)
11573 {
11574 case VMX_EXIT_INTERRUPTION_INFO_TYPE_PRIV_SW_XCPT: /* Privileged software exception. (#DB from ICEBP) */
11575 Assert(uVector == X86_XCPT_DB);
11576 /* fall thru */
11577 case VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT: /* Software exception. (#BP or #OF) */
11578 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF || uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_PRIV_SW_XCPT);
11579 /* fall thru */
11580 case VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT:
11581 {
11582 /*
11583 * If there's any exception caused as a result of event injection, go back to
11584 * the interpreter. The page-fault case is complicated and we manually handle
11585 * any currently pending event in hmR0VmxExitXcptPF. Nested #ACs are already
11586 * handled in hmR0VmxCheckExitDueToEventDelivery.
11587 */
11588 if (!pVCpu->hm.s.Event.fPending)
11589 { /* likely */ }
11590 else if ( uVector != X86_XCPT_PF
11591 && uVector != X86_XCPT_AC)
11592 {
11593 /** @todo Why do we need to fallback to the interpreter here? */
11594 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
11595 rc = VERR_EM_INTERPRETER;
11596 break;
11597 }
11598
11599 switch (uVector)
11600 {
11601 case X86_XCPT_PF: rc = hmR0VmxExitXcptPF(pVCpu, pMixedCtx, pVmxTransient); break;
11602 case X86_XCPT_GP: rc = hmR0VmxExitXcptGP(pVCpu, pMixedCtx, pVmxTransient); break;
11603 case X86_XCPT_NM: rc = hmR0VmxExitXcptNM(pVCpu, pMixedCtx, pVmxTransient); break;
11604 case X86_XCPT_MF: rc = hmR0VmxExitXcptMF(pVCpu, pMixedCtx, pVmxTransient); break;
11605 case X86_XCPT_DB: rc = hmR0VmxExitXcptDB(pVCpu, pMixedCtx, pVmxTransient); break;
11606 case X86_XCPT_BP: rc = hmR0VmxExitXcptBP(pVCpu, pMixedCtx, pVmxTransient); break;
11607 case X86_XCPT_AC: rc = hmR0VmxExitXcptAC(pVCpu, pMixedCtx, pVmxTransient); break;
11608
11609 case X86_XCPT_XF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXF);
11610 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11611 case X86_XCPT_DE: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
11612 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11613 case X86_XCPT_UD: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
11614 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11615 case X86_XCPT_SS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
11616 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11617 case X86_XCPT_NP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
11618 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11619 case X86_XCPT_TS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestTS);
11620 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11621 default:
11622 {
11623 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
11624 AssertRCReturn(rc, rc);
11625
11626 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXcpUnk);
11627 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
11628 {
11629 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
11630 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
11631 Assert(CPUMIsGuestInRealModeEx(pMixedCtx));
11632
11633 rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11634 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
11635 AssertRCReturn(rc, rc);
11636 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(uExitIntInfo),
11637 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode,
11638 0 /* GCPtrFaultAddress */);
11639 AssertRCReturn(rc, rc);
11640 }
11641 else
11642 {
11643 AssertMsgFailed(("Unexpected VM-exit caused by exception %#x\n", uVector));
11644 pVCpu->hm.s.u32HMError = uVector;
11645 rc = VERR_VMX_UNEXPECTED_EXCEPTION;
11646 }
11647 break;
11648 }
11649 }
11650 break;
11651 }
11652
11653 default:
11654 {
11655 pVCpu->hm.s.u32HMError = uExitIntInfo;
11656 rc = VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE;
11657 AssertMsgFailed(("Unexpected interruption info %#x\n", VMX_EXIT_INTERRUPTION_INFO_TYPE(uExitIntInfo)));
11658 break;
11659 }
11660 }
11661 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11662 return rc;
11663}
11664
11665
11666/**
11667 * VM-exit handler for interrupt-window exiting (VMX_EXIT_INT_WINDOW).
11668 */
11669HMVMX_EXIT_NSRC_DECL hmR0VmxExitIntWindow(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11670{
11671 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11672
11673 /* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */
11674 hmR0VmxClearIntWindowExitVmcs(pVCpu);
11675
11676 /* Deliver the pending interrupts via hmR0VmxEvaluatePendingEvent() and resume guest execution. */
11677 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
11678 return VINF_SUCCESS;
11679}
11680
11681
11682/**
11683 * VM-exit handler for NMI-window exiting (VMX_EXIT_NMI_WINDOW).
11684 */
11685HMVMX_EXIT_NSRC_DECL hmR0VmxExitNmiWindow(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11686{
11687 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11688 if (RT_UNLIKELY(!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT)))
11689 {
11690 AssertMsgFailed(("Unexpected NMI-window exit.\n"));
11691 HMVMX_RETURN_UNEXPECTED_EXIT();
11692 }
11693
11694 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS));
11695
11696 /*
11697 * If block-by-STI is set when we get this VM-exit, it means the CPU doesn't block NMIs following STI.
11698 * It is therefore safe to unblock STI and deliver the NMI ourselves. See @bugref{7445}.
11699 */
11700 uint32_t uIntrState = 0;
11701 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &uIntrState);
11702 AssertRCReturn(rc, rc);
11703
11704 bool const fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
11705 if ( fBlockSti
11706 && VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
11707 {
11708 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
11709 }
11710
11711 /* Indicate that we no longer need to VM-exit when the guest is ready to receive NMIs, it is now ready */
11712 hmR0VmxClearNmiWindowExitVmcs(pVCpu);
11713
11714 /* Deliver the pending NMI via hmR0VmxEvaluatePendingEvent() and resume guest execution. */
11715 return VINF_SUCCESS;
11716}
11717
11718
11719/**
11720 * VM-exit handler for WBINVD (VMX_EXIT_WBINVD). Conditional VM-exit.
11721 */
11722HMVMX_EXIT_NSRC_DECL hmR0VmxExitWbinvd(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11723{
11724 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11725 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWbinvd);
11726 return hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11727}
11728
11729
11730/**
11731 * VM-exit handler for INVD (VMX_EXIT_INVD). Unconditional VM-exit.
11732 */
11733HMVMX_EXIT_NSRC_DECL hmR0VmxExitInvd(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11734{
11735 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11736 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvd);
11737 return hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11738}
11739
11740
11741/**
11742 * VM-exit handler for CPUID (VMX_EXIT_CPUID). Unconditional VM-exit.
11743 */
11744HMVMX_EXIT_DECL hmR0VmxExitCpuid(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11745{
11746 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11747 PVM pVM = pVCpu->CTX_SUFF(pVM);
11748 int rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
11749 if (RT_LIKELY(rc == VINF_SUCCESS))
11750 {
11751 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11752 Assert(pVmxTransient->cbInstr == 2);
11753 }
11754 else
11755 {
11756 AssertMsgFailed(("hmR0VmxExitCpuid: EMInterpretCpuId failed with %Rrc\n", rc));
11757 rc = VERR_EM_INTERPRETER;
11758 }
11759 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCpuid);
11760 return rc;
11761}
11762
11763
11764/**
11765 * VM-exit handler for GETSEC (VMX_EXIT_GETSEC). Unconditional VM-exit.
11766 */
11767HMVMX_EXIT_DECL hmR0VmxExitGetsec(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11768{
11769 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11770 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
11771 AssertRCReturn(rc, rc);
11772
11773 if (pMixedCtx->cr4 & X86_CR4_SMXE)
11774 return VINF_EM_RAW_EMULATE_INSTR;
11775
11776 AssertMsgFailed(("hmR0VmxExitGetsec: unexpected VM-exit when CR4.SMXE is 0.\n"));
11777 HMVMX_RETURN_UNEXPECTED_EXIT();
11778}
11779
11780
11781/**
11782 * VM-exit handler for RDTSC (VMX_EXIT_RDTSC). Conditional VM-exit.
11783 */
11784HMVMX_EXIT_DECL hmR0VmxExitRdtsc(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11785{
11786 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11787 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
11788 AssertRCReturn(rc, rc);
11789
11790 PVM pVM = pVCpu->CTX_SUFF(pVM);
11791 rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
11792 if (RT_LIKELY(rc == VINF_SUCCESS))
11793 {
11794 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11795 Assert(pVmxTransient->cbInstr == 2);
11796 /* If we get a spurious VM-exit when offsetting is enabled, we must reset offsetting on VM-reentry. See @bugref{6634}. */
11797 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING)
11798 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
11799 }
11800 else
11801 rc = VERR_EM_INTERPRETER;
11802 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
11803 return rc;
11804}
11805
11806
11807/**
11808 * VM-exit handler for RDTSCP (VMX_EXIT_RDTSCP). Conditional VM-exit.
11809 */
11810HMVMX_EXIT_DECL hmR0VmxExitRdtscp(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11811{
11812 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11813 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
11814 rc |= hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx); /* For MSR_K8_TSC_AUX */
11815 AssertRCReturn(rc, rc);
11816
11817 PVM pVM = pVCpu->CTX_SUFF(pVM);
11818 rc = EMInterpretRdtscp(pVM, pVCpu, pMixedCtx);
11819 if (RT_SUCCESS(rc))
11820 {
11821 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11822 Assert(pVmxTransient->cbInstr == 3);
11823 /* If we get a spurious VM-exit when offsetting is enabled, we must reset offsetting on VM-reentry. See @bugref{6634}. */
11824 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING)
11825 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
11826 }
11827 else
11828 {
11829 AssertMsgFailed(("hmR0VmxExitRdtscp: EMInterpretRdtscp failed with %Rrc\n", rc));
11830 rc = VERR_EM_INTERPRETER;
11831 }
11832 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
11833 return rc;
11834}
11835
11836
11837/**
11838 * VM-exit handler for RDPMC (VMX_EXIT_RDPMC). Conditional VM-exit.
11839 */
11840HMVMX_EXIT_DECL hmR0VmxExitRdpmc(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11841{
11842 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11843 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
11844 rc |= hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
11845 AssertRCReturn(rc, rc);
11846
11847 PVM pVM = pVCpu->CTX_SUFF(pVM);
11848 rc = EMInterpretRdpmc(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
11849 if (RT_LIKELY(rc == VINF_SUCCESS))
11850 {
11851 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11852 Assert(pVmxTransient->cbInstr == 2);
11853 }
11854 else
11855 {
11856 AssertMsgFailed(("hmR0VmxExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
11857 rc = VERR_EM_INTERPRETER;
11858 }
11859 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdpmc);
11860 return rc;
11861}
11862
11863
11864/**
11865 * VM-exit handler for VMCALL (VMX_EXIT_VMCALL). Unconditional VM-exit.
11866 */
11867HMVMX_EXIT_DECL hmR0VmxExitVmcall(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11868{
11869 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11870 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitVmcall);
11871
11872 VBOXSTRICTRC rcStrict = VERR_VMX_IPE_3;
11873 if (pVCpu->hm.s.fHypercallsEnabled)
11874 {
11875#if 0
11876 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
11877#else
11878 /* Aggressive state sync. for now. */
11879 int rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
11880 rc |= hmR0VmxSaveGuestRflags(pVCpu,pMixedCtx); /* For CPL checks in gimHvHypercall() & gimKvmHypercall() */
11881 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx); /* For long-mode checks in gimKvmHypercall(). */
11882 AssertRCReturn(rc, rc);
11883#endif
11884
11885 /* Perform the hypercall. */
11886 rcStrict = GIMHypercall(pVCpu, pMixedCtx);
11887 if (rcStrict == VINF_SUCCESS)
11888 {
11889 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11890 AssertRCReturn(rc, rc);
11891 }
11892 else
11893 Assert( rcStrict == VINF_GIM_R3_HYPERCALL
11894 || rcStrict == VINF_GIM_HYPERCALL_CONTINUING
11895 || RT_FAILURE(VBOXSTRICTRC_VAL(rcStrict)));
11896
11897 /* If the hypercall changes anything other than guest's general-purpose registers,
11898 we would need to reload the guest changed bits here before VM-entry. */
11899 }
11900 else
11901 Log4(("hmR0VmxExitVmcall: Hypercalls not enabled\n"));
11902
11903 /* If hypercalls are disabled or the hypercall failed for some reason, raise #UD and continue. */
11904 if (RT_FAILURE(VBOXSTRICTRC_VAL(rcStrict)))
11905 {
11906 hmR0VmxSetPendingXcptUD(pVCpu, pMixedCtx);
11907 rcStrict = VINF_SUCCESS;
11908 }
11909
11910 return rcStrict;
11911}
11912
11913
11914/**
11915 * VM-exit handler for INVLPG (VMX_EXIT_INVLPG). Conditional VM-exit.
11916 */
11917HMVMX_EXIT_DECL hmR0VmxExitInvlpg(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11918{
11919 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11920 PVM pVM = pVCpu->CTX_SUFF(pVM);
11921 Assert(!pVM->hm.s.fNestedPaging || pVCpu->hm.s.fUsingDebugLoop);
11922
11923 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
11924 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
11925 AssertRCReturn(rc, rc);
11926
11927 VBOXSTRICTRC rcStrict = EMInterpretInvlpg(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), pVmxTransient->uExitQualification);
11928 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
11929 rcStrict = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11930 else
11931 AssertMsg(rcStrict == VERR_EM_INTERPRETER, ("hmR0VmxExitInvlpg: EMInterpretInvlpg %#RX64 failed with %Rrc\n",
11932 pVmxTransient->uExitQualification, VBOXSTRICTRC_VAL(rcStrict)));
11933 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpg);
11934 return rcStrict;
11935}
11936
11937
11938/**
11939 * VM-exit handler for MONITOR (VMX_EXIT_MONITOR). Conditional VM-exit.
11940 */
11941HMVMX_EXIT_DECL hmR0VmxExitMonitor(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11942{
11943 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11944 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
11945 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
11946 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
11947 AssertRCReturn(rc, rc);
11948
11949 PVM pVM = pVCpu->CTX_SUFF(pVM);
11950 rc = EMInterpretMonitor(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
11951 if (RT_LIKELY(rc == VINF_SUCCESS))
11952 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11953 else
11954 {
11955 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
11956 rc = VERR_EM_INTERPRETER;
11957 }
11958 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
11959 return rc;
11960}
11961
11962
11963/**
11964 * VM-exit handler for MWAIT (VMX_EXIT_MWAIT). Conditional VM-exit.
11965 */
11966HMVMX_EXIT_DECL hmR0VmxExitMwait(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11967{
11968 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11969 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
11970 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
11971 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
11972 AssertRCReturn(rc, rc);
11973
11974 PVM pVM = pVCpu->CTX_SUFF(pVM);
11975 VBOXSTRICTRC rc2 = EMInterpretMWait(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
11976 rc = VBOXSTRICTRC_VAL(rc2);
11977 if (RT_LIKELY( rc == VINF_SUCCESS
11978 || rc == VINF_EM_HALT))
11979 {
11980 int rc3 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11981 AssertRCReturn(rc3, rc3);
11982
11983 if ( rc == VINF_EM_HALT
11984 && EMMonitorWaitShouldContinue(pVCpu, pMixedCtx))
11985 {
11986 rc = VINF_SUCCESS;
11987 }
11988 }
11989 else
11990 {
11991 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
11992 rc = VERR_EM_INTERPRETER;
11993 }
11994 AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
11995 ("hmR0VmxExitMwait: failed, invalid error code %Rrc\n", rc));
11996 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
11997 return rc;
11998}
11999
12000
12001/**
12002 * VM-exit handler for RSM (VMX_EXIT_RSM). Unconditional VM-exit.
12003 */
12004HMVMX_EXIT_NSRC_DECL hmR0VmxExitRsm(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12005{
12006 /*
12007 * Execution of RSM outside of SMM mode causes #UD regardless of VMX root or VMX non-root mode. In theory, we should never
12008 * get this VM-exit. This can happen only if dual-monitor treatment of SMI and VMX is enabled, which can (only?) be done by
12009 * executing VMCALL in VMX root operation. If we get here, something funny is going on.
12010 * See Intel spec. "33.15.5 Enabling the Dual-Monitor Treatment".
12011 */
12012 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12013 AssertMsgFailed(("Unexpected RSM VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
12014 HMVMX_RETURN_UNEXPECTED_EXIT();
12015}
12016
12017
12018/**
12019 * VM-exit handler for SMI (VMX_EXIT_SMI). Unconditional VM-exit.
12020 */
12021HMVMX_EXIT_NSRC_DECL hmR0VmxExitSmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12022{
12023 /*
12024 * This can only happen if we support dual-monitor treatment of SMI, which can be activated by executing VMCALL in VMX
12025 * root operation. Only an STM (SMM transfer monitor) would get this VM-exit when we (the executive monitor) execute a VMCALL
12026 * in VMX root mode or receive an SMI. If we get here, something funny is going on.
12027 * See Intel spec. "33.15.6 Activating the Dual-Monitor Treatment" and Intel spec. 25.3 "Other Causes of VM-Exits"
12028 */
12029 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12030 AssertMsgFailed(("Unexpected SMI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
12031 HMVMX_RETURN_UNEXPECTED_EXIT();
12032}
12033
12034
12035/**
12036 * VM-exit handler for IO SMI (VMX_EXIT_IO_SMI). Unconditional VM-exit.
12037 */
12038HMVMX_EXIT_NSRC_DECL hmR0VmxExitIoSmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12039{
12040 /* Same treatment as VMX_EXIT_SMI. See comment in hmR0VmxExitSmi(). */
12041 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12042 AssertMsgFailed(("Unexpected IO SMI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
12043 HMVMX_RETURN_UNEXPECTED_EXIT();
12044}
12045
12046
12047/**
12048 * VM-exit handler for SIPI (VMX_EXIT_SIPI). Conditional VM-exit.
12049 */
12050HMVMX_EXIT_NSRC_DECL hmR0VmxExitSipi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12051{
12052 /*
12053 * SIPI exits can only occur in VMX non-root operation when the "wait-for-SIPI" guest activity state is used. We currently
12054 * don't make use of it (see hmR0VmxLoadGuestActivityState()) as our guests don't have direct access to the host LAPIC.
12055 * See Intel spec. 25.3 "Other Causes of VM-exits".
12056 */
12057 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12058 AssertMsgFailed(("Unexpected SIPI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
12059 HMVMX_RETURN_UNEXPECTED_EXIT();
12060}
12061
12062
12063/**
12064 * VM-exit handler for INIT signal (VMX_EXIT_INIT_SIGNAL). Unconditional
12065 * VM-exit.
12066 */
12067HMVMX_EXIT_NSRC_DECL hmR0VmxExitInitSignal(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12068{
12069 /*
12070 * INIT signals are blocked in VMX root operation by VMXON and by SMI in SMM.
12071 * See Intel spec. 33.14.1 Default Treatment of SMI Delivery" and Intel spec. 29.3 "VMX Instructions" for "VMXON".
12072 *
12073 * It is -NOT- blocked in VMX non-root operation so we can, in theory, still get these VM-exits.
12074 * See Intel spec. "23.8 Restrictions on VMX operation".
12075 */
12076 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12077 return VINF_SUCCESS;
12078}
12079
12080
12081/**
12082 * VM-exit handler for triple faults (VMX_EXIT_TRIPLE_FAULT). Unconditional
12083 * VM-exit.
12084 */
12085HMVMX_EXIT_DECL hmR0VmxExitTripleFault(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12086{
12087 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12088 return VINF_EM_RESET;
12089}
12090
12091
12092/**
12093 * VM-exit handler for HLT (VMX_EXIT_HLT). Conditional VM-exit.
12094 */
12095HMVMX_EXIT_DECL hmR0VmxExitHlt(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12096{
12097 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12098 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT);
12099
12100 int rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
12101 AssertRCReturn(rc, rc);
12102
12103 if (EMShouldContinueAfterHalt(pVCpu, pMixedCtx)) /* Requires eflags. */
12104 rc = VINF_SUCCESS;
12105 else
12106 rc = VINF_EM_HALT;
12107
12108 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
12109 if (rc != VINF_SUCCESS)
12110 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
12111 return rc;
12112}
12113
12114
12115/**
12116 * VM-exit handler for instructions that result in a \#UD exception delivered to
12117 * the guest.
12118 */
12119HMVMX_EXIT_NSRC_DECL hmR0VmxExitSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12120{
12121 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12122 hmR0VmxSetPendingXcptUD(pVCpu, pMixedCtx);
12123 return VINF_SUCCESS;
12124}
12125
12126
12127/**
12128 * VM-exit handler for expiry of the VMX preemption timer.
12129 */
12130HMVMX_EXIT_DECL hmR0VmxExitPreemptTimer(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12131{
12132 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12133
12134 /* If the preemption-timer has expired, reinitialize the preemption timer on next VM-entry. */
12135 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
12136
12137 /* If there are any timer events pending, fall back to ring-3, otherwise resume guest execution. */
12138 PVM pVM = pVCpu->CTX_SUFF(pVM);
12139 bool fTimersPending = TMTimerPollBool(pVM, pVCpu);
12140 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPreemptTimer);
12141 return fTimersPending ? VINF_EM_RAW_TIMER_PENDING : VINF_SUCCESS;
12142}
12143
12144
12145/**
12146 * VM-exit handler for XSETBV (VMX_EXIT_XSETBV). Unconditional VM-exit.
12147 */
12148HMVMX_EXIT_DECL hmR0VmxExitXsetbv(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12149{
12150 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12151
12152 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12153 rc |= hmR0VmxSaveGuestRegsForIemExec(pVCpu, pMixedCtx, false /*fMemory*/, false /*fNeedRsp*/);
12154 rc |= hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
12155 AssertRCReturn(rc, rc);
12156
12157 VBOXSTRICTRC rcStrict = IEMExecDecodedXsetbv(pVCpu, pVmxTransient->cbInstr);
12158 HMCPU_CF_SET(pVCpu, rcStrict != VINF_IEM_RAISED_XCPT ? HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS : HM_CHANGED_ALL_GUEST);
12159
12160 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pMixedCtx->cr4 & X86_CR4_OSXSAVE) && pMixedCtx->aXcr[0] != ASMGetXcr0();
12161
12162 return rcStrict;
12163}
12164
12165
12166/**
12167 * VM-exit handler for INVPCID (VMX_EXIT_INVPCID). Conditional VM-exit.
12168 */
12169HMVMX_EXIT_DECL hmR0VmxExitInvpcid(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12170{
12171 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12172
12173 /* The guest should not invalidate the host CPU's TLBs, fallback to interpreter. */
12174 /** @todo implement EMInterpretInvpcid() */
12175 return VERR_EM_INTERPRETER;
12176}
12177
12178
12179/**
12180 * VM-exit handler for invalid-guest-state (VMX_EXIT_ERR_INVALID_GUEST_STATE).
12181 * Error VM-exit.
12182 */
12183HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrInvalidGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12184{
12185 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
12186 AssertRCReturn(rc, rc);
12187
12188 rc = hmR0VmxCheckVmcsCtls(pVCpu);
12189 AssertRCReturn(rc, rc);
12190
12191 uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVCpu->CTX_SUFF(pVM), pVCpu, pMixedCtx);
12192 NOREF(uInvalidReason);
12193
12194#ifdef VBOX_STRICT
12195 uint32_t uIntrState;
12196 RTHCUINTREG uHCReg;
12197 uint64_t u64Val;
12198 uint32_t u32Val;
12199
12200 rc = hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
12201 rc |= hmR0VmxReadEntryXcptErrorCodeVmcs(pVmxTransient);
12202 rc |= hmR0VmxReadEntryInstrLenVmcs(pVmxTransient);
12203 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &uIntrState);
12204 AssertRCReturn(rc, rc);
12205
12206 Log4(("uInvalidReason %u\n", uInvalidReason));
12207 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", pVmxTransient->uEntryIntInfo));
12208 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", pVmxTransient->uEntryXcptErrorCode));
12209 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %#RX32\n", pVmxTransient->cbEntryInstr));
12210 Log4(("VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE %#RX32\n", uIntrState));
12211
12212 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32Val); AssertRC(rc);
12213 Log4(("VMX_VMCS_GUEST_CR0 %#RX32\n", u32Val));
12214 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
12215 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
12216 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
12217 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
12218 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
12219 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
12220 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
12221 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
12222 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
12223 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
12224#else
12225 NOREF(pVmxTransient);
12226#endif
12227
12228 hmR0DumpRegs(pVCpu->CTX_SUFF(pVM), pVCpu, pMixedCtx);
12229 return VERR_VMX_INVALID_GUEST_STATE;
12230}
12231
12232
12233/**
12234 * VM-exit handler for VM-entry failure due to an MSR-load
12235 * (VMX_EXIT_ERR_MSR_LOAD). Error VM-exit.
12236 */
12237HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrMsrLoad(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12238{
12239 NOREF(pVmxTransient);
12240 AssertMsgFailed(("Unexpected MSR-load exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx)); NOREF(pMixedCtx);
12241 HMVMX_RETURN_UNEXPECTED_EXIT();
12242}
12243
12244
12245/**
12246 * VM-exit handler for VM-entry failure due to a machine-check event
12247 * (VMX_EXIT_ERR_MACHINE_CHECK). Error VM-exit.
12248 */
12249HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrMachineCheck(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12250{
12251 NOREF(pVmxTransient);
12252 AssertMsgFailed(("Unexpected machine-check event exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx)); NOREF(pMixedCtx);
12253 HMVMX_RETURN_UNEXPECTED_EXIT();
12254}
12255
12256
12257/**
12258 * VM-exit handler for all undefined reasons. Should never ever happen.. in
12259 * theory.
12260 */
12261HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrUndefined(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12262{
12263 AssertMsgFailed(("Huh!? Undefined VM-exit reason %d. pVCpu=%p pMixedCtx=%p\n", pVmxTransient->uExitReason, pVCpu, pMixedCtx));
12264 NOREF(pVCpu); NOREF(pMixedCtx); NOREF(pVmxTransient);
12265 return VERR_VMX_UNDEFINED_EXIT_CODE;
12266}
12267
12268
12269/**
12270 * VM-exit handler for XDTR (LGDT, SGDT, LIDT, SIDT) accesses
12271 * (VMX_EXIT_XDTR_ACCESS) and LDT and TR access (LLDT, LTR, SLDT, STR).
12272 * Conditional VM-exit.
12273 */
12274HMVMX_EXIT_DECL hmR0VmxExitXdtrAccess(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12275{
12276 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12277
12278 /* By default, we don't enable VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT. */
12279 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitXdtrAccess);
12280 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT)
12281 return VERR_EM_INTERPRETER;
12282 AssertMsgFailed(("Unexpected XDTR access. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
12283 HMVMX_RETURN_UNEXPECTED_EXIT();
12284}
12285
12286
12287/**
12288 * VM-exit handler for RDRAND (VMX_EXIT_RDRAND). Conditional VM-exit.
12289 */
12290HMVMX_EXIT_DECL hmR0VmxExitRdrand(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12291{
12292 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12293
12294 /* By default, we don't enable VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT. */
12295 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdrand);
12296 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT)
12297 return VERR_EM_INTERPRETER;
12298 AssertMsgFailed(("Unexpected RDRAND exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
12299 HMVMX_RETURN_UNEXPECTED_EXIT();
12300}
12301
12302
12303/**
12304 * VM-exit handler for RDMSR (VMX_EXIT_RDMSR).
12305 */
12306HMVMX_EXIT_DECL hmR0VmxExitRdmsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12307{
12308 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12309
12310 /* EMInterpretRdmsr() requires CR0, Eflags and SS segment register. */
12311 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
12312 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
12313 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
12314 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS))
12315 {
12316 rc |= hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
12317 rc |= hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
12318 }
12319 AssertRCReturn(rc, rc);
12320 Log4(("ecx=%#RX32\n", pMixedCtx->ecx));
12321
12322#ifdef VBOX_STRICT
12323 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
12324 {
12325 if ( hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, pMixedCtx->ecx)
12326 && pMixedCtx->ecx != MSR_K6_EFER)
12327 {
12328 AssertMsgFailed(("Unexpected RDMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n",
12329 pMixedCtx->ecx));
12330 HMVMX_RETURN_UNEXPECTED_EXIT();
12331 }
12332 if (hmR0VmxIsLazyGuestMsr(pVCpu, pMixedCtx->ecx))
12333 {
12334 VMXMSREXITREAD enmRead;
12335 VMXMSREXITWRITE enmWrite;
12336 int rc2 = hmR0VmxGetMsrPermission(pVCpu, pMixedCtx->ecx, &enmRead, &enmWrite);
12337 AssertRCReturn(rc2, rc2);
12338 if (enmRead == VMXMSREXIT_PASSTHRU_READ)
12339 {
12340 AssertMsgFailed(("Unexpected RDMSR for a passthru lazy-restore MSR. ecx=%#RX32\n", pMixedCtx->ecx));
12341 HMVMX_RETURN_UNEXPECTED_EXIT();
12342 }
12343 }
12344 }
12345#endif
12346
12347 PVM pVM = pVCpu->CTX_SUFF(pVM);
12348 rc = EMInterpretRdmsr(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
12349 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER,
12350 ("hmR0VmxExitRdmsr: failed, invalid error code %Rrc\n", rc));
12351 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
12352 if (RT_SUCCESS(rc))
12353 {
12354 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
12355 Assert(pVmxTransient->cbInstr == 2);
12356 }
12357 return rc;
12358}
12359
12360
12361/**
12362 * VM-exit handler for WRMSR (VMX_EXIT_WRMSR).
12363 */
12364HMVMX_EXIT_DECL hmR0VmxExitWrmsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12365{
12366 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12367 PVM pVM = pVCpu->CTX_SUFF(pVM);
12368 int rc = VINF_SUCCESS;
12369
12370 /* EMInterpretWrmsr() requires CR0, EFLAGS and SS segment register. */
12371 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
12372 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
12373 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
12374 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS))
12375 {
12376 rc |= hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
12377 rc |= hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
12378 }
12379 AssertRCReturn(rc, rc);
12380 Log4(("ecx=%#RX32 edx:eax=%#RX32:%#RX32\n", pMixedCtx->ecx, pMixedCtx->edx, pMixedCtx->eax));
12381
12382 rc = EMInterpretWrmsr(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
12383 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER, ("hmR0VmxExitWrmsr: failed, invalid error code %Rrc\n", rc));
12384 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
12385
12386 if (RT_SUCCESS(rc))
12387 {
12388 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
12389
12390 /* If this is an X2APIC WRMSR access, update the APIC state as well. */
12391 if ( pMixedCtx->ecx == MSR_IA32_APICBASE
12392 || ( pMixedCtx->ecx >= MSR_IA32_X2APIC_START
12393 && pMixedCtx->ecx <= MSR_IA32_X2APIC_END))
12394 {
12395 /*
12396 * We've already saved the APIC related guest-state (TPR) in hmR0VmxPostRunGuest(). When full APIC register
12397 * virtualization is implemented we'll have to make sure APIC state is saved from the VMCS before
12398 * EMInterpretWrmsr() changes it.
12399 */
12400 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
12401 }
12402 else if (pMixedCtx->ecx == MSR_IA32_TSC) /* Windows 7 does this during bootup. See @bugref{6398}. */
12403 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
12404 else if (pMixedCtx->ecx == MSR_K6_EFER)
12405 {
12406 /*
12407 * If the guest touches EFER we need to update the VM-Entry and VM-Exit controls as well,
12408 * even if it is -not- touching bits that cause paging mode changes (LMA/LME). We care about
12409 * the other bits as well, SCE and NXE. See @bugref{7368}.
12410 */
12411 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_EFER_MSR | HM_CHANGED_VMX_ENTRY_CTLS | HM_CHANGED_VMX_EXIT_CTLS);
12412 }
12413
12414 /* Update MSRs that are part of the VMCS and auto-load/store area when MSR-bitmaps are not supported. */
12415 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS))
12416 {
12417 switch (pMixedCtx->ecx)
12418 {
12419 /*
12420 * For SYSENTER CS, EIP, ESP MSRs, we set both the flags here so we don't accidentally
12421 * overwrite the changed guest-CPU context value while going to ring-3, see @bufref{8745}.
12422 */
12423 case MSR_IA32_SYSENTER_CS:
12424 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR);
12425 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR);
12426 break;
12427 case MSR_IA32_SYSENTER_EIP:
12428 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR);
12429 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR);
12430 break;
12431 case MSR_IA32_SYSENTER_ESP:
12432 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR);
12433 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR);
12434 break;
12435 case MSR_K8_FS_BASE: /* fall thru */
12436 case MSR_K8_GS_BASE: HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS); break;
12437 case MSR_K6_EFER: /* already handled above */ break;
12438 default:
12439 {
12440 if (hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, pMixedCtx->ecx))
12441 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_AUTO_MSRS);
12442 else if (hmR0VmxIsLazyGuestMsr(pVCpu, pMixedCtx->ecx))
12443 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS);
12444 break;
12445 }
12446 }
12447 }
12448#ifdef VBOX_STRICT
12449 else
12450 {
12451 /* Paranoia. Validate that MSRs in the MSR-bitmaps with write-passthru are not intercepted. */
12452 switch (pMixedCtx->ecx)
12453 {
12454 case MSR_IA32_SYSENTER_CS:
12455 case MSR_IA32_SYSENTER_EIP:
12456 case MSR_IA32_SYSENTER_ESP:
12457 case MSR_K8_FS_BASE:
12458 case MSR_K8_GS_BASE:
12459 {
12460 AssertMsgFailed(("Unexpected WRMSR for an MSR in the VMCS. ecx=%#RX32\n", pMixedCtx->ecx));
12461 HMVMX_RETURN_UNEXPECTED_EXIT();
12462 }
12463
12464 /* Writes to MSRs in auto-load/store area/swapped MSRs, shouldn't cause VM-exits with MSR-bitmaps. */
12465 default:
12466 {
12467 if (hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, pMixedCtx->ecx))
12468 {
12469 /* EFER writes are always intercepted, see hmR0VmxLoadGuestMsrs(). */
12470 if (pMixedCtx->ecx != MSR_K6_EFER)
12471 {
12472 AssertMsgFailed(("Unexpected WRMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n",
12473 pMixedCtx->ecx));
12474 HMVMX_RETURN_UNEXPECTED_EXIT();
12475 }
12476 }
12477
12478 if (hmR0VmxIsLazyGuestMsr(pVCpu, pMixedCtx->ecx))
12479 {
12480 VMXMSREXITREAD enmRead;
12481 VMXMSREXITWRITE enmWrite;
12482 int rc2 = hmR0VmxGetMsrPermission(pVCpu, pMixedCtx->ecx, &enmRead, &enmWrite);
12483 AssertRCReturn(rc2, rc2);
12484 if (enmWrite == VMXMSREXIT_PASSTHRU_WRITE)
12485 {
12486 AssertMsgFailed(("Unexpected WRMSR for passthru, lazy-restore MSR. ecx=%#RX32\n", pMixedCtx->ecx));
12487 HMVMX_RETURN_UNEXPECTED_EXIT();
12488 }
12489 }
12490 break;
12491 }
12492 }
12493 }
12494#endif /* VBOX_STRICT */
12495 }
12496 return rc;
12497}
12498
12499
12500/**
12501 * VM-exit handler for PAUSE (VMX_EXIT_PAUSE). Conditional VM-exit.
12502 */
12503HMVMX_EXIT_DECL hmR0VmxExitPause(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12504{
12505 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12506
12507 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPause);
12508 return VINF_EM_RAW_INTERRUPT;
12509}
12510
12511
12512/**
12513 * VM-exit handler for when the TPR value is lowered below the specified
12514 * threshold (VMX_EXIT_TPR_BELOW_THRESHOLD). Conditional VM-exit.
12515 */
12516HMVMX_EXIT_NSRC_DECL hmR0VmxExitTprBelowThreshold(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12517{
12518 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12519 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW);
12520
12521 /*
12522 * The TPR shadow would've been synced with the APIC TPR in hmR0VmxPostRunGuest(). We'll re-evaluate
12523 * pending interrupts and inject them before the next VM-entry so we can just continue execution here.
12524 */
12525 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTprBelowThreshold);
12526 return VINF_SUCCESS;
12527}
12528
12529
12530/**
12531 * VM-exit handler for control-register accesses (VMX_EXIT_MOV_CRX). Conditional
12532 * VM-exit.
12533 *
12534 * @retval VINF_SUCCESS when guest execution can continue.
12535 * @retval VINF_PGM_CHANGE_MODE when shadow paging mode changed, back to ring-3.
12536 * @retval VINF_PGM_SYNC_CR3 CR3 sync is required, back to ring-3.
12537 * @retval VERR_EM_INTERPRETER when something unexpected happened, fallback to
12538 * interpreter.
12539 */
12540HMVMX_EXIT_DECL hmR0VmxExitMovCRx(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12541{
12542 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12543 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitMovCRx, y2);
12544 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
12545 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12546 AssertRCReturn(rc, rc);
12547
12548 RTGCUINTPTR const uExitQualification = pVmxTransient->uExitQualification;
12549 uint32_t const uAccessType = VMX_EXIT_QUALIFICATION_CRX_ACCESS(uExitQualification);
12550 PVM pVM = pVCpu->CTX_SUFF(pVM);
12551 VBOXSTRICTRC rcStrict;
12552 rc = hmR0VmxSaveGuestRegsForIemExec(pVCpu, pMixedCtx, false /*fMemory*/, true /*fNeedRsp*/);
12553 switch (uAccessType)
12554 {
12555 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_WRITE: /* MOV to CRx */
12556 {
12557 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
12558 AssertRCReturn(rc, rc);
12559
12560 rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, pVmxTransient->cbInstr,
12561 VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification),
12562 VMX_EXIT_QUALIFICATION_CRX_GENREG(uExitQualification));
12563 AssertMsg( rcStrict == VINF_SUCCESS || rcStrict == VINF_IEM_RAISED_XCPT || rcStrict == VINF_PGM_CHANGE_MODE
12564 || rcStrict == VINF_PGM_SYNC_CR3, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12565 switch (VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification))
12566 {
12567 case 0: /* CR0 */
12568 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
12569 Log4(("CRX CR0 write rcStrict=%Rrc CR0=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pMixedCtx->cr0));
12570 break;
12571 case 2: /* CR2 */
12572 /* Nothing to do here, CR2 it's not part of the VMCS. */
12573 break;
12574 case 3: /* CR3 */
12575 Assert(!pVM->hm.s.fNestedPaging || !CPUMIsGuestPagingEnabledEx(pMixedCtx) || pVCpu->hm.s.fUsingDebugLoop);
12576 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR3);
12577 Log4(("CRX CR3 write rcStrict=%Rrc CR3=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pMixedCtx->cr3));
12578 break;
12579 case 4: /* CR4 */
12580 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR4);
12581 Log4(("CRX CR4 write rc=%Rrc CR4=%#RX64 fLoadSaveGuestXcr0=%u\n",
12582 VBOXSTRICTRC_VAL(rcStrict), pMixedCtx->cr4, pVCpu->hm.s.fLoadSaveGuestXcr0));
12583 break;
12584 case 8: /* CR8 */
12585 Assert(!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW));
12586 /* CR8 contains the APIC TPR. Was updated by IEMExecDecodedMovCRxWrite(). */
12587 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
12588 break;
12589 default:
12590 AssertMsgFailed(("Invalid CRx register %#x\n", VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)));
12591 break;
12592 }
12593
12594 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxWrite[VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)]);
12595 break;
12596 }
12597
12598 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_READ: /* MOV from CRx */
12599 {
12600 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
12601 AssertRCReturn(rc, rc);
12602
12603 Assert( !pVM->hm.s.fNestedPaging
12604 || !CPUMIsGuestPagingEnabledEx(pMixedCtx)
12605 || pVCpu->hm.s.fUsingDebugLoop
12606 || VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification) != 3);
12607
12608 /* CR8 reads only cause a VM-exit when the TPR shadow feature isn't enabled. */
12609 Assert( VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification) != 8
12610 || !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW));
12611
12612 rcStrict = IEMExecDecodedMovCRxRead(pVCpu, pVmxTransient->cbInstr,
12613 VMX_EXIT_QUALIFICATION_CRX_GENREG(uExitQualification),
12614 VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification));
12615 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12616 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxRead[VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)]);
12617 Log4(("CRX CR%d Read access rcStrict=%Rrc\n", VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification),
12618 VBOXSTRICTRC_VAL(rcStrict)));
12619 break;
12620 }
12621
12622 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_CLTS: /* CLTS (Clear Task-Switch Flag in CR0) */
12623 {
12624 AssertRCReturn(rc, rc);
12625 rcStrict = IEMExecDecodedClts(pVCpu, pVmxTransient->cbInstr);
12626 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12627 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
12628 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitClts);
12629 Log4(("CRX CLTS rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
12630 break;
12631 }
12632
12633 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_LMSW: /* LMSW (Load Machine-Status Word into CR0) */
12634 {
12635 AssertRCReturn(rc, rc);
12636 rcStrict = IEMExecDecodedLmsw(pVCpu, pVmxTransient->cbInstr,
12637 VMX_EXIT_QUALIFICATION_CRX_LMSW_DATA(uExitQualification));
12638 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_IEM_RAISED_XCPT || rcStrict == VINF_PGM_CHANGE_MODE,
12639 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12640 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
12641 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitLmsw);
12642 Log4(("CRX LMSW rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
12643 break;
12644 }
12645
12646 default:
12647 AssertMsgFailedReturn(("Invalid access-type in Mov CRx VM-exit qualification %#x\n", uAccessType),
12648 VERR_VMX_UNEXPECTED_EXCEPTION);
12649 }
12650
12651 HMCPU_CF_SET(pVCpu, rcStrict != VINF_IEM_RAISED_XCPT ? HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS : HM_CHANGED_ALL_GUEST);
12652 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitMovCRx, y2);
12653 NOREF(pVM);
12654 return rcStrict;
12655}
12656
12657
12658/**
12659 * VM-exit handler for I/O instructions (VMX_EXIT_IO_INSTR). Conditional
12660 * VM-exit.
12661 */
12662HMVMX_EXIT_DECL hmR0VmxExitIoInstr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12663{
12664 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12665 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitIO, y1);
12666
12667 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
12668 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12669 rc |= hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
12670 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx); /* Eflag checks in EMInterpretDisasCurrent(). */
12671 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx); /* CR0 checks & PGM* in EMInterpretDisasCurrent(). */
12672 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx); /* SELM checks in EMInterpretDisasCurrent(). */
12673 /* EFER also required for longmode checks in EMInterpretDisasCurrent(), but it's always up-to-date. */
12674 AssertRCReturn(rc, rc);
12675
12676 /* Refer Intel spec. 27-5. "Exit Qualifications for I/O Instructions" for the format. */
12677 uint32_t uIOPort = VMX_EXIT_QUALIFICATION_IO_PORT(pVmxTransient->uExitQualification);
12678 uint8_t uIOWidth = VMX_EXIT_QUALIFICATION_IO_WIDTH(pVmxTransient->uExitQualification);
12679 bool fIOWrite = ( VMX_EXIT_QUALIFICATION_IO_DIRECTION(pVmxTransient->uExitQualification)
12680 == VMX_EXIT_QUALIFICATION_IO_DIRECTION_OUT);
12681 bool fIOString = VMX_EXIT_QUALIFICATION_IO_IS_STRING(pVmxTransient->uExitQualification);
12682 bool fGstStepping = RT_BOOL(pMixedCtx->eflags.Bits.u1TF);
12683 bool fDbgStepping = pVCpu->hm.s.fSingleInstruction;
12684 AssertReturn(uIOWidth <= 3 && uIOWidth != 2, VERR_VMX_IPE_1);
12685
12686 /* I/O operation lookup arrays. */
12687 static uint32_t const s_aIOSizes[4] = { 1, 2, 0, 4 }; /* Size of the I/O accesses. */
12688 static uint32_t const s_aIOOpAnd[4] = { 0xff, 0xffff, 0, 0xffffffff }; /* AND masks for saving the result (in AL/AX/EAX). */
12689
12690 VBOXSTRICTRC rcStrict;
12691 uint32_t const cbValue = s_aIOSizes[uIOWidth];
12692 uint32_t const cbInstr = pVmxTransient->cbInstr;
12693 bool fUpdateRipAlready = false; /* ugly hack, should be temporary. */
12694 PVM pVM = pVCpu->CTX_SUFF(pVM);
12695 if (fIOString)
12696 {
12697#ifdef VBOX_WITH_2ND_IEM_STEP /* This used to gurus with debian 32-bit guest without NP (on ATA reads).
12698 See @bugref{5752#c158}. Should work now. */
12699 /*
12700 * INS/OUTS - I/O String instruction.
12701 *
12702 * Use instruction-information if available, otherwise fall back on
12703 * interpreting the instruction.
12704 */
12705 Log4(("CS:RIP=%04x:%08RX64 %#06x/%u %c str\n", pMixedCtx->cs.Sel, pMixedCtx->rip, uIOPort, cbValue,
12706 fIOWrite ? 'w' : 'r'));
12707 AssertReturn(pMixedCtx->dx == uIOPort, VERR_VMX_IPE_2);
12708 if (MSR_IA32_VMX_BASIC_INFO_VMCS_INS_OUTS(pVM->hm.s.vmx.Msrs.u64BasicInfo))
12709 {
12710 int rc2 = hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
12711 /** @todo optimize this, IEM should request the additional state if it needs it (GP, PF, ++). */
12712 rc2 |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
12713 AssertRCReturn(rc2, rc2);
12714 AssertReturn(pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize <= 2, VERR_VMX_IPE_3);
12715 AssertCompile(IEMMODE_16BIT == 0 && IEMMODE_32BIT == 1 && IEMMODE_64BIT == 2);
12716 IEMMODE enmAddrMode = (IEMMODE)pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize;
12717 bool fRep = VMX_EXIT_QUALIFICATION_IO_IS_REP(pVmxTransient->uExitQualification);
12718 if (fIOWrite)
12719 {
12720 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, fRep, cbInstr,
12721 pVmxTransient->ExitInstrInfo.StrIo.iSegReg, true /*fIoChecked*/);
12722 }
12723 else
12724 {
12725 /*
12726 * The segment prefix for INS cannot be overridden and is always ES. We can safely assume X86_SREG_ES.
12727 * Hence "iSegReg" field is undefined in the instruction-information field in VT-x for INS.
12728 * See Intel Instruction spec. for "INS".
12729 * See Intel spec. Table 27-8 "Format of the VM-Exit Instruction-Information Field as Used for INS and OUTS".
12730 */
12731 rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, fRep, cbInstr, true /*fIoChecked*/);
12732 }
12733 }
12734 else
12735 {
12736 /** @todo optimize this, IEM should request the additional state if it needs it (GP, PF, ++). */
12737 int rc2 = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
12738 AssertRCReturn(rc2, rc2);
12739 rcStrict = IEMExecOne(pVCpu);
12740 }
12741 /** @todo IEM needs to be setting these flags somehow. */
12742 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP);
12743 fUpdateRipAlready = true;
12744#else
12745 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
12746 rcStrict = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL /* pcbInstr */);
12747 if (RT_SUCCESS(rcStrict))
12748 {
12749 if (fIOWrite)
12750 {
12751 rcStrict = IOMInterpretOUTSEx(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), uIOPort, pDis->fPrefix,
12752 (DISCPUMODE)pDis->uAddrMode, cbValue);
12753 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
12754 }
12755 else
12756 {
12757 rcStrict = IOMInterpretINSEx(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), uIOPort, pDis->fPrefix,
12758 (DISCPUMODE)pDis->uAddrMode, cbValue);
12759 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
12760 }
12761 }
12762 else
12763 {
12764 AssertMsg(rcStrict == VERR_EM_INTERPRETER, ("rcStrict=%Rrc RIP=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict),
12765 pMixedCtx->rip));
12766 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
12767 }
12768#endif
12769 }
12770 else
12771 {
12772 /*
12773 * IN/OUT - I/O instruction.
12774 */
12775 Log4(("CS:RIP=%04x:%08RX64 %#06x/%u %c\n", pMixedCtx->cs.Sel, pMixedCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
12776 uint32_t const uAndVal = s_aIOOpAnd[uIOWidth];
12777 Assert(!VMX_EXIT_QUALIFICATION_IO_IS_REP(pVmxTransient->uExitQualification));
12778 if (fIOWrite)
12779 {
12780 rcStrict = IOMIOPortWrite(pVM, pVCpu, uIOPort, pMixedCtx->eax & uAndVal, cbValue);
12781 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
12782 }
12783 else
12784 {
12785 uint32_t u32Result = 0;
12786 rcStrict = IOMIOPortRead(pVM, pVCpu, uIOPort, &u32Result, cbValue);
12787 if (IOM_SUCCESS(rcStrict))
12788 {
12789 /* Save result of I/O IN instr. in AL/AX/EAX. */
12790 pMixedCtx->eax = (pMixedCtx->eax & ~uAndVal) | (u32Result & uAndVal);
12791 }
12792 else if (rcStrict == VINF_IOM_R3_IOPORT_READ)
12793 HMR0SavePendingIOPortRead(pVCpu, pMixedCtx->rip, pMixedCtx->rip + cbInstr, uIOPort, uAndVal, cbValue);
12794 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
12795 }
12796 }
12797
12798 if (IOM_SUCCESS(rcStrict))
12799 {
12800 if (!fUpdateRipAlready)
12801 {
12802 hmR0VmxAdvanceGuestRipBy(pVCpu, pMixedCtx, cbInstr);
12803 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP);
12804 }
12805
12806 /*
12807 * INS/OUTS with REP prefix updates RFLAGS, can be observed with triple-fault guru while booting Fedora 17 64-bit guest.
12808 * See Intel Instruction reference for REP/REPE/REPZ/REPNE/REPNZ.
12809 */
12810 if (fIOString)
12811 {
12812 /** @todo Single-step for INS/OUTS with REP prefix? */
12813 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RFLAGS);
12814 }
12815 else if ( !fDbgStepping
12816 && fGstStepping)
12817 {
12818 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
12819 }
12820
12821 /*
12822 * If any I/O breakpoints are armed, we need to check if one triggered
12823 * and take appropriate action.
12824 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
12825 */
12826 int rc2 = hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
12827 AssertRCReturn(rc2, rc2);
12828
12829 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
12830 * execution engines about whether hyper BPs and such are pending. */
12831 uint32_t const uDr7 = pMixedCtx->dr[7];
12832 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
12833 && X86_DR7_ANY_RW_IO(uDr7)
12834 && (pMixedCtx->cr4 & X86_CR4_DE))
12835 || DBGFBpIsHwIoArmed(pVM)))
12836 {
12837 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
12838
12839 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
12840 VMMRZCallRing3Disable(pVCpu);
12841 HM_DISABLE_PREEMPT();
12842
12843 bool fIsGuestDbgActive = CPUMR0DebugStateMaybeSaveGuest(pVCpu, true /* fDr6 */);
12844
12845 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pMixedCtx, uIOPort, cbValue);
12846 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
12847 {
12848 /* Raise #DB. */
12849 if (fIsGuestDbgActive)
12850 ASMSetDR6(pMixedCtx->dr[6]);
12851 if (pMixedCtx->dr[7] != uDr7)
12852 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
12853
12854 hmR0VmxSetPendingXcptDB(pVCpu, pMixedCtx);
12855 }
12856 /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
12857 however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
12858 else if ( rcStrict2 != VINF_SUCCESS
12859 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
12860 rcStrict = rcStrict2;
12861 AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
12862
12863 HM_RESTORE_PREEMPT();
12864 VMMRZCallRing3Enable(pVCpu);
12865 }
12866 }
12867
12868#ifdef VBOX_STRICT
12869 if (rcStrict == VINF_IOM_R3_IOPORT_READ)
12870 Assert(!fIOWrite);
12871 else if (rcStrict == VINF_IOM_R3_IOPORT_WRITE || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE)
12872 Assert(fIOWrite);
12873 else
12874 {
12875#if 0 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
12876 * statuses, that the VMM device and some others may return. See
12877 * IOM_SUCCESS() for guidance. */
12878 AssertMsg( RT_FAILURE(rcStrict)
12879 || rcStrict == VINF_SUCCESS
12880 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
12881 || rcStrict == VINF_EM_DBG_BREAKPOINT
12882 || rcStrict == VINF_EM_RAW_GUEST_TRAP
12883 || rcStrict == VINF_EM_RAW_TO_R3
12884 || rcStrict == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12885#endif
12886 }
12887#endif
12888
12889 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitIO, y1);
12890 return rcStrict;
12891}
12892
12893
12894/**
12895 * VM-exit handler for task switches (VMX_EXIT_TASK_SWITCH). Unconditional
12896 * VM-exit.
12897 */
12898HMVMX_EXIT_DECL hmR0VmxExitTaskSwitch(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12899{
12900 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12901
12902 /* Check if this task-switch occurred while delivery an event through the guest IDT. */
12903 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
12904 AssertRCReturn(rc, rc);
12905 if (VMX_EXIT_QUALIFICATION_TASK_SWITCH_TYPE(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_TASK_SWITCH_TYPE_IDT)
12906 {
12907 rc = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
12908 AssertRCReturn(rc, rc);
12909 if (VMX_IDT_VECTORING_INFO_VALID(pVmxTransient->uIdtVectoringInfo))
12910 {
12911 uint32_t uIntType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
12912
12913 uint32_t uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
12914 bool fErrorCodeValid = VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVmxTransient->uIdtVectoringInfo);
12915
12916 /* Save it as a pending event and it'll be converted to a TRPM event on the way out to ring-3. */
12917 Assert(!pVCpu->hm.s.Event.fPending);
12918 pVCpu->hm.s.Event.fPending = true;
12919 pVCpu->hm.s.Event.u64IntInfo = pVmxTransient->uIdtVectoringInfo;
12920 rc = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
12921 AssertRCReturn(rc, rc);
12922 if (fErrorCodeValid)
12923 pVCpu->hm.s.Event.u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
12924 else
12925 pVCpu->hm.s.Event.u32ErrCode = 0;
12926 if ( uIntType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
12927 && uVector == X86_XCPT_PF)
12928 {
12929 pVCpu->hm.s.Event.GCPtrFaultAddress = pMixedCtx->cr2;
12930 }
12931
12932 Log4(("Pending event on TaskSwitch uIntType=%#x uVector=%#x\n", uIntType, uVector));
12933 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
12934 return VINF_EM_RAW_INJECT_TRPM_EVENT;
12935 }
12936 }
12937
12938 /* Fall back to the interpreter to emulate the task-switch. */
12939 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
12940 return VERR_EM_INTERPRETER;
12941}
12942
12943
12944/**
12945 * VM-exit handler for monitor-trap-flag (VMX_EXIT_MTF). Conditional VM-exit.
12946 */
12947HMVMX_EXIT_DECL hmR0VmxExitMtf(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12948{
12949 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12950 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG);
12951 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG;
12952 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
12953 AssertRCReturn(rc, rc);
12954 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMtf);
12955 return VINF_EM_DBG_STEPPED;
12956}
12957
12958
12959/**
12960 * VM-exit handler for APIC access (VMX_EXIT_APIC_ACCESS). Conditional VM-exit.
12961 */
12962HMVMX_EXIT_DECL hmR0VmxExitApicAccess(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12963{
12964 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12965
12966 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitApicAccess);
12967
12968 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
12969 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
12970 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
12971 {
12972 /* For some crazy guest, if an event delivery causes an APIC-access VM-exit, go to instruction emulation. */
12973 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
12974 {
12975 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
12976 return VERR_EM_INTERPRETER;
12977 }
12978 }
12979 else
12980 {
12981 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
12982 rcStrict1 = VINF_SUCCESS;
12983 return rcStrict1;
12984 }
12985
12986#if 0
12987 /** @todo Investigate if IOMMMIOPhysHandler() requires a lot of state, for now
12988 * just sync the whole thing. */
12989 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
12990#else
12991 /* Aggressive state sync. for now. */
12992 int rc = hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
12993 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
12994 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
12995#endif
12996 rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
12997 AssertRCReturn(rc, rc);
12998
12999 /* See Intel spec. 27-6 "Exit Qualifications for APIC-access VM-exits from Linear Accesses & Guest-Phyiscal Addresses" */
13000 uint32_t uAccessType = VMX_EXIT_QUALIFICATION_APIC_ACCESS_TYPE(pVmxTransient->uExitQualification);
13001 VBOXSTRICTRC rcStrict2;
13002 switch (uAccessType)
13003 {
13004 case VMX_APIC_ACCESS_TYPE_LINEAR_WRITE:
13005 case VMX_APIC_ACCESS_TYPE_LINEAR_READ:
13006 {
13007 AssertMsg( !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
13008 || VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification) != XAPIC_OFF_TPR,
13009 ("hmR0VmxExitApicAccess: can't access TPR offset while using TPR shadowing.\n"));
13010
13011 RTGCPHYS GCPhys = pVCpu->hm.s.vmx.u64MsrApicBase; /* Always up-to-date, u64MsrApicBase is not part of the VMCS. */
13012 GCPhys &= PAGE_BASE_GC_MASK;
13013 GCPhys += VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification);
13014 PVM pVM = pVCpu->CTX_SUFF(pVM);
13015 Log4(("ApicAccess uAccessType=%#x GCPhys=%#RGp Off=%#x\n", uAccessType, GCPhys,
13016 VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification)));
13017
13018 rcStrict2 = IOMMMIOPhysHandler(pVM, pVCpu,
13019 uAccessType == VMX_APIC_ACCESS_TYPE_LINEAR_READ ? 0 : X86_TRAP_PF_RW,
13020 CPUMCTX2CORE(pMixedCtx), GCPhys);
13021 Log4(("ApicAccess rcStrict2=%d\n", VBOXSTRICTRC_VAL(rcStrict2)));
13022 if ( rcStrict2 == VINF_SUCCESS
13023 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
13024 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
13025 {
13026 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
13027 | HM_CHANGED_GUEST_RSP
13028 | HM_CHANGED_GUEST_RFLAGS
13029 | HM_CHANGED_VMX_GUEST_APIC_STATE);
13030 rcStrict2 = VINF_SUCCESS;
13031 }
13032 break;
13033 }
13034
13035 default:
13036 Log4(("ApicAccess uAccessType=%#x\n", uAccessType));
13037 rcStrict2 = VINF_EM_RAW_EMULATE_INSTR;
13038 break;
13039 }
13040
13041 if (rcStrict2 != VINF_SUCCESS)
13042 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchApicAccessToR3);
13043 return rcStrict2;
13044}
13045
13046
13047/**
13048 * VM-exit handler for debug-register accesses (VMX_EXIT_MOV_DRX). Conditional
13049 * VM-exit.
13050 */
13051HMVMX_EXIT_DECL hmR0VmxExitMovDRx(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13052{
13053 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
13054
13055 /* We should -not- get this VM-exit if the guest's debug registers were active. */
13056 if (pVmxTransient->fWasGuestDebugStateActive)
13057 {
13058 AssertMsgFailed(("Unexpected MOV DRx exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
13059 HMVMX_RETURN_UNEXPECTED_EXIT();
13060 }
13061
13062 if ( !pVCpu->hm.s.fSingleInstruction
13063 && !pVmxTransient->fWasHyperDebugStateActive)
13064 {
13065 Assert(!DBGFIsStepping(pVCpu));
13066 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_DB));
13067
13068 /* Don't intercept MOV DRx any more. */
13069 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT;
13070 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
13071 AssertRCReturn(rc, rc);
13072
13073 /* We're playing with the host CPU state here, make sure we can't preempt or longjmp. */
13074 VMMRZCallRing3Disable(pVCpu);
13075 HM_DISABLE_PREEMPT();
13076
13077 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
13078 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
13079 Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
13080
13081 HM_RESTORE_PREEMPT();
13082 VMMRZCallRing3Enable(pVCpu);
13083
13084#ifdef VBOX_WITH_STATISTICS
13085 rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
13086 AssertRCReturn(rc, rc);
13087 if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE)
13088 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
13089 else
13090 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
13091#endif
13092 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
13093 return VINF_SUCCESS;
13094 }
13095
13096 /*
13097 * EMInterpretDRx[Write|Read]() calls CPUMIsGuestIn64BitCode() which requires EFER, CS. EFER is always up-to-date.
13098 * Update the segment registers and DR7 from the CPU.
13099 */
13100 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
13101 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
13102 rc |= hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
13103 AssertRCReturn(rc, rc);
13104 Log4(("CS:RIP=%04x:%08RX64\n", pMixedCtx->cs.Sel, pMixedCtx->rip));
13105
13106 PVM pVM = pVCpu->CTX_SUFF(pVM);
13107 if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE)
13108 {
13109 rc = EMInterpretDRxWrite(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx),
13110 VMX_EXIT_QUALIFICATION_DRX_REGISTER(pVmxTransient->uExitQualification),
13111 VMX_EXIT_QUALIFICATION_DRX_GENREG(pVmxTransient->uExitQualification));
13112 if (RT_SUCCESS(rc))
13113 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
13114 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
13115 }
13116 else
13117 {
13118 rc = EMInterpretDRxRead(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx),
13119 VMX_EXIT_QUALIFICATION_DRX_GENREG(pVmxTransient->uExitQualification),
13120 VMX_EXIT_QUALIFICATION_DRX_REGISTER(pVmxTransient->uExitQualification));
13121 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
13122 }
13123
13124 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
13125 if (RT_SUCCESS(rc))
13126 {
13127 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
13128 AssertRCReturn(rc2, rc2);
13129 return VINF_SUCCESS;
13130 }
13131 return rc;
13132}
13133
13134
13135/**
13136 * VM-exit handler for EPT misconfiguration (VMX_EXIT_EPT_MISCONFIG).
13137 * Conditional VM-exit.
13138 */
13139HMVMX_EXIT_DECL hmR0VmxExitEptMisconfig(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13140{
13141 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
13142 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
13143
13144 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
13145 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
13146 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
13147 {
13148 /* If event delivery causes an EPT misconfig (MMIO), go back to instruction emulation as otherwise
13149 injecting the original pending event would most likely cause the same EPT misconfig VM-exit. */
13150 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
13151 {
13152 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
13153 return VERR_EM_INTERPRETER;
13154 }
13155 }
13156 else
13157 {
13158 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
13159 rcStrict1 = VINF_SUCCESS;
13160 return rcStrict1;
13161 }
13162
13163 RTGCPHYS GCPhys = 0;
13164 int rc = VMXReadVmcs64(VMX_VMCS64_EXIT_GUEST_PHYS_ADDR_FULL, &GCPhys);
13165
13166#if 0
13167 rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx); /** @todo Can we do better? */
13168#else
13169 /* Aggressive state sync. for now. */
13170 rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
13171 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
13172 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
13173#endif
13174 AssertRCReturn(rc, rc);
13175
13176 /*
13177 * If we succeed, resume guest execution.
13178 * If we fail in interpreting the instruction because we couldn't get the guest physical address
13179 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
13180 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
13181 * weird case. See @bugref{6043}.
13182 */
13183 PVM pVM = pVCpu->CTX_SUFF(pVM);
13184 VBOXSTRICTRC rcStrict2 = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, PGMMODE_EPT, CPUMCTX2CORE(pMixedCtx), GCPhys, UINT32_MAX);
13185 Log4(("EPT misconfig at %#RGp RIP=%#RX64 rc=%Rrc\n", GCPhys, pMixedCtx->rip, VBOXSTRICTRC_VAL(rcStrict2)));
13186 if ( rcStrict2 == VINF_SUCCESS
13187 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
13188 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
13189 {
13190 /* Successfully handled MMIO operation. */
13191 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
13192 | HM_CHANGED_GUEST_RSP
13193 | HM_CHANGED_GUEST_RFLAGS
13194 | HM_CHANGED_VMX_GUEST_APIC_STATE);
13195 return VINF_SUCCESS;
13196 }
13197 return rcStrict2;
13198}
13199
13200
13201/**
13202 * VM-exit handler for EPT violation (VMX_EXIT_EPT_VIOLATION). Conditional
13203 * VM-exit.
13204 */
13205HMVMX_EXIT_DECL hmR0VmxExitEptViolation(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13206{
13207 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
13208 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
13209
13210 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
13211 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
13212 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
13213 {
13214 /* In the unlikely case that the EPT violation happened as a result of delivering an event, log it. */
13215 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
13216 Log4(("EPT violation with an event pending u64IntInfo=%#RX64\n", pVCpu->hm.s.Event.u64IntInfo));
13217 }
13218 else
13219 {
13220 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
13221 rcStrict1 = VINF_SUCCESS;
13222 return rcStrict1;
13223 }
13224
13225 RTGCPHYS GCPhys = 0;
13226 int rc = VMXReadVmcs64(VMX_VMCS64_EXIT_GUEST_PHYS_ADDR_FULL, &GCPhys);
13227 rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
13228#if 0
13229 rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx); /** @todo Can we do better? */
13230#else
13231 /* Aggressive state sync. for now. */
13232 rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
13233 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
13234 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
13235#endif
13236 AssertRCReturn(rc, rc);
13237
13238 /* Intel spec. Table 27-7 "Exit Qualifications for EPT violations". */
13239 AssertMsg(((pVmxTransient->uExitQualification >> 7) & 3) != 2, ("%#RX64", pVmxTransient->uExitQualification));
13240
13241 RTGCUINT uErrorCode = 0;
13242 if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_INSTR_FETCH)
13243 uErrorCode |= X86_TRAP_PF_ID;
13244 if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_DATA_WRITE)
13245 uErrorCode |= X86_TRAP_PF_RW;
13246 if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_ENTRY_PRESENT)
13247 uErrorCode |= X86_TRAP_PF_P;
13248
13249 TRPMAssertXcptPF(pVCpu, GCPhys, uErrorCode);
13250
13251 Log4(("EPT violation %#x at %#RX64 ErrorCode %#x CS:RIP=%04x:%08RX64\n", pVmxTransient->uExitQualification, GCPhys,
13252 uErrorCode, pMixedCtx->cs.Sel, pMixedCtx->rip));
13253
13254 /* Handle the pagefault trap for the nested shadow table. */
13255 PVM pVM = pVCpu->CTX_SUFF(pVM);
13256 VBOXSTRICTRC rcStrict2 = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, PGMMODE_EPT, uErrorCode, CPUMCTX2CORE(pMixedCtx), GCPhys);
13257 TRPMResetTrap(pVCpu);
13258
13259 /* Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}. */
13260 if ( rcStrict2 == VINF_SUCCESS
13261 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
13262 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
13263 {
13264 /* Successfully synced our nested page tables. */
13265 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf);
13266 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
13267 | HM_CHANGED_GUEST_RSP
13268 | HM_CHANGED_GUEST_RFLAGS);
13269 return VINF_SUCCESS;
13270 }
13271
13272 Log4(("EPT return to ring-3 rcStrict2=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
13273 return rcStrict2;
13274}
13275
13276/** @} */
13277
13278/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-= */
13279/* -=-=-=-=-=-=-=-=-=- VM-exit Exception Handlers -=-=-=-=-=-=-=-=-=-=- */
13280/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-= */
13281
13282/** @name VM-exit exception handlers.
13283 * @{
13284 */
13285
13286/**
13287 * VM-exit exception handler for \#MF (Math Fault: floating point exception).
13288 */
13289static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13290{
13291 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13292 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
13293
13294 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
13295 AssertRCReturn(rc, rc);
13296
13297 if (!(pMixedCtx->cr0 & X86_CR0_NE))
13298 {
13299 /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
13300 rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13, 1, 0 /* uTagSrc */);
13301
13302 /** @todo r=ramshankar: The Intel spec. does -not- specify that this VM-exit
13303 * provides VM-exit instruction length. If this causes problem later,
13304 * disassemble the instruction like it's done on AMD-V. */
13305 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
13306 AssertRCReturn(rc2, rc2);
13307 return rc;
13308 }
13309
13310 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13311 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13312 return rc;
13313}
13314
13315
13316/**
13317 * VM-exit exception handler for \#BP (Breakpoint exception).
13318 */
13319static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13320{
13321 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13322 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
13323
13324 /** @todo Try optimize this by not saving the entire guest state unless
13325 * really needed. */
13326 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
13327 AssertRCReturn(rc, rc);
13328
13329 PVM pVM = pVCpu->CTX_SUFF(pVM);
13330 rc = DBGFRZTrap03Handler(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
13331 if (rc == VINF_EM_RAW_GUEST_TRAP)
13332 {
13333 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13334 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13335 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13336 AssertRCReturn(rc, rc);
13337
13338 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13339 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13340 }
13341
13342 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_EM_DBG_BREAKPOINT);
13343 return rc;
13344}
13345
13346
13347/**
13348 * VM-exit exception handler for \#AC (alignment check exception).
13349 */
13350static int hmR0VmxExitXcptAC(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13351{
13352 RT_NOREF_PV(pMixedCtx);
13353 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13354
13355 /*
13356 * Re-inject it. We'll detect any nesting before getting here.
13357 */
13358 int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13359 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13360 AssertRCReturn(rc, rc);
13361 Assert(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO);
13362
13363 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13364 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13365 return VINF_SUCCESS;
13366}
13367
13368
13369/**
13370 * VM-exit exception handler for \#DB (Debug exception).
13371 */
13372static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13373{
13374 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13375 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
13376 Log6(("XcptDB\n"));
13377
13378 /*
13379 * Get the DR6-like values from the VM-exit qualification and pass it to DBGF
13380 * for processing.
13381 */
13382 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
13383 AssertRCReturn(rc, rc);
13384
13385 /* Refer Intel spec. Table 27-1. "Exit Qualifications for debug exceptions" for the format. */
13386 uint64_t uDR6 = X86_DR6_INIT_VAL;
13387 uDR6 |= ( pVmxTransient->uExitQualification
13388 & (X86_DR6_B0 | X86_DR6_B1 | X86_DR6_B2 | X86_DR6_B3 | X86_DR6_BD | X86_DR6_BS));
13389
13390 rc = DBGFRZTrap01Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pMixedCtx), uDR6, pVCpu->hm.s.fSingleInstruction);
13391 if (rc == VINF_EM_RAW_GUEST_TRAP)
13392 {
13393 /*
13394 * The exception was for the guest. Update DR6, DR7.GD and
13395 * IA32_DEBUGCTL.LBR before forwarding it.
13396 * (See Intel spec. 27.1 "Architectural State before a VM-Exit".)
13397 */
13398 VMMRZCallRing3Disable(pVCpu);
13399 HM_DISABLE_PREEMPT();
13400
13401 pMixedCtx->dr[6] &= ~X86_DR6_B_MASK;
13402 pMixedCtx->dr[6] |= uDR6;
13403 if (CPUMIsGuestDebugStateActive(pVCpu))
13404 ASMSetDR6(pMixedCtx->dr[6]);
13405
13406 HM_RESTORE_PREEMPT();
13407 VMMRZCallRing3Enable(pVCpu);
13408
13409 rc = hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
13410 AssertRCReturn(rc, rc);
13411
13412 /* X86_DR7_GD will be cleared if DRx accesses should be trapped inside the guest. */
13413 pMixedCtx->dr[7] &= ~X86_DR7_GD;
13414
13415 /* Paranoia. */
13416 pMixedCtx->dr[7] &= ~X86_DR7_RAZ_MASK;
13417 pMixedCtx->dr[7] |= X86_DR7_RA1_MASK;
13418
13419 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, (uint32_t)pMixedCtx->dr[7]);
13420 AssertRCReturn(rc, rc);
13421
13422 /*
13423 * Raise #DB in the guest.
13424 *
13425 * It is important to reflect what the VM-exit gave us (preserving the interruption-type) rather than use
13426 * hmR0VmxSetPendingXcptDB() as the #DB could've been raised while executing ICEBP and not the 'normal' #DB.
13427 * Thus it -may- trigger different handling in the CPU (like skipped DPL checks). See @bugref{6398}.
13428 *
13429 * Since ICEBP isn't documented on Intel, see AMD spec. 15.20 "Event Injection".
13430 */
13431 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13432 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13433 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13434 AssertRCReturn(rc, rc);
13435 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13436 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13437 return VINF_SUCCESS;
13438 }
13439
13440 /*
13441 * Not a guest trap, must be a hypervisor related debug event then.
13442 * Update DR6 in case someone is interested in it.
13443 */
13444 AssertMsg(rc == VINF_EM_DBG_STEPPED || rc == VINF_EM_DBG_BREAKPOINT, ("%Rrc\n", rc));
13445 AssertReturn(pVmxTransient->fWasHyperDebugStateActive, VERR_HM_IPE_5);
13446 CPUMSetHyperDR6(pVCpu, uDR6);
13447
13448 return rc;
13449}
13450
13451
13452/**
13453 * VM-exit exception handler for \#NM (Device-not-available exception: floating
13454 * point exception).
13455 */
13456static int hmR0VmxExitXcptNM(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13457{
13458 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13459
13460 /* We require CR0 and EFER. EFER is always up-to-date. */
13461 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
13462 AssertRCReturn(rc, rc);
13463
13464 /* We're playing with the host CPU state here, have to disable preemption or longjmp. */
13465 VMMRZCallRing3Disable(pVCpu);
13466 HM_DISABLE_PREEMPT();
13467
13468 /* If the guest FPU was active at the time of the #NM VM-exit, then it's a guest fault. */
13469 if (pVmxTransient->fWasGuestFPUStateActive)
13470 {
13471 rc = VINF_EM_RAW_GUEST_TRAP;
13472 Assert(CPUMIsGuestFPUStateActive(pVCpu) || HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0));
13473 }
13474 else
13475 {
13476#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
13477 Assert(!pVmxTransient->fWasGuestFPUStateActive || pVCpu->hm.s.fUsingDebugLoop);
13478#endif
13479 rc = CPUMR0Trap07Handler(pVCpu->CTX_SUFF(pVM), pVCpu);
13480 Assert( rc == VINF_EM_RAW_GUEST_TRAP
13481 || ((rc == VINF_SUCCESS || rc == VINF_CPUM_HOST_CR0_MODIFIED) && CPUMIsGuestFPUStateActive(pVCpu)));
13482 if (rc == VINF_CPUM_HOST_CR0_MODIFIED)
13483 HMCPU_CF_SET(pVCpu, HM_CHANGED_HOST_CONTEXT);
13484 }
13485
13486 HM_RESTORE_PREEMPT();
13487 VMMRZCallRing3Enable(pVCpu);
13488
13489 if (rc == VINF_SUCCESS || rc == VINF_CPUM_HOST_CR0_MODIFIED)
13490 {
13491 /* Guest FPU state was activated, we'll want to change CR0 FPU intercepts before the next VM-reentry. */
13492 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
13493 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowNM);
13494 pVCpu->hm.s.fPreloadGuestFpu = true;
13495 }
13496 else
13497 {
13498 /* Forward #NM to the guest. */
13499 Assert(rc == VINF_EM_RAW_GUEST_TRAP);
13500 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13501 AssertRCReturn(rc, rc);
13502 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13503 pVmxTransient->cbInstr, 0 /* error code */, 0 /* GCPtrFaultAddress */);
13504 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
13505 }
13506
13507 return VINF_SUCCESS;
13508}
13509
13510
13511/**
13512 * VM-exit exception handler for \#GP (General-protection exception).
13513 *
13514 * @remarks Requires pVmxTransient->uExitIntInfo to be up-to-date.
13515 */
13516static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13517{
13518 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13519 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
13520
13521 int rc;
13522 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
13523 { /* likely */ }
13524 else
13525 {
13526#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
13527 Assert(pVCpu->hm.s.fUsingDebugLoop);
13528#endif
13529 /* If the guest is not in real-mode or we have unrestricted execution support, reflect #GP to the guest. */
13530 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13531 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13532 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13533 rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
13534 AssertRCReturn(rc, rc);
13535 Log4(("#GP Gst: CS:RIP %04x:%08RX64 ErrorCode=%#x CR0=%#RX64 CPL=%u TR=%#04x\n", pMixedCtx->cs.Sel, pMixedCtx->rip,
13536 pVmxTransient->uExitIntErrorCode, pMixedCtx->cr0, CPUMGetGuestCPL(pVCpu), pMixedCtx->tr.Sel));
13537 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13538 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13539 return rc;
13540 }
13541
13542 Assert(CPUMIsGuestInRealModeEx(pMixedCtx));
13543 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest);
13544
13545 /* EMInterpretDisasCurrent() requires a lot of the state, save the entire state. */
13546 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
13547 AssertRCReturn(rc, rc);
13548
13549 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
13550 uint32_t cbOp = 0;
13551 PVM pVM = pVCpu->CTX_SUFF(pVM);
13552 bool fDbgStepping = pVCpu->hm.s.fSingleInstruction;
13553 rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
13554 if (RT_SUCCESS(rc))
13555 {
13556 rc = VINF_SUCCESS;
13557 Assert(cbOp == pDis->cbInstr);
13558 Log4(("#GP Disas OpCode=%u CS:EIP %04x:%04RX64\n", pDis->pCurInstr->uOpcode, pMixedCtx->cs.Sel, pMixedCtx->rip));
13559 switch (pDis->pCurInstr->uOpcode)
13560 {
13561 case OP_CLI:
13562 {
13563 pMixedCtx->eflags.Bits.u1IF = 0;
13564 pMixedCtx->eflags.Bits.u1RF = 0;
13565 pMixedCtx->rip += pDis->cbInstr;
13566 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13567 if ( !fDbgStepping
13568 && pMixedCtx->eflags.Bits.u1TF)
13569 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
13570 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCli);
13571 break;
13572 }
13573
13574 case OP_STI:
13575 {
13576 bool fOldIF = pMixedCtx->eflags.Bits.u1IF;
13577 pMixedCtx->eflags.Bits.u1IF = 1;
13578 pMixedCtx->eflags.Bits.u1RF = 0;
13579 pMixedCtx->rip += pDis->cbInstr;
13580 if (!fOldIF)
13581 {
13582 EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
13583 Assert(VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS));
13584 }
13585 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13586 if ( !fDbgStepping
13587 && pMixedCtx->eflags.Bits.u1TF)
13588 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
13589 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitSti);
13590 break;
13591 }
13592
13593 case OP_HLT:
13594 {
13595 rc = VINF_EM_HALT;
13596 pMixedCtx->rip += pDis->cbInstr;
13597 pMixedCtx->eflags.Bits.u1RF = 0;
13598 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13599 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
13600 break;
13601 }
13602
13603 case OP_POPF:
13604 {
13605 Log4(("POPF CS:EIP %04x:%04RX64\n", pMixedCtx->cs.Sel, pMixedCtx->rip));
13606 uint32_t cbParm;
13607 uint32_t uMask;
13608 bool fGstStepping = RT_BOOL(pMixedCtx->eflags.Bits.u1TF);
13609 if (pDis->fPrefix & DISPREFIX_OPSIZE)
13610 {
13611 cbParm = 4;
13612 uMask = 0xffffffff;
13613 }
13614 else
13615 {
13616 cbParm = 2;
13617 uMask = 0xffff;
13618 }
13619
13620 /* Get the stack pointer & pop the contents of the stack onto Eflags. */
13621 RTGCPTR GCPtrStack = 0;
13622 X86EFLAGS Eflags;
13623 Eflags.u32 = 0;
13624 rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), pMixedCtx->esp & uMask, SELMTOFLAT_FLAGS_CPL0,
13625 &GCPtrStack);
13626 if (RT_SUCCESS(rc))
13627 {
13628 Assert(sizeof(Eflags.u32) >= cbParm);
13629 rc = VBOXSTRICTRC_TODO(PGMPhysRead(pVM, (RTGCPHYS)GCPtrStack, &Eflags.u32, cbParm, PGMACCESSORIGIN_HM));
13630 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc)); /** @todo allow strict return codes here */
13631 }
13632 if (RT_FAILURE(rc))
13633 {
13634 rc = VERR_EM_INTERPRETER;
13635 break;
13636 }
13637 Log4(("POPF %#x -> %#RX64 mask=%#x RIP=%#RX64\n", Eflags.u, pMixedCtx->rsp, uMask, pMixedCtx->rip));
13638 pMixedCtx->eflags.u32 = (pMixedCtx->eflags.u32 & ~((X86_EFL_POPF_BITS & uMask) | X86_EFL_RF))
13639 | (Eflags.u32 & X86_EFL_POPF_BITS & uMask);
13640 pMixedCtx->esp += cbParm;
13641 pMixedCtx->esp &= uMask;
13642 pMixedCtx->rip += pDis->cbInstr;
13643 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
13644 | HM_CHANGED_GUEST_RSP
13645 | HM_CHANGED_GUEST_RFLAGS);
13646 /* Generate a pending-debug exception when the guest stepping over POPF regardless of how
13647 POPF restores EFLAGS.TF. */
13648 if ( !fDbgStepping
13649 && fGstStepping)
13650 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
13651 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPopf);
13652 break;
13653 }
13654
13655 case OP_PUSHF:
13656 {
13657 uint32_t cbParm;
13658 uint32_t uMask;
13659 if (pDis->fPrefix & DISPREFIX_OPSIZE)
13660 {
13661 cbParm = 4;
13662 uMask = 0xffffffff;
13663 }
13664 else
13665 {
13666 cbParm = 2;
13667 uMask = 0xffff;
13668 }
13669
13670 /* Get the stack pointer & push the contents of eflags onto the stack. */
13671 RTGCPTR GCPtrStack = 0;
13672 rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), (pMixedCtx->esp - cbParm) & uMask,
13673 SELMTOFLAT_FLAGS_CPL0, &GCPtrStack);
13674 if (RT_FAILURE(rc))
13675 {
13676 rc = VERR_EM_INTERPRETER;
13677 break;
13678 }
13679 X86EFLAGS Eflags = pMixedCtx->eflags;
13680 /* The RF & VM bits are cleared on image stored on stack; see Intel Instruction reference for PUSHF. */
13681 Eflags.Bits.u1RF = 0;
13682 Eflags.Bits.u1VM = 0;
13683
13684 rc = VBOXSTRICTRC_TODO(PGMPhysWrite(pVM, (RTGCPHYS)GCPtrStack, &Eflags.u, cbParm, PGMACCESSORIGIN_HM));
13685 if (RT_UNLIKELY(rc != VINF_SUCCESS))
13686 {
13687 AssertMsgFailed(("%Rrc\n", rc)); /** @todo allow strict return codes here */
13688 rc = VERR_EM_INTERPRETER;
13689 break;
13690 }
13691 Log4(("PUSHF %#x -> %#RGv\n", Eflags.u, GCPtrStack));
13692 pMixedCtx->esp -= cbParm;
13693 pMixedCtx->esp &= uMask;
13694 pMixedCtx->rip += pDis->cbInstr;
13695 pMixedCtx->eflags.Bits.u1RF = 0;
13696 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
13697 | HM_CHANGED_GUEST_RSP
13698 | HM_CHANGED_GUEST_RFLAGS);
13699 if ( !fDbgStepping
13700 && pMixedCtx->eflags.Bits.u1TF)
13701 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
13702 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPushf);
13703 break;
13704 }
13705
13706 case OP_IRET:
13707 {
13708 /** @todo Handle 32-bit operand sizes and check stack limits. See Intel
13709 * instruction reference. */
13710 RTGCPTR GCPtrStack = 0;
13711 uint32_t uMask = 0xffff;
13712 bool fGstStepping = RT_BOOL(pMixedCtx->eflags.Bits.u1TF);
13713 uint16_t aIretFrame[3];
13714 if (pDis->fPrefix & (DISPREFIX_OPSIZE | DISPREFIX_ADDRSIZE))
13715 {
13716 rc = VERR_EM_INTERPRETER;
13717 break;
13718 }
13719 rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), pMixedCtx->esp & uMask, SELMTOFLAT_FLAGS_CPL0,
13720 &GCPtrStack);
13721 if (RT_SUCCESS(rc))
13722 {
13723 rc = VBOXSTRICTRC_TODO(PGMPhysRead(pVM, (RTGCPHYS)GCPtrStack, &aIretFrame[0], sizeof(aIretFrame),
13724 PGMACCESSORIGIN_HM));
13725 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc)); /** @todo allow strict return codes here */
13726 }
13727 if (RT_FAILURE(rc))
13728 {
13729 rc = VERR_EM_INTERPRETER;
13730 break;
13731 }
13732 pMixedCtx->eip = 0;
13733 pMixedCtx->ip = aIretFrame[0];
13734 pMixedCtx->cs.Sel = aIretFrame[1];
13735 pMixedCtx->cs.ValidSel = aIretFrame[1];
13736 pMixedCtx->cs.u64Base = (uint64_t)pMixedCtx->cs.Sel << 4;
13737 pMixedCtx->eflags.u32 = (pMixedCtx->eflags.u32 & ((UINT32_C(0xffff0000) | X86_EFL_1) & ~X86_EFL_RF))
13738 | (aIretFrame[2] & X86_EFL_POPF_BITS & uMask);
13739 pMixedCtx->sp += sizeof(aIretFrame);
13740 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
13741 | HM_CHANGED_GUEST_SEGMENT_REGS
13742 | HM_CHANGED_GUEST_RSP
13743 | HM_CHANGED_GUEST_RFLAGS);
13744 /* Generate a pending-debug exception when stepping over IRET regardless of how IRET modifies EFLAGS.TF. */
13745 if ( !fDbgStepping
13746 && fGstStepping)
13747 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
13748 Log4(("IRET %#RX32 to %04x:%04x\n", GCPtrStack, pMixedCtx->cs.Sel, pMixedCtx->ip));
13749 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIret);
13750 break;
13751 }
13752
13753 case OP_INT:
13754 {
13755 uint16_t uVector = pDis->Param1.uValue & 0xff;
13756 hmR0VmxSetPendingIntN(pVCpu, pMixedCtx, uVector, pDis->cbInstr);
13757 /* INT clears EFLAGS.TF, we must not set any pending debug exceptions here. */
13758 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInt);
13759 break;
13760 }
13761
13762 case OP_INTO:
13763 {
13764 if (pMixedCtx->eflags.Bits.u1OF)
13765 {
13766 hmR0VmxSetPendingXcptOF(pVCpu, pMixedCtx, pDis->cbInstr);
13767 /* INTO clears EFLAGS.TF, we must not set any pending debug exceptions here. */
13768 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInt);
13769 }
13770 else
13771 {
13772 pMixedCtx->eflags.Bits.u1RF = 0;
13773 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RFLAGS);
13774 }
13775 break;
13776 }
13777
13778 default:
13779 {
13780 pMixedCtx->eflags.Bits.u1RF = 0; /* This is correct most of the time... */
13781 VBOXSTRICTRC rc2 = EMInterpretInstructionDisasState(pVCpu, pDis, CPUMCTX2CORE(pMixedCtx), 0 /* pvFault */,
13782 EMCODETYPE_SUPERVISOR);
13783 rc = VBOXSTRICTRC_VAL(rc2);
13784 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
13785 /** @todo We have to set pending-debug exceptions here when the guest is
13786 * single-stepping depending on the instruction that was interpreted. */
13787 Log4(("#GP rc=%Rrc\n", rc));
13788 break;
13789 }
13790 }
13791 }
13792 else
13793 rc = VERR_EM_INTERPRETER;
13794
13795 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_EM_HALT,
13796 ("#GP Unexpected rc=%Rrc\n", rc));
13797 return rc;
13798}
13799
13800
13801/**
13802 * VM-exit exception handler wrapper for generic exceptions. Simply re-injects
13803 * the exception reported in the VMX transient structure back into the VM.
13804 *
13805 * @remarks Requires uExitIntInfo in the VMX transient structure to be
13806 * up-to-date.
13807 */
13808static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13809{
13810 RT_NOREF_PV(pMixedCtx);
13811 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13812#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
13813 AssertMsg(pVCpu->hm.s.fUsingDebugLoop || pVCpu->hm.s.vmx.RealMode.fRealOnV86Active,
13814 ("uVector=%#04x u32XcptBitmap=%#010RX32\n",
13815 VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVmxTransient->uExitIntInfo), pVCpu->hm.s.vmx.u32XcptBitmap));
13816#endif
13817
13818 /* Re-inject the exception into the guest. This cannot be a double-fault condition which would have been handled in
13819 hmR0VmxCheckExitDueToEventDelivery(). */
13820 int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13821 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13822 AssertRCReturn(rc, rc);
13823 Assert(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO);
13824
13825#ifdef DEBUG_ramshankar
13826 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
13827 uint8_t uVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVmxTransient->uExitIntInfo);
13828 Log(("hmR0VmxExitXcptGeneric: Reinjecting Xcpt. uVector=%#x cs:rip=%#04x:%#RX64\n", uVector, pCtx->cs.Sel, pCtx->rip));
13829#endif
13830
13831 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13832 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13833 return VINF_SUCCESS;
13834}
13835
13836
13837/**
13838 * VM-exit exception handler for \#PF (Page-fault exception).
13839 */
13840static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13841{
13842 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13843 PVM pVM = pVCpu->CTX_SUFF(pVM);
13844 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
13845 rc |= hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13846 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13847 AssertRCReturn(rc, rc);
13848
13849 if (!pVM->hm.s.fNestedPaging)
13850 { /* likely */ }
13851 else
13852 {
13853#if !defined(HMVMX_ALWAYS_TRAP_ALL_XCPTS) && !defined(HMVMX_ALWAYS_TRAP_PF)
13854 Assert(pVCpu->hm.s.fUsingDebugLoop);
13855#endif
13856 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
13857 if (RT_LIKELY(!pVmxTransient->fVectoringDoublePF))
13858 {
13859 pMixedCtx->cr2 = pVmxTransient->uExitQualification; /* Update here in case we go back to ring-3 before injection. */
13860 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13861 0 /* cbInstr */, pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQualification);
13862 }
13863 else
13864 {
13865 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
13866 hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
13867 Log4(("Pending #DF due to vectoring #PF. NP\n"));
13868 }
13869 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
13870 return rc;
13871 }
13872
13873 /* If it's a vectoring #PF, emulate injecting the original event injection as PGMTrap0eHandler() is incapable
13874 of differentiating between instruction emulation and event injection that caused a #PF. See @bugref{6607}. */
13875 if (pVmxTransient->fVectoringPF)
13876 {
13877 Assert(pVCpu->hm.s.Event.fPending);
13878 return VINF_EM_RAW_INJECT_TRPM_EVENT;
13879 }
13880
13881 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
13882 AssertRCReturn(rc, rc);
13883
13884 Log4(("#PF: cr2=%#RX64 cs:rip=%#04x:%#RX64 uErrCode %#RX32 cr3=%#RX64\n", pVmxTransient->uExitQualification,
13885 pMixedCtx->cs.Sel, pMixedCtx->rip, pVmxTransient->uExitIntErrorCode, pMixedCtx->cr3));
13886
13887 TRPMAssertXcptPF(pVCpu, pVmxTransient->uExitQualification, (RTGCUINT)pVmxTransient->uExitIntErrorCode);
13888 rc = PGMTrap0eHandler(pVCpu, pVmxTransient->uExitIntErrorCode, CPUMCTX2CORE(pMixedCtx),
13889 (RTGCPTR)pVmxTransient->uExitQualification);
13890
13891 Log4(("#PF: rc=%Rrc\n", rc));
13892 if (rc == VINF_SUCCESS)
13893 {
13894#if 0
13895 /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
13896 /** @todo this isn't quite right, what if guest does lgdt with some MMIO
13897 * memory? We don't update the whole state here... */
13898 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
13899 | HM_CHANGED_GUEST_RSP
13900 | HM_CHANGED_GUEST_RFLAGS
13901 | HM_CHANGED_VMX_GUEST_APIC_STATE);
13902#else
13903 /*
13904 * This is typically a shadow page table sync or a MMIO instruction. But we may have
13905 * emulated something like LTR or a far jump. Any part of the CPU context may have changed.
13906 */
13907 /** @todo take advantage of CPUM changed flags instead of brute forcing. */
13908 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
13909#endif
13910 TRPMResetTrap(pVCpu);
13911 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
13912 return rc;
13913 }
13914
13915 if (rc == VINF_EM_RAW_GUEST_TRAP)
13916 {
13917 if (!pVmxTransient->fVectoringDoublePF)
13918 {
13919 /* It's a guest page fault and needs to be reflected to the guest. */
13920 uint32_t uGstErrorCode = TRPMGetErrorCode(pVCpu);
13921 TRPMResetTrap(pVCpu);
13922 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory #PF. */
13923 pMixedCtx->cr2 = pVmxTransient->uExitQualification; /* Update here in case we go back to ring-3 before injection. */
13924 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13925 0 /* cbInstr */, uGstErrorCode, pVmxTransient->uExitQualification);
13926 }
13927 else
13928 {
13929 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
13930 TRPMResetTrap(pVCpu);
13931 pVCpu->hm.s.Event.fPending = false; /* Clear pending #PF to replace it with #DF. */
13932 hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
13933 Log4(("#PF: Pending #DF due to vectoring #PF\n"));
13934 }
13935
13936 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
13937 return VINF_SUCCESS;
13938 }
13939
13940 TRPMResetTrap(pVCpu);
13941 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
13942 return rc;
13943}
13944
13945/** @} */
13946
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette