1 | /*
|
---|
2 | * Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | *
|
---|
4 | * Licensed under the Apache License 2.0 (the "License"). You may not use
|
---|
5 | * this file except in compliance with the License. You can obtain a copy
|
---|
6 | * in the file LICENSE in the source distribution or at
|
---|
7 | * https://www.openssl.org/source/license.html
|
---|
8 | */
|
---|
9 |
|
---|
10 | /*
|
---|
11 | * RSA low level APIs are deprecated for public use, but still ok for
|
---|
12 | * internal use.
|
---|
13 | */
|
---|
14 | #include "internal/deprecated.h"
|
---|
15 |
|
---|
16 | #include <openssl/crypto.h>
|
---|
17 | #include <openssl/core_names.h>
|
---|
18 | #ifndef FIPS_MODULE
|
---|
19 | # include <openssl/engine.h>
|
---|
20 | #endif
|
---|
21 | #include <openssl/evp.h>
|
---|
22 | #include <openssl/param_build.h>
|
---|
23 | #include "internal/cryptlib.h"
|
---|
24 | #include "internal/refcount.h"
|
---|
25 | #include "crypto/bn.h"
|
---|
26 | #include "crypto/evp.h"
|
---|
27 | #include "crypto/rsa.h"
|
---|
28 | #include "crypto/security_bits.h"
|
---|
29 | #include "rsa_local.h"
|
---|
30 |
|
---|
31 | static RSA *rsa_new_intern(ENGINE *engine, OSSL_LIB_CTX *libctx);
|
---|
32 |
|
---|
33 | #ifndef FIPS_MODULE
|
---|
34 | RSA *RSA_new(void)
|
---|
35 | {
|
---|
36 | return rsa_new_intern(NULL, NULL);
|
---|
37 | }
|
---|
38 |
|
---|
39 | const RSA_METHOD *RSA_get_method(const RSA *rsa)
|
---|
40 | {
|
---|
41 | return rsa->meth;
|
---|
42 | }
|
---|
43 |
|
---|
44 | int RSA_set_method(RSA *rsa, const RSA_METHOD *meth)
|
---|
45 | {
|
---|
46 | /*
|
---|
47 | * NB: The caller is specifically setting a method, so it's not up to us
|
---|
48 | * to deal with which ENGINE it comes from.
|
---|
49 | */
|
---|
50 | const RSA_METHOD *mtmp;
|
---|
51 | mtmp = rsa->meth;
|
---|
52 | if (mtmp->finish)
|
---|
53 | mtmp->finish(rsa);
|
---|
54 | #ifndef OPENSSL_NO_ENGINE
|
---|
55 | ENGINE_finish(rsa->engine);
|
---|
56 | rsa->engine = NULL;
|
---|
57 | #endif
|
---|
58 | rsa->meth = meth;
|
---|
59 | if (meth->init)
|
---|
60 | meth->init(rsa);
|
---|
61 | return 1;
|
---|
62 | }
|
---|
63 |
|
---|
64 | RSA *RSA_new_method(ENGINE *engine)
|
---|
65 | {
|
---|
66 | return rsa_new_intern(engine, NULL);
|
---|
67 | }
|
---|
68 | #endif
|
---|
69 |
|
---|
70 | RSA *ossl_rsa_new_with_ctx(OSSL_LIB_CTX *libctx)
|
---|
71 | {
|
---|
72 | return rsa_new_intern(NULL, libctx);
|
---|
73 | }
|
---|
74 |
|
---|
75 | static RSA *rsa_new_intern(ENGINE *engine, OSSL_LIB_CTX *libctx)
|
---|
76 | {
|
---|
77 | RSA *ret = OPENSSL_zalloc(sizeof(*ret));
|
---|
78 |
|
---|
79 | if (ret == NULL)
|
---|
80 | return NULL;
|
---|
81 |
|
---|
82 | ret->lock = CRYPTO_THREAD_lock_new();
|
---|
83 | if (ret->lock == NULL) {
|
---|
84 | ERR_raise(ERR_LIB_RSA, ERR_R_CRYPTO_LIB);
|
---|
85 | OPENSSL_free(ret);
|
---|
86 | return NULL;
|
---|
87 | }
|
---|
88 |
|
---|
89 | if (!CRYPTO_NEW_REF(&ret->references, 1)) {
|
---|
90 | CRYPTO_THREAD_lock_free(ret->lock);
|
---|
91 | OPENSSL_free(ret);
|
---|
92 | return NULL;
|
---|
93 | }
|
---|
94 |
|
---|
95 | ret->libctx = libctx;
|
---|
96 | ret->meth = RSA_get_default_method();
|
---|
97 | #if !defined(OPENSSL_NO_ENGINE) && !defined(FIPS_MODULE)
|
---|
98 | ret->flags = ret->meth->flags & ~RSA_FLAG_NON_FIPS_ALLOW;
|
---|
99 | if (engine) {
|
---|
100 | if (!ENGINE_init(engine)) {
|
---|
101 | ERR_raise(ERR_LIB_RSA, ERR_R_ENGINE_LIB);
|
---|
102 | goto err;
|
---|
103 | }
|
---|
104 | ret->engine = engine;
|
---|
105 | } else {
|
---|
106 | ret->engine = ENGINE_get_default_RSA();
|
---|
107 | }
|
---|
108 | if (ret->engine) {
|
---|
109 | ret->meth = ENGINE_get_RSA(ret->engine);
|
---|
110 | if (ret->meth == NULL) {
|
---|
111 | ERR_raise(ERR_LIB_RSA, ERR_R_ENGINE_LIB);
|
---|
112 | goto err;
|
---|
113 | }
|
---|
114 | }
|
---|
115 | #endif
|
---|
116 |
|
---|
117 | ret->flags = ret->meth->flags & ~RSA_FLAG_NON_FIPS_ALLOW;
|
---|
118 | #ifndef FIPS_MODULE
|
---|
119 | if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_RSA, ret, &ret->ex_data)) {
|
---|
120 | goto err;
|
---|
121 | }
|
---|
122 | #endif
|
---|
123 |
|
---|
124 | if ((ret->meth->init != NULL) && !ret->meth->init(ret)) {
|
---|
125 | ERR_raise(ERR_LIB_RSA, ERR_R_INIT_FAIL);
|
---|
126 | goto err;
|
---|
127 | }
|
---|
128 |
|
---|
129 | return ret;
|
---|
130 |
|
---|
131 | err:
|
---|
132 | RSA_free(ret);
|
---|
133 | return NULL;
|
---|
134 | }
|
---|
135 |
|
---|
136 | void RSA_free(RSA *r)
|
---|
137 | {
|
---|
138 | int i;
|
---|
139 |
|
---|
140 | if (r == NULL)
|
---|
141 | return;
|
---|
142 |
|
---|
143 | CRYPTO_DOWN_REF(&r->references, &i);
|
---|
144 | REF_PRINT_COUNT("RSA", i, r);
|
---|
145 | if (i > 0)
|
---|
146 | return;
|
---|
147 | REF_ASSERT_ISNT(i < 0);
|
---|
148 |
|
---|
149 | if (r->meth != NULL && r->meth->finish != NULL)
|
---|
150 | r->meth->finish(r);
|
---|
151 | #if !defined(OPENSSL_NO_ENGINE) && !defined(FIPS_MODULE)
|
---|
152 | ENGINE_finish(r->engine);
|
---|
153 | #endif
|
---|
154 |
|
---|
155 | #ifndef FIPS_MODULE
|
---|
156 | CRYPTO_free_ex_data(CRYPTO_EX_INDEX_RSA, r, &r->ex_data);
|
---|
157 | #endif
|
---|
158 |
|
---|
159 | CRYPTO_THREAD_lock_free(r->lock);
|
---|
160 | CRYPTO_FREE_REF(&r->references);
|
---|
161 |
|
---|
162 | #ifdef FIPS_MODULE
|
---|
163 | BN_clear_free(r->n);
|
---|
164 | BN_clear_free(r->e);
|
---|
165 | #else
|
---|
166 | BN_free(r->n);
|
---|
167 | BN_free(r->e);
|
---|
168 | #endif
|
---|
169 | BN_clear_free(r->d);
|
---|
170 | BN_clear_free(r->p);
|
---|
171 | BN_clear_free(r->q);
|
---|
172 | BN_clear_free(r->dmp1);
|
---|
173 | BN_clear_free(r->dmq1);
|
---|
174 | BN_clear_free(r->iqmp);
|
---|
175 |
|
---|
176 | #if defined(FIPS_MODULE) && !defined(OPENSSL_NO_ACVP_TESTS)
|
---|
177 | ossl_rsa_acvp_test_free(r->acvp_test);
|
---|
178 | #endif
|
---|
179 |
|
---|
180 | #ifndef FIPS_MODULE
|
---|
181 | RSA_PSS_PARAMS_free(r->pss);
|
---|
182 | sk_RSA_PRIME_INFO_pop_free(r->prime_infos, ossl_rsa_multip_info_free);
|
---|
183 | #endif
|
---|
184 | BN_BLINDING_free(r->blinding);
|
---|
185 | BN_BLINDING_free(r->mt_blinding);
|
---|
186 | OPENSSL_free(r);
|
---|
187 | }
|
---|
188 |
|
---|
189 | int RSA_up_ref(RSA *r)
|
---|
190 | {
|
---|
191 | int i;
|
---|
192 |
|
---|
193 | if (CRYPTO_UP_REF(&r->references, &i) <= 0)
|
---|
194 | return 0;
|
---|
195 |
|
---|
196 | REF_PRINT_COUNT("RSA", i, r);
|
---|
197 | REF_ASSERT_ISNT(i < 2);
|
---|
198 | return i > 1 ? 1 : 0;
|
---|
199 | }
|
---|
200 |
|
---|
201 | OSSL_LIB_CTX *ossl_rsa_get0_libctx(RSA *r)
|
---|
202 | {
|
---|
203 | return r->libctx;
|
---|
204 | }
|
---|
205 |
|
---|
206 | void ossl_rsa_set0_libctx(RSA *r, OSSL_LIB_CTX *libctx)
|
---|
207 | {
|
---|
208 | r->libctx = libctx;
|
---|
209 | }
|
---|
210 |
|
---|
211 | #ifndef FIPS_MODULE
|
---|
212 | int RSA_set_ex_data(RSA *r, int idx, void *arg)
|
---|
213 | {
|
---|
214 | return CRYPTO_set_ex_data(&r->ex_data, idx, arg);
|
---|
215 | }
|
---|
216 |
|
---|
217 | void *RSA_get_ex_data(const RSA *r, int idx)
|
---|
218 | {
|
---|
219 | return CRYPTO_get_ex_data(&r->ex_data, idx);
|
---|
220 | }
|
---|
221 | #endif
|
---|
222 |
|
---|
223 | /*
|
---|
224 | * Define a scaling constant for our fixed point arithmetic.
|
---|
225 | * This value must be a power of two because the base two logarithm code
|
---|
226 | * makes this assumption. The exponent must also be a multiple of three so
|
---|
227 | * that the scale factor has an exact cube root. Finally, the scale factor
|
---|
228 | * should not be so large that a multiplication of two scaled numbers
|
---|
229 | * overflows a 64 bit unsigned integer.
|
---|
230 | */
|
---|
231 | static const unsigned int scale = 1 << 18;
|
---|
232 | static const unsigned int cbrt_scale = 1 << (2 * 18 / 3);
|
---|
233 |
|
---|
234 | /* Define some constants, none exceed 32 bits */
|
---|
235 | static const unsigned int log_2 = 0x02c5c8; /* scale * log(2) */
|
---|
236 | static const unsigned int log_e = 0x05c551; /* scale * log2(M_E) */
|
---|
237 | static const unsigned int c1_923 = 0x07b126; /* scale * 1.923 */
|
---|
238 | static const unsigned int c4_690 = 0x12c28f; /* scale * 4.690 */
|
---|
239 |
|
---|
240 | /*
|
---|
241 | * Multiply two scaled integers together and rescale the result.
|
---|
242 | */
|
---|
243 | static ossl_inline uint64_t mul2(uint64_t a, uint64_t b)
|
---|
244 | {
|
---|
245 | return a * b / scale;
|
---|
246 | }
|
---|
247 |
|
---|
248 | /*
|
---|
249 | * Calculate the cube root of a 64 bit scaled integer.
|
---|
250 | * Although the cube root of a 64 bit number does fit into a 32 bit unsigned
|
---|
251 | * integer, this is not guaranteed after scaling, so this function has a
|
---|
252 | * 64 bit return. This uses the shifting nth root algorithm with some
|
---|
253 | * algebraic simplifications.
|
---|
254 | */
|
---|
255 | static uint64_t icbrt64(uint64_t x)
|
---|
256 | {
|
---|
257 | uint64_t r = 0;
|
---|
258 | uint64_t b;
|
---|
259 | int s;
|
---|
260 |
|
---|
261 | for (s = 63; s >= 0; s -= 3) {
|
---|
262 | r <<= 1;
|
---|
263 | b = 3 * r * (r + 1) + 1;
|
---|
264 | if ((x >> s) >= b) {
|
---|
265 | x -= b << s;
|
---|
266 | r++;
|
---|
267 | }
|
---|
268 | }
|
---|
269 | return r * cbrt_scale;
|
---|
270 | }
|
---|
271 |
|
---|
272 | /*
|
---|
273 | * Calculate the natural logarithm of a 64 bit scaled integer.
|
---|
274 | * This is done by calculating a base two logarithm and scaling.
|
---|
275 | * The maximum logarithm (base 2) is 64 and this reduces base e, so
|
---|
276 | * a 32 bit result should not overflow. The argument passed must be
|
---|
277 | * greater than unity so we don't need to handle negative results.
|
---|
278 | */
|
---|
279 | static uint32_t ilog_e(uint64_t v)
|
---|
280 | {
|
---|
281 | uint32_t i, r = 0;
|
---|
282 |
|
---|
283 | /*
|
---|
284 | * Scale down the value into the range 1 .. 2.
|
---|
285 | *
|
---|
286 | * If fractional numbers need to be processed, another loop needs
|
---|
287 | * to go here that checks v < scale and if so multiplies it by 2 and
|
---|
288 | * reduces r by scale. This also means making r signed.
|
---|
289 | */
|
---|
290 | while (v >= 2 * scale) {
|
---|
291 | v >>= 1;
|
---|
292 | r += scale;
|
---|
293 | }
|
---|
294 | for (i = scale / 2; i != 0; i /= 2) {
|
---|
295 | v = mul2(v, v);
|
---|
296 | if (v >= 2 * scale) {
|
---|
297 | v >>= 1;
|
---|
298 | r += i;
|
---|
299 | }
|
---|
300 | }
|
---|
301 | r = (r * (uint64_t)scale) / log_e;
|
---|
302 | return r;
|
---|
303 | }
|
---|
304 |
|
---|
305 | /*
|
---|
306 | * NIST SP 800-56B rev 2 Appendix D: Maximum Security Strength Estimates for IFC
|
---|
307 | * Modulus Lengths.
|
---|
308 | *
|
---|
309 | * Note that this formula is also referred to in SP800-56A rev3 Appendix D:
|
---|
310 | * for FFC safe prime groups for modp and ffdhe.
|
---|
311 | * After Table 25 and Table 26 it refers to
|
---|
312 | * "The maximum security strength estimates were calculated using the formula in
|
---|
313 | * Section 7.5 of the FIPS 140 IG and rounded to the nearest multiple of eight
|
---|
314 | * bits".
|
---|
315 | *
|
---|
316 | * The formula is:
|
---|
317 | *
|
---|
318 | * E = \frac{1.923 \sqrt[3]{nBits \cdot log_e(2)}
|
---|
319 | * \cdot(log_e(nBits \cdot log_e(2))^{2/3} - 4.69}{log_e(2)}
|
---|
320 | * The two cube roots are merged together here.
|
---|
321 | */
|
---|
322 | uint16_t ossl_ifc_ffc_compute_security_bits(int n)
|
---|
323 | {
|
---|
324 | uint64_t x;
|
---|
325 | uint32_t lx;
|
---|
326 | uint16_t y, cap;
|
---|
327 |
|
---|
328 | /*
|
---|
329 | * Look for common values as listed in standards.
|
---|
330 | * These values are not exactly equal to the results from the formulae in
|
---|
331 | * the standards but are defined to be canonical.
|
---|
332 | */
|
---|
333 | switch (n) {
|
---|
334 | case 2048: /* SP 800-56B rev 2 Appendix D and FIPS 140-2 IG 7.5 */
|
---|
335 | return 112;
|
---|
336 | case 3072: /* SP 800-56B rev 2 Appendix D and FIPS 140-2 IG 7.5 */
|
---|
337 | return 128;
|
---|
338 | case 4096: /* SP 800-56B rev 2 Appendix D */
|
---|
339 | return 152;
|
---|
340 | case 6144: /* SP 800-56B rev 2 Appendix D */
|
---|
341 | return 176;
|
---|
342 | case 7680: /* FIPS 140-2 IG 7.5 */
|
---|
343 | return 192;
|
---|
344 | case 8192: /* SP 800-56B rev 2 Appendix D */
|
---|
345 | return 200;
|
---|
346 | case 15360: /* FIPS 140-2 IG 7.5 */
|
---|
347 | return 256;
|
---|
348 | }
|
---|
349 |
|
---|
350 | /*
|
---|
351 | * The first incorrect result (i.e. not accurate or off by one low) occurs
|
---|
352 | * for n = 699668. The true value here is 1200. Instead of using this n
|
---|
353 | * as the check threshold, the smallest n such that the correct result is
|
---|
354 | * 1200 is used instead.
|
---|
355 | */
|
---|
356 | if (n >= 687737)
|
---|
357 | return 1200;
|
---|
358 | if (n < 8)
|
---|
359 | return 0;
|
---|
360 |
|
---|
361 | /*
|
---|
362 | * To ensure that the output is non-decreasing with respect to n,
|
---|
363 | * a cap needs to be applied to the two values where the function over
|
---|
364 | * estimates the strength (according to the above fast path).
|
---|
365 | */
|
---|
366 | if (n <= 7680)
|
---|
367 | cap = 192;
|
---|
368 | else if (n <= 15360)
|
---|
369 | cap = 256;
|
---|
370 | else
|
---|
371 | cap = 1200;
|
---|
372 |
|
---|
373 | x = n * (uint64_t)log_2;
|
---|
374 | lx = ilog_e(x);
|
---|
375 | y = (uint16_t)((mul2(c1_923, icbrt64(mul2(mul2(x, lx), lx))) - c4_690)
|
---|
376 | / log_2);
|
---|
377 | y = (y + 4) & ~7;
|
---|
378 | if (y > cap)
|
---|
379 | y = cap;
|
---|
380 | return y;
|
---|
381 | }
|
---|
382 |
|
---|
383 |
|
---|
384 |
|
---|
385 | int RSA_security_bits(const RSA *rsa)
|
---|
386 | {
|
---|
387 | int bits = BN_num_bits(rsa->n);
|
---|
388 |
|
---|
389 | #ifndef FIPS_MODULE
|
---|
390 | if (rsa->version == RSA_ASN1_VERSION_MULTI) {
|
---|
391 | /* This ought to mean that we have private key at hand. */
|
---|
392 | int ex_primes = sk_RSA_PRIME_INFO_num(rsa->prime_infos);
|
---|
393 |
|
---|
394 | if (ex_primes <= 0 || (ex_primes + 2) > ossl_rsa_multip_cap(bits))
|
---|
395 | return 0;
|
---|
396 | }
|
---|
397 | #endif
|
---|
398 | return ossl_ifc_ffc_compute_security_bits(bits);
|
---|
399 | }
|
---|
400 |
|
---|
401 | int RSA_set0_key(RSA *r, BIGNUM *n, BIGNUM *e, BIGNUM *d)
|
---|
402 | {
|
---|
403 | /* If the fields n and e in r are NULL, the corresponding input
|
---|
404 | * parameters MUST be non-NULL for n and e. d may be
|
---|
405 | * left NULL (in case only the public key is used).
|
---|
406 | */
|
---|
407 | if ((r->n == NULL && n == NULL)
|
---|
408 | || (r->e == NULL && e == NULL))
|
---|
409 | return 0;
|
---|
410 |
|
---|
411 | if (n != NULL) {
|
---|
412 | BN_free(r->n);
|
---|
413 | r->n = n;
|
---|
414 | }
|
---|
415 | if (e != NULL) {
|
---|
416 | BN_free(r->e);
|
---|
417 | r->e = e;
|
---|
418 | }
|
---|
419 | if (d != NULL) {
|
---|
420 | BN_clear_free(r->d);
|
---|
421 | r->d = d;
|
---|
422 | BN_set_flags(r->d, BN_FLG_CONSTTIME);
|
---|
423 | }
|
---|
424 | r->dirty_cnt++;
|
---|
425 |
|
---|
426 | return 1;
|
---|
427 | }
|
---|
428 |
|
---|
429 | int RSA_set0_factors(RSA *r, BIGNUM *p, BIGNUM *q)
|
---|
430 | {
|
---|
431 | /* If the fields p and q in r are NULL, the corresponding input
|
---|
432 | * parameters MUST be non-NULL.
|
---|
433 | */
|
---|
434 | if ((r->p == NULL && p == NULL)
|
---|
435 | || (r->q == NULL && q == NULL))
|
---|
436 | return 0;
|
---|
437 |
|
---|
438 | if (p != NULL) {
|
---|
439 | BN_clear_free(r->p);
|
---|
440 | r->p = p;
|
---|
441 | BN_set_flags(r->p, BN_FLG_CONSTTIME);
|
---|
442 | }
|
---|
443 | if (q != NULL) {
|
---|
444 | BN_clear_free(r->q);
|
---|
445 | r->q = q;
|
---|
446 | BN_set_flags(r->q, BN_FLG_CONSTTIME);
|
---|
447 | }
|
---|
448 | r->dirty_cnt++;
|
---|
449 |
|
---|
450 | return 1;
|
---|
451 | }
|
---|
452 |
|
---|
453 | int RSA_set0_crt_params(RSA *r, BIGNUM *dmp1, BIGNUM *dmq1, BIGNUM *iqmp)
|
---|
454 | {
|
---|
455 | /* If the fields dmp1, dmq1 and iqmp in r are NULL, the corresponding input
|
---|
456 | * parameters MUST be non-NULL.
|
---|
457 | */
|
---|
458 | if ((r->dmp1 == NULL && dmp1 == NULL)
|
---|
459 | || (r->dmq1 == NULL && dmq1 == NULL)
|
---|
460 | || (r->iqmp == NULL && iqmp == NULL))
|
---|
461 | return 0;
|
---|
462 |
|
---|
463 | if (dmp1 != NULL) {
|
---|
464 | BN_clear_free(r->dmp1);
|
---|
465 | r->dmp1 = dmp1;
|
---|
466 | BN_set_flags(r->dmp1, BN_FLG_CONSTTIME);
|
---|
467 | }
|
---|
468 | if (dmq1 != NULL) {
|
---|
469 | BN_clear_free(r->dmq1);
|
---|
470 | r->dmq1 = dmq1;
|
---|
471 | BN_set_flags(r->dmq1, BN_FLG_CONSTTIME);
|
---|
472 | }
|
---|
473 | if (iqmp != NULL) {
|
---|
474 | BN_clear_free(r->iqmp);
|
---|
475 | r->iqmp = iqmp;
|
---|
476 | BN_set_flags(r->iqmp, BN_FLG_CONSTTIME);
|
---|
477 | }
|
---|
478 | r->dirty_cnt++;
|
---|
479 |
|
---|
480 | return 1;
|
---|
481 | }
|
---|
482 |
|
---|
483 | #ifndef FIPS_MODULE
|
---|
484 | /*
|
---|
485 | * Is it better to export RSA_PRIME_INFO structure
|
---|
486 | * and related functions to let user pass a triplet?
|
---|
487 | */
|
---|
488 | int RSA_set0_multi_prime_params(RSA *r, BIGNUM *primes[], BIGNUM *exps[],
|
---|
489 | BIGNUM *coeffs[], int pnum)
|
---|
490 | {
|
---|
491 | STACK_OF(RSA_PRIME_INFO) *prime_infos, *old = NULL;
|
---|
492 | RSA_PRIME_INFO *pinfo;
|
---|
493 | int i;
|
---|
494 |
|
---|
495 | if (primes == NULL || exps == NULL || coeffs == NULL || pnum == 0)
|
---|
496 | return 0;
|
---|
497 |
|
---|
498 | prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, pnum);
|
---|
499 | if (prime_infos == NULL)
|
---|
500 | return 0;
|
---|
501 |
|
---|
502 | if (r->prime_infos != NULL)
|
---|
503 | old = r->prime_infos;
|
---|
504 |
|
---|
505 | for (i = 0; i < pnum; i++) {
|
---|
506 | pinfo = ossl_rsa_multip_info_new();
|
---|
507 | if (pinfo == NULL)
|
---|
508 | goto err;
|
---|
509 | if (primes[i] != NULL && exps[i] != NULL && coeffs[i] != NULL) {
|
---|
510 | BN_clear_free(pinfo->r);
|
---|
511 | BN_clear_free(pinfo->d);
|
---|
512 | BN_clear_free(pinfo->t);
|
---|
513 | pinfo->r = primes[i];
|
---|
514 | pinfo->d = exps[i];
|
---|
515 | pinfo->t = coeffs[i];
|
---|
516 | BN_set_flags(pinfo->r, BN_FLG_CONSTTIME);
|
---|
517 | BN_set_flags(pinfo->d, BN_FLG_CONSTTIME);
|
---|
518 | BN_set_flags(pinfo->t, BN_FLG_CONSTTIME);
|
---|
519 | } else {
|
---|
520 | ossl_rsa_multip_info_free(pinfo);
|
---|
521 | goto err;
|
---|
522 | }
|
---|
523 | (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo);
|
---|
524 | }
|
---|
525 |
|
---|
526 | r->prime_infos = prime_infos;
|
---|
527 |
|
---|
528 | if (!ossl_rsa_multip_calc_product(r)) {
|
---|
529 | r->prime_infos = old;
|
---|
530 | goto err;
|
---|
531 | }
|
---|
532 |
|
---|
533 | if (old != NULL) {
|
---|
534 | /*
|
---|
535 | * This is hard to deal with, since the old infos could
|
---|
536 | * also be set by this function and r, d, t should not
|
---|
537 | * be freed in that case. So currently, stay consistent
|
---|
538 | * with other *set0* functions: just free it...
|
---|
539 | */
|
---|
540 | sk_RSA_PRIME_INFO_pop_free(old, ossl_rsa_multip_info_free);
|
---|
541 | }
|
---|
542 |
|
---|
543 | r->version = RSA_ASN1_VERSION_MULTI;
|
---|
544 | r->dirty_cnt++;
|
---|
545 |
|
---|
546 | return 1;
|
---|
547 | err:
|
---|
548 | /* r, d, t should not be freed */
|
---|
549 | sk_RSA_PRIME_INFO_pop_free(prime_infos, ossl_rsa_multip_info_free_ex);
|
---|
550 | return 0;
|
---|
551 | }
|
---|
552 | #endif
|
---|
553 |
|
---|
554 | void RSA_get0_key(const RSA *r,
|
---|
555 | const BIGNUM **n, const BIGNUM **e, const BIGNUM **d)
|
---|
556 | {
|
---|
557 | if (n != NULL)
|
---|
558 | *n = r->n;
|
---|
559 | if (e != NULL)
|
---|
560 | *e = r->e;
|
---|
561 | if (d != NULL)
|
---|
562 | *d = r->d;
|
---|
563 | }
|
---|
564 |
|
---|
565 | void RSA_get0_factors(const RSA *r, const BIGNUM **p, const BIGNUM **q)
|
---|
566 | {
|
---|
567 | if (p != NULL)
|
---|
568 | *p = r->p;
|
---|
569 | if (q != NULL)
|
---|
570 | *q = r->q;
|
---|
571 | }
|
---|
572 |
|
---|
573 | #ifndef FIPS_MODULE
|
---|
574 | int RSA_get_multi_prime_extra_count(const RSA *r)
|
---|
575 | {
|
---|
576 | int pnum;
|
---|
577 |
|
---|
578 | pnum = sk_RSA_PRIME_INFO_num(r->prime_infos);
|
---|
579 | if (pnum <= 0)
|
---|
580 | pnum = 0;
|
---|
581 | return pnum;
|
---|
582 | }
|
---|
583 |
|
---|
584 | int RSA_get0_multi_prime_factors(const RSA *r, const BIGNUM *primes[])
|
---|
585 | {
|
---|
586 | int pnum, i;
|
---|
587 | RSA_PRIME_INFO *pinfo;
|
---|
588 |
|
---|
589 | if ((pnum = RSA_get_multi_prime_extra_count(r)) == 0)
|
---|
590 | return 0;
|
---|
591 |
|
---|
592 | /*
|
---|
593 | * return other primes
|
---|
594 | * it's caller's responsibility to allocate oth_primes[pnum]
|
---|
595 | */
|
---|
596 | for (i = 0; i < pnum; i++) {
|
---|
597 | pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i);
|
---|
598 | primes[i] = pinfo->r;
|
---|
599 | }
|
---|
600 |
|
---|
601 | return 1;
|
---|
602 | }
|
---|
603 | #endif
|
---|
604 |
|
---|
605 | void RSA_get0_crt_params(const RSA *r,
|
---|
606 | const BIGNUM **dmp1, const BIGNUM **dmq1,
|
---|
607 | const BIGNUM **iqmp)
|
---|
608 | {
|
---|
609 | if (dmp1 != NULL)
|
---|
610 | *dmp1 = r->dmp1;
|
---|
611 | if (dmq1 != NULL)
|
---|
612 | *dmq1 = r->dmq1;
|
---|
613 | if (iqmp != NULL)
|
---|
614 | *iqmp = r->iqmp;
|
---|
615 | }
|
---|
616 |
|
---|
617 | #ifndef FIPS_MODULE
|
---|
618 | int RSA_get0_multi_prime_crt_params(const RSA *r, const BIGNUM *exps[],
|
---|
619 | const BIGNUM *coeffs[])
|
---|
620 | {
|
---|
621 | int pnum;
|
---|
622 |
|
---|
623 | if ((pnum = RSA_get_multi_prime_extra_count(r)) == 0)
|
---|
624 | return 0;
|
---|
625 |
|
---|
626 | /* return other primes */
|
---|
627 | if (exps != NULL || coeffs != NULL) {
|
---|
628 | RSA_PRIME_INFO *pinfo;
|
---|
629 | int i;
|
---|
630 |
|
---|
631 | /* it's the user's job to guarantee the buffer length */
|
---|
632 | for (i = 0; i < pnum; i++) {
|
---|
633 | pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i);
|
---|
634 | if (exps != NULL)
|
---|
635 | exps[i] = pinfo->d;
|
---|
636 | if (coeffs != NULL)
|
---|
637 | coeffs[i] = pinfo->t;
|
---|
638 | }
|
---|
639 | }
|
---|
640 |
|
---|
641 | return 1;
|
---|
642 | }
|
---|
643 | #endif
|
---|
644 |
|
---|
645 | const BIGNUM *RSA_get0_n(const RSA *r)
|
---|
646 | {
|
---|
647 | return r->n;
|
---|
648 | }
|
---|
649 |
|
---|
650 | const BIGNUM *RSA_get0_e(const RSA *r)
|
---|
651 | {
|
---|
652 | return r->e;
|
---|
653 | }
|
---|
654 |
|
---|
655 | const BIGNUM *RSA_get0_d(const RSA *r)
|
---|
656 | {
|
---|
657 | return r->d;
|
---|
658 | }
|
---|
659 |
|
---|
660 | const BIGNUM *RSA_get0_p(const RSA *r)
|
---|
661 | {
|
---|
662 | return r->p;
|
---|
663 | }
|
---|
664 |
|
---|
665 | const BIGNUM *RSA_get0_q(const RSA *r)
|
---|
666 | {
|
---|
667 | return r->q;
|
---|
668 | }
|
---|
669 |
|
---|
670 | const BIGNUM *RSA_get0_dmp1(const RSA *r)
|
---|
671 | {
|
---|
672 | return r->dmp1;
|
---|
673 | }
|
---|
674 |
|
---|
675 | const BIGNUM *RSA_get0_dmq1(const RSA *r)
|
---|
676 | {
|
---|
677 | return r->dmq1;
|
---|
678 | }
|
---|
679 |
|
---|
680 | const BIGNUM *RSA_get0_iqmp(const RSA *r)
|
---|
681 | {
|
---|
682 | return r->iqmp;
|
---|
683 | }
|
---|
684 |
|
---|
685 | const RSA_PSS_PARAMS *RSA_get0_pss_params(const RSA *r)
|
---|
686 | {
|
---|
687 | #ifdef FIPS_MODULE
|
---|
688 | return NULL;
|
---|
689 | #else
|
---|
690 | return r->pss;
|
---|
691 | #endif
|
---|
692 | }
|
---|
693 |
|
---|
694 | /* Internal */
|
---|
695 | int ossl_rsa_set0_pss_params(RSA *r, RSA_PSS_PARAMS *pss)
|
---|
696 | {
|
---|
697 | #ifdef FIPS_MODULE
|
---|
698 | return 0;
|
---|
699 | #else
|
---|
700 | RSA_PSS_PARAMS_free(r->pss);
|
---|
701 | r->pss = pss;
|
---|
702 | return 1;
|
---|
703 | #endif
|
---|
704 | }
|
---|
705 |
|
---|
706 | /* Internal */
|
---|
707 | RSA_PSS_PARAMS_30 *ossl_rsa_get0_pss_params_30(RSA *r)
|
---|
708 | {
|
---|
709 | return &r->pss_params;
|
---|
710 | }
|
---|
711 |
|
---|
712 | void RSA_clear_flags(RSA *r, int flags)
|
---|
713 | {
|
---|
714 | r->flags &= ~flags;
|
---|
715 | }
|
---|
716 |
|
---|
717 | int RSA_test_flags(const RSA *r, int flags)
|
---|
718 | {
|
---|
719 | return r->flags & flags;
|
---|
720 | }
|
---|
721 |
|
---|
722 | void RSA_set_flags(RSA *r, int flags)
|
---|
723 | {
|
---|
724 | r->flags |= flags;
|
---|
725 | }
|
---|
726 |
|
---|
727 | int RSA_get_version(RSA *r)
|
---|
728 | {
|
---|
729 | /* { two-prime(0), multi(1) } */
|
---|
730 | return r->version;
|
---|
731 | }
|
---|
732 |
|
---|
733 | #ifndef FIPS_MODULE
|
---|
734 | ENGINE *RSA_get0_engine(const RSA *r)
|
---|
735 | {
|
---|
736 | return r->engine;
|
---|
737 | }
|
---|
738 |
|
---|
739 | int RSA_pkey_ctx_ctrl(EVP_PKEY_CTX *ctx, int optype, int cmd, int p1, void *p2)
|
---|
740 | {
|
---|
741 | /* If key type not RSA or RSA-PSS return error */
|
---|
742 | if (ctx != NULL && ctx->pmeth != NULL
|
---|
743 | && ctx->pmeth->pkey_id != EVP_PKEY_RSA
|
---|
744 | && ctx->pmeth->pkey_id != EVP_PKEY_RSA_PSS)
|
---|
745 | return -1;
|
---|
746 | return EVP_PKEY_CTX_ctrl(ctx, -1, optype, cmd, p1, p2);
|
---|
747 | }
|
---|
748 | #endif
|
---|
749 |
|
---|
750 | DEFINE_STACK_OF(BIGNUM)
|
---|
751 |
|
---|
752 | /*
|
---|
753 | * Note: This function deletes values from the parameter
|
---|
754 | * stack values as they are consumed and set in the RSA key.
|
---|
755 | */
|
---|
756 | int ossl_rsa_set0_all_params(RSA *r, STACK_OF(BIGNUM) *primes,
|
---|
757 | STACK_OF(BIGNUM) *exps,
|
---|
758 | STACK_OF(BIGNUM) *coeffs)
|
---|
759 | {
|
---|
760 | #ifndef FIPS_MODULE
|
---|
761 | STACK_OF(RSA_PRIME_INFO) *prime_infos, *old_infos = NULL;
|
---|
762 | #endif
|
---|
763 | int pnum;
|
---|
764 |
|
---|
765 | if (primes == NULL || exps == NULL || coeffs == NULL)
|
---|
766 | return 0;
|
---|
767 |
|
---|
768 | pnum = sk_BIGNUM_num(primes);
|
---|
769 |
|
---|
770 | /* we need at least 2 primes */
|
---|
771 | if (pnum < 2)
|
---|
772 | return 0;
|
---|
773 |
|
---|
774 | if (!RSA_set0_factors(r, sk_BIGNUM_value(primes, 0),
|
---|
775 | sk_BIGNUM_value(primes, 1)))
|
---|
776 | return 0;
|
---|
777 |
|
---|
778 | /*
|
---|
779 | * if we managed to set everything above, remove those elements from the
|
---|
780 | * stack
|
---|
781 | * Note, we do this after the above all to ensure that we have taken
|
---|
782 | * ownership of all the elements in the RSA key to avoid memory leaks
|
---|
783 | * we also use delete 0 here as we are grabbing items from the end of the
|
---|
784 | * stack rather than the start, otherwise we could use pop
|
---|
785 | */
|
---|
786 | sk_BIGNUM_delete(primes, 0);
|
---|
787 | sk_BIGNUM_delete(primes, 0);
|
---|
788 |
|
---|
789 | if (pnum == sk_BIGNUM_num(exps)
|
---|
790 | && pnum == sk_BIGNUM_num(coeffs) + 1) {
|
---|
791 |
|
---|
792 | if (!RSA_set0_crt_params(r, sk_BIGNUM_value(exps, 0),
|
---|
793 | sk_BIGNUM_value(exps, 1),
|
---|
794 | sk_BIGNUM_value(coeffs, 0)))
|
---|
795 | return 0;
|
---|
796 |
|
---|
797 | /* as above, once we consume the above params, delete them from the list */
|
---|
798 | sk_BIGNUM_delete(exps, 0);
|
---|
799 | sk_BIGNUM_delete(exps, 0);
|
---|
800 | sk_BIGNUM_delete(coeffs, 0);
|
---|
801 | }
|
---|
802 |
|
---|
803 | #ifndef FIPS_MODULE
|
---|
804 | old_infos = r->prime_infos;
|
---|
805 | #endif
|
---|
806 |
|
---|
807 | if (pnum > 2) {
|
---|
808 | #ifndef FIPS_MODULE
|
---|
809 | int i;
|
---|
810 |
|
---|
811 | prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, pnum);
|
---|
812 | if (prime_infos == NULL)
|
---|
813 | return 0;
|
---|
814 |
|
---|
815 | for (i = 2; i < pnum; i++) {
|
---|
816 | BIGNUM *prime = sk_BIGNUM_pop(primes);
|
---|
817 | BIGNUM *exp = sk_BIGNUM_pop(exps);
|
---|
818 | BIGNUM *coeff = sk_BIGNUM_pop(coeffs);
|
---|
819 | RSA_PRIME_INFO *pinfo = NULL;
|
---|
820 |
|
---|
821 | if (!ossl_assert(prime != NULL && exp != NULL && coeff != NULL))
|
---|
822 | goto err;
|
---|
823 |
|
---|
824 | /* Using ossl_rsa_multip_info_new() is wasteful, so allocate directly */
|
---|
825 | if ((pinfo = OPENSSL_zalloc(sizeof(*pinfo))) == NULL)
|
---|
826 | goto err;
|
---|
827 |
|
---|
828 | pinfo->r = prime;
|
---|
829 | pinfo->d = exp;
|
---|
830 | pinfo->t = coeff;
|
---|
831 | BN_set_flags(pinfo->r, BN_FLG_CONSTTIME);
|
---|
832 | BN_set_flags(pinfo->d, BN_FLG_CONSTTIME);
|
---|
833 | BN_set_flags(pinfo->t, BN_FLG_CONSTTIME);
|
---|
834 | (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo);
|
---|
835 | }
|
---|
836 |
|
---|
837 | r->prime_infos = prime_infos;
|
---|
838 |
|
---|
839 | if (!ossl_rsa_multip_calc_product(r)) {
|
---|
840 | r->prime_infos = old_infos;
|
---|
841 | goto err;
|
---|
842 | }
|
---|
843 | #else
|
---|
844 | return 0;
|
---|
845 | #endif
|
---|
846 | }
|
---|
847 |
|
---|
848 | #ifndef FIPS_MODULE
|
---|
849 | if (old_infos != NULL) {
|
---|
850 | /*
|
---|
851 | * This is hard to deal with, since the old infos could
|
---|
852 | * also be set by this function and r, d, t should not
|
---|
853 | * be freed in that case. So currently, stay consistent
|
---|
854 | * with other *set0* functions: just free it...
|
---|
855 | */
|
---|
856 | sk_RSA_PRIME_INFO_pop_free(old_infos, ossl_rsa_multip_info_free);
|
---|
857 | }
|
---|
858 | #endif
|
---|
859 |
|
---|
860 | r->version = pnum > 2 ? RSA_ASN1_VERSION_MULTI : RSA_ASN1_VERSION_DEFAULT;
|
---|
861 | r->dirty_cnt++;
|
---|
862 |
|
---|
863 | return 1;
|
---|
864 | #ifndef FIPS_MODULE
|
---|
865 | err:
|
---|
866 | /* r, d, t should not be freed */
|
---|
867 | sk_RSA_PRIME_INFO_pop_free(prime_infos, ossl_rsa_multip_info_free_ex);
|
---|
868 | return 0;
|
---|
869 | #endif
|
---|
870 | }
|
---|
871 |
|
---|
872 | DEFINE_SPECIAL_STACK_OF_CONST(BIGNUM_const, BIGNUM)
|
---|
873 |
|
---|
874 | int ossl_rsa_get0_all_params(RSA *r, STACK_OF(BIGNUM_const) *primes,
|
---|
875 | STACK_OF(BIGNUM_const) *exps,
|
---|
876 | STACK_OF(BIGNUM_const) *coeffs)
|
---|
877 | {
|
---|
878 | #ifndef FIPS_MODULE
|
---|
879 | RSA_PRIME_INFO *pinfo;
|
---|
880 | int i, pnum;
|
---|
881 | #endif
|
---|
882 |
|
---|
883 | if (r == NULL)
|
---|
884 | return 0;
|
---|
885 |
|
---|
886 | /* If |p| is NULL, there are no CRT parameters */
|
---|
887 | if (RSA_get0_p(r) == NULL)
|
---|
888 | return 1;
|
---|
889 |
|
---|
890 | sk_BIGNUM_const_push(primes, RSA_get0_p(r));
|
---|
891 | sk_BIGNUM_const_push(primes, RSA_get0_q(r));
|
---|
892 | sk_BIGNUM_const_push(exps, RSA_get0_dmp1(r));
|
---|
893 | sk_BIGNUM_const_push(exps, RSA_get0_dmq1(r));
|
---|
894 | sk_BIGNUM_const_push(coeffs, RSA_get0_iqmp(r));
|
---|
895 |
|
---|
896 | #ifndef FIPS_MODULE
|
---|
897 | pnum = RSA_get_multi_prime_extra_count(r);
|
---|
898 | for (i = 0; i < pnum; i++) {
|
---|
899 | pinfo = sk_RSA_PRIME_INFO_value(r->prime_infos, i);
|
---|
900 | sk_BIGNUM_const_push(primes, pinfo->r);
|
---|
901 | sk_BIGNUM_const_push(exps, pinfo->d);
|
---|
902 | sk_BIGNUM_const_push(coeffs, pinfo->t);
|
---|
903 | }
|
---|
904 | #endif
|
---|
905 |
|
---|
906 | return 1;
|
---|
907 | }
|
---|
908 |
|
---|
909 | #define safe_BN_num_bits(_k_) (((_k_) == NULL) ? 0 : BN_num_bits((_k_)))
|
---|
910 | int ossl_rsa_check_factors(RSA *r)
|
---|
911 | {
|
---|
912 | int valid = 0;
|
---|
913 | int n, i, bits;
|
---|
914 | STACK_OF(BIGNUM_const) *factors = sk_BIGNUM_const_new_null();
|
---|
915 | STACK_OF(BIGNUM_const) *exps = sk_BIGNUM_const_new_null();
|
---|
916 | STACK_OF(BIGNUM_const) *coeffs = sk_BIGNUM_const_new_null();
|
---|
917 |
|
---|
918 | if (factors == NULL || exps == NULL || coeffs == NULL)
|
---|
919 | goto done;
|
---|
920 |
|
---|
921 | /*
|
---|
922 | * Simple sanity check for RSA key. All RSA key parameters
|
---|
923 | * must be less-than/equal-to RSA parameter n.
|
---|
924 | */
|
---|
925 | ossl_rsa_get0_all_params(r, factors, exps, coeffs);
|
---|
926 | n = safe_BN_num_bits(RSA_get0_n(r));
|
---|
927 |
|
---|
928 | if (safe_BN_num_bits(RSA_get0_d(r)) > n)
|
---|
929 | goto done;
|
---|
930 |
|
---|
931 | for (i = 0; i < sk_BIGNUM_const_num(exps); i++) {
|
---|
932 | bits = safe_BN_num_bits(sk_BIGNUM_const_value(exps, i));
|
---|
933 | if (bits > n)
|
---|
934 | goto done;
|
---|
935 | }
|
---|
936 |
|
---|
937 | for (i = 0; i < sk_BIGNUM_const_num(factors); i++) {
|
---|
938 | bits = safe_BN_num_bits(sk_BIGNUM_const_value(factors, i));
|
---|
939 | if (bits > n)
|
---|
940 | goto done;
|
---|
941 | }
|
---|
942 |
|
---|
943 | for (i = 0; i < sk_BIGNUM_const_num(coeffs); i++) {
|
---|
944 | bits = safe_BN_num_bits(sk_BIGNUM_const_value(coeffs, i));
|
---|
945 | if (bits > n)
|
---|
946 | goto done;
|
---|
947 | }
|
---|
948 |
|
---|
949 | valid = 1;
|
---|
950 |
|
---|
951 | done:
|
---|
952 | sk_BIGNUM_const_free(factors);
|
---|
953 | sk_BIGNUM_const_free(exps);
|
---|
954 | sk_BIGNUM_const_free(coeffs);
|
---|
955 |
|
---|
956 | return valid;
|
---|
957 | }
|
---|
958 |
|
---|
959 | #ifndef FIPS_MODULE
|
---|
960 | /* Helpers to set or get diverse hash algorithm names */
|
---|
961 | static int int_set_rsa_md_name(EVP_PKEY_CTX *ctx,
|
---|
962 | /* For checks */
|
---|
963 | int keytype, int optype,
|
---|
964 | /* For EVP_PKEY_CTX_set_params() */
|
---|
965 | const char *mdkey, const char *mdname,
|
---|
966 | const char *propkey, const char *mdprops)
|
---|
967 | {
|
---|
968 | OSSL_PARAM params[3], *p = params;
|
---|
969 |
|
---|
970 | if (ctx == NULL || mdname == NULL || (ctx->operation & optype) == 0) {
|
---|
971 | ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
|
---|
972 | /* Uses the same return values as EVP_PKEY_CTX_ctrl */
|
---|
973 | return -2;
|
---|
974 | }
|
---|
975 |
|
---|
976 | /* If key type not RSA return error */
|
---|
977 | switch (keytype) {
|
---|
978 | case -1:
|
---|
979 | if (!EVP_PKEY_CTX_is_a(ctx, "RSA")
|
---|
980 | && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
|
---|
981 | return -1;
|
---|
982 | break;
|
---|
983 | default:
|
---|
984 | if (!EVP_PKEY_CTX_is_a(ctx, evp_pkey_type2name(keytype)))
|
---|
985 | return -1;
|
---|
986 | break;
|
---|
987 | }
|
---|
988 |
|
---|
989 | /* Cast away the const. This is read only so should be safe */
|
---|
990 | *p++ = OSSL_PARAM_construct_utf8_string(mdkey, (char *)mdname, 0);
|
---|
991 | if (evp_pkey_ctx_is_provided(ctx) && mdprops != NULL) {
|
---|
992 | /* Cast away the const. This is read only so should be safe */
|
---|
993 | *p++ = OSSL_PARAM_construct_utf8_string(propkey, (char *)mdprops, 0);
|
---|
994 | }
|
---|
995 | *p++ = OSSL_PARAM_construct_end();
|
---|
996 |
|
---|
997 | return evp_pkey_ctx_set_params_strict(ctx, params);
|
---|
998 | }
|
---|
999 |
|
---|
1000 | /* Helpers to set or get diverse hash algorithm names */
|
---|
1001 | static int int_get_rsa_md_name(EVP_PKEY_CTX *ctx,
|
---|
1002 | /* For checks */
|
---|
1003 | int keytype, int optype,
|
---|
1004 | /* For EVP_PKEY_CTX_get_params() */
|
---|
1005 | const char *mdkey,
|
---|
1006 | char *mdname, size_t mdnamesize)
|
---|
1007 | {
|
---|
1008 | OSSL_PARAM params[2], *p = params;
|
---|
1009 |
|
---|
1010 | if (ctx == NULL || mdname == NULL || (ctx->operation & optype) == 0) {
|
---|
1011 | ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
|
---|
1012 | /* Uses the same return values as EVP_PKEY_CTX_ctrl */
|
---|
1013 | return -2;
|
---|
1014 | }
|
---|
1015 |
|
---|
1016 | /* If key type not RSA return error */
|
---|
1017 | switch (keytype) {
|
---|
1018 | case -1:
|
---|
1019 | if (!EVP_PKEY_CTX_is_a(ctx, "RSA")
|
---|
1020 | && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
|
---|
1021 | return -1;
|
---|
1022 | break;
|
---|
1023 | default:
|
---|
1024 | if (!EVP_PKEY_CTX_is_a(ctx, evp_pkey_type2name(keytype)))
|
---|
1025 | return -1;
|
---|
1026 | break;
|
---|
1027 | }
|
---|
1028 |
|
---|
1029 | /* Cast away the const. This is read only so should be safe */
|
---|
1030 | *p++ = OSSL_PARAM_construct_utf8_string(mdkey, (char *)mdname, mdnamesize);
|
---|
1031 | *p++ = OSSL_PARAM_construct_end();
|
---|
1032 |
|
---|
1033 | return evp_pkey_ctx_get_params_strict(ctx, params);
|
---|
1034 | }
|
---|
1035 |
|
---|
1036 | /*
|
---|
1037 | * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
|
---|
1038 | * simply because that's easier.
|
---|
1039 | */
|
---|
1040 | int EVP_PKEY_CTX_set_rsa_padding(EVP_PKEY_CTX *ctx, int pad_mode)
|
---|
1041 | {
|
---|
1042 | return RSA_pkey_ctx_ctrl(ctx, -1, EVP_PKEY_CTRL_RSA_PADDING,
|
---|
1043 | pad_mode, NULL);
|
---|
1044 | }
|
---|
1045 |
|
---|
1046 | /*
|
---|
1047 | * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
|
---|
1048 | * simply because that's easier.
|
---|
1049 | */
|
---|
1050 | int EVP_PKEY_CTX_get_rsa_padding(EVP_PKEY_CTX *ctx, int *pad_mode)
|
---|
1051 | {
|
---|
1052 | return RSA_pkey_ctx_ctrl(ctx, -1, EVP_PKEY_CTRL_GET_RSA_PADDING,
|
---|
1053 | 0, pad_mode);
|
---|
1054 | }
|
---|
1055 |
|
---|
1056 | /*
|
---|
1057 | * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
|
---|
1058 | * simply because that's easier.
|
---|
1059 | */
|
---|
1060 | int EVP_PKEY_CTX_set_rsa_pss_keygen_md(EVP_PKEY_CTX *ctx, const EVP_MD *md)
|
---|
1061 | {
|
---|
1062 | return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,
|
---|
1063 | EVP_PKEY_CTRL_MD, 0, (void *)(md));
|
---|
1064 | }
|
---|
1065 |
|
---|
1066 | int EVP_PKEY_CTX_set_rsa_pss_keygen_md_name(EVP_PKEY_CTX *ctx,
|
---|
1067 | const char *mdname,
|
---|
1068 | const char *mdprops)
|
---|
1069 | {
|
---|
1070 | return int_set_rsa_md_name(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,
|
---|
1071 | OSSL_PKEY_PARAM_RSA_DIGEST, mdname,
|
---|
1072 | OSSL_PKEY_PARAM_RSA_DIGEST_PROPS, mdprops);
|
---|
1073 | }
|
---|
1074 |
|
---|
1075 | /*
|
---|
1076 | * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
|
---|
1077 | * simply because that's easier.
|
---|
1078 | */
|
---|
1079 | int EVP_PKEY_CTX_set_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD *md)
|
---|
1080 | {
|
---|
1081 | /* If key type not RSA return error */
|
---|
1082 | if (!EVP_PKEY_CTX_is_a(ctx, "RSA"))
|
---|
1083 | return -1;
|
---|
1084 |
|
---|
1085 | return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
|
---|
1086 | EVP_PKEY_CTRL_RSA_OAEP_MD, 0, (void *)(md));
|
---|
1087 | }
|
---|
1088 |
|
---|
1089 | int EVP_PKEY_CTX_set_rsa_oaep_md_name(EVP_PKEY_CTX *ctx, const char *mdname,
|
---|
1090 | const char *mdprops)
|
---|
1091 | {
|
---|
1092 | return
|
---|
1093 | int_set_rsa_md_name(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
|
---|
1094 | OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST, mdname,
|
---|
1095 | OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST_PROPS, mdprops);
|
---|
1096 | }
|
---|
1097 |
|
---|
1098 | int EVP_PKEY_CTX_get_rsa_oaep_md_name(EVP_PKEY_CTX *ctx, char *name,
|
---|
1099 | size_t namesize)
|
---|
1100 | {
|
---|
1101 | return int_get_rsa_md_name(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
|
---|
1102 | OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST,
|
---|
1103 | name, namesize);
|
---|
1104 | }
|
---|
1105 |
|
---|
1106 | /*
|
---|
1107 | * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
|
---|
1108 | * simply because that's easier.
|
---|
1109 | */
|
---|
1110 | int EVP_PKEY_CTX_get_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD **md)
|
---|
1111 | {
|
---|
1112 | /* If key type not RSA return error */
|
---|
1113 | if (!EVP_PKEY_CTX_is_a(ctx, "RSA"))
|
---|
1114 | return -1;
|
---|
1115 |
|
---|
1116 | return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
|
---|
1117 | EVP_PKEY_CTRL_GET_RSA_OAEP_MD, 0, (void *)md);
|
---|
1118 | }
|
---|
1119 |
|
---|
1120 | /*
|
---|
1121 | * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
|
---|
1122 | * simply because that's easier.
|
---|
1123 | */
|
---|
1124 | int EVP_PKEY_CTX_set_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md)
|
---|
1125 | {
|
---|
1126 | return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT,
|
---|
1127 | EVP_PKEY_CTRL_RSA_MGF1_MD, 0, (void *)(md));
|
---|
1128 | }
|
---|
1129 |
|
---|
1130 | int EVP_PKEY_CTX_set_rsa_mgf1_md_name(EVP_PKEY_CTX *ctx, const char *mdname,
|
---|
1131 | const char *mdprops)
|
---|
1132 | {
|
---|
1133 | return int_set_rsa_md_name(ctx, -1,
|
---|
1134 | EVP_PKEY_OP_TYPE_CRYPT | EVP_PKEY_OP_TYPE_SIG,
|
---|
1135 | OSSL_PKEY_PARAM_MGF1_DIGEST, mdname,
|
---|
1136 | OSSL_PKEY_PARAM_MGF1_PROPERTIES, mdprops);
|
---|
1137 | }
|
---|
1138 |
|
---|
1139 | int EVP_PKEY_CTX_get_rsa_mgf1_md_name(EVP_PKEY_CTX *ctx, char *name,
|
---|
1140 | size_t namesize)
|
---|
1141 | {
|
---|
1142 | return int_get_rsa_md_name(ctx, -1,
|
---|
1143 | EVP_PKEY_OP_TYPE_CRYPT | EVP_PKEY_OP_TYPE_SIG,
|
---|
1144 | OSSL_PKEY_PARAM_MGF1_DIGEST, name, namesize);
|
---|
1145 | }
|
---|
1146 |
|
---|
1147 | /*
|
---|
1148 | * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
|
---|
1149 | * simply because that's easier.
|
---|
1150 | */
|
---|
1151 | int EVP_PKEY_CTX_set_rsa_pss_keygen_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md)
|
---|
1152 | {
|
---|
1153 | return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,
|
---|
1154 | EVP_PKEY_CTRL_RSA_MGF1_MD, 0, (void *)(md));
|
---|
1155 | }
|
---|
1156 |
|
---|
1157 | int EVP_PKEY_CTX_set_rsa_pss_keygen_mgf1_md_name(EVP_PKEY_CTX *ctx,
|
---|
1158 | const char *mdname)
|
---|
1159 | {
|
---|
1160 | return int_set_rsa_md_name(ctx, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN,
|
---|
1161 | OSSL_PKEY_PARAM_MGF1_DIGEST, mdname,
|
---|
1162 | NULL, NULL);
|
---|
1163 | }
|
---|
1164 |
|
---|
1165 | /*
|
---|
1166 | * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
|
---|
1167 | * simply because that's easier.
|
---|
1168 | */
|
---|
1169 | int EVP_PKEY_CTX_get_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD **md)
|
---|
1170 | {
|
---|
1171 | return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT,
|
---|
1172 | EVP_PKEY_CTRL_GET_RSA_MGF1_MD, 0, (void *)(md));
|
---|
1173 | }
|
---|
1174 |
|
---|
1175 | int EVP_PKEY_CTX_set0_rsa_oaep_label(EVP_PKEY_CTX *ctx, void *label, int llen)
|
---|
1176 | {
|
---|
1177 | OSSL_PARAM rsa_params[2], *p = rsa_params;
|
---|
1178 | const char *empty = "";
|
---|
1179 | /*
|
---|
1180 | * Needed as we swap label with empty if it is NULL, and label is
|
---|
1181 | * freed at the end of this function.
|
---|
1182 | */
|
---|
1183 | void *plabel = label;
|
---|
1184 | int ret;
|
---|
1185 |
|
---|
1186 | if (ctx == NULL || !EVP_PKEY_CTX_IS_ASYM_CIPHER_OP(ctx)) {
|
---|
1187 | ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
|
---|
1188 | /* Uses the same return values as EVP_PKEY_CTX_ctrl */
|
---|
1189 | return -2;
|
---|
1190 | }
|
---|
1191 |
|
---|
1192 | /* If key type not RSA return error */
|
---|
1193 | if (!EVP_PKEY_CTX_is_a(ctx, "RSA"))
|
---|
1194 | return -1;
|
---|
1195 |
|
---|
1196 | /* Accept NULL for backward compatibility */
|
---|
1197 | if (label == NULL && llen == 0)
|
---|
1198 | plabel = (void *)empty;
|
---|
1199 |
|
---|
1200 | /* Cast away the const. This is read only so should be safe */
|
---|
1201 | *p++ = OSSL_PARAM_construct_octet_string(OSSL_ASYM_CIPHER_PARAM_OAEP_LABEL,
|
---|
1202 | (void *)plabel, (size_t)llen);
|
---|
1203 | *p++ = OSSL_PARAM_construct_end();
|
---|
1204 |
|
---|
1205 | ret = evp_pkey_ctx_set_params_strict(ctx, rsa_params);
|
---|
1206 | if (ret <= 0)
|
---|
1207 | return ret;
|
---|
1208 |
|
---|
1209 | /* Ownership is supposed to be transferred to the callee. */
|
---|
1210 | OPENSSL_free(label);
|
---|
1211 | return 1;
|
---|
1212 | }
|
---|
1213 |
|
---|
1214 | int EVP_PKEY_CTX_get0_rsa_oaep_label(EVP_PKEY_CTX *ctx, unsigned char **label)
|
---|
1215 | {
|
---|
1216 | OSSL_PARAM rsa_params[2], *p = rsa_params;
|
---|
1217 | size_t labellen;
|
---|
1218 |
|
---|
1219 | if (ctx == NULL || !EVP_PKEY_CTX_IS_ASYM_CIPHER_OP(ctx)) {
|
---|
1220 | ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
|
---|
1221 | /* Uses the same return values as EVP_PKEY_CTX_ctrl */
|
---|
1222 | return -2;
|
---|
1223 | }
|
---|
1224 |
|
---|
1225 | /* If key type not RSA return error */
|
---|
1226 | if (!EVP_PKEY_CTX_is_a(ctx, "RSA"))
|
---|
1227 | return -1;
|
---|
1228 |
|
---|
1229 | *p++ = OSSL_PARAM_construct_octet_ptr(OSSL_ASYM_CIPHER_PARAM_OAEP_LABEL,
|
---|
1230 | (void **)label, 0);
|
---|
1231 | *p++ = OSSL_PARAM_construct_end();
|
---|
1232 |
|
---|
1233 | if (!EVP_PKEY_CTX_get_params(ctx, rsa_params))
|
---|
1234 | return -1;
|
---|
1235 |
|
---|
1236 | labellen = rsa_params[0].return_size;
|
---|
1237 | if (labellen > INT_MAX)
|
---|
1238 | return -1;
|
---|
1239 |
|
---|
1240 | return (int)labellen;
|
---|
1241 | }
|
---|
1242 |
|
---|
1243 | /*
|
---|
1244 | * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
|
---|
1245 | * simply because that's easier.
|
---|
1246 | */
|
---|
1247 | int EVP_PKEY_CTX_set_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int saltlen)
|
---|
1248 | {
|
---|
1249 | /*
|
---|
1250 | * For some reason, the optype was set to this:
|
---|
1251 | *
|
---|
1252 | * EVP_PKEY_OP_SIGN|EVP_PKEY_OP_VERIFY
|
---|
1253 | *
|
---|
1254 | * However, we do use RSA-PSS with the whole gamut of diverse signature
|
---|
1255 | * and verification operations, so the optype gets upgraded to this:
|
---|
1256 | *
|
---|
1257 | * EVP_PKEY_OP_TYPE_SIG
|
---|
1258 | */
|
---|
1259 | return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG,
|
---|
1260 | EVP_PKEY_CTRL_RSA_PSS_SALTLEN, saltlen, NULL);
|
---|
1261 | }
|
---|
1262 |
|
---|
1263 | /*
|
---|
1264 | * This one is currently implemented as an EVP_PKEY_CTX_ctrl() wrapper,
|
---|
1265 | * simply because that's easier.
|
---|
1266 | */
|
---|
1267 | int EVP_PKEY_CTX_get_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int *saltlen)
|
---|
1268 | {
|
---|
1269 | /*
|
---|
1270 | * Because of circumstances, the optype is updated from:
|
---|
1271 | *
|
---|
1272 | * EVP_PKEY_OP_SIGN|EVP_PKEY_OP_VERIFY
|
---|
1273 | *
|
---|
1274 | * to:
|
---|
1275 | *
|
---|
1276 | * EVP_PKEY_OP_TYPE_SIG
|
---|
1277 | */
|
---|
1278 | return RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG,
|
---|
1279 | EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN, 0, saltlen);
|
---|
1280 | }
|
---|
1281 |
|
---|
1282 | int EVP_PKEY_CTX_set_rsa_pss_keygen_saltlen(EVP_PKEY_CTX *ctx, int saltlen)
|
---|
1283 | {
|
---|
1284 | OSSL_PARAM pad_params[2], *p = pad_params;
|
---|
1285 |
|
---|
1286 | if (ctx == NULL || !EVP_PKEY_CTX_IS_GEN_OP(ctx)) {
|
---|
1287 | ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
|
---|
1288 | /* Uses the same return values as EVP_PKEY_CTX_ctrl */
|
---|
1289 | return -2;
|
---|
1290 | }
|
---|
1291 |
|
---|
1292 | if (!EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
|
---|
1293 | return -1;
|
---|
1294 |
|
---|
1295 | *p++ = OSSL_PARAM_construct_int(OSSL_SIGNATURE_PARAM_PSS_SALTLEN,
|
---|
1296 | &saltlen);
|
---|
1297 | *p++ = OSSL_PARAM_construct_end();
|
---|
1298 |
|
---|
1299 | return evp_pkey_ctx_set_params_strict(ctx, pad_params);
|
---|
1300 | }
|
---|
1301 |
|
---|
1302 | int EVP_PKEY_CTX_set_rsa_keygen_bits(EVP_PKEY_CTX *ctx, int bits)
|
---|
1303 | {
|
---|
1304 | OSSL_PARAM params[2], *p = params;
|
---|
1305 | size_t bits2 = bits;
|
---|
1306 |
|
---|
1307 | if (ctx == NULL || !EVP_PKEY_CTX_IS_GEN_OP(ctx)) {
|
---|
1308 | ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
|
---|
1309 | /* Uses the same return values as EVP_PKEY_CTX_ctrl */
|
---|
1310 | return -2;
|
---|
1311 | }
|
---|
1312 |
|
---|
1313 | /* If key type not RSA return error */
|
---|
1314 | if (!EVP_PKEY_CTX_is_a(ctx, "RSA")
|
---|
1315 | && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
|
---|
1316 | return -1;
|
---|
1317 |
|
---|
1318 | *p++ = OSSL_PARAM_construct_size_t(OSSL_PKEY_PARAM_RSA_BITS, &bits2);
|
---|
1319 | *p++ = OSSL_PARAM_construct_end();
|
---|
1320 |
|
---|
1321 | return evp_pkey_ctx_set_params_strict(ctx, params);
|
---|
1322 | }
|
---|
1323 |
|
---|
1324 | int EVP_PKEY_CTX_set_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp)
|
---|
1325 | {
|
---|
1326 | int ret = RSA_pkey_ctx_ctrl(ctx, EVP_PKEY_OP_KEYGEN,
|
---|
1327 | EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP, 0, pubexp);
|
---|
1328 |
|
---|
1329 | /*
|
---|
1330 | * Satisfy memory semantics for pre-3.0 callers of
|
---|
1331 | * EVP_PKEY_CTX_set_rsa_keygen_pubexp(): their expectation is that input
|
---|
1332 | * pubexp BIGNUM becomes managed by the EVP_PKEY_CTX on success.
|
---|
1333 | */
|
---|
1334 | if (ret > 0 && evp_pkey_ctx_is_provided(ctx)) {
|
---|
1335 | BN_free(ctx->rsa_pubexp);
|
---|
1336 | ctx->rsa_pubexp = pubexp;
|
---|
1337 | }
|
---|
1338 |
|
---|
1339 | return ret;
|
---|
1340 | }
|
---|
1341 |
|
---|
1342 | int EVP_PKEY_CTX_set1_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp)
|
---|
1343 | {
|
---|
1344 | int ret = 0;
|
---|
1345 |
|
---|
1346 | /*
|
---|
1347 | * When we're dealing with a provider, there's no need to duplicate
|
---|
1348 | * pubexp, as it gets copied when transforming to an OSSL_PARAM anyway.
|
---|
1349 | */
|
---|
1350 | if (evp_pkey_ctx_is_legacy(ctx)) {
|
---|
1351 | pubexp = BN_dup(pubexp);
|
---|
1352 | if (pubexp == NULL)
|
---|
1353 | return 0;
|
---|
1354 | }
|
---|
1355 | ret = EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_KEYGEN,
|
---|
1356 | EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP, 0, pubexp);
|
---|
1357 | if (evp_pkey_ctx_is_legacy(ctx) && ret <= 0)
|
---|
1358 | BN_free(pubexp);
|
---|
1359 | return ret;
|
---|
1360 | }
|
---|
1361 |
|
---|
1362 | int EVP_PKEY_CTX_set_rsa_keygen_primes(EVP_PKEY_CTX *ctx, int primes)
|
---|
1363 | {
|
---|
1364 | OSSL_PARAM params[2], *p = params;
|
---|
1365 | size_t primes2 = primes;
|
---|
1366 |
|
---|
1367 | if (ctx == NULL || !EVP_PKEY_CTX_IS_GEN_OP(ctx)) {
|
---|
1368 | ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED);
|
---|
1369 | /* Uses the same return values as EVP_PKEY_CTX_ctrl */
|
---|
1370 | return -2;
|
---|
1371 | }
|
---|
1372 |
|
---|
1373 | /* If key type not RSA return error */
|
---|
1374 | if (!EVP_PKEY_CTX_is_a(ctx, "RSA")
|
---|
1375 | && !EVP_PKEY_CTX_is_a(ctx, "RSA-PSS"))
|
---|
1376 | return -1;
|
---|
1377 |
|
---|
1378 | *p++ = OSSL_PARAM_construct_size_t(OSSL_PKEY_PARAM_RSA_PRIMES, &primes2);
|
---|
1379 | *p++ = OSSL_PARAM_construct_end();
|
---|
1380 |
|
---|
1381 | return evp_pkey_ctx_set_params_strict(ctx, params);
|
---|
1382 | }
|
---|
1383 | #endif
|
---|