1 | #! /usr/bin/env perl
|
---|
2 | # This file is dual-licensed, meaning that you can use it under your
|
---|
3 | # choice of either of the following two licenses:
|
---|
4 | #
|
---|
5 | # Copyright 2023 The OpenSSL Project Authors. All Rights Reserved.
|
---|
6 | #
|
---|
7 | # Licensed under the Apache License 2.0 (the "License"). You can obtain
|
---|
8 | # a copy in the file LICENSE in the source distribution or at
|
---|
9 | # https://www.openssl.org/source/license.html
|
---|
10 | #
|
---|
11 | # or
|
---|
12 | #
|
---|
13 | # Copyright (c) 2023, Christoph Müllner <[email protected]>
|
---|
14 | # All rights reserved.
|
---|
15 | #
|
---|
16 | # Redistribution and use in source and binary forms, with or without
|
---|
17 | # modification, are permitted provided that the following conditions
|
---|
18 | # are met:
|
---|
19 | # 1. Redistributions of source code must retain the above copyright
|
---|
20 | # notice, this list of conditions and the following disclaimer.
|
---|
21 | # 2. Redistributions in binary form must reproduce the above copyright
|
---|
22 | # notice, this list of conditions and the following disclaimer in the
|
---|
23 | # documentation and/or other materials provided with the distribution.
|
---|
24 | #
|
---|
25 | # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
---|
26 | # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
---|
27 | # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
---|
28 | # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
---|
29 | # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
---|
30 | # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
---|
31 | # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
32 | # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
33 | # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
34 | # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
---|
35 | # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
36 |
|
---|
37 | # - RV64I
|
---|
38 | # - RISC-V Vector ('V') with VLEN >= 128
|
---|
39 | # - RISC-V Vector Cryptography Bit-manipulation extension ('Zvkb')
|
---|
40 | # - RISC-V Vector Carryless Multiplication extension ('Zvbc')
|
---|
41 |
|
---|
42 | use strict;
|
---|
43 | use warnings;
|
---|
44 |
|
---|
45 | use FindBin qw($Bin);
|
---|
46 | use lib "$Bin";
|
---|
47 | use lib "$Bin/../../perlasm";
|
---|
48 | use riscv;
|
---|
49 |
|
---|
50 | # $output is the last argument if it looks like a file (it has an extension)
|
---|
51 | # $flavour is the first argument if it doesn't look like a file
|
---|
52 | my $output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef;
|
---|
53 | my $flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef;
|
---|
54 |
|
---|
55 | $output and open STDOUT,">$output";
|
---|
56 |
|
---|
57 | my $code=<<___;
|
---|
58 | .text
|
---|
59 | ___
|
---|
60 |
|
---|
61 | ################################################################################
|
---|
62 | # void gcm_init_rv64i_zvkb_zvbc(u128 Htable[16], const u64 H[2]);
|
---|
63 | #
|
---|
64 | # input: H: 128-bit H - secret parameter E(K, 0^128)
|
---|
65 | # output: Htable: Preprocessed key data for gcm_gmult_rv64i_zvkb_zvbc and
|
---|
66 | # gcm_ghash_rv64i_zvkb_zvbc
|
---|
67 | {
|
---|
68 | my ($Htable,$H,$TMP0,$TMP1,$TMP2) = ("a0","a1","t0","t1","t2");
|
---|
69 | my ($V0,$V1,$V2,$V3,$V4,$V5,$V6) = ("v0","v1","v2","v3","v4","v5","v6");
|
---|
70 |
|
---|
71 | $code .= <<___;
|
---|
72 | .p2align 3
|
---|
73 | .globl gcm_init_rv64i_zvkb_zvbc
|
---|
74 | .type gcm_init_rv64i_zvkb_zvbc,\@function
|
---|
75 | gcm_init_rv64i_zvkb_zvbc:
|
---|
76 | # Load/store data in reverse order.
|
---|
77 | # This is needed as a part of endianness swap.
|
---|
78 | add $H, $H, 8
|
---|
79 | li $TMP0, -8
|
---|
80 | li $TMP1, 63
|
---|
81 | la $TMP2, Lpolymod
|
---|
82 |
|
---|
83 | @{[vsetivli__x0_2_e64_m1_tu_mu]} # vsetivli x0, 2, e64, m1, tu, mu
|
---|
84 |
|
---|
85 | @{[vlse64_v $V1, $H, $TMP0]} # vlse64.v v1, (a1), t0
|
---|
86 | @{[vle64_v $V2, $TMP2]} # vle64.v v2, (t2)
|
---|
87 |
|
---|
88 | # Shift one left and get the carry bits.
|
---|
89 | @{[vsrl_vx $V3, $V1, $TMP1]} # vsrl.vx v3, v1, t1
|
---|
90 | @{[vsll_vi $V1, $V1, 1]} # vsll.vi v1, v1, 1
|
---|
91 |
|
---|
92 | # Use the fact that the polynomial degree is no more than 128,
|
---|
93 | # i.e. only the LSB of the upper half could be set.
|
---|
94 | # Thanks to this we don't need to do the full reduction here.
|
---|
95 | # Instead simply subtract the reduction polynomial.
|
---|
96 | # This idea was taken from x86 ghash implementation in OpenSSL.
|
---|
97 | @{[vslideup_vi $V4, $V3, 1]} # vslideup.vi v4, v3, 1
|
---|
98 | @{[vslidedown_vi $V3, $V3, 1]} # vslidedown.vi v3, v3, 1
|
---|
99 |
|
---|
100 | @{[vmv_v_i $V0, 2]} # vmv.v.i v0, 2
|
---|
101 | @{[vor_vv_v0t $V1, $V1, $V4]} # vor.vv v1, v1, v4, v0.t
|
---|
102 |
|
---|
103 | # Need to set the mask to 3, if the carry bit is set.
|
---|
104 | @{[vmv_v_v $V0, $V3]} # vmv.v.v v0, v3
|
---|
105 | @{[vmv_v_i $V3, 0]} # vmv.v.i v3, 0
|
---|
106 | @{[vmerge_vim $V3, $V3, 3]} # vmerge.vim v3, v3, 3, v0
|
---|
107 | @{[vmv_v_v $V0, $V3]} # vmv.v.v v0, v3
|
---|
108 |
|
---|
109 | @{[vxor_vv_v0t $V1, $V1, $V2]} # vxor.vv v1, v1, v2, v0.t
|
---|
110 |
|
---|
111 | @{[vse64_v $V1, $Htable]} # vse64.v v1, (a0)
|
---|
112 | ret
|
---|
113 | .size gcm_init_rv64i_zvkb_zvbc,.-gcm_init_rv64i_zvkb_zvbc
|
---|
114 | ___
|
---|
115 | }
|
---|
116 |
|
---|
117 | ################################################################################
|
---|
118 | # void gcm_gmult_rv64i_zvkb_zvbc(u64 Xi[2], const u128 Htable[16]);
|
---|
119 | #
|
---|
120 | # input: Xi: current hash value
|
---|
121 | # Htable: preprocessed H
|
---|
122 | # output: Xi: next hash value Xi = (Xi * H mod f)
|
---|
123 | {
|
---|
124 | my ($Xi,$Htable,$TMP0,$TMP1,$TMP2,$TMP3,$TMP4) = ("a0","a1","t0","t1","t2","t3","t4");
|
---|
125 | my ($V0,$V1,$V2,$V3,$V4,$V5,$V6) = ("v0","v1","v2","v3","v4","v5","v6");
|
---|
126 |
|
---|
127 | $code .= <<___;
|
---|
128 | .text
|
---|
129 | .p2align 3
|
---|
130 | .globl gcm_gmult_rv64i_zvkb_zvbc
|
---|
131 | .type gcm_gmult_rv64i_zvkb_zvbc,\@function
|
---|
132 | gcm_gmult_rv64i_zvkb_zvbc:
|
---|
133 | ld $TMP0, ($Htable)
|
---|
134 | ld $TMP1, 8($Htable)
|
---|
135 | li $TMP2, 63
|
---|
136 | la $TMP3, Lpolymod
|
---|
137 | ld $TMP3, 8($TMP3)
|
---|
138 |
|
---|
139 | # Load/store data in reverse order.
|
---|
140 | # This is needed as a part of endianness swap.
|
---|
141 | add $Xi, $Xi, 8
|
---|
142 | li $TMP4, -8
|
---|
143 |
|
---|
144 | @{[vsetivli__x0_2_e64_m1_tu_mu]} # vsetivli x0, 2, e64, m1, tu, mu
|
---|
145 |
|
---|
146 | @{[vlse64_v $V5, $Xi, $TMP4]} # vlse64.v v5, (a0), t4
|
---|
147 | @{[vrev8_v $V5, $V5]} # vrev8.v v5, v5
|
---|
148 |
|
---|
149 | # Multiplication
|
---|
150 |
|
---|
151 | # Do two 64x64 multiplications in one go to save some time
|
---|
152 | # and simplify things.
|
---|
153 |
|
---|
154 | # A = a1a0 (t1, t0)
|
---|
155 | # B = b1b0 (v5)
|
---|
156 | # C = c1c0 (256 bit)
|
---|
157 | # c1 = a1b1 + (a0b1)h + (a1b0)h
|
---|
158 | # c0 = a0b0 + (a0b1)l + (a1b0)h
|
---|
159 |
|
---|
160 | # v1 = (a0b1)l,(a0b0)l
|
---|
161 | @{[vclmul_vx $V1, $V5, $TMP0]} # vclmul.vx v1, v5, t0
|
---|
162 | # v3 = (a0b1)h,(a0b0)h
|
---|
163 | @{[vclmulh_vx $V3, $V5, $TMP0]} # vclmulh.vx v3, v5, t0
|
---|
164 |
|
---|
165 | # v4 = (a1b1)l,(a1b0)l
|
---|
166 | @{[vclmul_vx $V4, $V5, $TMP1]} # vclmul.vx v4, v5, t1
|
---|
167 | # v2 = (a1b1)h,(a1b0)h
|
---|
168 | @{[vclmulh_vx $V2, $V5, $TMP1]} # vclmulh.vx v2, v5, t1
|
---|
169 |
|
---|
170 | # Is there a better way to do this?
|
---|
171 | # Would need to swap the order of elements within a vector register.
|
---|
172 | @{[vslideup_vi $V5, $V3, 1]} # vslideup.vi v5, v3, 1
|
---|
173 | @{[vslideup_vi $V6, $V4, 1]} # vslideup.vi v6, v4, 1
|
---|
174 | @{[vslidedown_vi $V3, $V3, 1]} # vslidedown.vi v3, v3, 1
|
---|
175 | @{[vslidedown_vi $V4, $V4, 1]} # vslidedown.vi v4, v4, 1
|
---|
176 |
|
---|
177 | @{[vmv_v_i $V0, 1]} # vmv.v.i v0, 1
|
---|
178 | # v2 += (a0b1)h
|
---|
179 | @{[vxor_vv_v0t $V2, $V2, $V3]} # vxor.vv v2, v2, v3, v0.t
|
---|
180 | # v2 += (a1b1)l
|
---|
181 | @{[vxor_vv_v0t $V2, $V2, $V4]} # vxor.vv v2, v2, v4, v0.t
|
---|
182 |
|
---|
183 | @{[vmv_v_i $V0, 2]} # vmv.v.i v0, 2
|
---|
184 | # v1 += (a0b0)h,0
|
---|
185 | @{[vxor_vv_v0t $V1, $V1, $V5]} # vxor.vv v1, v1, v5, v0.t
|
---|
186 | # v1 += (a1b0)l,0
|
---|
187 | @{[vxor_vv_v0t $V1, $V1, $V6]} # vxor.vv v1, v1, v6, v0.t
|
---|
188 |
|
---|
189 | # Now the 256bit product should be stored in (v2,v1)
|
---|
190 | # v1 = (a0b1)l + (a0b0)h + (a1b0)l, (a0b0)l
|
---|
191 | # v2 = (a1b1)h, (a1b0)h + (a0b1)h + (a1b1)l
|
---|
192 |
|
---|
193 | # Reduction
|
---|
194 | # Let C := A*B = c3,c2,c1,c0 = v2[1],v2[0],v1[1],v1[0]
|
---|
195 | # This is a slight variation of the Gueron's Montgomery reduction.
|
---|
196 | # The difference being the order of some operations has been changed,
|
---|
197 | # to make a better use of vclmul(h) instructions.
|
---|
198 |
|
---|
199 | # First step:
|
---|
200 | # c1 += (c0 * P)l
|
---|
201 | # vmv.v.i v0, 2
|
---|
202 | @{[vslideup_vi_v0t $V3, $V1, 1]} # vslideup.vi v3, v1, 1, v0.t
|
---|
203 | @{[vclmul_vx_v0t $V3, $V3, $TMP3]} # vclmul.vx v3, v3, t3, v0.t
|
---|
204 | @{[vxor_vv_v0t $V1, $V1, $V3]} # vxor.vv v1, v1, v3, v0.t
|
---|
205 |
|
---|
206 | # Second step:
|
---|
207 | # D = d1,d0 is final result
|
---|
208 | # We want:
|
---|
209 | # m1 = c1 + (c1 * P)h
|
---|
210 | # m0 = (c1 * P)l + (c0 * P)h + c0
|
---|
211 | # d1 = c3 + m1
|
---|
212 | # d0 = c2 + m0
|
---|
213 |
|
---|
214 | #v3 = (c1 * P)l, 0
|
---|
215 | @{[vclmul_vx_v0t $V3, $V1, $TMP3]} # vclmul.vx v3, v1, t3, v0.t
|
---|
216 | #v4 = (c1 * P)h, (c0 * P)h
|
---|
217 | @{[vclmulh_vx $V4, $V1, $TMP3]} # vclmulh.vx v4, v1, t3
|
---|
218 |
|
---|
219 | @{[vmv_v_i $V0, 1]} # vmv.v.i v0, 1
|
---|
220 | @{[vslidedown_vi $V3, $V3, 1]} # vslidedown.vi v3, v3, 1
|
---|
221 |
|
---|
222 | @{[vxor_vv $V1, $V1, $V4]} # vxor.vv v1, v1, v4
|
---|
223 | @{[vxor_vv_v0t $V1, $V1, $V3]} # vxor.vv v1, v1, v3, v0.t
|
---|
224 |
|
---|
225 | # XOR in the upper upper part of the product
|
---|
226 | @{[vxor_vv $V2, $V2, $V1]} # vxor.vv v2, v2, v1
|
---|
227 |
|
---|
228 | @{[vrev8_v $V2, $V2]} # vrev8.v v2, v2
|
---|
229 | @{[vsse64_v $V2, $Xi, $TMP4]} # vsse64.v v2, (a0), t4
|
---|
230 | ret
|
---|
231 | .size gcm_gmult_rv64i_zvkb_zvbc,.-gcm_gmult_rv64i_zvkb_zvbc
|
---|
232 | ___
|
---|
233 | }
|
---|
234 |
|
---|
235 | ################################################################################
|
---|
236 | # void gcm_ghash_rv64i_zvkb_zvbc(u64 Xi[2], const u128 Htable[16],
|
---|
237 | # const u8 *inp, size_t len);
|
---|
238 | #
|
---|
239 | # input: Xi: current hash value
|
---|
240 | # Htable: preprocessed H
|
---|
241 | # inp: pointer to input data
|
---|
242 | # len: length of input data in bytes (multiple of block size)
|
---|
243 | # output: Xi: Xi+1 (next hash value Xi)
|
---|
244 | {
|
---|
245 | my ($Xi,$Htable,$inp,$len,$TMP0,$TMP1,$TMP2,$TMP3,$M8,$TMP5,$TMP6) = ("a0","a1","a2","a3","t0","t1","t2","t3","t4","t5","t6");
|
---|
246 | my ($V0,$V1,$V2,$V3,$V4,$V5,$V6,$Vinp) = ("v0","v1","v2","v3","v4","v5","v6","v7");
|
---|
247 |
|
---|
248 | $code .= <<___;
|
---|
249 | .p2align 3
|
---|
250 | .globl gcm_ghash_rv64i_zvkb_zvbc
|
---|
251 | .type gcm_ghash_rv64i_zvkb_zvbc,\@function
|
---|
252 | gcm_ghash_rv64i_zvkb_zvbc:
|
---|
253 | ld $TMP0, ($Htable)
|
---|
254 | ld $TMP1, 8($Htable)
|
---|
255 | li $TMP2, 63
|
---|
256 | la $TMP3, Lpolymod
|
---|
257 | ld $TMP3, 8($TMP3)
|
---|
258 |
|
---|
259 | # Load/store data in reverse order.
|
---|
260 | # This is needed as a part of endianness swap.
|
---|
261 | add $Xi, $Xi, 8
|
---|
262 | add $inp, $inp, 8
|
---|
263 | li $M8, -8
|
---|
264 |
|
---|
265 | @{[vsetivli__x0_2_e64_m1_tu_mu]} # vsetivli x0, 2, e64, m1, tu, mu
|
---|
266 |
|
---|
267 | @{[vlse64_v $V5, $Xi, $M8]} # vlse64.v v5, (a0), t4
|
---|
268 |
|
---|
269 | Lstep:
|
---|
270 | # Read input data
|
---|
271 | @{[vlse64_v $Vinp, $inp, $M8]} # vle64.v v0, (a2)
|
---|
272 | add $inp, $inp, 16
|
---|
273 | add $len, $len, -16
|
---|
274 | # XOR them into Xi
|
---|
275 | @{[vxor_vv $V5, $V5, $Vinp]} # vxor.vv v0, v0, v1
|
---|
276 |
|
---|
277 | @{[vrev8_v $V5, $V5]} # vrev8.v v5, v5
|
---|
278 |
|
---|
279 | # Multiplication
|
---|
280 |
|
---|
281 | # Do two 64x64 multiplications in one go to save some time
|
---|
282 | # and simplify things.
|
---|
283 |
|
---|
284 | # A = a1a0 (t1, t0)
|
---|
285 | # B = b1b0 (v5)
|
---|
286 | # C = c1c0 (256 bit)
|
---|
287 | # c1 = a1b1 + (a0b1)h + (a1b0)h
|
---|
288 | # c0 = a0b0 + (a0b1)l + (a1b0)h
|
---|
289 |
|
---|
290 | # v1 = (a0b1)l,(a0b0)l
|
---|
291 | @{[vclmul_vx $V1, $V5, $TMP0]} # vclmul.vx v1, v5, t0
|
---|
292 | # v3 = (a0b1)h,(a0b0)h
|
---|
293 | @{[vclmulh_vx $V3, $V5, $TMP0]} # vclmulh.vx v3, v5, t0
|
---|
294 |
|
---|
295 | # v4 = (a1b1)l,(a1b0)l
|
---|
296 | @{[vclmul_vx $V4, $V5, $TMP1]} # vclmul.vx v4, v5, t1
|
---|
297 | # v2 = (a1b1)h,(a1b0)h
|
---|
298 | @{[vclmulh_vx $V2, $V5, $TMP1]} # vclmulh.vx v2, v5, t1
|
---|
299 |
|
---|
300 | # Is there a better way to do this?
|
---|
301 | # Would need to swap the order of elements within a vector register.
|
---|
302 | @{[vslideup_vi $V5, $V3, 1]} # vslideup.vi v5, v3, 1
|
---|
303 | @{[vslideup_vi $V6, $V4, 1]} # vslideup.vi v6, v4, 1
|
---|
304 | @{[vslidedown_vi $V3, $V3, 1]} # vslidedown.vi v3, v3, 1
|
---|
305 | @{[vslidedown_vi $V4, $V4, 1]} # vslidedown.vi v4, v4, 1
|
---|
306 |
|
---|
307 | @{[vmv_v_i $V0, 1]} # vmv.v.i v0, 1
|
---|
308 | # v2 += (a0b1)h
|
---|
309 | @{[vxor_vv_v0t $V2, $V2, $V3]} # vxor.vv v2, v2, v3, v0.t
|
---|
310 | # v2 += (a1b1)l
|
---|
311 | @{[vxor_vv_v0t $V2, $V2, $V4]} # vxor.vv v2, v2, v4, v0.t
|
---|
312 |
|
---|
313 | @{[vmv_v_i $V0, 2]} # vmv.v.i v0, 2
|
---|
314 | # v1 += (a0b0)h,0
|
---|
315 | @{[vxor_vv_v0t $V1, $V1, $V5]} # vxor.vv v1, v1, v5, v0.t
|
---|
316 | # v1 += (a1b0)l,0
|
---|
317 | @{[vxor_vv_v0t $V1, $V1, $V6]} # vxor.vv v1, v1, v6, v0.t
|
---|
318 |
|
---|
319 | # Now the 256bit product should be stored in (v2,v1)
|
---|
320 | # v1 = (a0b1)l + (a0b0)h + (a1b0)l, (a0b0)l
|
---|
321 | # v2 = (a1b1)h, (a1b0)h + (a0b1)h + (a1b1)l
|
---|
322 |
|
---|
323 | # Reduction
|
---|
324 | # Let C := A*B = c3,c2,c1,c0 = v2[1],v2[0],v1[1],v1[0]
|
---|
325 | # This is a slight variation of the Gueron's Montgomery reduction.
|
---|
326 | # The difference being the order of some operations has been changed,
|
---|
327 | # to make a better use of vclmul(h) instructions.
|
---|
328 |
|
---|
329 | # First step:
|
---|
330 | # c1 += (c0 * P)l
|
---|
331 | # vmv.v.i v0, 2
|
---|
332 | @{[vslideup_vi_v0t $V3, $V1, 1]} # vslideup.vi v3, v1, 1, v0.t
|
---|
333 | @{[vclmul_vx_v0t $V3, $V3, $TMP3]} # vclmul.vx v3, v3, t3, v0.t
|
---|
334 | @{[vxor_vv_v0t $V1, $V1, $V3]} # vxor.vv v1, v1, v3, v0.t
|
---|
335 |
|
---|
336 | # Second step:
|
---|
337 | # D = d1,d0 is final result
|
---|
338 | # We want:
|
---|
339 | # m1 = c1 + (c1 * P)h
|
---|
340 | # m0 = (c1 * P)l + (c0 * P)h + c0
|
---|
341 | # d1 = c3 + m1
|
---|
342 | # d0 = c2 + m0
|
---|
343 |
|
---|
344 | #v3 = (c1 * P)l, 0
|
---|
345 | @{[vclmul_vx_v0t $V3, $V1, $TMP3]} # vclmul.vx v3, v1, t3, v0.t
|
---|
346 | #v4 = (c1 * P)h, (c0 * P)h
|
---|
347 | @{[vclmulh_vx $V4, $V1, $TMP3]} # vclmulh.vx v4, v1, t3
|
---|
348 |
|
---|
349 | @{[vmv_v_i $V0, 1]} # vmv.v.i v0, 1
|
---|
350 | @{[vslidedown_vi $V3, $V3, 1]} # vslidedown.vi v3, v3, 1
|
---|
351 |
|
---|
352 | @{[vxor_vv $V1, $V1, $V4]} # vxor.vv v1, v1, v4
|
---|
353 | @{[vxor_vv_v0t $V1, $V1, $V3]} # vxor.vv v1, v1, v3, v0.t
|
---|
354 |
|
---|
355 | # XOR in the upper upper part of the product
|
---|
356 | @{[vxor_vv $V2, $V2, $V1]} # vxor.vv v2, v2, v1
|
---|
357 |
|
---|
358 | @{[vrev8_v $V5, $V2]} # vrev8.v v2, v2
|
---|
359 |
|
---|
360 | bnez $len, Lstep
|
---|
361 |
|
---|
362 | @{[vsse64_v $V5, $Xi, $M8]} # vsse64.v v2, (a0), t4
|
---|
363 | ret
|
---|
364 | .size gcm_ghash_rv64i_zvkb_zvbc,.-gcm_ghash_rv64i_zvkb_zvbc
|
---|
365 | ___
|
---|
366 | }
|
---|
367 |
|
---|
368 | $code .= <<___;
|
---|
369 | .p2align 4
|
---|
370 | Lpolymod:
|
---|
371 | .dword 0x0000000000000001
|
---|
372 | .dword 0xc200000000000000
|
---|
373 | .size Lpolymod,.-Lpolymod
|
---|
374 | ___
|
---|
375 |
|
---|
376 | print $code;
|
---|
377 |
|
---|
378 | close STDOUT or die "error closing STDOUT: $!";
|
---|