VirtualBox

source: vbox/trunk/src/libs/openssl-3.3.2/crypto/modes/asm/ghash-riscv64-zvkb-zvbc.pl

Last change on this file was 108206, checked in by vboxsync, 3 months ago

openssl-3.3.2: Exported all files to OSE and removed .scm-settings ​bugref:10757

  • Property svn:eol-style set to LF
  • Property svn:executable set to *
  • Property svn:keywords set to Author Date Id Revision
File size: 12.9 KB
Line 
1#! /usr/bin/env perl
2# This file is dual-licensed, meaning that you can use it under your
3# choice of either of the following two licenses:
4#
5# Copyright 2023 The OpenSSL Project Authors. All Rights Reserved.
6#
7# Licensed under the Apache License 2.0 (the "License"). You can obtain
8# a copy in the file LICENSE in the source distribution or at
9# https://www.openssl.org/source/license.html
10#
11# or
12#
13# Copyright (c) 2023, Christoph Müllner <[email protected]>
14# All rights reserved.
15#
16# Redistribution and use in source and binary forms, with or without
17# modification, are permitted provided that the following conditions
18# are met:
19# 1. Redistributions of source code must retain the above copyright
20# notice, this list of conditions and the following disclaimer.
21# 2. Redistributions in binary form must reproduce the above copyright
22# notice, this list of conditions and the following disclaimer in the
23# documentation and/or other materials provided with the distribution.
24#
25# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36
37# - RV64I
38# - RISC-V Vector ('V') with VLEN >= 128
39# - RISC-V Vector Cryptography Bit-manipulation extension ('Zvkb')
40# - RISC-V Vector Carryless Multiplication extension ('Zvbc')
41
42use strict;
43use warnings;
44
45use FindBin qw($Bin);
46use lib "$Bin";
47use lib "$Bin/../../perlasm";
48use riscv;
49
50# $output is the last argument if it looks like a file (it has an extension)
51# $flavour is the first argument if it doesn't look like a file
52my $output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef;
53my $flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef;
54
55$output and open STDOUT,">$output";
56
57my $code=<<___;
58.text
59___
60
61################################################################################
62# void gcm_init_rv64i_zvkb_zvbc(u128 Htable[16], const u64 H[2]);
63#
64# input: H: 128-bit H - secret parameter E(K, 0^128)
65# output: Htable: Preprocessed key data for gcm_gmult_rv64i_zvkb_zvbc and
66# gcm_ghash_rv64i_zvkb_zvbc
67{
68my ($Htable,$H,$TMP0,$TMP1,$TMP2) = ("a0","a1","t0","t1","t2");
69my ($V0,$V1,$V2,$V3,$V4,$V5,$V6) = ("v0","v1","v2","v3","v4","v5","v6");
70
71$code .= <<___;
72.p2align 3
73.globl gcm_init_rv64i_zvkb_zvbc
74.type gcm_init_rv64i_zvkb_zvbc,\@function
75gcm_init_rv64i_zvkb_zvbc:
76 # Load/store data in reverse order.
77 # This is needed as a part of endianness swap.
78 add $H, $H, 8
79 li $TMP0, -8
80 li $TMP1, 63
81 la $TMP2, Lpolymod
82
83 @{[vsetivli__x0_2_e64_m1_tu_mu]} # vsetivli x0, 2, e64, m1, tu, mu
84
85 @{[vlse64_v $V1, $H, $TMP0]} # vlse64.v v1, (a1), t0
86 @{[vle64_v $V2, $TMP2]} # vle64.v v2, (t2)
87
88 # Shift one left and get the carry bits.
89 @{[vsrl_vx $V3, $V1, $TMP1]} # vsrl.vx v3, v1, t1
90 @{[vsll_vi $V1, $V1, 1]} # vsll.vi v1, v1, 1
91
92 # Use the fact that the polynomial degree is no more than 128,
93 # i.e. only the LSB of the upper half could be set.
94 # Thanks to this we don't need to do the full reduction here.
95 # Instead simply subtract the reduction polynomial.
96 # This idea was taken from x86 ghash implementation in OpenSSL.
97 @{[vslideup_vi $V4, $V3, 1]} # vslideup.vi v4, v3, 1
98 @{[vslidedown_vi $V3, $V3, 1]} # vslidedown.vi v3, v3, 1
99
100 @{[vmv_v_i $V0, 2]} # vmv.v.i v0, 2
101 @{[vor_vv_v0t $V1, $V1, $V4]} # vor.vv v1, v1, v4, v0.t
102
103 # Need to set the mask to 3, if the carry bit is set.
104 @{[vmv_v_v $V0, $V3]} # vmv.v.v v0, v3
105 @{[vmv_v_i $V3, 0]} # vmv.v.i v3, 0
106 @{[vmerge_vim $V3, $V3, 3]} # vmerge.vim v3, v3, 3, v0
107 @{[vmv_v_v $V0, $V3]} # vmv.v.v v0, v3
108
109 @{[vxor_vv_v0t $V1, $V1, $V2]} # vxor.vv v1, v1, v2, v0.t
110
111 @{[vse64_v $V1, $Htable]} # vse64.v v1, (a0)
112 ret
113.size gcm_init_rv64i_zvkb_zvbc,.-gcm_init_rv64i_zvkb_zvbc
114___
115}
116
117################################################################################
118# void gcm_gmult_rv64i_zvkb_zvbc(u64 Xi[2], const u128 Htable[16]);
119#
120# input: Xi: current hash value
121# Htable: preprocessed H
122# output: Xi: next hash value Xi = (Xi * H mod f)
123{
124my ($Xi,$Htable,$TMP0,$TMP1,$TMP2,$TMP3,$TMP4) = ("a0","a1","t0","t1","t2","t3","t4");
125my ($V0,$V1,$V2,$V3,$V4,$V5,$V6) = ("v0","v1","v2","v3","v4","v5","v6");
126
127$code .= <<___;
128.text
129.p2align 3
130.globl gcm_gmult_rv64i_zvkb_zvbc
131.type gcm_gmult_rv64i_zvkb_zvbc,\@function
132gcm_gmult_rv64i_zvkb_zvbc:
133 ld $TMP0, ($Htable)
134 ld $TMP1, 8($Htable)
135 li $TMP2, 63
136 la $TMP3, Lpolymod
137 ld $TMP3, 8($TMP3)
138
139 # Load/store data in reverse order.
140 # This is needed as a part of endianness swap.
141 add $Xi, $Xi, 8
142 li $TMP4, -8
143
144 @{[vsetivli__x0_2_e64_m1_tu_mu]} # vsetivli x0, 2, e64, m1, tu, mu
145
146 @{[vlse64_v $V5, $Xi, $TMP4]} # vlse64.v v5, (a0), t4
147 @{[vrev8_v $V5, $V5]} # vrev8.v v5, v5
148
149 # Multiplication
150
151 # Do two 64x64 multiplications in one go to save some time
152 # and simplify things.
153
154 # A = a1a0 (t1, t0)
155 # B = b1b0 (v5)
156 # C = c1c0 (256 bit)
157 # c1 = a1b1 + (a0b1)h + (a1b0)h
158 # c0 = a0b0 + (a0b1)l + (a1b0)h
159
160 # v1 = (a0b1)l,(a0b0)l
161 @{[vclmul_vx $V1, $V5, $TMP0]} # vclmul.vx v1, v5, t0
162 # v3 = (a0b1)h,(a0b0)h
163 @{[vclmulh_vx $V3, $V5, $TMP0]} # vclmulh.vx v3, v5, t0
164
165 # v4 = (a1b1)l,(a1b0)l
166 @{[vclmul_vx $V4, $V5, $TMP1]} # vclmul.vx v4, v5, t1
167 # v2 = (a1b1)h,(a1b0)h
168 @{[vclmulh_vx $V2, $V5, $TMP1]} # vclmulh.vx v2, v5, t1
169
170 # Is there a better way to do this?
171 # Would need to swap the order of elements within a vector register.
172 @{[vslideup_vi $V5, $V3, 1]} # vslideup.vi v5, v3, 1
173 @{[vslideup_vi $V6, $V4, 1]} # vslideup.vi v6, v4, 1
174 @{[vslidedown_vi $V3, $V3, 1]} # vslidedown.vi v3, v3, 1
175 @{[vslidedown_vi $V4, $V4, 1]} # vslidedown.vi v4, v4, 1
176
177 @{[vmv_v_i $V0, 1]} # vmv.v.i v0, 1
178 # v2 += (a0b1)h
179 @{[vxor_vv_v0t $V2, $V2, $V3]} # vxor.vv v2, v2, v3, v0.t
180 # v2 += (a1b1)l
181 @{[vxor_vv_v0t $V2, $V2, $V4]} # vxor.vv v2, v2, v4, v0.t
182
183 @{[vmv_v_i $V0, 2]} # vmv.v.i v0, 2
184 # v1 += (a0b0)h,0
185 @{[vxor_vv_v0t $V1, $V1, $V5]} # vxor.vv v1, v1, v5, v0.t
186 # v1 += (a1b0)l,0
187 @{[vxor_vv_v0t $V1, $V1, $V6]} # vxor.vv v1, v1, v6, v0.t
188
189 # Now the 256bit product should be stored in (v2,v1)
190 # v1 = (a0b1)l + (a0b0)h + (a1b0)l, (a0b0)l
191 # v2 = (a1b1)h, (a1b0)h + (a0b1)h + (a1b1)l
192
193 # Reduction
194 # Let C := A*B = c3,c2,c1,c0 = v2[1],v2[0],v1[1],v1[0]
195 # This is a slight variation of the Gueron's Montgomery reduction.
196 # The difference being the order of some operations has been changed,
197 # to make a better use of vclmul(h) instructions.
198
199 # First step:
200 # c1 += (c0 * P)l
201 # vmv.v.i v0, 2
202 @{[vslideup_vi_v0t $V3, $V1, 1]} # vslideup.vi v3, v1, 1, v0.t
203 @{[vclmul_vx_v0t $V3, $V3, $TMP3]} # vclmul.vx v3, v3, t3, v0.t
204 @{[vxor_vv_v0t $V1, $V1, $V3]} # vxor.vv v1, v1, v3, v0.t
205
206 # Second step:
207 # D = d1,d0 is final result
208 # We want:
209 # m1 = c1 + (c1 * P)h
210 # m0 = (c1 * P)l + (c0 * P)h + c0
211 # d1 = c3 + m1
212 # d0 = c2 + m0
213
214 #v3 = (c1 * P)l, 0
215 @{[vclmul_vx_v0t $V3, $V1, $TMP3]} # vclmul.vx v3, v1, t3, v0.t
216 #v4 = (c1 * P)h, (c0 * P)h
217 @{[vclmulh_vx $V4, $V1, $TMP3]} # vclmulh.vx v4, v1, t3
218
219 @{[vmv_v_i $V0, 1]} # vmv.v.i v0, 1
220 @{[vslidedown_vi $V3, $V3, 1]} # vslidedown.vi v3, v3, 1
221
222 @{[vxor_vv $V1, $V1, $V4]} # vxor.vv v1, v1, v4
223 @{[vxor_vv_v0t $V1, $V1, $V3]} # vxor.vv v1, v1, v3, v0.t
224
225 # XOR in the upper upper part of the product
226 @{[vxor_vv $V2, $V2, $V1]} # vxor.vv v2, v2, v1
227
228 @{[vrev8_v $V2, $V2]} # vrev8.v v2, v2
229 @{[vsse64_v $V2, $Xi, $TMP4]} # vsse64.v v2, (a0), t4
230 ret
231.size gcm_gmult_rv64i_zvkb_zvbc,.-gcm_gmult_rv64i_zvkb_zvbc
232___
233}
234
235################################################################################
236# void gcm_ghash_rv64i_zvkb_zvbc(u64 Xi[2], const u128 Htable[16],
237# const u8 *inp, size_t len);
238#
239# input: Xi: current hash value
240# Htable: preprocessed H
241# inp: pointer to input data
242# len: length of input data in bytes (multiple of block size)
243# output: Xi: Xi+1 (next hash value Xi)
244{
245my ($Xi,$Htable,$inp,$len,$TMP0,$TMP1,$TMP2,$TMP3,$M8,$TMP5,$TMP6) = ("a0","a1","a2","a3","t0","t1","t2","t3","t4","t5","t6");
246my ($V0,$V1,$V2,$V3,$V4,$V5,$V6,$Vinp) = ("v0","v1","v2","v3","v4","v5","v6","v7");
247
248$code .= <<___;
249.p2align 3
250.globl gcm_ghash_rv64i_zvkb_zvbc
251.type gcm_ghash_rv64i_zvkb_zvbc,\@function
252gcm_ghash_rv64i_zvkb_zvbc:
253 ld $TMP0, ($Htable)
254 ld $TMP1, 8($Htable)
255 li $TMP2, 63
256 la $TMP3, Lpolymod
257 ld $TMP3, 8($TMP3)
258
259 # Load/store data in reverse order.
260 # This is needed as a part of endianness swap.
261 add $Xi, $Xi, 8
262 add $inp, $inp, 8
263 li $M8, -8
264
265 @{[vsetivli__x0_2_e64_m1_tu_mu]} # vsetivli x0, 2, e64, m1, tu, mu
266
267 @{[vlse64_v $V5, $Xi, $M8]} # vlse64.v v5, (a0), t4
268
269Lstep:
270 # Read input data
271 @{[vlse64_v $Vinp, $inp, $M8]} # vle64.v v0, (a2)
272 add $inp, $inp, 16
273 add $len, $len, -16
274 # XOR them into Xi
275 @{[vxor_vv $V5, $V5, $Vinp]} # vxor.vv v0, v0, v1
276
277 @{[vrev8_v $V5, $V5]} # vrev8.v v5, v5
278
279 # Multiplication
280
281 # Do two 64x64 multiplications in one go to save some time
282 # and simplify things.
283
284 # A = a1a0 (t1, t0)
285 # B = b1b0 (v5)
286 # C = c1c0 (256 bit)
287 # c1 = a1b1 + (a0b1)h + (a1b0)h
288 # c0 = a0b0 + (a0b1)l + (a1b0)h
289
290 # v1 = (a0b1)l,(a0b0)l
291 @{[vclmul_vx $V1, $V5, $TMP0]} # vclmul.vx v1, v5, t0
292 # v3 = (a0b1)h,(a0b0)h
293 @{[vclmulh_vx $V3, $V5, $TMP0]} # vclmulh.vx v3, v5, t0
294
295 # v4 = (a1b1)l,(a1b0)l
296 @{[vclmul_vx $V4, $V5, $TMP1]} # vclmul.vx v4, v5, t1
297 # v2 = (a1b1)h,(a1b0)h
298 @{[vclmulh_vx $V2, $V5, $TMP1]} # vclmulh.vx v2, v5, t1
299
300 # Is there a better way to do this?
301 # Would need to swap the order of elements within a vector register.
302 @{[vslideup_vi $V5, $V3, 1]} # vslideup.vi v5, v3, 1
303 @{[vslideup_vi $V6, $V4, 1]} # vslideup.vi v6, v4, 1
304 @{[vslidedown_vi $V3, $V3, 1]} # vslidedown.vi v3, v3, 1
305 @{[vslidedown_vi $V4, $V4, 1]} # vslidedown.vi v4, v4, 1
306
307 @{[vmv_v_i $V0, 1]} # vmv.v.i v0, 1
308 # v2 += (a0b1)h
309 @{[vxor_vv_v0t $V2, $V2, $V3]} # vxor.vv v2, v2, v3, v0.t
310 # v2 += (a1b1)l
311 @{[vxor_vv_v0t $V2, $V2, $V4]} # vxor.vv v2, v2, v4, v0.t
312
313 @{[vmv_v_i $V0, 2]} # vmv.v.i v0, 2
314 # v1 += (a0b0)h,0
315 @{[vxor_vv_v0t $V1, $V1, $V5]} # vxor.vv v1, v1, v5, v0.t
316 # v1 += (a1b0)l,0
317 @{[vxor_vv_v0t $V1, $V1, $V6]} # vxor.vv v1, v1, v6, v0.t
318
319 # Now the 256bit product should be stored in (v2,v1)
320 # v1 = (a0b1)l + (a0b0)h + (a1b0)l, (a0b0)l
321 # v2 = (a1b1)h, (a1b0)h + (a0b1)h + (a1b1)l
322
323 # Reduction
324 # Let C := A*B = c3,c2,c1,c0 = v2[1],v2[0],v1[1],v1[0]
325 # This is a slight variation of the Gueron's Montgomery reduction.
326 # The difference being the order of some operations has been changed,
327 # to make a better use of vclmul(h) instructions.
328
329 # First step:
330 # c1 += (c0 * P)l
331 # vmv.v.i v0, 2
332 @{[vslideup_vi_v0t $V3, $V1, 1]} # vslideup.vi v3, v1, 1, v0.t
333 @{[vclmul_vx_v0t $V3, $V3, $TMP3]} # vclmul.vx v3, v3, t3, v0.t
334 @{[vxor_vv_v0t $V1, $V1, $V3]} # vxor.vv v1, v1, v3, v0.t
335
336 # Second step:
337 # D = d1,d0 is final result
338 # We want:
339 # m1 = c1 + (c1 * P)h
340 # m0 = (c1 * P)l + (c0 * P)h + c0
341 # d1 = c3 + m1
342 # d0 = c2 + m0
343
344 #v3 = (c1 * P)l, 0
345 @{[vclmul_vx_v0t $V3, $V1, $TMP3]} # vclmul.vx v3, v1, t3, v0.t
346 #v4 = (c1 * P)h, (c0 * P)h
347 @{[vclmulh_vx $V4, $V1, $TMP3]} # vclmulh.vx v4, v1, t3
348
349 @{[vmv_v_i $V0, 1]} # vmv.v.i v0, 1
350 @{[vslidedown_vi $V3, $V3, 1]} # vslidedown.vi v3, v3, 1
351
352 @{[vxor_vv $V1, $V1, $V4]} # vxor.vv v1, v1, v4
353 @{[vxor_vv_v0t $V1, $V1, $V3]} # vxor.vv v1, v1, v3, v0.t
354
355 # XOR in the upper upper part of the product
356 @{[vxor_vv $V2, $V2, $V1]} # vxor.vv v2, v2, v1
357
358 @{[vrev8_v $V5, $V2]} # vrev8.v v2, v2
359
360 bnez $len, Lstep
361
362 @{[vsse64_v $V5, $Xi, $M8]} # vsse64.v v2, (a0), t4
363 ret
364.size gcm_ghash_rv64i_zvkb_zvbc,.-gcm_ghash_rv64i_zvkb_zvbc
365___
366}
367
368$code .= <<___;
369.p2align 4
370Lpolymod:
371 .dword 0x0000000000000001
372 .dword 0xc200000000000000
373.size Lpolymod,.-Lpolymod
374___
375
376print $code;
377
378close STDOUT or die "error closing STDOUT: $!";
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette