VirtualBox

source: vbox/trunk/src/libs/openssl-3.4.1/ssl/t1_lib.c@ 109052

Last change on this file since 109052 was 109052, checked in by vboxsync, 3 weeks ago

openssl-3.4.1: Applied our changes, regenerated files, added missing files and functions. This time with a three way merge. ​bugref:10890

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 133.5 KB
Line 
1/*
2 * Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10#include <stdio.h>
11#include "internal/e_os.h"
12#include <stdlib.h>
13#include <openssl/objects.h>
14#include <openssl/evp.h>
15#include <openssl/hmac.h>
16#include <openssl/core_names.h>
17#include <openssl/ocsp.h>
18#include <openssl/conf.h>
19#include <openssl/x509v3.h>
20#include <openssl/dh.h>
21#include <openssl/bn.h>
22#include <openssl/provider.h>
23#include <openssl/param_build.h>
24#include "internal/nelem.h"
25#include "internal/sizes.h"
26#include "internal/tlsgroups.h"
27#include "ssl_local.h"
28#include "quic/quic_local.h"
29#include <openssl/ct.h>
30
31static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pkey);
32static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op, const SIGALG_LOOKUP *lu);
33
34SSL3_ENC_METHOD const TLSv1_enc_data = {
35 tls1_setup_key_block,
36 tls1_generate_master_secret,
37 tls1_change_cipher_state,
38 tls1_final_finish_mac,
39 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
40 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
41 tls1_alert_code,
42 tls1_export_keying_material,
43 0,
44 ssl3_set_handshake_header,
45 tls_close_construct_packet,
46 ssl3_handshake_write
47};
48
49SSL3_ENC_METHOD const TLSv1_1_enc_data = {
50 tls1_setup_key_block,
51 tls1_generate_master_secret,
52 tls1_change_cipher_state,
53 tls1_final_finish_mac,
54 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
55 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
56 tls1_alert_code,
57 tls1_export_keying_material,
58 0,
59 ssl3_set_handshake_header,
60 tls_close_construct_packet,
61 ssl3_handshake_write
62};
63
64SSL3_ENC_METHOD const TLSv1_2_enc_data = {
65 tls1_setup_key_block,
66 tls1_generate_master_secret,
67 tls1_change_cipher_state,
68 tls1_final_finish_mac,
69 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
70 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
71 tls1_alert_code,
72 tls1_export_keying_material,
73 SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
74 | SSL_ENC_FLAG_TLS1_2_CIPHERS,
75 ssl3_set_handshake_header,
76 tls_close_construct_packet,
77 ssl3_handshake_write
78};
79
80SSL3_ENC_METHOD const TLSv1_3_enc_data = {
81 tls13_setup_key_block,
82 tls13_generate_master_secret,
83 tls13_change_cipher_state,
84 tls13_final_finish_mac,
85 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
86 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
87 tls13_alert_code,
88 tls13_export_keying_material,
89 SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
90 ssl3_set_handshake_header,
91 tls_close_construct_packet,
92 ssl3_handshake_write
93};
94
95OSSL_TIME tls1_default_timeout(void)
96{
97 /*
98 * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
99 * http, the cache would over fill
100 */
101 return ossl_seconds2time(60 * 60 * 2);
102}
103
104int tls1_new(SSL *s)
105{
106 if (!ssl3_new(s))
107 return 0;
108 if (!s->method->ssl_clear(s))
109 return 0;
110
111 return 1;
112}
113
114void tls1_free(SSL *s)
115{
116 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
117
118 if (sc == NULL)
119 return;
120
121 OPENSSL_free(sc->ext.session_ticket);
122 ssl3_free(s);
123}
124
125int tls1_clear(SSL *s)
126{
127 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
128
129 if (sc == NULL)
130 return 0;
131
132 if (!ssl3_clear(s))
133 return 0;
134
135 if (s->method->version == TLS_ANY_VERSION)
136 sc->version = TLS_MAX_VERSION_INTERNAL;
137 else
138 sc->version = s->method->version;
139
140 return 1;
141}
142
143/* Legacy NID to group_id mapping. Only works for groups we know about */
144static const struct {
145 int nid;
146 uint16_t group_id;
147} nid_to_group[] = {
148 {NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1},
149 {NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1},
150 {NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2},
151 {NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1},
152 {NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2},
153 {NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1},
154 {NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1},
155 {NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1},
156 {NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1},
157 {NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1},
158 {NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1},
159 {NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1},
160 {NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1},
161 {NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1},
162 {NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1},
163 {NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1},
164 {NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2},
165 {NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1},
166 {NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1},
167 {NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1},
168 {NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1},
169 {NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1},
170 {NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1},
171 {NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1},
172 {NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1},
173 {NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1},
174 {NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1},
175 {NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1},
176 {EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519},
177 {EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448},
178 {NID_brainpoolP256r1tls13, OSSL_TLS_GROUP_ID_brainpoolP256r1_tls13},
179 {NID_brainpoolP384r1tls13, OSSL_TLS_GROUP_ID_brainpoolP384r1_tls13},
180 {NID_brainpoolP512r1tls13, OSSL_TLS_GROUP_ID_brainpoolP512r1_tls13},
181 {NID_id_tc26_gost_3410_2012_256_paramSetA, OSSL_TLS_GROUP_ID_gc256A},
182 {NID_id_tc26_gost_3410_2012_256_paramSetB, OSSL_TLS_GROUP_ID_gc256B},
183 {NID_id_tc26_gost_3410_2012_256_paramSetC, OSSL_TLS_GROUP_ID_gc256C},
184 {NID_id_tc26_gost_3410_2012_256_paramSetD, OSSL_TLS_GROUP_ID_gc256D},
185 {NID_id_tc26_gost_3410_2012_512_paramSetA, OSSL_TLS_GROUP_ID_gc512A},
186 {NID_id_tc26_gost_3410_2012_512_paramSetB, OSSL_TLS_GROUP_ID_gc512B},
187 {NID_id_tc26_gost_3410_2012_512_paramSetC, OSSL_TLS_GROUP_ID_gc512C},
188 {NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048},
189 {NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072},
190 {NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096},
191 {NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144},
192 {NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192}
193};
194
195static const unsigned char ecformats_default[] = {
196 TLSEXT_ECPOINTFORMAT_uncompressed,
197 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
198 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
199};
200
201/* The default curves */
202static const uint16_t supported_groups_default[] = {
203 OSSL_TLS_GROUP_ID_x25519, /* X25519 (29) */
204 OSSL_TLS_GROUP_ID_secp256r1, /* secp256r1 (23) */
205 OSSL_TLS_GROUP_ID_x448, /* X448 (30) */
206 OSSL_TLS_GROUP_ID_secp521r1, /* secp521r1 (25) */
207 OSSL_TLS_GROUP_ID_secp384r1, /* secp384r1 (24) */
208 OSSL_TLS_GROUP_ID_gc256A, /* GC256A (34) */
209 OSSL_TLS_GROUP_ID_gc256B, /* GC256B (35) */
210 OSSL_TLS_GROUP_ID_gc256C, /* GC256C (36) */
211 OSSL_TLS_GROUP_ID_gc256D, /* GC256D (37) */
212 OSSL_TLS_GROUP_ID_gc512A, /* GC512A (38) */
213 OSSL_TLS_GROUP_ID_gc512B, /* GC512B (39) */
214 OSSL_TLS_GROUP_ID_gc512C, /* GC512C (40) */
215 OSSL_TLS_GROUP_ID_ffdhe2048, /* ffdhe2048 (0x100) */
216 OSSL_TLS_GROUP_ID_ffdhe3072, /* ffdhe3072 (0x101) */
217 OSSL_TLS_GROUP_ID_ffdhe4096, /* ffdhe4096 (0x102) */
218 OSSL_TLS_GROUP_ID_ffdhe6144, /* ffdhe6144 (0x103) */
219 OSSL_TLS_GROUP_ID_ffdhe8192, /* ffdhe8192 (0x104) */
220};
221
222static const uint16_t suiteb_curves[] = {
223 OSSL_TLS_GROUP_ID_secp256r1,
224 OSSL_TLS_GROUP_ID_secp384r1,
225};
226
227struct provider_ctx_data_st {
228 SSL_CTX *ctx;
229 OSSL_PROVIDER *provider;
230};
231
232#define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE 10
233static OSSL_CALLBACK add_provider_groups;
234static int add_provider_groups(const OSSL_PARAM params[], void *data)
235{
236 struct provider_ctx_data_st *pgd = data;
237 SSL_CTX *ctx = pgd->ctx;
238 OSSL_PROVIDER *provider = pgd->provider;
239 const OSSL_PARAM *p;
240 TLS_GROUP_INFO *ginf = NULL;
241 EVP_KEYMGMT *keymgmt;
242 unsigned int gid;
243 unsigned int is_kem = 0;
244 int ret = 0;
245
246 if (ctx->group_list_max_len == ctx->group_list_len) {
247 TLS_GROUP_INFO *tmp = NULL;
248
249 if (ctx->group_list_max_len == 0)
250 tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)
251 * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
252 else
253 tmp = OPENSSL_realloc(ctx->group_list,
254 (ctx->group_list_max_len
255 + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)
256 * sizeof(TLS_GROUP_INFO));
257 if (tmp == NULL)
258 return 0;
259 ctx->group_list = tmp;
260 memset(tmp + ctx->group_list_max_len,
261 0,
262 sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
263 ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
264 }
265
266 ginf = &ctx->group_list[ctx->group_list_len];
267
268 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
269 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
270 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
271 goto err;
272 }
273 ginf->tlsname = OPENSSL_strdup(p->data);
274 if (ginf->tlsname == NULL)
275 goto err;
276
277 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
278 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
279 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
280 goto err;
281 }
282 ginf->realname = OPENSSL_strdup(p->data);
283 if (ginf->realname == NULL)
284 goto err;
285
286 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
287 if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
288 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
289 goto err;
290 }
291 ginf->group_id = (uint16_t)gid;
292
293 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
294 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
295 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
296 goto err;
297 }
298 ginf->algorithm = OPENSSL_strdup(p->data);
299 if (ginf->algorithm == NULL)
300 goto err;
301
302 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
303 if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
304 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
305 goto err;
306 }
307
308 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
309 if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
310 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
311 goto err;
312 }
313 ginf->is_kem = 1 & is_kem;
314
315 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
316 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
317 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
318 goto err;
319 }
320
321 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
322 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
323 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
324 goto err;
325 }
326
327 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
328 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
329 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
330 goto err;
331 }
332
333 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
334 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
335 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
336 goto err;
337 }
338 /*
339 * Now check that the algorithm is actually usable for our property query
340 * string. Regardless of the result we still return success because we have
341 * successfully processed this group, even though we may decide not to use
342 * it.
343 */
344 ret = 1;
345 ERR_set_mark();
346 keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
347 if (keymgmt != NULL) {
348 /*
349 * We have successfully fetched the algorithm - however if the provider
350 * doesn't match this one then we ignore it.
351 *
352 * Note: We're cheating a little here. Technically if the same algorithm
353 * is available from more than one provider then it is undefined which
354 * implementation you will get back. Theoretically this could be
355 * different every time...we assume here that you'll always get the
356 * same one back if you repeat the exact same fetch. Is this a reasonable
357 * assumption to make (in which case perhaps we should document this
358 * behaviour)?
359 */
360 if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
361 /* We have a match - so we will use this group */
362 ctx->group_list_len++;
363 ginf = NULL;
364 }
365 EVP_KEYMGMT_free(keymgmt);
366 }
367 ERR_pop_to_mark();
368 err:
369 if (ginf != NULL) {
370 OPENSSL_free(ginf->tlsname);
371 OPENSSL_free(ginf->realname);
372 OPENSSL_free(ginf->algorithm);
373 ginf->algorithm = ginf->tlsname = ginf->realname = NULL;
374 }
375 return ret;
376}
377
378static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
379{
380 struct provider_ctx_data_st pgd;
381
382 pgd.ctx = vctx;
383 pgd.provider = provider;
384 return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
385 add_provider_groups, &pgd);
386}
387
388int ssl_load_groups(SSL_CTX *ctx)
389{
390 size_t i, j, num_deflt_grps = 0;
391 uint16_t tmp_supp_groups[OSSL_NELEM(supported_groups_default)];
392
393 if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
394 return 0;
395
396 for (i = 0; i < OSSL_NELEM(supported_groups_default); i++) {
397 for (j = 0; j < ctx->group_list_len; j++) {
398 if (ctx->group_list[j].group_id == supported_groups_default[i]) {
399 tmp_supp_groups[num_deflt_grps++] = ctx->group_list[j].group_id;
400 break;
401 }
402 }
403 }
404
405 if (num_deflt_grps == 0)
406 return 1;
407
408 ctx->ext.supported_groups_default
409 = OPENSSL_malloc(sizeof(uint16_t) * num_deflt_grps);
410
411 if (ctx->ext.supported_groups_default == NULL)
412 return 0;
413
414 memcpy(ctx->ext.supported_groups_default,
415 tmp_supp_groups,
416 num_deflt_grps * sizeof(tmp_supp_groups[0]));
417 ctx->ext.supported_groups_default_len = num_deflt_grps;
418
419 return 1;
420}
421
422#define TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE 10
423static OSSL_CALLBACK add_provider_sigalgs;
424static int add_provider_sigalgs(const OSSL_PARAM params[], void *data)
425{
426 struct provider_ctx_data_st *pgd = data;
427 SSL_CTX *ctx = pgd->ctx;
428 OSSL_PROVIDER *provider = pgd->provider;
429 const OSSL_PARAM *p;
430 TLS_SIGALG_INFO *sinf = NULL;
431 EVP_KEYMGMT *keymgmt;
432 const char *keytype;
433 unsigned int code_point = 0;
434 int ret = 0;
435
436 if (ctx->sigalg_list_max_len == ctx->sigalg_list_len) {
437 TLS_SIGALG_INFO *tmp = NULL;
438
439 if (ctx->sigalg_list_max_len == 0)
440 tmp = OPENSSL_malloc(sizeof(TLS_SIGALG_INFO)
441 * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
442 else
443 tmp = OPENSSL_realloc(ctx->sigalg_list,
444 (ctx->sigalg_list_max_len
445 + TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE)
446 * sizeof(TLS_SIGALG_INFO));
447 if (tmp == NULL)
448 return 0;
449 ctx->sigalg_list = tmp;
450 memset(tmp + ctx->sigalg_list_max_len, 0,
451 sizeof(TLS_SIGALG_INFO) * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
452 ctx->sigalg_list_max_len += TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE;
453 }
454
455 sinf = &ctx->sigalg_list[ctx->sigalg_list_len];
456
457 /* First, mandatory parameters */
458 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_NAME);
459 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
460 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
461 goto err;
462 }
463 OPENSSL_free(sinf->sigalg_name);
464 sinf->sigalg_name = OPENSSL_strdup(p->data);
465 if (sinf->sigalg_name == NULL)
466 goto err;
467
468 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_IANA_NAME);
469 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
470 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
471 goto err;
472 }
473 OPENSSL_free(sinf->name);
474 sinf->name = OPENSSL_strdup(p->data);
475 if (sinf->name == NULL)
476 goto err;
477
478 p = OSSL_PARAM_locate_const(params,
479 OSSL_CAPABILITY_TLS_SIGALG_CODE_POINT);
480 if (p == NULL
481 || !OSSL_PARAM_get_uint(p, &code_point)
482 || code_point > UINT16_MAX) {
483 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
484 goto err;
485 }
486 sinf->code_point = (uint16_t)code_point;
487
488 p = OSSL_PARAM_locate_const(params,
489 OSSL_CAPABILITY_TLS_SIGALG_SECURITY_BITS);
490 if (p == NULL || !OSSL_PARAM_get_uint(p, &sinf->secbits)) {
491 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
492 goto err;
493 }
494
495 /* Now, optional parameters */
496 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_OID);
497 if (p == NULL) {
498 sinf->sigalg_oid = NULL;
499 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
500 goto err;
501 } else {
502 OPENSSL_free(sinf->sigalg_oid);
503 sinf->sigalg_oid = OPENSSL_strdup(p->data);
504 if (sinf->sigalg_oid == NULL)
505 goto err;
506 }
507
508 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_NAME);
509 if (p == NULL) {
510 sinf->sig_name = NULL;
511 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
512 goto err;
513 } else {
514 OPENSSL_free(sinf->sig_name);
515 sinf->sig_name = OPENSSL_strdup(p->data);
516 if (sinf->sig_name == NULL)
517 goto err;
518 }
519
520 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_OID);
521 if (p == NULL) {
522 sinf->sig_oid = NULL;
523 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
524 goto err;
525 } else {
526 OPENSSL_free(sinf->sig_oid);
527 sinf->sig_oid = OPENSSL_strdup(p->data);
528 if (sinf->sig_oid == NULL)
529 goto err;
530 }
531
532 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_NAME);
533 if (p == NULL) {
534 sinf->hash_name = NULL;
535 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
536 goto err;
537 } else {
538 OPENSSL_free(sinf->hash_name);
539 sinf->hash_name = OPENSSL_strdup(p->data);
540 if (sinf->hash_name == NULL)
541 goto err;
542 }
543
544 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_OID);
545 if (p == NULL) {
546 sinf->hash_oid = NULL;
547 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
548 goto err;
549 } else {
550 OPENSSL_free(sinf->hash_oid);
551 sinf->hash_oid = OPENSSL_strdup(p->data);
552 if (sinf->hash_oid == NULL)
553 goto err;
554 }
555
556 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE);
557 if (p == NULL) {
558 sinf->keytype = NULL;
559 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
560 goto err;
561 } else {
562 OPENSSL_free(sinf->keytype);
563 sinf->keytype = OPENSSL_strdup(p->data);
564 if (sinf->keytype == NULL)
565 goto err;
566 }
567
568 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE_OID);
569 if (p == NULL) {
570 sinf->keytype_oid = NULL;
571 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
572 goto err;
573 } else {
574 OPENSSL_free(sinf->keytype_oid);
575 sinf->keytype_oid = OPENSSL_strdup(p->data);
576 if (sinf->keytype_oid == NULL)
577 goto err;
578 }
579
580 /* The remaining parameters below are mandatory again */
581 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_TLS);
582 if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->mintls)) {
583 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
584 goto err;
585 }
586 if ((sinf->mintls != 0) && (sinf->mintls != -1) &&
587 ((sinf->mintls < TLS1_3_VERSION))) {
588 /* ignore this sigalg as this OpenSSL doesn't know how to handle it */
589 ret = 1;
590 goto err;
591 }
592
593 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_TLS);
594 if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->maxtls)) {
595 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
596 goto err;
597 }
598 if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
599 ((sinf->maxtls < sinf->mintls))) {
600 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
601 goto err;
602 }
603 if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
604 ((sinf->maxtls < TLS1_3_VERSION))) {
605 /* ignore this sigalg as this OpenSSL doesn't know how to handle it */
606 ret = 1;
607 goto err;
608 }
609
610 /*
611 * Now check that the algorithm is actually usable for our property query
612 * string. Regardless of the result we still return success because we have
613 * successfully processed this signature, even though we may decide not to
614 * use it.
615 */
616 ret = 1;
617 ERR_set_mark();
618 keytype = (sinf->keytype != NULL
619 ? sinf->keytype
620 : (sinf->sig_name != NULL
621 ? sinf->sig_name
622 : sinf->sigalg_name));
623 keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, keytype, ctx->propq);
624 if (keymgmt != NULL) {
625 /*
626 * We have successfully fetched the algorithm - however if the provider
627 * doesn't match this one then we ignore it.
628 *
629 * Note: We're cheating a little here. Technically if the same algorithm
630 * is available from more than one provider then it is undefined which
631 * implementation you will get back. Theoretically this could be
632 * different every time...we assume here that you'll always get the
633 * same one back if you repeat the exact same fetch. Is this a reasonable
634 * assumption to make (in which case perhaps we should document this
635 * behaviour)?
636 */
637 if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
638 /*
639 * We have a match - so we could use this signature;
640 * Check proper object registration first, though.
641 * Don't care about return value as this may have been
642 * done within providers or previous calls to
643 * add_provider_sigalgs.
644 */
645 OBJ_create(sinf->sigalg_oid, sinf->sigalg_name, NULL);
646 /* sanity check: Without successful registration don't use alg */
647 if ((OBJ_txt2nid(sinf->sigalg_name) == NID_undef) ||
648 (OBJ_nid2obj(OBJ_txt2nid(sinf->sigalg_name)) == NULL)) {
649 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
650 goto err;
651 }
652 if (sinf->sig_name != NULL)
653 OBJ_create(sinf->sig_oid, sinf->sig_name, NULL);
654 if (sinf->keytype != NULL)
655 OBJ_create(sinf->keytype_oid, sinf->keytype, NULL);
656 if (sinf->hash_name != NULL)
657 OBJ_create(sinf->hash_oid, sinf->hash_name, NULL);
658 OBJ_add_sigid(OBJ_txt2nid(sinf->sigalg_name),
659 (sinf->hash_name != NULL
660 ? OBJ_txt2nid(sinf->hash_name)
661 : NID_undef),
662 OBJ_txt2nid(keytype));
663 ctx->sigalg_list_len++;
664 sinf = NULL;
665 }
666 EVP_KEYMGMT_free(keymgmt);
667 }
668 ERR_pop_to_mark();
669 err:
670 if (sinf != NULL) {
671 OPENSSL_free(sinf->name);
672 sinf->name = NULL;
673 OPENSSL_free(sinf->sigalg_name);
674 sinf->sigalg_name = NULL;
675 OPENSSL_free(sinf->sigalg_oid);
676 sinf->sigalg_oid = NULL;
677 OPENSSL_free(sinf->sig_name);
678 sinf->sig_name = NULL;
679 OPENSSL_free(sinf->sig_oid);
680 sinf->sig_oid = NULL;
681 OPENSSL_free(sinf->hash_name);
682 sinf->hash_name = NULL;
683 OPENSSL_free(sinf->hash_oid);
684 sinf->hash_oid = NULL;
685 OPENSSL_free(sinf->keytype);
686 sinf->keytype = NULL;
687 OPENSSL_free(sinf->keytype_oid);
688 sinf->keytype_oid = NULL;
689 }
690 return ret;
691}
692
693static int discover_provider_sigalgs(OSSL_PROVIDER *provider, void *vctx)
694{
695 struct provider_ctx_data_st pgd;
696
697 pgd.ctx = vctx;
698 pgd.provider = provider;
699 OSSL_PROVIDER_get_capabilities(provider, "TLS-SIGALG",
700 add_provider_sigalgs, &pgd);
701 /*
702 * Always OK, even if provider doesn't support the capability:
703 * Reconsider testing retval when legacy sigalgs are also loaded this way.
704 */
705 return 1;
706}
707
708int ssl_load_sigalgs(SSL_CTX *ctx)
709{
710 size_t i;
711 SSL_CERT_LOOKUP lu;
712
713 if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_sigalgs, ctx))
714 return 0;
715
716 /* now populate ctx->ssl_cert_info */
717 if (ctx->sigalg_list_len > 0) {
718 OPENSSL_free(ctx->ssl_cert_info);
719 ctx->ssl_cert_info = OPENSSL_zalloc(sizeof(lu) * ctx->sigalg_list_len);
720 if (ctx->ssl_cert_info == NULL)
721 return 0;
722 for(i = 0; i < ctx->sigalg_list_len; i++) {
723 ctx->ssl_cert_info[i].nid = OBJ_txt2nid(ctx->sigalg_list[i].sigalg_name);
724 ctx->ssl_cert_info[i].amask = SSL_aANY;
725 }
726 }
727
728 /*
729 * For now, leave it at this: legacy sigalgs stay in their own
730 * data structures until "legacy cleanup" occurs.
731 */
732
733 return 1;
734}
735
736static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
737{
738 size_t i;
739
740 for (i = 0; i < ctx->group_list_len; i++) {
741 if (strcmp(ctx->group_list[i].tlsname, name) == 0
742 || strcmp(ctx->group_list[i].realname, name) == 0)
743 return ctx->group_list[i].group_id;
744 }
745
746 return 0;
747}
748
749const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
750{
751 size_t i;
752
753 for (i = 0; i < ctx->group_list_len; i++) {
754 if (ctx->group_list[i].group_id == group_id)
755 return &ctx->group_list[i];
756 }
757
758 return NULL;
759}
760
761const char *tls1_group_id2name(SSL_CTX *ctx, uint16_t group_id)
762{
763 const TLS_GROUP_INFO *tls_group_info = tls1_group_id_lookup(ctx, group_id);
764
765 if (tls_group_info == NULL)
766 return NULL;
767
768 return tls_group_info->tlsname;
769}
770
771int tls1_group_id2nid(uint16_t group_id, int include_unknown)
772{
773 size_t i;
774
775 if (group_id == 0)
776 return NID_undef;
777
778 /*
779 * Return well known Group NIDs - for backwards compatibility. This won't
780 * work for groups we don't know about.
781 */
782 for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
783 {
784 if (nid_to_group[i].group_id == group_id)
785 return nid_to_group[i].nid;
786 }
787 if (!include_unknown)
788 return NID_undef;
789 return TLSEXT_nid_unknown | (int)group_id;
790}
791
792uint16_t tls1_nid2group_id(int nid)
793{
794 size_t i;
795
796 /*
797 * Return well known Group ids - for backwards compatibility. This won't
798 * work for groups we don't know about.
799 */
800 for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
801 {
802 if (nid_to_group[i].nid == nid)
803 return nid_to_group[i].group_id;
804 }
805
806 return 0;
807}
808
809/*
810 * Set *pgroups to the supported groups list and *pgroupslen to
811 * the number of groups supported.
812 */
813void tls1_get_supported_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
814 size_t *pgroupslen)
815{
816 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
817
818 /* For Suite B mode only include P-256, P-384 */
819 switch (tls1_suiteb(s)) {
820 case SSL_CERT_FLAG_SUITEB_128_LOS:
821 *pgroups = suiteb_curves;
822 *pgroupslen = OSSL_NELEM(suiteb_curves);
823 break;
824
825 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
826 *pgroups = suiteb_curves;
827 *pgroupslen = 1;
828 break;
829
830 case SSL_CERT_FLAG_SUITEB_192_LOS:
831 *pgroups = suiteb_curves + 1;
832 *pgroupslen = 1;
833 break;
834
835 default:
836 if (s->ext.supportedgroups == NULL) {
837 *pgroups = sctx->ext.supported_groups_default;
838 *pgroupslen = sctx->ext.supported_groups_default_len;
839 } else {
840 *pgroups = s->ext.supportedgroups;
841 *pgroupslen = s->ext.supportedgroups_len;
842 }
843 break;
844 }
845}
846
847int tls_valid_group(SSL_CONNECTION *s, uint16_t group_id,
848 int minversion, int maxversion,
849 int isec, int *okfortls13)
850{
851 const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
852 group_id);
853 int ret;
854 int group_minversion, group_maxversion;
855
856 if (okfortls13 != NULL)
857 *okfortls13 = 0;
858
859 if (ginfo == NULL)
860 return 0;
861
862 group_minversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->mindtls : ginfo->mintls;
863 group_maxversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->maxdtls : ginfo->maxtls;
864
865 if (group_minversion < 0 || group_maxversion < 0)
866 return 0;
867 if (group_maxversion == 0)
868 ret = 1;
869 else
870 ret = (ssl_version_cmp(s, minversion, group_maxversion) <= 0);
871 if (group_minversion > 0)
872 ret &= (ssl_version_cmp(s, maxversion, group_minversion) >= 0);
873
874 if (!SSL_CONNECTION_IS_DTLS(s)) {
875 if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
876 *okfortls13 = (group_maxversion == 0)
877 || (group_maxversion >= TLS1_3_VERSION);
878 }
879 ret &= !isec
880 || strcmp(ginfo->algorithm, "EC") == 0
881 || strcmp(ginfo->algorithm, "X25519") == 0
882 || strcmp(ginfo->algorithm, "X448") == 0;
883
884 return ret;
885}
886
887/* See if group is allowed by security callback */
888int tls_group_allowed(SSL_CONNECTION *s, uint16_t group, int op)
889{
890 const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
891 group);
892 unsigned char gtmp[2];
893
894 if (ginfo == NULL)
895 return 0;
896
897 gtmp[0] = group >> 8;
898 gtmp[1] = group & 0xff;
899 return ssl_security(s, op, ginfo->secbits,
900 tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
901}
902
903/* Return 1 if "id" is in "list" */
904static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
905{
906 size_t i;
907 for (i = 0; i < listlen; i++)
908 if (list[i] == id)
909 return 1;
910 return 0;
911}
912
913/*-
914 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
915 * if there is no match.
916 * For nmatch == -1, return number of matches
917 * For nmatch == -2, return the id of the group to use for
918 * a tmp key, or 0 if there is no match.
919 */
920uint16_t tls1_shared_group(SSL_CONNECTION *s, int nmatch)
921{
922 const uint16_t *pref, *supp;
923 size_t num_pref, num_supp, i;
924 int k;
925 SSL_CTX *ctx = SSL_CONNECTION_GET_CTX(s);
926
927 /* Can't do anything on client side */
928 if (s->server == 0)
929 return 0;
930 if (nmatch == -2) {
931 if (tls1_suiteb(s)) {
932 /*
933 * For Suite B ciphersuite determines curve: we already know
934 * these are acceptable due to previous checks.
935 */
936 unsigned long cid = s->s3.tmp.new_cipher->id;
937
938 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
939 return OSSL_TLS_GROUP_ID_secp256r1;
940 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
941 return OSSL_TLS_GROUP_ID_secp384r1;
942 /* Should never happen */
943 return 0;
944 }
945 /* If not Suite B just return first preference shared curve */
946 nmatch = 0;
947 }
948 /*
949 * If server preference set, our groups are the preference order
950 * otherwise peer decides.
951 */
952 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
953 tls1_get_supported_groups(s, &pref, &num_pref);
954 tls1_get_peer_groups(s, &supp, &num_supp);
955 } else {
956 tls1_get_peer_groups(s, &pref, &num_pref);
957 tls1_get_supported_groups(s, &supp, &num_supp);
958 }
959
960 for (k = 0, i = 0; i < num_pref; i++) {
961 uint16_t id = pref[i];
962 const TLS_GROUP_INFO *inf;
963 int minversion, maxversion;
964
965 if (!tls1_in_list(id, supp, num_supp)
966 || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
967 continue;
968 inf = tls1_group_id_lookup(ctx, id);
969 if (!ossl_assert(inf != NULL))
970 return 0;
971
972 minversion = SSL_CONNECTION_IS_DTLS(s)
973 ? inf->mindtls : inf->mintls;
974 maxversion = SSL_CONNECTION_IS_DTLS(s)
975 ? inf->maxdtls : inf->maxtls;
976 if (maxversion == -1)
977 continue;
978 if ((minversion != 0 && ssl_version_cmp(s, s->version, minversion) < 0)
979 || (maxversion != 0
980 && ssl_version_cmp(s, s->version, maxversion) > 0))
981 continue;
982
983 if (nmatch == k)
984 return id;
985 k++;
986 }
987 if (nmatch == -1)
988 return k;
989 /* Out of range (nmatch > k). */
990 return 0;
991}
992
993int tls1_set_groups(uint16_t **pext, size_t *pextlen,
994 int *groups, size_t ngroups)
995{
996 uint16_t *glist;
997 size_t i;
998 /*
999 * Bitmap of groups included to detect duplicates: two variables are added
1000 * to detect duplicates as some values are more than 32.
1001 */
1002 unsigned long *dup_list = NULL;
1003 unsigned long dup_list_egrp = 0;
1004 unsigned long dup_list_dhgrp = 0;
1005
1006 if (ngroups == 0) {
1007 ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
1008 return 0;
1009 }
1010 if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL)
1011 return 0;
1012 for (i = 0; i < ngroups; i++) {
1013 unsigned long idmask;
1014 uint16_t id;
1015 id = tls1_nid2group_id(groups[i]);
1016 if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
1017 goto err;
1018 idmask = 1L << (id & 0x00FF);
1019 dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
1020 if (!id || ((*dup_list) & idmask))
1021 goto err;
1022 *dup_list |= idmask;
1023 glist[i] = id;
1024 }
1025 OPENSSL_free(*pext);
1026 *pext = glist;
1027 *pextlen = ngroups;
1028 return 1;
1029err:
1030 OPENSSL_free(glist);
1031 return 0;
1032}
1033
1034# define GROUPLIST_INCREMENT 40
1035# define GROUP_NAME_BUFFER_LENGTH 64
1036typedef struct {
1037 SSL_CTX *ctx;
1038 size_t gidcnt;
1039 size_t gidmax;
1040 uint16_t *gid_arr;
1041} gid_cb_st;
1042
1043static int gid_cb(const char *elem, int len, void *arg)
1044{
1045 gid_cb_st *garg = arg;
1046 size_t i;
1047 uint16_t gid = 0;
1048 char etmp[GROUP_NAME_BUFFER_LENGTH];
1049 int ignore_unknown = 0;
1050
1051 if (elem == NULL)
1052 return 0;
1053 if (elem[0] == '?') {
1054 ignore_unknown = 1;
1055 ++elem;
1056 --len;
1057 }
1058 if (garg->gidcnt == garg->gidmax) {
1059 uint16_t *tmp =
1060 OPENSSL_realloc(garg->gid_arr,
1061 (garg->gidmax + GROUPLIST_INCREMENT) * sizeof(*garg->gid_arr));
1062 if (tmp == NULL)
1063 return 0;
1064 garg->gidmax += GROUPLIST_INCREMENT;
1065 garg->gid_arr = tmp;
1066 }
1067 if (len > (int)(sizeof(etmp) - 1))
1068 return 0;
1069 memcpy(etmp, elem, len);
1070 etmp[len] = 0;
1071
1072 gid = tls1_group_name2id(garg->ctx, etmp);
1073 if (gid == 0) {
1074 /* Unknown group - ignore, if ignore_unknown */
1075 return ignore_unknown;
1076 }
1077 for (i = 0; i < garg->gidcnt; i++)
1078 if (garg->gid_arr[i] == gid) {
1079 /* Duplicate group - ignore */
1080 return 1;
1081 }
1082 garg->gid_arr[garg->gidcnt++] = gid;
1083 return 1;
1084}
1085
1086/* Set groups based on a colon separated list */
1087int tls1_set_groups_list(SSL_CTX *ctx, uint16_t **pext, size_t *pextlen,
1088 const char *str)
1089{
1090 gid_cb_st gcb;
1091 uint16_t *tmparr;
1092 int ret = 0;
1093
1094 gcb.gidcnt = 0;
1095 gcb.gidmax = GROUPLIST_INCREMENT;
1096 gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr));
1097 if (gcb.gid_arr == NULL)
1098 return 0;
1099 gcb.ctx = ctx;
1100 if (!CONF_parse_list(str, ':', 1, gid_cb, &gcb))
1101 goto end;
1102 if (gcb.gidcnt == 0) {
1103 ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
1104 "No valid groups in '%s'", str);
1105 goto end;
1106 }
1107 if (pext == NULL) {
1108 ret = 1;
1109 goto end;
1110 }
1111
1112 /*
1113 * gid_cb ensurse there are no duplicates so we can just go ahead and set
1114 * the result
1115 */
1116 tmparr = OPENSSL_memdup(gcb.gid_arr, gcb.gidcnt * sizeof(*tmparr));
1117 if (tmparr == NULL)
1118 goto end;
1119 OPENSSL_free(*pext);
1120 *pext = tmparr;
1121 *pextlen = gcb.gidcnt;
1122 ret = 1;
1123 end:
1124 OPENSSL_free(gcb.gid_arr);
1125 return ret;
1126}
1127
1128/* Check a group id matches preferences */
1129int tls1_check_group_id(SSL_CONNECTION *s, uint16_t group_id,
1130 int check_own_groups)
1131 {
1132 const uint16_t *groups;
1133 size_t groups_len;
1134
1135 if (group_id == 0)
1136 return 0;
1137
1138 /* Check for Suite B compliance */
1139 if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
1140 unsigned long cid = s->s3.tmp.new_cipher->id;
1141
1142 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
1143 if (group_id != OSSL_TLS_GROUP_ID_secp256r1)
1144 return 0;
1145 } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
1146 if (group_id != OSSL_TLS_GROUP_ID_secp384r1)
1147 return 0;
1148 } else {
1149 /* Should never happen */
1150 return 0;
1151 }
1152 }
1153
1154 if (check_own_groups) {
1155 /* Check group is one of our preferences */
1156 tls1_get_supported_groups(s, &groups, &groups_len);
1157 if (!tls1_in_list(group_id, groups, groups_len))
1158 return 0;
1159 }
1160
1161 if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
1162 return 0;
1163
1164 /* For clients, nothing more to check */
1165 if (!s->server)
1166 return 1;
1167
1168 /* Check group is one of peers preferences */
1169 tls1_get_peer_groups(s, &groups, &groups_len);
1170
1171 /*
1172 * RFC 4492 does not require the supported elliptic curves extension
1173 * so if it is not sent we can just choose any curve.
1174 * It is invalid to send an empty list in the supported groups
1175 * extension, so groups_len == 0 always means no extension.
1176 */
1177 if (groups_len == 0)
1178 return 1;
1179 return tls1_in_list(group_id, groups, groups_len);
1180}
1181
1182void tls1_get_formatlist(SSL_CONNECTION *s, const unsigned char **pformats,
1183 size_t *num_formats)
1184{
1185 /*
1186 * If we have a custom point format list use it otherwise use default
1187 */
1188 if (s->ext.ecpointformats) {
1189 *pformats = s->ext.ecpointformats;
1190 *num_formats = s->ext.ecpointformats_len;
1191 } else {
1192 *pformats = ecformats_default;
1193 /* For Suite B we don't support char2 fields */
1194 if (tls1_suiteb(s))
1195 *num_formats = sizeof(ecformats_default) - 1;
1196 else
1197 *num_formats = sizeof(ecformats_default);
1198 }
1199}
1200
1201/* Check a key is compatible with compression extension */
1202static int tls1_check_pkey_comp(SSL_CONNECTION *s, EVP_PKEY *pkey)
1203{
1204 unsigned char comp_id;
1205 size_t i;
1206 int point_conv;
1207
1208 /* If not an EC key nothing to check */
1209 if (!EVP_PKEY_is_a(pkey, "EC"))
1210 return 1;
1211
1212
1213 /* Get required compression id */
1214 point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
1215 if (point_conv == 0)
1216 return 0;
1217 if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
1218 comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
1219 } else if (SSL_CONNECTION_IS_TLS13(s)) {
1220 /*
1221 * ec_point_formats extension is not used in TLSv1.3 so we ignore
1222 * this check.
1223 */
1224 return 1;
1225 } else {
1226 int field_type = EVP_PKEY_get_field_type(pkey);
1227
1228 if (field_type == NID_X9_62_prime_field)
1229 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
1230 else if (field_type == NID_X9_62_characteristic_two_field)
1231 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
1232 else
1233 return 0;
1234 }
1235 /*
1236 * If point formats extension present check it, otherwise everything is
1237 * supported (see RFC4492).
1238 */
1239 if (s->ext.peer_ecpointformats == NULL)
1240 return 1;
1241
1242 for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
1243 if (s->ext.peer_ecpointformats[i] == comp_id)
1244 return 1;
1245 }
1246 return 0;
1247}
1248
1249/* Return group id of a key */
1250static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
1251{
1252 int curve_nid = ssl_get_EC_curve_nid(pkey);
1253
1254 if (curve_nid == NID_undef)
1255 return 0;
1256 return tls1_nid2group_id(curve_nid);
1257}
1258
1259/*
1260 * Check cert parameters compatible with extensions: currently just checks EC
1261 * certificates have compatible curves and compression.
1262 */
1263static int tls1_check_cert_param(SSL_CONNECTION *s, X509 *x, int check_ee_md)
1264{
1265 uint16_t group_id;
1266 EVP_PKEY *pkey;
1267 pkey = X509_get0_pubkey(x);
1268 if (pkey == NULL)
1269 return 0;
1270 /* If not EC nothing to do */
1271 if (!EVP_PKEY_is_a(pkey, "EC"))
1272 return 1;
1273 /* Check compression */
1274 if (!tls1_check_pkey_comp(s, pkey))
1275 return 0;
1276 group_id = tls1_get_group_id(pkey);
1277 /*
1278 * For a server we allow the certificate to not be in our list of supported
1279 * groups.
1280 */
1281 if (!tls1_check_group_id(s, group_id, !s->server))
1282 return 0;
1283 /*
1284 * Special case for suite B. We *MUST* sign using SHA256+P-256 or
1285 * SHA384+P-384.
1286 */
1287 if (check_ee_md && tls1_suiteb(s)) {
1288 int check_md;
1289 size_t i;
1290
1291 /* Check to see we have necessary signing algorithm */
1292 if (group_id == OSSL_TLS_GROUP_ID_secp256r1)
1293 check_md = NID_ecdsa_with_SHA256;
1294 else if (group_id == OSSL_TLS_GROUP_ID_secp384r1)
1295 check_md = NID_ecdsa_with_SHA384;
1296 else
1297 return 0; /* Should never happen */
1298 for (i = 0; i < s->shared_sigalgslen; i++) {
1299 if (check_md == s->shared_sigalgs[i]->sigandhash)
1300 return 1;
1301 }
1302 return 0;
1303 }
1304 return 1;
1305}
1306
1307/*
1308 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
1309 * @s: SSL connection
1310 * @cid: Cipher ID we're considering using
1311 *
1312 * Checks that the kECDHE cipher suite we're considering using
1313 * is compatible with the client extensions.
1314 *
1315 * Returns 0 when the cipher can't be used or 1 when it can.
1316 */
1317int tls1_check_ec_tmp_key(SSL_CONNECTION *s, unsigned long cid)
1318{
1319 /* If not Suite B just need a shared group */
1320 if (!tls1_suiteb(s))
1321 return tls1_shared_group(s, 0) != 0;
1322 /*
1323 * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
1324 * curves permitted.
1325 */
1326 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
1327 return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp256r1, 1);
1328 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
1329 return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp384r1, 1);
1330
1331 return 0;
1332}
1333
1334/* Default sigalg schemes */
1335static const uint16_t tls12_sigalgs[] = {
1336 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1337 TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1338 TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1339 TLSEXT_SIGALG_ed25519,
1340 TLSEXT_SIGALG_ed448,
1341 TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
1342 TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
1343 TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
1344
1345 TLSEXT_SIGALG_rsa_pss_pss_sha256,
1346 TLSEXT_SIGALG_rsa_pss_pss_sha384,
1347 TLSEXT_SIGALG_rsa_pss_pss_sha512,
1348 TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1349 TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1350 TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1351
1352 TLSEXT_SIGALG_rsa_pkcs1_sha256,
1353 TLSEXT_SIGALG_rsa_pkcs1_sha384,
1354 TLSEXT_SIGALG_rsa_pkcs1_sha512,
1355
1356 TLSEXT_SIGALG_ecdsa_sha224,
1357 TLSEXT_SIGALG_ecdsa_sha1,
1358
1359 TLSEXT_SIGALG_rsa_pkcs1_sha224,
1360 TLSEXT_SIGALG_rsa_pkcs1_sha1,
1361
1362 TLSEXT_SIGALG_dsa_sha224,
1363 TLSEXT_SIGALG_dsa_sha1,
1364
1365 TLSEXT_SIGALG_dsa_sha256,
1366 TLSEXT_SIGALG_dsa_sha384,
1367 TLSEXT_SIGALG_dsa_sha512,
1368
1369#ifndef OPENSSL_NO_GOST
1370 TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1371 TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1372 TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1373 TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1374 TLSEXT_SIGALG_gostr34102001_gostr3411,
1375#endif
1376};
1377
1378
1379static const uint16_t suiteb_sigalgs[] = {
1380 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1381 TLSEXT_SIGALG_ecdsa_secp384r1_sha384
1382};
1383
1384static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
1385 {TLSEXT_SIGALG_ecdsa_secp256r1_sha256_name, TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1386 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1387 NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1},
1388 {TLSEXT_SIGALG_ecdsa_secp384r1_sha384_name, TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1389 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1390 NID_ecdsa_with_SHA384, NID_secp384r1, 1},
1391 {TLSEXT_SIGALG_ecdsa_secp521r1_sha512_name, TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1392 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1393 NID_ecdsa_with_SHA512, NID_secp521r1, 1},
1394 {TLSEXT_SIGALG_ed25519_name, TLSEXT_SIGALG_ed25519,
1395 NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
1396 NID_undef, NID_undef, 1},
1397 {TLSEXT_SIGALG_ed448_name, TLSEXT_SIGALG_ed448,
1398 NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
1399 NID_undef, NID_undef, 1},
1400 {TLSEXT_SIGALG_ecdsa_sha224_name, TLSEXT_SIGALG_ecdsa_sha224,
1401 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1402 NID_ecdsa_with_SHA224, NID_undef, 1},
1403 {TLSEXT_SIGALG_ecdsa_sha1_name, TLSEXT_SIGALG_ecdsa_sha1,
1404 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1405 NID_ecdsa_with_SHA1, NID_undef, 1},
1406 {TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_name, TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
1407 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1408 NID_ecdsa_with_SHA256, NID_brainpoolP256r1, 1},
1409 {TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_name, TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
1410 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1411 NID_ecdsa_with_SHA384, NID_brainpoolP384r1, 1},
1412 {TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_name, TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
1413 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1414 NID_ecdsa_with_SHA512, NID_brainpoolP512r1, 1},
1415 {TLSEXT_SIGALG_rsa_pss_rsae_sha256_name, TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1416 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1417 NID_undef, NID_undef, 1},
1418 {TLSEXT_SIGALG_rsa_pss_rsae_sha384_name, TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1419 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1420 NID_undef, NID_undef, 1},
1421 {TLSEXT_SIGALG_rsa_pss_rsae_sha512_name, TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1422 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1423 NID_undef, NID_undef, 1},
1424 {TLSEXT_SIGALG_rsa_pss_pss_sha256_name, TLSEXT_SIGALG_rsa_pss_pss_sha256,
1425 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1426 NID_undef, NID_undef, 1},
1427 {TLSEXT_SIGALG_rsa_pss_pss_sha384_name, TLSEXT_SIGALG_rsa_pss_pss_sha384,
1428 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1429 NID_undef, NID_undef, 1},
1430 {TLSEXT_SIGALG_rsa_pss_pss_sha512_name, TLSEXT_SIGALG_rsa_pss_pss_sha512,
1431 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1432 NID_undef, NID_undef, 1},
1433 {TLSEXT_SIGALG_rsa_pkcs1_sha256_name, TLSEXT_SIGALG_rsa_pkcs1_sha256,
1434 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1435 NID_sha256WithRSAEncryption, NID_undef, 1},
1436 {TLSEXT_SIGALG_rsa_pkcs1_sha384_name, TLSEXT_SIGALG_rsa_pkcs1_sha384,
1437 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1438 NID_sha384WithRSAEncryption, NID_undef, 1},
1439 {TLSEXT_SIGALG_rsa_pkcs1_sha512_name, TLSEXT_SIGALG_rsa_pkcs1_sha512,
1440 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1441 NID_sha512WithRSAEncryption, NID_undef, 1},
1442 {TLSEXT_SIGALG_rsa_pkcs1_sha224_name, TLSEXT_SIGALG_rsa_pkcs1_sha224,
1443 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1444 NID_sha224WithRSAEncryption, NID_undef, 1},
1445 {TLSEXT_SIGALG_rsa_pkcs1_sha1_name, TLSEXT_SIGALG_rsa_pkcs1_sha1,
1446 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1447 NID_sha1WithRSAEncryption, NID_undef, 1},
1448 {TLSEXT_SIGALG_dsa_sha256_name, TLSEXT_SIGALG_dsa_sha256,
1449 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1450 NID_dsa_with_SHA256, NID_undef, 1},
1451 {TLSEXT_SIGALG_dsa_sha384_name, TLSEXT_SIGALG_dsa_sha384,
1452 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1453 NID_undef, NID_undef, 1},
1454 {TLSEXT_SIGALG_dsa_sha512_name, TLSEXT_SIGALG_dsa_sha512,
1455 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1456 NID_undef, NID_undef, 1},
1457 {TLSEXT_SIGALG_dsa_sha224_name, TLSEXT_SIGALG_dsa_sha224,
1458 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1459 NID_undef, NID_undef, 1},
1460 {TLSEXT_SIGALG_dsa_sha1_name, TLSEXT_SIGALG_dsa_sha1,
1461 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1462 NID_dsaWithSHA1, NID_undef, 1},
1463#ifndef OPENSSL_NO_GOST
1464 {TLSEXT_SIGALG_gostr34102012_256_intrinsic_name, TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1465 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1466 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1467 NID_undef, NID_undef, 1},
1468 {TLSEXT_SIGALG_gostr34102012_512_intrinsic_name, TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1469 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1470 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1471 NID_undef, NID_undef, 1},
1472 {TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256_name, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1473 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1474 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1475 NID_undef, NID_undef, 1},
1476 {TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512_name, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1477 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1478 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1479 NID_undef, NID_undef, 1},
1480 {TLSEXT_SIGALG_gostr34102001_gostr3411_name, TLSEXT_SIGALG_gostr34102001_gostr3411,
1481 NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
1482 NID_id_GostR3410_2001, SSL_PKEY_GOST01,
1483 NID_undef, NID_undef, 1}
1484#endif
1485};
1486/* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
1487static const SIGALG_LOOKUP legacy_rsa_sigalg = {
1488 "rsa_pkcs1_md5_sha1", 0,
1489 NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
1490 EVP_PKEY_RSA, SSL_PKEY_RSA,
1491 NID_undef, NID_undef, 1
1492};
1493
1494/*
1495 * Default signature algorithm values used if signature algorithms not present.
1496 * From RFC5246. Note: order must match certificate index order.
1497 */
1498static const uint16_t tls_default_sigalg[] = {
1499 TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
1500 0, /* SSL_PKEY_RSA_PSS_SIGN */
1501 TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
1502 TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
1503 TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
1504 TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
1505 TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
1506 0, /* SSL_PKEY_ED25519 */
1507 0, /* SSL_PKEY_ED448 */
1508};
1509
1510int ssl_setup_sigalgs(SSL_CTX *ctx)
1511{
1512 size_t i, cache_idx, sigalgs_len;
1513 const SIGALG_LOOKUP *lu;
1514 SIGALG_LOOKUP *cache = NULL;
1515 uint16_t *tls12_sigalgs_list = NULL;
1516 EVP_PKEY *tmpkey = EVP_PKEY_new();
1517 int ret = 0;
1518
1519 if (ctx == NULL)
1520 goto err;
1521
1522 sigalgs_len = OSSL_NELEM(sigalg_lookup_tbl) + ctx->sigalg_list_len;
1523
1524 cache = OPENSSL_malloc(sizeof(const SIGALG_LOOKUP) * sigalgs_len);
1525 if (cache == NULL || tmpkey == NULL)
1526 goto err;
1527
1528 tls12_sigalgs_list = OPENSSL_malloc(sizeof(uint16_t) * sigalgs_len);
1529 if (tls12_sigalgs_list == NULL)
1530 goto err;
1531
1532 ERR_set_mark();
1533 /* First fill cache and tls12_sigalgs list from legacy algorithm list */
1534 for (i = 0, lu = sigalg_lookup_tbl;
1535 i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
1536 EVP_PKEY_CTX *pctx;
1537
1538 cache[i] = *lu;
1539 tls12_sigalgs_list[i] = tls12_sigalgs[i];
1540
1541 /*
1542 * Check hash is available.
1543 * This test is not perfect. A provider could have support
1544 * for a signature scheme, but not a particular hash. However the hash
1545 * could be available from some other loaded provider. In that case it
1546 * could be that the signature is available, and the hash is available
1547 * independently - but not as a combination. We ignore this for now.
1548 */
1549 if (lu->hash != NID_undef
1550 && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
1551 cache[i].enabled = 0;
1552 continue;
1553 }
1554
1555 if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
1556 cache[i].enabled = 0;
1557 continue;
1558 }
1559 pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
1560 /* If unable to create pctx we assume the sig algorithm is unavailable */
1561 if (pctx == NULL)
1562 cache[i].enabled = 0;
1563 EVP_PKEY_CTX_free(pctx);
1564 }
1565
1566 /* Now complete cache and tls12_sigalgs list with provider sig information */
1567 cache_idx = OSSL_NELEM(sigalg_lookup_tbl);
1568 for (i = 0; i < ctx->sigalg_list_len; i++) {
1569 TLS_SIGALG_INFO si = ctx->sigalg_list[i];
1570 cache[cache_idx].name = si.name;
1571 cache[cache_idx].sigalg = si.code_point;
1572 tls12_sigalgs_list[cache_idx] = si.code_point;
1573 cache[cache_idx].hash = si.hash_name?OBJ_txt2nid(si.hash_name):NID_undef;
1574 cache[cache_idx].hash_idx = ssl_get_md_idx(cache[cache_idx].hash);
1575 cache[cache_idx].sig = OBJ_txt2nid(si.sigalg_name);
1576 cache[cache_idx].sig_idx = i + SSL_PKEY_NUM;
1577 cache[cache_idx].sigandhash = OBJ_txt2nid(si.sigalg_name);
1578 cache[cache_idx].curve = NID_undef;
1579 /* all provided sigalgs are enabled by load */
1580 cache[cache_idx].enabled = 1;
1581 cache_idx++;
1582 }
1583 ERR_pop_to_mark();
1584 ctx->sigalg_lookup_cache = cache;
1585 ctx->tls12_sigalgs = tls12_sigalgs_list;
1586 ctx->tls12_sigalgs_len = sigalgs_len;
1587 cache = NULL;
1588 tls12_sigalgs_list = NULL;
1589
1590 ret = 1;
1591 err:
1592 OPENSSL_free(cache);
1593 OPENSSL_free(tls12_sigalgs_list);
1594 EVP_PKEY_free(tmpkey);
1595 return ret;
1596}
1597
1598#define SIGLEN_BUF_INCREMENT 100
1599
1600char *SSL_get1_builtin_sigalgs(OSSL_LIB_CTX *libctx)
1601{
1602 size_t i, maxretlen = SIGLEN_BUF_INCREMENT;
1603 const SIGALG_LOOKUP *lu;
1604 EVP_PKEY *tmpkey = EVP_PKEY_new();
1605 char *retval = OPENSSL_malloc(maxretlen);
1606
1607 if (retval == NULL)
1608 return NULL;
1609
1610 /* ensure retval string is NUL terminated */
1611 retval[0] = (char)0;
1612
1613 for (i = 0, lu = sigalg_lookup_tbl;
1614 i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
1615 EVP_PKEY_CTX *pctx;
1616 int enabled = 1;
1617
1618 ERR_set_mark();
1619 /* Check hash is available in some provider. */
1620 if (lu->hash != NID_undef) {
1621 EVP_MD *hash = EVP_MD_fetch(libctx, OBJ_nid2ln(lu->hash), NULL);
1622
1623 /* If unable to create we assume the hash algorithm is unavailable */
1624 if (hash == NULL) {
1625 enabled = 0;
1626 ERR_pop_to_mark();
1627 continue;
1628 }
1629 EVP_MD_free(hash);
1630 }
1631
1632 if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
1633 enabled = 0;
1634 ERR_pop_to_mark();
1635 continue;
1636 }
1637 pctx = EVP_PKEY_CTX_new_from_pkey(libctx, tmpkey, NULL);
1638 /* If unable to create pctx we assume the sig algorithm is unavailable */
1639 if (pctx == NULL)
1640 enabled = 0;
1641 ERR_pop_to_mark();
1642 EVP_PKEY_CTX_free(pctx);
1643
1644 if (enabled) {
1645 const char *sa = lu->name;
1646
1647 if (sa != NULL) {
1648 if (strlen(sa) + strlen(retval) + 1 >= maxretlen) {
1649 char *tmp;
1650
1651 maxretlen += SIGLEN_BUF_INCREMENT;
1652 tmp = OPENSSL_realloc(retval, maxretlen);
1653 if (tmp == NULL) {
1654 OPENSSL_free(retval);
1655 return NULL;
1656 }
1657 retval = tmp;
1658 }
1659 if (strlen(retval) > 0)
1660 OPENSSL_strlcat(retval, ":", maxretlen);
1661 OPENSSL_strlcat(retval, sa, maxretlen);
1662 } else {
1663 /* lu->name must not be NULL */
1664 ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
1665 }
1666 }
1667 }
1668
1669 EVP_PKEY_free(tmpkey);
1670 return retval;
1671}
1672
1673/* Lookup TLS signature algorithm */
1674static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL_CONNECTION *s,
1675 uint16_t sigalg)
1676{
1677 size_t i;
1678 const SIGALG_LOOKUP *lu;
1679
1680 for (i = 0, lu = SSL_CONNECTION_GET_CTX(s)->sigalg_lookup_cache;
1681 i < SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
1682 lu++, i++) {
1683 if (lu->sigalg == sigalg) {
1684 if (!lu->enabled)
1685 return NULL;
1686 return lu;
1687 }
1688 }
1689 return NULL;
1690}
1691/* Lookup hash: return 0 if invalid or not enabled */
1692int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
1693{
1694 const EVP_MD *md;
1695
1696 if (lu == NULL)
1697 return 0;
1698 /* lu->hash == NID_undef means no associated digest */
1699 if (lu->hash == NID_undef) {
1700 md = NULL;
1701 } else {
1702 md = ssl_md(ctx, lu->hash_idx);
1703 if (md == NULL)
1704 return 0;
1705 }
1706 if (pmd)
1707 *pmd = md;
1708 return 1;
1709}
1710
1711/*
1712 * Check if key is large enough to generate RSA-PSS signature.
1713 *
1714 * The key must greater than or equal to 2 * hash length + 2.
1715 * SHA512 has a hash length of 64 bytes, which is incompatible
1716 * with a 128 byte (1024 bit) key.
1717 */
1718#define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)
1719static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
1720 const SIGALG_LOOKUP *lu)
1721{
1722 const EVP_MD *md;
1723
1724 if (pkey == NULL)
1725 return 0;
1726 if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
1727 return 0;
1728 if (EVP_MD_get_size(md) <= 0)
1729 return 0;
1730 if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
1731 return 0;
1732 return 1;
1733}
1734
1735/*
1736 * Returns a signature algorithm when the peer did not send a list of supported
1737 * signature algorithms. The signature algorithm is fixed for the certificate
1738 * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
1739 * certificate type from |s| will be used.
1740 * Returns the signature algorithm to use, or NULL on error.
1741 */
1742static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL_CONNECTION *s,
1743 int idx)
1744{
1745 if (idx == -1) {
1746 if (s->server) {
1747 size_t i;
1748
1749 /* Work out index corresponding to ciphersuite */
1750 for (i = 0; i < s->ssl_pkey_num; i++) {
1751 const SSL_CERT_LOOKUP *clu
1752 = ssl_cert_lookup_by_idx(i, SSL_CONNECTION_GET_CTX(s));
1753
1754 if (clu == NULL)
1755 continue;
1756 if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
1757 idx = i;
1758 break;
1759 }
1760 }
1761
1762 /*
1763 * Some GOST ciphersuites allow more than one signature algorithms
1764 * */
1765 if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
1766 int real_idx;
1767
1768 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
1769 real_idx--) {
1770 if (s->cert->pkeys[real_idx].privatekey != NULL) {
1771 idx = real_idx;
1772 break;
1773 }
1774 }
1775 }
1776 /*
1777 * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
1778 * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
1779 */
1780 else if (idx == SSL_PKEY_GOST12_256) {
1781 int real_idx;
1782
1783 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
1784 real_idx--) {
1785 if (s->cert->pkeys[real_idx].privatekey != NULL) {
1786 idx = real_idx;
1787 break;
1788 }
1789 }
1790 }
1791 } else {
1792 idx = s->cert->key - s->cert->pkeys;
1793 }
1794 }
1795 if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
1796 return NULL;
1797
1798 if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
1799 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, tls_default_sigalg[idx]);
1800
1801 if (lu == NULL)
1802 return NULL;
1803 if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, NULL))
1804 return NULL;
1805 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
1806 return NULL;
1807 return lu;
1808 }
1809 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
1810 return NULL;
1811 return &legacy_rsa_sigalg;
1812}
1813/* Set peer sigalg based key type */
1814int tls1_set_peer_legacy_sigalg(SSL_CONNECTION *s, const EVP_PKEY *pkey)
1815{
1816 size_t idx;
1817 const SIGALG_LOOKUP *lu;
1818
1819 if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
1820 return 0;
1821 lu = tls1_get_legacy_sigalg(s, idx);
1822 if (lu == NULL)
1823 return 0;
1824 s->s3.tmp.peer_sigalg = lu;
1825 return 1;
1826}
1827
1828size_t tls12_get_psigalgs(SSL_CONNECTION *s, int sent, const uint16_t **psigs)
1829{
1830 /*
1831 * If Suite B mode use Suite B sigalgs only, ignore any other
1832 * preferences.
1833 */
1834 switch (tls1_suiteb(s)) {
1835 case SSL_CERT_FLAG_SUITEB_128_LOS:
1836 *psigs = suiteb_sigalgs;
1837 return OSSL_NELEM(suiteb_sigalgs);
1838
1839 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1840 *psigs = suiteb_sigalgs;
1841 return 1;
1842
1843 case SSL_CERT_FLAG_SUITEB_192_LOS:
1844 *psigs = suiteb_sigalgs + 1;
1845 return 1;
1846 }
1847 /*
1848 * We use client_sigalgs (if not NULL) if we're a server
1849 * and sending a certificate request or if we're a client and
1850 * determining which shared algorithm to use.
1851 */
1852 if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
1853 *psigs = s->cert->client_sigalgs;
1854 return s->cert->client_sigalgslen;
1855 } else if (s->cert->conf_sigalgs) {
1856 *psigs = s->cert->conf_sigalgs;
1857 return s->cert->conf_sigalgslen;
1858 } else {
1859 *psigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
1860 return SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
1861 }
1862}
1863
1864/*
1865 * Called by servers only. Checks that we have a sig alg that supports the
1866 * specified EC curve.
1867 */
1868int tls_check_sigalg_curve(const SSL_CONNECTION *s, int curve)
1869{
1870 const uint16_t *sigs;
1871 size_t siglen, i;
1872
1873 if (s->cert->conf_sigalgs) {
1874 sigs = s->cert->conf_sigalgs;
1875 siglen = s->cert->conf_sigalgslen;
1876 } else {
1877 sigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
1878 siglen = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
1879 }
1880
1881 for (i = 0; i < siglen; i++) {
1882 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, sigs[i]);
1883
1884 if (lu == NULL)
1885 continue;
1886 if (lu->sig == EVP_PKEY_EC
1887 && lu->curve != NID_undef
1888 && curve == lu->curve)
1889 return 1;
1890 }
1891
1892 return 0;
1893}
1894
1895/*
1896 * Return the number of security bits for the signature algorithm, or 0 on
1897 * error.
1898 */
1899static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
1900{
1901 const EVP_MD *md = NULL;
1902 int secbits = 0;
1903
1904 if (!tls1_lookup_md(ctx, lu, &md))
1905 return 0;
1906 if (md != NULL)
1907 {
1908 int md_type = EVP_MD_get_type(md);
1909
1910 /* Security bits: half digest bits */
1911 secbits = EVP_MD_get_size(md) * 4;
1912 if (secbits <= 0)
1913 return 0;
1914 /*
1915 * SHA1 and MD5 are known to be broken. Reduce security bits so that
1916 * they're no longer accepted at security level 1. The real values don't
1917 * really matter as long as they're lower than 80, which is our
1918 * security level 1.
1919 * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
1920 * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
1921 * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
1922 * puts a chosen-prefix attack for MD5 at 2^39.
1923 */
1924 if (md_type == NID_sha1)
1925 secbits = 64;
1926 else if (md_type == NID_md5_sha1)
1927 secbits = 67;
1928 else if (md_type == NID_md5)
1929 secbits = 39;
1930 } else {
1931 /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
1932 if (lu->sigalg == TLSEXT_SIGALG_ed25519)
1933 secbits = 128;
1934 else if (lu->sigalg == TLSEXT_SIGALG_ed448)
1935 secbits = 224;
1936 }
1937 /*
1938 * For provider-based sigalgs we have secbits information available
1939 * in the (provider-loaded) sigalg_list structure
1940 */
1941 if ((secbits == 0) && (lu->sig_idx >= SSL_PKEY_NUM)
1942 && ((lu->sig_idx - SSL_PKEY_NUM) < (int)ctx->sigalg_list_len)) {
1943 secbits = ctx->sigalg_list[lu->sig_idx - SSL_PKEY_NUM].secbits;
1944 }
1945 return secbits;
1946}
1947
1948/*
1949 * Check signature algorithm is consistent with sent supported signature
1950 * algorithms and if so set relevant digest and signature scheme in
1951 * s.
1952 */
1953int tls12_check_peer_sigalg(SSL_CONNECTION *s, uint16_t sig, EVP_PKEY *pkey)
1954{
1955 const uint16_t *sent_sigs;
1956 const EVP_MD *md = NULL;
1957 char sigalgstr[2];
1958 size_t sent_sigslen, i, cidx;
1959 int pkeyid = -1;
1960 const SIGALG_LOOKUP *lu;
1961 int secbits = 0;
1962
1963 pkeyid = EVP_PKEY_get_id(pkey);
1964
1965 if (SSL_CONNECTION_IS_TLS13(s)) {
1966 /* Disallow DSA for TLS 1.3 */
1967 if (pkeyid == EVP_PKEY_DSA) {
1968 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1969 return 0;
1970 }
1971 /* Only allow PSS for TLS 1.3 */
1972 if (pkeyid == EVP_PKEY_RSA)
1973 pkeyid = EVP_PKEY_RSA_PSS;
1974 }
1975 lu = tls1_lookup_sigalg(s, sig);
1976 /* if this sigalg is loaded, set so far unknown pkeyid to its sig NID */
1977 if ((pkeyid == EVP_PKEY_KEYMGMT) && (lu != NULL))
1978 pkeyid = lu->sig;
1979
1980 /* Should never happen */
1981 if (pkeyid == -1)
1982 return -1;
1983
1984 /*
1985 * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
1986 * is consistent with signature: RSA keys can be used for RSA-PSS
1987 */
1988 if (lu == NULL
1989 || (SSL_CONNECTION_IS_TLS13(s)
1990 && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
1991 || (pkeyid != lu->sig
1992 && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
1993 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1994 return 0;
1995 }
1996 /* Check the sigalg is consistent with the key OID */
1997 if (!ssl_cert_lookup_by_nid(
1998 (pkeyid == EVP_PKEY_RSA_PSS) ? EVP_PKEY_get_id(pkey) : pkeyid,
1999 &cidx, SSL_CONNECTION_GET_CTX(s))
2000 || lu->sig_idx != (int)cidx) {
2001 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2002 return 0;
2003 }
2004
2005 if (pkeyid == EVP_PKEY_EC) {
2006
2007 /* Check point compression is permitted */
2008 if (!tls1_check_pkey_comp(s, pkey)) {
2009 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
2010 SSL_R_ILLEGAL_POINT_COMPRESSION);
2011 return 0;
2012 }
2013
2014 /* For TLS 1.3 or Suite B check curve matches signature algorithm */
2015 if (SSL_CONNECTION_IS_TLS13(s) || tls1_suiteb(s)) {
2016 int curve = ssl_get_EC_curve_nid(pkey);
2017
2018 if (lu->curve != NID_undef && curve != lu->curve) {
2019 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
2020 return 0;
2021 }
2022 }
2023 if (!SSL_CONNECTION_IS_TLS13(s)) {
2024 /* Check curve matches extensions */
2025 if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
2026 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
2027 return 0;
2028 }
2029 if (tls1_suiteb(s)) {
2030 /* Check sigalg matches a permissible Suite B value */
2031 if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
2032 && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
2033 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2034 SSL_R_WRONG_SIGNATURE_TYPE);
2035 return 0;
2036 }
2037 }
2038 }
2039 } else if (tls1_suiteb(s)) {
2040 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2041 return 0;
2042 }
2043
2044 /* Check signature matches a type we sent */
2045 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2046 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
2047 if (sig == *sent_sigs)
2048 break;
2049 }
2050 /* Allow fallback to SHA1 if not strict mode */
2051 if (i == sent_sigslen && (lu->hash != NID_sha1
2052 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
2053 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2054 return 0;
2055 }
2056 if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, &md)) {
2057 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
2058 return 0;
2059 }
2060 /*
2061 * Make sure security callback allows algorithm. For historical
2062 * reasons we have to pass the sigalg as a two byte char array.
2063 */
2064 sigalgstr[0] = (sig >> 8) & 0xff;
2065 sigalgstr[1] = sig & 0xff;
2066 secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
2067 if (secbits == 0 ||
2068 !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
2069 md != NULL ? EVP_MD_get_type(md) : NID_undef,
2070 (void *)sigalgstr)) {
2071 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2072 return 0;
2073 }
2074 /* Store the sigalg the peer uses */
2075 s->s3.tmp.peer_sigalg = lu;
2076 return 1;
2077}
2078
2079int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
2080{
2081 const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2082
2083 if (sc == NULL)
2084 return 0;
2085
2086 if (sc->s3.tmp.peer_sigalg == NULL)
2087 return 0;
2088 *pnid = sc->s3.tmp.peer_sigalg->sig;
2089 return 1;
2090}
2091
2092int SSL_get_signature_type_nid(const SSL *s, int *pnid)
2093{
2094 const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2095
2096 if (sc == NULL)
2097 return 0;
2098
2099 if (sc->s3.tmp.sigalg == NULL)
2100 return 0;
2101 *pnid = sc->s3.tmp.sigalg->sig;
2102 return 1;
2103}
2104
2105/*
2106 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
2107 * supported, doesn't appear in supported signature algorithms, isn't supported
2108 * by the enabled protocol versions or by the security level.
2109 *
2110 * This function should only be used for checking which ciphers are supported
2111 * by the client.
2112 *
2113 * Call ssl_cipher_disabled() to check that it's enabled or not.
2114 */
2115int ssl_set_client_disabled(SSL_CONNECTION *s)
2116{
2117 s->s3.tmp.mask_a = 0;
2118 s->s3.tmp.mask_k = 0;
2119 ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
2120 if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
2121 &s->s3.tmp.max_ver, NULL) != 0)
2122 return 0;
2123#ifndef OPENSSL_NO_PSK
2124 /* with PSK there must be client callback set */
2125 if (!s->psk_client_callback) {
2126 s->s3.tmp.mask_a |= SSL_aPSK;
2127 s->s3.tmp.mask_k |= SSL_PSK;
2128 }
2129#endif /* OPENSSL_NO_PSK */
2130#ifndef OPENSSL_NO_SRP
2131 if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
2132 s->s3.tmp.mask_a |= SSL_aSRP;
2133 s->s3.tmp.mask_k |= SSL_kSRP;
2134 }
2135#endif
2136 return 1;
2137}
2138
2139/*
2140 * ssl_cipher_disabled - check that a cipher is disabled or not
2141 * @s: SSL connection that you want to use the cipher on
2142 * @c: cipher to check
2143 * @op: Security check that you want to do
2144 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
2145 *
2146 * Returns 1 when it's disabled, 0 when enabled.
2147 */
2148int ssl_cipher_disabled(const SSL_CONNECTION *s, const SSL_CIPHER *c,
2149 int op, int ecdhe)
2150{
2151 int minversion = SSL_CONNECTION_IS_DTLS(s) ? c->min_dtls : c->min_tls;
2152 int maxversion = SSL_CONNECTION_IS_DTLS(s) ? c->max_dtls : c->max_tls;
2153
2154 if (c->algorithm_mkey & s->s3.tmp.mask_k
2155 || c->algorithm_auth & s->s3.tmp.mask_a)
2156 return 1;
2157 if (s->s3.tmp.max_ver == 0)
2158 return 1;
2159
2160 if (SSL_IS_QUIC_HANDSHAKE(s))
2161 /* For QUIC, only allow these ciphersuites. */
2162 switch (SSL_CIPHER_get_id(c)) {
2163 case TLS1_3_CK_AES_128_GCM_SHA256:
2164 case TLS1_3_CK_AES_256_GCM_SHA384:
2165 case TLS1_3_CK_CHACHA20_POLY1305_SHA256:
2166 break;
2167 default:
2168 return 1;
2169 }
2170
2171 /*
2172 * For historical reasons we will allow ECHDE to be selected by a server
2173 * in SSLv3 if we are a client
2174 */
2175 if (minversion == TLS1_VERSION
2176 && ecdhe
2177 && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
2178 minversion = SSL3_VERSION;
2179
2180 if (ssl_version_cmp(s, minversion, s->s3.tmp.max_ver) > 0
2181 || ssl_version_cmp(s, maxversion, s->s3.tmp.min_ver) < 0)
2182 return 1;
2183
2184 return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
2185}
2186
2187int tls_use_ticket(SSL_CONNECTION *s)
2188{
2189 if ((s->options & SSL_OP_NO_TICKET))
2190 return 0;
2191 return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
2192}
2193
2194int tls1_set_server_sigalgs(SSL_CONNECTION *s)
2195{
2196 size_t i;
2197
2198 /* Clear any shared signature algorithms */
2199 OPENSSL_free(s->shared_sigalgs);
2200 s->shared_sigalgs = NULL;
2201 s->shared_sigalgslen = 0;
2202
2203 /* Clear certificate validity flags */
2204 if (s->s3.tmp.valid_flags)
2205 memset(s->s3.tmp.valid_flags, 0, s->ssl_pkey_num * sizeof(uint32_t));
2206 else
2207 s->s3.tmp.valid_flags = OPENSSL_zalloc(s->ssl_pkey_num * sizeof(uint32_t));
2208 if (s->s3.tmp.valid_flags == NULL)
2209 return 0;
2210 /*
2211 * If peer sent no signature algorithms check to see if we support
2212 * the default algorithm for each certificate type
2213 */
2214 if (s->s3.tmp.peer_cert_sigalgs == NULL
2215 && s->s3.tmp.peer_sigalgs == NULL) {
2216 const uint16_t *sent_sigs;
2217 size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2218
2219 for (i = 0; i < s->ssl_pkey_num; i++) {
2220 const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
2221 size_t j;
2222
2223 if (lu == NULL)
2224 continue;
2225 /* Check default matches a type we sent */
2226 for (j = 0; j < sent_sigslen; j++) {
2227 if (lu->sigalg == sent_sigs[j]) {
2228 s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
2229 break;
2230 }
2231 }
2232 }
2233 return 1;
2234 }
2235
2236 if (!tls1_process_sigalgs(s)) {
2237 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
2238 return 0;
2239 }
2240 if (s->shared_sigalgs != NULL)
2241 return 1;
2242
2243 /* Fatal error if no shared signature algorithms */
2244 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2245 SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
2246 return 0;
2247}
2248
2249/*-
2250 * Gets the ticket information supplied by the client if any.
2251 *
2252 * hello: The parsed ClientHello data
2253 * ret: (output) on return, if a ticket was decrypted, then this is set to
2254 * point to the resulting session.
2255 */
2256SSL_TICKET_STATUS tls_get_ticket_from_client(SSL_CONNECTION *s,
2257 CLIENTHELLO_MSG *hello,
2258 SSL_SESSION **ret)
2259{
2260 size_t size;
2261 RAW_EXTENSION *ticketext;
2262
2263 *ret = NULL;
2264 s->ext.ticket_expected = 0;
2265
2266 /*
2267 * If tickets disabled or not supported by the protocol version
2268 * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
2269 * resumption.
2270 */
2271 if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
2272 return SSL_TICKET_NONE;
2273
2274 ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
2275 if (!ticketext->present)
2276 return SSL_TICKET_NONE;
2277
2278 size = PACKET_remaining(&ticketext->data);
2279
2280 return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
2281 hello->session_id, hello->session_id_len, ret);
2282}
2283
2284/*-
2285 * tls_decrypt_ticket attempts to decrypt a session ticket.
2286 *
2287 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
2288 * expecting a pre-shared key ciphersuite, in which case we have no use for
2289 * session tickets and one will never be decrypted, nor will
2290 * s->ext.ticket_expected be set to 1.
2291 *
2292 * Side effects:
2293 * Sets s->ext.ticket_expected to 1 if the server will have to issue
2294 * a new session ticket to the client because the client indicated support
2295 * (and s->tls_session_secret_cb is NULL) but the client either doesn't have
2296 * a session ticket or we couldn't use the one it gave us, or if
2297 * s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
2298 * Otherwise, s->ext.ticket_expected is set to 0.
2299 *
2300 * etick: points to the body of the session ticket extension.
2301 * eticklen: the length of the session tickets extension.
2302 * sess_id: points at the session ID.
2303 * sesslen: the length of the session ID.
2304 * psess: (output) on return, if a ticket was decrypted, then this is set to
2305 * point to the resulting session.
2306 */
2307SSL_TICKET_STATUS tls_decrypt_ticket(SSL_CONNECTION *s,
2308 const unsigned char *etick,
2309 size_t eticklen,
2310 const unsigned char *sess_id,
2311 size_t sesslen, SSL_SESSION **psess)
2312{
2313 SSL_SESSION *sess = NULL;
2314 unsigned char *sdec;
2315 const unsigned char *p;
2316 int slen, ivlen, renew_ticket = 0, declen;
2317 SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
2318 size_t mlen;
2319 unsigned char tick_hmac[EVP_MAX_MD_SIZE];
2320 SSL_HMAC *hctx = NULL;
2321 EVP_CIPHER_CTX *ctx = NULL;
2322 SSL_CTX *tctx = s->session_ctx;
2323 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
2324
2325 if (eticklen == 0) {
2326 /*
2327 * The client will accept a ticket but doesn't currently have
2328 * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
2329 */
2330 ret = SSL_TICKET_EMPTY;
2331 goto end;
2332 }
2333 if (!SSL_CONNECTION_IS_TLS13(s) && s->ext.session_secret_cb) {
2334 /*
2335 * Indicate that the ticket couldn't be decrypted rather than
2336 * generating the session from ticket now, trigger
2337 * abbreviated handshake based on external mechanism to
2338 * calculate the master secret later.
2339 */
2340 ret = SSL_TICKET_NO_DECRYPT;
2341 goto end;
2342 }
2343
2344 /* Need at least keyname + iv */
2345 if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
2346 ret = SSL_TICKET_NO_DECRYPT;
2347 goto end;
2348 }
2349
2350 /* Initialize session ticket encryption and HMAC contexts */
2351 hctx = ssl_hmac_new(tctx);
2352 if (hctx == NULL) {
2353 ret = SSL_TICKET_FATAL_ERR_MALLOC;
2354 goto end;
2355 }
2356 ctx = EVP_CIPHER_CTX_new();
2357 if (ctx == NULL) {
2358 ret = SSL_TICKET_FATAL_ERR_MALLOC;
2359 goto end;
2360 }
2361#ifndef OPENSSL_NO_DEPRECATED_3_0
2362 if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
2363#else
2364 if (tctx->ext.ticket_key_evp_cb != NULL)
2365#endif
2366 {
2367 unsigned char *nctick = (unsigned char *)etick;
2368 int rv = 0;
2369
2370 if (tctx->ext.ticket_key_evp_cb != NULL)
2371 rv = tctx->ext.ticket_key_evp_cb(SSL_CONNECTION_GET_USER_SSL(s),
2372 nctick,
2373 nctick + TLSEXT_KEYNAME_LENGTH,
2374 ctx,
2375 ssl_hmac_get0_EVP_MAC_CTX(hctx),
2376 0);
2377#ifndef OPENSSL_NO_DEPRECATED_3_0
2378 else if (tctx->ext.ticket_key_cb != NULL)
2379 /* if 0 is returned, write an empty ticket */
2380 rv = tctx->ext.ticket_key_cb(SSL_CONNECTION_GET_USER_SSL(s), nctick,
2381 nctick + TLSEXT_KEYNAME_LENGTH,
2382 ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
2383#endif
2384 if (rv < 0) {
2385 ret = SSL_TICKET_FATAL_ERR_OTHER;
2386 goto end;
2387 }
2388 if (rv == 0) {
2389 ret = SSL_TICKET_NO_DECRYPT;
2390 goto end;
2391 }
2392 if (rv == 2)
2393 renew_ticket = 1;
2394 } else {
2395 EVP_CIPHER *aes256cbc = NULL;
2396
2397 /* Check key name matches */
2398 if (memcmp(etick, tctx->ext.tick_key_name,
2399 TLSEXT_KEYNAME_LENGTH) != 0) {
2400 ret = SSL_TICKET_NO_DECRYPT;
2401 goto end;
2402 }
2403
2404 aes256cbc = EVP_CIPHER_fetch(sctx->libctx, "AES-256-CBC",
2405 sctx->propq);
2406 if (aes256cbc == NULL
2407 || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
2408 sizeof(tctx->ext.secure->tick_hmac_key),
2409 "SHA256") <= 0
2410 || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
2411 tctx->ext.secure->tick_aes_key,
2412 etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
2413 EVP_CIPHER_free(aes256cbc);
2414 ret = SSL_TICKET_FATAL_ERR_OTHER;
2415 goto end;
2416 }
2417 EVP_CIPHER_free(aes256cbc);
2418 if (SSL_CONNECTION_IS_TLS13(s))
2419 renew_ticket = 1;
2420 }
2421 /*
2422 * Attempt to process session ticket, first conduct sanity and integrity
2423 * checks on ticket.
2424 */
2425 mlen = ssl_hmac_size(hctx);
2426 if (mlen == 0) {
2427 ret = SSL_TICKET_FATAL_ERR_OTHER;
2428 goto end;
2429 }
2430
2431 ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
2432 if (ivlen < 0) {
2433 ret = SSL_TICKET_FATAL_ERR_OTHER;
2434 goto end;
2435 }
2436
2437 /* Sanity check ticket length: must exceed keyname + IV + HMAC */
2438 if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) {
2439 ret = SSL_TICKET_NO_DECRYPT;
2440 goto end;
2441 }
2442 eticklen -= mlen;
2443 /* Check HMAC of encrypted ticket */
2444 if (ssl_hmac_update(hctx, etick, eticklen) <= 0
2445 || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
2446 ret = SSL_TICKET_FATAL_ERR_OTHER;
2447 goto end;
2448 }
2449
2450 if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
2451 ret = SSL_TICKET_NO_DECRYPT;
2452 goto end;
2453 }
2454 /* Attempt to decrypt session data */
2455 /* Move p after IV to start of encrypted ticket, update length */
2456 p = etick + TLSEXT_KEYNAME_LENGTH + ivlen;
2457 eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen;
2458 sdec = OPENSSL_malloc(eticklen);
2459 if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
2460 (int)eticklen) <= 0) {
2461 OPENSSL_free(sdec);
2462 ret = SSL_TICKET_FATAL_ERR_OTHER;
2463 goto end;
2464 }
2465 if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
2466 OPENSSL_free(sdec);
2467 ret = SSL_TICKET_NO_DECRYPT;
2468 goto end;
2469 }
2470 slen += declen;
2471 p = sdec;
2472
2473 sess = d2i_SSL_SESSION_ex(NULL, &p, slen, sctx->libctx, sctx->propq);
2474 slen -= p - sdec;
2475 OPENSSL_free(sdec);
2476 if (sess) {
2477 /* Some additional consistency checks */
2478 if (slen != 0) {
2479 SSL_SESSION_free(sess);
2480 sess = NULL;
2481 ret = SSL_TICKET_NO_DECRYPT;
2482 goto end;
2483 }
2484 /*
2485 * The session ID, if non-empty, is used by some clients to detect
2486 * that the ticket has been accepted. So we copy it to the session
2487 * structure. If it is empty set length to zero as required by
2488 * standard.
2489 */
2490 if (sesslen) {
2491 memcpy(sess->session_id, sess_id, sesslen);
2492 sess->session_id_length = sesslen;
2493 }
2494 if (renew_ticket)
2495 ret = SSL_TICKET_SUCCESS_RENEW;
2496 else
2497 ret = SSL_TICKET_SUCCESS;
2498 goto end;
2499 }
2500 ERR_clear_error();
2501 /*
2502 * For session parse failure, indicate that we need to send a new ticket.
2503 */
2504 ret = SSL_TICKET_NO_DECRYPT;
2505
2506 end:
2507 EVP_CIPHER_CTX_free(ctx);
2508 ssl_hmac_free(hctx);
2509
2510 /*
2511 * If set, the decrypt_ticket_cb() is called unless a fatal error was
2512 * detected above. The callback is responsible for checking |ret| before it
2513 * performs any action
2514 */
2515 if (s->session_ctx->decrypt_ticket_cb != NULL
2516 && (ret == SSL_TICKET_EMPTY
2517 || ret == SSL_TICKET_NO_DECRYPT
2518 || ret == SSL_TICKET_SUCCESS
2519 || ret == SSL_TICKET_SUCCESS_RENEW)) {
2520 size_t keyname_len = eticklen;
2521 int retcb;
2522
2523 if (keyname_len > TLSEXT_KEYNAME_LENGTH)
2524 keyname_len = TLSEXT_KEYNAME_LENGTH;
2525 retcb = s->session_ctx->decrypt_ticket_cb(SSL_CONNECTION_GET_SSL(s),
2526 sess, etick, keyname_len,
2527 ret,
2528 s->session_ctx->ticket_cb_data);
2529 switch (retcb) {
2530 case SSL_TICKET_RETURN_ABORT:
2531 ret = SSL_TICKET_FATAL_ERR_OTHER;
2532 break;
2533
2534 case SSL_TICKET_RETURN_IGNORE:
2535 ret = SSL_TICKET_NONE;
2536 SSL_SESSION_free(sess);
2537 sess = NULL;
2538 break;
2539
2540 case SSL_TICKET_RETURN_IGNORE_RENEW:
2541 if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
2542 ret = SSL_TICKET_NO_DECRYPT;
2543 /* else the value of |ret| will already do the right thing */
2544 SSL_SESSION_free(sess);
2545 sess = NULL;
2546 break;
2547
2548 case SSL_TICKET_RETURN_USE:
2549 case SSL_TICKET_RETURN_USE_RENEW:
2550 if (ret != SSL_TICKET_SUCCESS
2551 && ret != SSL_TICKET_SUCCESS_RENEW)
2552 ret = SSL_TICKET_FATAL_ERR_OTHER;
2553 else if (retcb == SSL_TICKET_RETURN_USE)
2554 ret = SSL_TICKET_SUCCESS;
2555 else
2556 ret = SSL_TICKET_SUCCESS_RENEW;
2557 break;
2558
2559 default:
2560 ret = SSL_TICKET_FATAL_ERR_OTHER;
2561 }
2562 }
2563
2564 if (s->ext.session_secret_cb == NULL || SSL_CONNECTION_IS_TLS13(s)) {
2565 switch (ret) {
2566 case SSL_TICKET_NO_DECRYPT:
2567 case SSL_TICKET_SUCCESS_RENEW:
2568 case SSL_TICKET_EMPTY:
2569 s->ext.ticket_expected = 1;
2570 }
2571 }
2572
2573 *psess = sess;
2574
2575 return ret;
2576}
2577
2578/* Check to see if a signature algorithm is allowed */
2579static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op,
2580 const SIGALG_LOOKUP *lu)
2581{
2582 unsigned char sigalgstr[2];
2583 int secbits;
2584
2585 if (lu == NULL || !lu->enabled)
2586 return 0;
2587 /* DSA is not allowed in TLS 1.3 */
2588 if (SSL_CONNECTION_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
2589 return 0;
2590 /*
2591 * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
2592 * spec
2593 */
2594 if (!s->server && !SSL_CONNECTION_IS_DTLS(s)
2595 && s->s3.tmp.min_ver >= TLS1_3_VERSION
2596 && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
2597 || lu->hash_idx == SSL_MD_MD5_IDX
2598 || lu->hash_idx == SSL_MD_SHA224_IDX))
2599 return 0;
2600
2601 /* See if public key algorithm allowed */
2602 if (ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), lu->sig_idx))
2603 return 0;
2604
2605 if (lu->sig == NID_id_GostR3410_2012_256
2606 || lu->sig == NID_id_GostR3410_2012_512
2607 || lu->sig == NID_id_GostR3410_2001) {
2608 /* We never allow GOST sig algs on the server with TLSv1.3 */
2609 if (s->server && SSL_CONNECTION_IS_TLS13(s))
2610 return 0;
2611 if (!s->server
2612 && SSL_CONNECTION_GET_SSL(s)->method->version == TLS_ANY_VERSION
2613 && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
2614 int i, num;
2615 STACK_OF(SSL_CIPHER) *sk;
2616
2617 /*
2618 * We're a client that could negotiate TLSv1.3. We only allow GOST
2619 * sig algs if we could negotiate TLSv1.2 or below and we have GOST
2620 * ciphersuites enabled.
2621 */
2622
2623 if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
2624 return 0;
2625
2626 sk = SSL_get_ciphers(SSL_CONNECTION_GET_SSL(s));
2627 num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
2628 for (i = 0; i < num; i++) {
2629 const SSL_CIPHER *c;
2630
2631 c = sk_SSL_CIPHER_value(sk, i);
2632 /* Skip disabled ciphers */
2633 if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
2634 continue;
2635
2636 if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
2637 break;
2638 }
2639 if (i == num)
2640 return 0;
2641 }
2642 }
2643
2644 /* Finally see if security callback allows it */
2645 secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
2646 sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
2647 sigalgstr[1] = lu->sigalg & 0xff;
2648 return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
2649}
2650
2651/*
2652 * Get a mask of disabled public key algorithms based on supported signature
2653 * algorithms. For example if no signature algorithm supports RSA then RSA is
2654 * disabled.
2655 */
2656
2657void ssl_set_sig_mask(uint32_t *pmask_a, SSL_CONNECTION *s, int op)
2658{
2659 const uint16_t *sigalgs;
2660 size_t i, sigalgslen;
2661 uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
2662 /*
2663 * Go through all signature algorithms seeing if we support any
2664 * in disabled_mask.
2665 */
2666 sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
2667 for (i = 0; i < sigalgslen; i++, sigalgs++) {
2668 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *sigalgs);
2669 const SSL_CERT_LOOKUP *clu;
2670
2671 if (lu == NULL)
2672 continue;
2673
2674 clu = ssl_cert_lookup_by_idx(lu->sig_idx,
2675 SSL_CONNECTION_GET_CTX(s));
2676 if (clu == NULL)
2677 continue;
2678
2679 /* If algorithm is disabled see if we can enable it */
2680 if ((clu->amask & disabled_mask) != 0
2681 && tls12_sigalg_allowed(s, op, lu))
2682 disabled_mask &= ~clu->amask;
2683 }
2684 *pmask_a |= disabled_mask;
2685}
2686
2687int tls12_copy_sigalgs(SSL_CONNECTION *s, WPACKET *pkt,
2688 const uint16_t *psig, size_t psiglen)
2689{
2690 size_t i;
2691 int rv = 0;
2692
2693 for (i = 0; i < psiglen; i++, psig++) {
2694 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *psig);
2695
2696 if (lu == NULL
2697 || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
2698 continue;
2699 if (!WPACKET_put_bytes_u16(pkt, *psig))
2700 return 0;
2701 /*
2702 * If TLS 1.3 must have at least one valid TLS 1.3 message
2703 * signing algorithm: i.e. neither RSA nor SHA1/SHA224
2704 */
2705 if (rv == 0 && (!SSL_CONNECTION_IS_TLS13(s)
2706 || (lu->sig != EVP_PKEY_RSA
2707 && lu->hash != NID_sha1
2708 && lu->hash != NID_sha224)))
2709 rv = 1;
2710 }
2711 if (rv == 0)
2712 ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2713 return rv;
2714}
2715
2716/* Given preference and allowed sigalgs set shared sigalgs */
2717static size_t tls12_shared_sigalgs(SSL_CONNECTION *s,
2718 const SIGALG_LOOKUP **shsig,
2719 const uint16_t *pref, size_t preflen,
2720 const uint16_t *allow, size_t allowlen)
2721{
2722 const uint16_t *ptmp, *atmp;
2723 size_t i, j, nmatch = 0;
2724 for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
2725 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *ptmp);
2726
2727 /* Skip disabled hashes or signature algorithms */
2728 if (lu == NULL
2729 || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
2730 continue;
2731 for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
2732 if (*ptmp == *atmp) {
2733 nmatch++;
2734 if (shsig)
2735 *shsig++ = lu;
2736 break;
2737 }
2738 }
2739 }
2740 return nmatch;
2741}
2742
2743/* Set shared signature algorithms for SSL structures */
2744static int tls1_set_shared_sigalgs(SSL_CONNECTION *s)
2745{
2746 const uint16_t *pref, *allow, *conf;
2747 size_t preflen, allowlen, conflen;
2748 size_t nmatch;
2749 const SIGALG_LOOKUP **salgs = NULL;
2750 CERT *c = s->cert;
2751 unsigned int is_suiteb = tls1_suiteb(s);
2752
2753 OPENSSL_free(s->shared_sigalgs);
2754 s->shared_sigalgs = NULL;
2755 s->shared_sigalgslen = 0;
2756 /* If client use client signature algorithms if not NULL */
2757 if (!s->server && c->client_sigalgs && !is_suiteb) {
2758 conf = c->client_sigalgs;
2759 conflen = c->client_sigalgslen;
2760 } else if (c->conf_sigalgs && !is_suiteb) {
2761 conf = c->conf_sigalgs;
2762 conflen = c->conf_sigalgslen;
2763 } else
2764 conflen = tls12_get_psigalgs(s, 0, &conf);
2765 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
2766 pref = conf;
2767 preflen = conflen;
2768 allow = s->s3.tmp.peer_sigalgs;
2769 allowlen = s->s3.tmp.peer_sigalgslen;
2770 } else {
2771 allow = conf;
2772 allowlen = conflen;
2773 pref = s->s3.tmp.peer_sigalgs;
2774 preflen = s->s3.tmp.peer_sigalgslen;
2775 }
2776 nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
2777 if (nmatch) {
2778 if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL)
2779 return 0;
2780 nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
2781 } else {
2782 salgs = NULL;
2783 }
2784 s->shared_sigalgs = salgs;
2785 s->shared_sigalgslen = nmatch;
2786 return 1;
2787}
2788
2789int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
2790{
2791 unsigned int stmp;
2792 size_t size, i;
2793 uint16_t *buf;
2794
2795 size = PACKET_remaining(pkt);
2796
2797 /* Invalid data length */
2798 if (size == 0 || (size & 1) != 0)
2799 return 0;
2800
2801 size >>= 1;
2802
2803 if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL)
2804 return 0;
2805 for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
2806 buf[i] = stmp;
2807
2808 if (i != size) {
2809 OPENSSL_free(buf);
2810 return 0;
2811 }
2812
2813 OPENSSL_free(*pdest);
2814 *pdest = buf;
2815 *pdestlen = size;
2816
2817 return 1;
2818}
2819
2820int tls1_save_sigalgs(SSL_CONNECTION *s, PACKET *pkt, int cert)
2821{
2822 /* Extension ignored for inappropriate versions */
2823 if (!SSL_USE_SIGALGS(s))
2824 return 1;
2825 /* Should never happen */
2826 if (s->cert == NULL)
2827 return 0;
2828
2829 if (cert)
2830 return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
2831 &s->s3.tmp.peer_cert_sigalgslen);
2832 else
2833 return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
2834 &s->s3.tmp.peer_sigalgslen);
2835
2836}
2837
2838/* Set preferred digest for each key type */
2839
2840int tls1_process_sigalgs(SSL_CONNECTION *s)
2841{
2842 size_t i;
2843 uint32_t *pvalid = s->s3.tmp.valid_flags;
2844
2845 if (!tls1_set_shared_sigalgs(s))
2846 return 0;
2847
2848 for (i = 0; i < s->ssl_pkey_num; i++)
2849 pvalid[i] = 0;
2850
2851 for (i = 0; i < s->shared_sigalgslen; i++) {
2852 const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
2853 int idx = sigptr->sig_idx;
2854
2855 /* Ignore PKCS1 based sig algs in TLSv1.3 */
2856 if (SSL_CONNECTION_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
2857 continue;
2858 /* If not disabled indicate we can explicitly sign */
2859 if (pvalid[idx] == 0
2860 && !ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), idx))
2861 pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2862 }
2863 return 1;
2864}
2865
2866int SSL_get_sigalgs(SSL *s, int idx,
2867 int *psign, int *phash, int *psignhash,
2868 unsigned char *rsig, unsigned char *rhash)
2869{
2870 uint16_t *psig;
2871 size_t numsigalgs;
2872 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
2873
2874 if (sc == NULL)
2875 return 0;
2876
2877 psig = sc->s3.tmp.peer_sigalgs;
2878 numsigalgs = sc->s3.tmp.peer_sigalgslen;
2879
2880 if (psig == NULL || numsigalgs > INT_MAX)
2881 return 0;
2882 if (idx >= 0) {
2883 const SIGALG_LOOKUP *lu;
2884
2885 if (idx >= (int)numsigalgs)
2886 return 0;
2887 psig += idx;
2888 if (rhash != NULL)
2889 *rhash = (unsigned char)((*psig >> 8) & 0xff);
2890 if (rsig != NULL)
2891 *rsig = (unsigned char)(*psig & 0xff);
2892 lu = tls1_lookup_sigalg(sc, *psig);
2893 if (psign != NULL)
2894 *psign = lu != NULL ? lu->sig : NID_undef;
2895 if (phash != NULL)
2896 *phash = lu != NULL ? lu->hash : NID_undef;
2897 if (psignhash != NULL)
2898 *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
2899 }
2900 return (int)numsigalgs;
2901}
2902
2903int SSL_get_shared_sigalgs(SSL *s, int idx,
2904 int *psign, int *phash, int *psignhash,
2905 unsigned char *rsig, unsigned char *rhash)
2906{
2907 const SIGALG_LOOKUP *shsigalgs;
2908 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
2909
2910 if (sc == NULL)
2911 return 0;
2912
2913 if (sc->shared_sigalgs == NULL
2914 || idx < 0
2915 || idx >= (int)sc->shared_sigalgslen
2916 || sc->shared_sigalgslen > INT_MAX)
2917 return 0;
2918 shsigalgs = sc->shared_sigalgs[idx];
2919 if (phash != NULL)
2920 *phash = shsigalgs->hash;
2921 if (psign != NULL)
2922 *psign = shsigalgs->sig;
2923 if (psignhash != NULL)
2924 *psignhash = shsigalgs->sigandhash;
2925 if (rsig != NULL)
2926 *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
2927 if (rhash != NULL)
2928 *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
2929 return (int)sc->shared_sigalgslen;
2930}
2931
2932/* Maximum possible number of unique entries in sigalgs array */
2933#define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
2934
2935typedef struct {
2936 size_t sigalgcnt;
2937 /* TLSEXT_SIGALG_XXX values */
2938 uint16_t sigalgs[TLS_MAX_SIGALGCNT];
2939 SSL_CTX *ctx;
2940} sig_cb_st;
2941
2942static void get_sigorhash(int *psig, int *phash, const char *str)
2943{
2944 if (strcmp(str, "RSA") == 0) {
2945 *psig = EVP_PKEY_RSA;
2946 } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
2947 *psig = EVP_PKEY_RSA_PSS;
2948 } else if (strcmp(str, "DSA") == 0) {
2949 *psig = EVP_PKEY_DSA;
2950 } else if (strcmp(str, "ECDSA") == 0) {
2951 *psig = EVP_PKEY_EC;
2952 } else {
2953 *phash = OBJ_sn2nid(str);
2954 if (*phash == NID_undef)
2955 *phash = OBJ_ln2nid(str);
2956 }
2957}
2958/* Maximum length of a signature algorithm string component */
2959#define TLS_MAX_SIGSTRING_LEN 40
2960
2961static int sig_cb(const char *elem, int len, void *arg)
2962{
2963 sig_cb_st *sarg = arg;
2964 size_t i = 0;
2965 const SIGALG_LOOKUP *s;
2966 char etmp[TLS_MAX_SIGSTRING_LEN], *p;
2967 int sig_alg = NID_undef, hash_alg = NID_undef;
2968 int ignore_unknown = 0;
2969
2970 if (elem == NULL)
2971 return 0;
2972 if (elem[0] == '?') {
2973 ignore_unknown = 1;
2974 ++elem;
2975 --len;
2976 }
2977 if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
2978 return 0;
2979 if (len > (int)(sizeof(etmp) - 1))
2980 return 0;
2981 memcpy(etmp, elem, len);
2982 etmp[len] = 0;
2983 p = strchr(etmp, '+');
2984 /*
2985 * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
2986 * if there's no '+' in the provided name, look for the new-style combined
2987 * name. If not, match both sig+hash to find the needed SIGALG_LOOKUP.
2988 * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
2989 * rsa_pss_rsae_* that differ only by public key OID; in such cases
2990 * we will pick the _rsae_ variant, by virtue of them appearing earlier
2991 * in the table.
2992 */
2993 if (p == NULL) {
2994 /* Load provider sigalgs */
2995 if (sarg->ctx != NULL) {
2996 /* Check if a provider supports the sigalg */
2997 for (i = 0; i < sarg->ctx->sigalg_list_len; i++) {
2998 if (sarg->ctx->sigalg_list[i].sigalg_name != NULL
2999 && strcmp(etmp,
3000 sarg->ctx->sigalg_list[i].sigalg_name) == 0) {
3001 sarg->sigalgs[sarg->sigalgcnt++] =
3002 sarg->ctx->sigalg_list[i].code_point;
3003 break;
3004 }
3005 }
3006 }
3007 /* Check the built-in sigalgs */
3008 if (sarg->ctx == NULL || i == sarg->ctx->sigalg_list_len) {
3009 for (i = 0, s = sigalg_lookup_tbl;
3010 i < OSSL_NELEM(sigalg_lookup_tbl); i++, s++) {
3011 if (s->name != NULL && strcmp(etmp, s->name) == 0) {
3012 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3013 break;
3014 }
3015 }
3016 if (i == OSSL_NELEM(sigalg_lookup_tbl)) {
3017 /* Ignore unknown algorithms if ignore_unknown */
3018 return ignore_unknown;
3019 }
3020 }
3021 } else {
3022 *p = 0;
3023 p++;
3024 if (*p == 0)
3025 return 0;
3026 get_sigorhash(&sig_alg, &hash_alg, etmp);
3027 get_sigorhash(&sig_alg, &hash_alg, p);
3028 if (sig_alg == NID_undef || hash_alg == NID_undef) {
3029 /* Ignore unknown algorithms if ignore_unknown */
3030 return ignore_unknown;
3031 }
3032 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
3033 i++, s++) {
3034 if (s->hash == hash_alg && s->sig == sig_alg) {
3035 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3036 break;
3037 }
3038 }
3039 if (i == OSSL_NELEM(sigalg_lookup_tbl)) {
3040 /* Ignore unknown algorithms if ignore_unknown */
3041 return ignore_unknown;
3042 }
3043 }
3044
3045 /* Ignore duplicates */
3046 for (i = 0; i < sarg->sigalgcnt - 1; i++) {
3047 if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
3048 sarg->sigalgcnt--;
3049 return 1;
3050 }
3051 }
3052 return 1;
3053}
3054
3055/*
3056 * Set supported signature algorithms based on a colon separated list of the
3057 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
3058 */
3059int tls1_set_sigalgs_list(SSL_CTX *ctx, CERT *c, const char *str, int client)
3060{
3061 sig_cb_st sig;
3062 sig.sigalgcnt = 0;
3063
3064 if (ctx != NULL && ssl_load_sigalgs(ctx)) {
3065 sig.ctx = ctx;
3066 }
3067 if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
3068 return 0;
3069 if (sig.sigalgcnt == 0) {
3070 ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
3071 "No valid signature algorithms in '%s'", str);
3072 return 0;
3073 }
3074 if (c == NULL)
3075 return 1;
3076 return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
3077}
3078
3079int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
3080 int client)
3081{
3082 uint16_t *sigalgs;
3083
3084 if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL)
3085 return 0;
3086 memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
3087
3088 if (client) {
3089 OPENSSL_free(c->client_sigalgs);
3090 c->client_sigalgs = sigalgs;
3091 c->client_sigalgslen = salglen;
3092 } else {
3093 OPENSSL_free(c->conf_sigalgs);
3094 c->conf_sigalgs = sigalgs;
3095 c->conf_sigalgslen = salglen;
3096 }
3097
3098 return 1;
3099}
3100
3101int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
3102{
3103 uint16_t *sigalgs, *sptr;
3104 size_t i;
3105
3106 if (salglen & 1)
3107 return 0;
3108 if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL)
3109 return 0;
3110 for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
3111 size_t j;
3112 const SIGALG_LOOKUP *curr;
3113 int md_id = *psig_nids++;
3114 int sig_id = *psig_nids++;
3115
3116 for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
3117 j++, curr++) {
3118 if (curr->hash == md_id && curr->sig == sig_id) {
3119 *sptr++ = curr->sigalg;
3120 break;
3121 }
3122 }
3123
3124 if (j == OSSL_NELEM(sigalg_lookup_tbl))
3125 goto err;
3126 }
3127
3128 if (client) {
3129 OPENSSL_free(c->client_sigalgs);
3130 c->client_sigalgs = sigalgs;
3131 c->client_sigalgslen = salglen / 2;
3132 } else {
3133 OPENSSL_free(c->conf_sigalgs);
3134 c->conf_sigalgs = sigalgs;
3135 c->conf_sigalgslen = salglen / 2;
3136 }
3137
3138 return 1;
3139
3140 err:
3141 OPENSSL_free(sigalgs);
3142 return 0;
3143}
3144
3145static int tls1_check_sig_alg(SSL_CONNECTION *s, X509 *x, int default_nid)
3146{
3147 int sig_nid, use_pc_sigalgs = 0;
3148 size_t i;
3149 const SIGALG_LOOKUP *sigalg;
3150 size_t sigalgslen;
3151
3152 if (default_nid == -1)
3153 return 1;
3154 sig_nid = X509_get_signature_nid(x);
3155 if (default_nid)
3156 return sig_nid == default_nid ? 1 : 0;
3157
3158 if (SSL_CONNECTION_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
3159 /*
3160 * If we're in TLSv1.3 then we only get here if we're checking the
3161 * chain. If the peer has specified peer_cert_sigalgs then we use them
3162 * otherwise we default to normal sigalgs.
3163 */
3164 sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
3165 use_pc_sigalgs = 1;
3166 } else {
3167 sigalgslen = s->shared_sigalgslen;
3168 }
3169 for (i = 0; i < sigalgslen; i++) {
3170 sigalg = use_pc_sigalgs
3171 ? tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i])
3172 : s->shared_sigalgs[i];
3173 if (sigalg != NULL && sig_nid == sigalg->sigandhash)
3174 return 1;
3175 }
3176 return 0;
3177}
3178
3179/* Check to see if a certificate issuer name matches list of CA names */
3180static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
3181{
3182 const X509_NAME *nm;
3183 int i;
3184 nm = X509_get_issuer_name(x);
3185 for (i = 0; i < sk_X509_NAME_num(names); i++) {
3186 if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
3187 return 1;
3188 }
3189 return 0;
3190}
3191
3192/*
3193 * Check certificate chain is consistent with TLS extensions and is usable by
3194 * server. This servers two purposes: it allows users to check chains before
3195 * passing them to the server and it allows the server to check chains before
3196 * attempting to use them.
3197 */
3198
3199/* Flags which need to be set for a certificate when strict mode not set */
3200
3201#define CERT_PKEY_VALID_FLAGS \
3202 (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
3203/* Strict mode flags */
3204#define CERT_PKEY_STRICT_FLAGS \
3205 (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
3206 | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
3207
3208int tls1_check_chain(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pk,
3209 STACK_OF(X509) *chain, int idx)
3210{
3211 int i;
3212 int rv = 0;
3213 int check_flags = 0, strict_mode;
3214 CERT_PKEY *cpk = NULL;
3215 CERT *c = s->cert;
3216 uint32_t *pvalid;
3217 unsigned int suiteb_flags = tls1_suiteb(s);
3218
3219 /*
3220 * Meaning of idx:
3221 * idx == -1 means SSL_check_chain() invocation
3222 * idx == -2 means checking client certificate chains
3223 * idx >= 0 means checking SSL_PKEY index
3224 *
3225 * For RPK, where there may be no cert, we ignore -1
3226 */
3227 if (idx != -1) {
3228 if (idx == -2) {
3229 cpk = c->key;
3230 idx = (int)(cpk - c->pkeys);
3231 } else
3232 cpk = c->pkeys + idx;
3233 pvalid = s->s3.tmp.valid_flags + idx;
3234 x = cpk->x509;
3235 pk = cpk->privatekey;
3236 chain = cpk->chain;
3237 strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
3238 if (tls12_rpk_and_privkey(s, idx)) {
3239 if (EVP_PKEY_is_a(pk, "EC") && !tls1_check_pkey_comp(s, pk))
3240 return 0;
3241 *pvalid = rv = CERT_PKEY_RPK;
3242 return rv;
3243 }
3244 /* If no cert or key, forget it */
3245 if (x == NULL || pk == NULL)
3246 goto end;
3247 } else {
3248 size_t certidx;
3249
3250 if (x == NULL || pk == NULL)
3251 return 0;
3252
3253 if (ssl_cert_lookup_by_pkey(pk, &certidx,
3254 SSL_CONNECTION_GET_CTX(s)) == NULL)
3255 return 0;
3256 idx = certidx;
3257 pvalid = s->s3.tmp.valid_flags + idx;
3258
3259 if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
3260 check_flags = CERT_PKEY_STRICT_FLAGS;
3261 else
3262 check_flags = CERT_PKEY_VALID_FLAGS;
3263 strict_mode = 1;
3264 }
3265
3266 if (suiteb_flags) {
3267 int ok;
3268 if (check_flags)
3269 check_flags |= CERT_PKEY_SUITEB;
3270 ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
3271 if (ok == X509_V_OK)
3272 rv |= CERT_PKEY_SUITEB;
3273 else if (!check_flags)
3274 goto end;
3275 }
3276
3277 /*
3278 * Check all signature algorithms are consistent with signature
3279 * algorithms extension if TLS 1.2 or later and strict mode.
3280 */
3281 if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION
3282 && strict_mode) {
3283 int default_nid;
3284 int rsign = 0;
3285
3286 if (s->s3.tmp.peer_cert_sigalgs != NULL
3287 || s->s3.tmp.peer_sigalgs != NULL) {
3288 default_nid = 0;
3289 /* If no sigalgs extension use defaults from RFC5246 */
3290 } else {
3291 switch (idx) {
3292 case SSL_PKEY_RSA:
3293 rsign = EVP_PKEY_RSA;
3294 default_nid = NID_sha1WithRSAEncryption;
3295 break;
3296
3297 case SSL_PKEY_DSA_SIGN:
3298 rsign = EVP_PKEY_DSA;
3299 default_nid = NID_dsaWithSHA1;
3300 break;
3301
3302 case SSL_PKEY_ECC:
3303 rsign = EVP_PKEY_EC;
3304 default_nid = NID_ecdsa_with_SHA1;
3305 break;
3306
3307 case SSL_PKEY_GOST01:
3308 rsign = NID_id_GostR3410_2001;
3309 default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
3310 break;
3311
3312 case SSL_PKEY_GOST12_256:
3313 rsign = NID_id_GostR3410_2012_256;
3314 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
3315 break;
3316
3317 case SSL_PKEY_GOST12_512:
3318 rsign = NID_id_GostR3410_2012_512;
3319 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
3320 break;
3321
3322 default:
3323 default_nid = -1;
3324 break;
3325 }
3326 }
3327 /*
3328 * If peer sent no signature algorithms extension and we have set
3329 * preferred signature algorithms check we support sha1.
3330 */
3331 if (default_nid > 0 && c->conf_sigalgs) {
3332 size_t j;
3333 const uint16_t *p = c->conf_sigalgs;
3334 for (j = 0; j < c->conf_sigalgslen; j++, p++) {
3335 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *p);
3336
3337 if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
3338 break;
3339 }
3340 if (j == c->conf_sigalgslen) {
3341 if (check_flags)
3342 goto skip_sigs;
3343 else
3344 goto end;
3345 }
3346 }
3347 /* Check signature algorithm of each cert in chain */
3348 if (SSL_CONNECTION_IS_TLS13(s)) {
3349 /*
3350 * We only get here if the application has called SSL_check_chain(),
3351 * so check_flags is always set.
3352 */
3353 if (find_sig_alg(s, x, pk) != NULL)
3354 rv |= CERT_PKEY_EE_SIGNATURE;
3355 } else if (!tls1_check_sig_alg(s, x, default_nid)) {
3356 if (!check_flags)
3357 goto end;
3358 } else
3359 rv |= CERT_PKEY_EE_SIGNATURE;
3360 rv |= CERT_PKEY_CA_SIGNATURE;
3361 for (i = 0; i < sk_X509_num(chain); i++) {
3362 if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
3363 if (check_flags) {
3364 rv &= ~CERT_PKEY_CA_SIGNATURE;
3365 break;
3366 } else
3367 goto end;
3368 }
3369 }
3370 }
3371 /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
3372 else if (check_flags)
3373 rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
3374 skip_sigs:
3375 /* Check cert parameters are consistent */
3376 if (tls1_check_cert_param(s, x, 1))
3377 rv |= CERT_PKEY_EE_PARAM;
3378 else if (!check_flags)
3379 goto end;
3380 if (!s->server)
3381 rv |= CERT_PKEY_CA_PARAM;
3382 /* In strict mode check rest of chain too */
3383 else if (strict_mode) {
3384 rv |= CERT_PKEY_CA_PARAM;
3385 for (i = 0; i < sk_X509_num(chain); i++) {
3386 X509 *ca = sk_X509_value(chain, i);
3387 if (!tls1_check_cert_param(s, ca, 0)) {
3388 if (check_flags) {
3389 rv &= ~CERT_PKEY_CA_PARAM;
3390 break;
3391 } else
3392 goto end;
3393 }
3394 }
3395 }
3396 if (!s->server && strict_mode) {
3397 STACK_OF(X509_NAME) *ca_dn;
3398 int check_type = 0;
3399
3400 if (EVP_PKEY_is_a(pk, "RSA"))
3401 check_type = TLS_CT_RSA_SIGN;
3402 else if (EVP_PKEY_is_a(pk, "DSA"))
3403 check_type = TLS_CT_DSS_SIGN;
3404 else if (EVP_PKEY_is_a(pk, "EC"))
3405 check_type = TLS_CT_ECDSA_SIGN;
3406
3407 if (check_type) {
3408 const uint8_t *ctypes = s->s3.tmp.ctype;
3409 size_t j;
3410
3411 for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
3412 if (*ctypes == check_type) {
3413 rv |= CERT_PKEY_CERT_TYPE;
3414 break;
3415 }
3416 }
3417 if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
3418 goto end;
3419 } else {
3420 rv |= CERT_PKEY_CERT_TYPE;
3421 }
3422
3423 ca_dn = s->s3.tmp.peer_ca_names;
3424
3425 if (ca_dn == NULL
3426 || sk_X509_NAME_num(ca_dn) == 0
3427 || ssl_check_ca_name(ca_dn, x))
3428 rv |= CERT_PKEY_ISSUER_NAME;
3429 else
3430 for (i = 0; i < sk_X509_num(chain); i++) {
3431 X509 *xtmp = sk_X509_value(chain, i);
3432
3433 if (ssl_check_ca_name(ca_dn, xtmp)) {
3434 rv |= CERT_PKEY_ISSUER_NAME;
3435 break;
3436 }
3437 }
3438
3439 if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
3440 goto end;
3441 } else
3442 rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
3443
3444 if (!check_flags || (rv & check_flags) == check_flags)
3445 rv |= CERT_PKEY_VALID;
3446
3447 end:
3448
3449 if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION)
3450 rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
3451 else
3452 rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
3453
3454 /*
3455 * When checking a CERT_PKEY structure all flags are irrelevant if the
3456 * chain is invalid.
3457 */
3458 if (!check_flags) {
3459 if (rv & CERT_PKEY_VALID) {
3460 *pvalid = rv;
3461 } else {
3462 /* Preserve sign and explicit sign flag, clear rest */
3463 *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
3464 return 0;
3465 }
3466 }
3467 return rv;
3468}
3469
3470/* Set validity of certificates in an SSL structure */
3471void tls1_set_cert_validity(SSL_CONNECTION *s)
3472{
3473 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
3474 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
3475 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
3476 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
3477 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
3478 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
3479 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
3480 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
3481 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
3482}
3483
3484/* User level utility function to check a chain is suitable */
3485int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
3486{
3487 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
3488
3489 if (sc == NULL)
3490 return 0;
3491
3492 return tls1_check_chain(sc, x, pk, chain, -1);
3493}
3494
3495EVP_PKEY *ssl_get_auto_dh(SSL_CONNECTION *s)
3496{
3497 EVP_PKEY *dhp = NULL;
3498 BIGNUM *p;
3499 int dh_secbits = 80, sec_level_bits;
3500 EVP_PKEY_CTX *pctx = NULL;
3501 OSSL_PARAM_BLD *tmpl = NULL;
3502 OSSL_PARAM *params = NULL;
3503 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3504
3505 if (s->cert->dh_tmp_auto != 2) {
3506 if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
3507 if (s->s3.tmp.new_cipher->strength_bits == 256)
3508 dh_secbits = 128;
3509 else
3510 dh_secbits = 80;
3511 } else {
3512 if (s->s3.tmp.cert == NULL)
3513 return NULL;
3514 dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);
3515 }
3516 }
3517
3518 /* Do not pick a prime that is too weak for the current security level */
3519 sec_level_bits = ssl_get_security_level_bits(SSL_CONNECTION_GET_SSL(s),
3520 NULL, NULL);
3521 if (dh_secbits < sec_level_bits)
3522 dh_secbits = sec_level_bits;
3523
3524 if (dh_secbits >= 192)
3525 p = BN_get_rfc3526_prime_8192(NULL);
3526 else if (dh_secbits >= 152)
3527 p = BN_get_rfc3526_prime_4096(NULL);
3528 else if (dh_secbits >= 128)
3529 p = BN_get_rfc3526_prime_3072(NULL);
3530 else if (dh_secbits >= 112)
3531 p = BN_get_rfc3526_prime_2048(NULL);
3532 else
3533 p = BN_get_rfc2409_prime_1024(NULL);
3534 if (p == NULL)
3535 goto err;
3536
3537 pctx = EVP_PKEY_CTX_new_from_name(sctx->libctx, "DH", sctx->propq);
3538 if (pctx == NULL
3539 || EVP_PKEY_fromdata_init(pctx) != 1)
3540 goto err;
3541
3542 tmpl = OSSL_PARAM_BLD_new();
3543 if (tmpl == NULL
3544 || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
3545 || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
3546 goto err;
3547
3548 params = OSSL_PARAM_BLD_to_param(tmpl);
3549 if (params == NULL
3550 || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)
3551 goto err;
3552
3553err:
3554 OSSL_PARAM_free(params);
3555 OSSL_PARAM_BLD_free(tmpl);
3556 EVP_PKEY_CTX_free(pctx);
3557 BN_free(p);
3558 return dhp;
3559}
3560
3561static int ssl_security_cert_key(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
3562 int op)
3563{
3564 int secbits = -1;
3565 EVP_PKEY *pkey = X509_get0_pubkey(x);
3566
3567 if (pkey) {
3568 /*
3569 * If no parameters this will return -1 and fail using the default
3570 * security callback for any non-zero security level. This will
3571 * reject keys which omit parameters but this only affects DSA and
3572 * omission of parameters is never (?) done in practice.
3573 */
3574 secbits = EVP_PKEY_get_security_bits(pkey);
3575 }
3576 if (s != NULL)
3577 return ssl_security(s, op, secbits, 0, x);
3578 else
3579 return ssl_ctx_security(ctx, op, secbits, 0, x);
3580}
3581
3582static int ssl_security_cert_sig(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
3583 int op)
3584{
3585 /* Lookup signature algorithm digest */
3586 int secbits, nid, pknid;
3587
3588 /* Don't check signature if self signed */
3589 if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
3590 return 1;
3591 if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
3592 secbits = -1;
3593 /* If digest NID not defined use signature NID */
3594 if (nid == NID_undef)
3595 nid = pknid;
3596 if (s != NULL)
3597 return ssl_security(s, op, secbits, nid, x);
3598 else
3599 return ssl_ctx_security(ctx, op, secbits, nid, x);
3600}
3601
3602int ssl_security_cert(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x, int vfy,
3603 int is_ee)
3604{
3605 if (vfy)
3606 vfy = SSL_SECOP_PEER;
3607 if (is_ee) {
3608 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
3609 return SSL_R_EE_KEY_TOO_SMALL;
3610 } else {
3611 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
3612 return SSL_R_CA_KEY_TOO_SMALL;
3613 }
3614 if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
3615 return SSL_R_CA_MD_TOO_WEAK;
3616 return 1;
3617}
3618
3619/*
3620 * Check security of a chain, if |sk| includes the end entity certificate then
3621 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
3622 * one to the peer. Return values: 1 if ok otherwise error code to use
3623 */
3624
3625int ssl_security_cert_chain(SSL_CONNECTION *s, STACK_OF(X509) *sk,
3626 X509 *x, int vfy)
3627{
3628 int rv, start_idx, i;
3629
3630 if (x == NULL) {
3631 x = sk_X509_value(sk, 0);
3632 if (x == NULL)
3633 return ERR_R_INTERNAL_ERROR;
3634 start_idx = 1;
3635 } else
3636 start_idx = 0;
3637
3638 rv = ssl_security_cert(s, NULL, x, vfy, 1);
3639 if (rv != 1)
3640 return rv;
3641
3642 for (i = start_idx; i < sk_X509_num(sk); i++) {
3643 x = sk_X509_value(sk, i);
3644 rv = ssl_security_cert(s, NULL, x, vfy, 0);
3645 if (rv != 1)
3646 return rv;
3647 }
3648 return 1;
3649}
3650
3651/*
3652 * For TLS 1.2 servers check if we have a certificate which can be used
3653 * with the signature algorithm "lu" and return index of certificate.
3654 */
3655
3656static int tls12_get_cert_sigalg_idx(const SSL_CONNECTION *s,
3657 const SIGALG_LOOKUP *lu)
3658{
3659 int sig_idx = lu->sig_idx;
3660 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx,
3661 SSL_CONNECTION_GET_CTX(s));
3662
3663 /* If not recognised or not supported by cipher mask it is not suitable */
3664 if (clu == NULL
3665 || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
3666 || (clu->nid == EVP_PKEY_RSA_PSS
3667 && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
3668 return -1;
3669
3670 /* If doing RPK, the CERT_PKEY won't be "valid" */
3671 if (tls12_rpk_and_privkey(s, sig_idx))
3672 return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_RPK ? sig_idx : -1;
3673
3674 return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
3675}
3676
3677/*
3678 * Checks the given cert against signature_algorithm_cert restrictions sent by
3679 * the peer (if any) as well as whether the hash from the sigalg is usable with
3680 * the key.
3681 * Returns true if the cert is usable and false otherwise.
3682 */
3683static int check_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig,
3684 X509 *x, EVP_PKEY *pkey)
3685{
3686 const SIGALG_LOOKUP *lu;
3687 int mdnid, pknid, supported;
3688 size_t i;
3689 const char *mdname = NULL;
3690 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3691
3692 /*
3693 * If the given EVP_PKEY cannot support signing with this digest,
3694 * the answer is simply 'no'.
3695 */
3696 if (sig->hash != NID_undef)
3697 mdname = OBJ_nid2sn(sig->hash);
3698 supported = EVP_PKEY_digestsign_supports_digest(pkey, sctx->libctx,
3699 mdname,
3700 sctx->propq);
3701 if (supported <= 0)
3702 return 0;
3703
3704 /*
3705 * The TLS 1.3 signature_algorithms_cert extension places restrictions
3706 * on the sigalg with which the certificate was signed (by its issuer).
3707 */
3708 if (s->s3.tmp.peer_cert_sigalgs != NULL) {
3709 if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
3710 return 0;
3711 for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
3712 lu = tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i]);
3713 if (lu == NULL)
3714 continue;
3715
3716 /*
3717 * This does not differentiate between the
3718 * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
3719 * have a chain here that lets us look at the key OID in the
3720 * signing certificate.
3721 */
3722 if (mdnid == lu->hash && pknid == lu->sig)
3723 return 1;
3724 }
3725 return 0;
3726 }
3727
3728 /*
3729 * Without signat_algorithms_cert, any certificate for which we have
3730 * a viable public key is permitted.
3731 */
3732 return 1;
3733}
3734
3735/*
3736 * Returns true if |s| has a usable certificate configured for use
3737 * with signature scheme |sig|.
3738 * "Usable" includes a check for presence as well as applying
3739 * the signature_algorithm_cert restrictions sent by the peer (if any).
3740 * Returns false if no usable certificate is found.
3741 */
3742static int has_usable_cert(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, int idx)
3743{
3744 /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
3745 if (idx == -1)
3746 idx = sig->sig_idx;
3747 if (!ssl_has_cert(s, idx))
3748 return 0;
3749
3750 return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
3751 s->cert->pkeys[idx].privatekey);
3752}
3753
3754/*
3755 * Returns true if the supplied cert |x| and key |pkey| is usable with the
3756 * specified signature scheme |sig|, or false otherwise.
3757 */
3758static int is_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, X509 *x,
3759 EVP_PKEY *pkey)
3760{
3761 size_t idx;
3762
3763 if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
3764 return 0;
3765
3766 /* Check the key is consistent with the sig alg */
3767 if ((int)idx != sig->sig_idx)
3768 return 0;
3769
3770 return check_cert_usable(s, sig, x, pkey);
3771}
3772
3773/*
3774 * Find a signature scheme that works with the supplied certificate |x| and key
3775 * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
3776 * available certs/keys to find one that works.
3777 */
3778static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x,
3779 EVP_PKEY *pkey)
3780{
3781 const SIGALG_LOOKUP *lu = NULL;
3782 size_t i;
3783 int curve = -1;
3784 EVP_PKEY *tmppkey;
3785 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3786
3787 /* Look for a shared sigalgs matching possible certificates */
3788 for (i = 0; i < s->shared_sigalgslen; i++) {
3789 lu = s->shared_sigalgs[i];
3790
3791 /* Skip SHA1, SHA224, DSA and RSA if not PSS */
3792 if (lu->hash == NID_sha1
3793 || lu->hash == NID_sha224
3794 || lu->sig == EVP_PKEY_DSA
3795 || lu->sig == EVP_PKEY_RSA)
3796 continue;
3797 /* Check that we have a cert, and signature_algorithms_cert */
3798 if (!tls1_lookup_md(sctx, lu, NULL))
3799 continue;
3800 if ((pkey == NULL && !has_usable_cert(s, lu, -1))
3801 || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
3802 continue;
3803
3804 tmppkey = (pkey != NULL) ? pkey
3805 : s->cert->pkeys[lu->sig_idx].privatekey;
3806
3807 if (lu->sig == EVP_PKEY_EC) {
3808 if (curve == -1)
3809 curve = ssl_get_EC_curve_nid(tmppkey);
3810 if (lu->curve != NID_undef && curve != lu->curve)
3811 continue;
3812 } else if (lu->sig == EVP_PKEY_RSA_PSS) {
3813 /* validate that key is large enough for the signature algorithm */
3814 if (!rsa_pss_check_min_key_size(sctx, tmppkey, lu))
3815 continue;
3816 }
3817 break;
3818 }
3819
3820 if (i == s->shared_sigalgslen)
3821 return NULL;
3822
3823 return lu;
3824}
3825
3826/*
3827 * Choose an appropriate signature algorithm based on available certificates
3828 * Sets chosen certificate and signature algorithm.
3829 *
3830 * For servers if we fail to find a required certificate it is a fatal error,
3831 * an appropriate error code is set and a TLS alert is sent.
3832 *
3833 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
3834 * a fatal error: we will either try another certificate or not present one
3835 * to the server. In this case no error is set.
3836 */
3837int tls_choose_sigalg(SSL_CONNECTION *s, int fatalerrs)
3838{
3839 const SIGALG_LOOKUP *lu = NULL;
3840 int sig_idx = -1;
3841
3842 s->s3.tmp.cert = NULL;
3843 s->s3.tmp.sigalg = NULL;
3844
3845 if (SSL_CONNECTION_IS_TLS13(s)) {
3846 lu = find_sig_alg(s, NULL, NULL);
3847 if (lu == NULL) {
3848 if (!fatalerrs)
3849 return 1;
3850 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3851 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3852 return 0;
3853 }
3854 } else {
3855 /* If ciphersuite doesn't require a cert nothing to do */
3856 if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
3857 return 1;
3858 if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
3859 return 1;
3860
3861 if (SSL_USE_SIGALGS(s)) {
3862 size_t i;
3863 if (s->s3.tmp.peer_sigalgs != NULL) {
3864 int curve = -1;
3865 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3866
3867 /* For Suite B need to match signature algorithm to curve */
3868 if (tls1_suiteb(s))
3869 curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
3870 .privatekey);
3871
3872 /*
3873 * Find highest preference signature algorithm matching
3874 * cert type
3875 */
3876 for (i = 0; i < s->shared_sigalgslen; i++) {
3877 lu = s->shared_sigalgs[i];
3878
3879 if (s->server) {
3880 if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
3881 continue;
3882 } else {
3883 int cc_idx = s->cert->key - s->cert->pkeys;
3884
3885 sig_idx = lu->sig_idx;
3886 if (cc_idx != sig_idx)
3887 continue;
3888 }
3889 /* Check that we have a cert, and sig_algs_cert */
3890 if (!has_usable_cert(s, lu, sig_idx))
3891 continue;
3892 if (lu->sig == EVP_PKEY_RSA_PSS) {
3893 /* validate that key is large enough for the signature algorithm */
3894 EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
3895
3896 if (!rsa_pss_check_min_key_size(sctx, pkey, lu))
3897 continue;
3898 }
3899 if (curve == -1 || lu->curve == curve)
3900 break;
3901 }
3902#ifndef OPENSSL_NO_GOST
3903 /*
3904 * Some Windows-based implementations do not send GOST algorithms indication
3905 * in supported_algorithms extension, so when we have GOST-based ciphersuite,
3906 * we have to assume GOST support.
3907 */
3908 if (i == s->shared_sigalgslen
3909 && (s->s3.tmp.new_cipher->algorithm_auth
3910 & (SSL_aGOST01 | SSL_aGOST12)) != 0) {
3911 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3912 if (!fatalerrs)
3913 return 1;
3914 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3915 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3916 return 0;
3917 } else {
3918 i = 0;
3919 sig_idx = lu->sig_idx;
3920 }
3921 }
3922#endif
3923 if (i == s->shared_sigalgslen) {
3924 if (!fatalerrs)
3925 return 1;
3926 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3927 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3928 return 0;
3929 }
3930 } else {
3931 /*
3932 * If we have no sigalg use defaults
3933 */
3934 const uint16_t *sent_sigs;
3935 size_t sent_sigslen;
3936
3937 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3938 if (!fatalerrs)
3939 return 1;
3940 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3941 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3942 return 0;
3943 }
3944
3945 /* Check signature matches a type we sent */
3946 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
3947 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
3948 if (lu->sigalg == *sent_sigs
3949 && has_usable_cert(s, lu, lu->sig_idx))
3950 break;
3951 }
3952 if (i == sent_sigslen) {
3953 if (!fatalerrs)
3954 return 1;
3955 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3956 SSL_R_WRONG_SIGNATURE_TYPE);
3957 return 0;
3958 }
3959 }
3960 } else {
3961 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3962 if (!fatalerrs)
3963 return 1;
3964 SSLfatal(s, SSL_AD_INTERNAL_ERROR,
3965 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3966 return 0;
3967 }
3968 }
3969 }
3970 if (sig_idx == -1)
3971 sig_idx = lu->sig_idx;
3972 s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
3973 s->cert->key = s->s3.tmp.cert;
3974 s->s3.tmp.sigalg = lu;
3975 return 1;
3976}
3977
3978int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
3979{
3980 if (mode != TLSEXT_max_fragment_length_DISABLED
3981 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3982 ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3983 return 0;
3984 }
3985
3986 ctx->ext.max_fragment_len_mode = mode;
3987 return 1;
3988}
3989
3990int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
3991{
3992 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl);
3993
3994 if (sc == NULL
3995 || (IS_QUIC(ssl) && mode != TLSEXT_max_fragment_length_DISABLED))
3996 return 0;
3997
3998 if (mode != TLSEXT_max_fragment_length_DISABLED
3999 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
4000 ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
4001 return 0;
4002 }
4003
4004 sc->ext.max_fragment_len_mode = mode;
4005 return 1;
4006}
4007
4008uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
4009{
4010 if (session->ext.max_fragment_len_mode == TLSEXT_max_fragment_length_UNSPECIFIED)
4011 return TLSEXT_max_fragment_length_DISABLED;
4012 return session->ext.max_fragment_len_mode;
4013}
4014
4015/*
4016 * Helper functions for HMAC access with legacy support included.
4017 */
4018SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
4019{
4020 SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
4021 EVP_MAC *mac = NULL;
4022
4023 if (ret == NULL)
4024 return NULL;
4025#ifndef OPENSSL_NO_DEPRECATED_3_0
4026 if (ctx->ext.ticket_key_evp_cb == NULL
4027 && ctx->ext.ticket_key_cb != NULL) {
4028 if (!ssl_hmac_old_new(ret))
4029 goto err;
4030 return ret;
4031 }
4032#endif
4033 mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
4034 if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
4035 goto err;
4036 EVP_MAC_free(mac);
4037 return ret;
4038 err:
4039 EVP_MAC_CTX_free(ret->ctx);
4040 EVP_MAC_free(mac);
4041 OPENSSL_free(ret);
4042 return NULL;
4043}
4044
4045void ssl_hmac_free(SSL_HMAC *ctx)
4046{
4047 if (ctx != NULL) {
4048 EVP_MAC_CTX_free(ctx->ctx);
4049#ifndef OPENSSL_NO_DEPRECATED_3_0
4050 ssl_hmac_old_free(ctx);
4051#endif
4052 OPENSSL_free(ctx);
4053 }
4054}
4055
4056EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
4057{
4058 return ctx->ctx;
4059}
4060
4061int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
4062{
4063 OSSL_PARAM params[2], *p = params;
4064
4065 if (ctx->ctx != NULL) {
4066 *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
4067 *p = OSSL_PARAM_construct_end();
4068 if (EVP_MAC_init(ctx->ctx, key, len, params))
4069 return 1;
4070 }
4071#ifndef OPENSSL_NO_DEPRECATED_3_0
4072 if (ctx->old_ctx != NULL)
4073 return ssl_hmac_old_init(ctx, key, len, md);
4074#endif
4075 return 0;
4076}
4077
4078int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
4079{
4080 if (ctx->ctx != NULL)
4081 return EVP_MAC_update(ctx->ctx, data, len);
4082#ifndef OPENSSL_NO_DEPRECATED_3_0
4083 if (ctx->old_ctx != NULL)
4084 return ssl_hmac_old_update(ctx, data, len);
4085#endif
4086 return 0;
4087}
4088
4089int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
4090 size_t max_size)
4091{
4092 if (ctx->ctx != NULL)
4093 return EVP_MAC_final(ctx->ctx, md, len, max_size);
4094#ifndef OPENSSL_NO_DEPRECATED_3_0
4095 if (ctx->old_ctx != NULL)
4096 return ssl_hmac_old_final(ctx, md, len);
4097#endif
4098 return 0;
4099}
4100
4101size_t ssl_hmac_size(const SSL_HMAC *ctx)
4102{
4103 if (ctx->ctx != NULL)
4104 return EVP_MAC_CTX_get_mac_size(ctx->ctx);
4105#ifndef OPENSSL_NO_DEPRECATED_3_0
4106 if (ctx->old_ctx != NULL)
4107 return ssl_hmac_old_size(ctx);
4108#endif
4109 return 0;
4110}
4111
4112int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
4113{
4114 char gname[OSSL_MAX_NAME_SIZE];
4115
4116 if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
4117 return OBJ_txt2nid(gname);
4118
4119 return NID_undef;
4120}
4121
4122__owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,
4123 const unsigned char *enckey,
4124 size_t enckeylen)
4125{
4126 if (EVP_PKEY_is_a(pkey, "DH")) {
4127 int bits = EVP_PKEY_get_bits(pkey);
4128
4129 if (bits <= 0 || enckeylen != (size_t)bits / 8)
4130 /* the encoded key must be padded to the length of the p */
4131 return 0;
4132 } else if (EVP_PKEY_is_a(pkey, "EC")) {
4133 if (enckeylen < 3 /* point format and at least 1 byte for x and y */
4134 || enckey[0] != 0x04)
4135 return 0;
4136 }
4137
4138 return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);
4139}
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette